
PHYSICAL REVIEW B 108, 094520 (2023)
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Probing the superconducting order parameter symmetry is a crucial step towards understanding the pairing
mechanism in unconventional superconductors. Inspired by the recent discoveries of superconductivity in various
van der Waals materials and the availability of the relative twist angle as a continuous tuning knob in these sys-
tems, we propose a general setup for probing the order parameter symmetry of two-dimensional superconductors
in twisted Josephson junctions. The junction is composed of an anisotropic s-wave superconductor as a probe and
another superconductor with an unknown order parameter symmetry. Assuming momentum-resolved tunneling,
we investigate signatures of different order parameter symmetries in the twist angle dependence of the critical
current, the current-phase relations, and magnetic field dependence. As a concrete example, we study a twisted
Josephson junction between NbSe2 and magic angle twisted bilayer graphene.
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I. INTRODUCTION

Identifying the pairing symmetry of unconventional super-
conductors (SCs) is a central challenge in condensed-matter
physics. This is often the key step towards understanding the
pairing mechanism. The structure of the order parameter may
be probed by various experimental techniques, divided into
non-phase-sensitive and phase-sensitive methods. Non-phase-
sensitive methods probe the excitation spectrum, searching
for gapless (nodal) quasiparticles. Phase-sensitive techniques,
such as Josephson interferometry [1–5], are based on the
interference of the quantum-mechanical phase of the SC order
parameter. These methods have been successfully applied to
determine the nodal d-wave nature of the superconducting gap
in the high-Tc cuprate SCs.

However, the order parameter symmetry of numerous
SCs remains unknown. Among these are the recently dis-
covered superconducting phases in graphene multilayers,
including twisted bilayer graphene (TBG) [6–8], twisted tri-
layer graphene (TTG) [9,10], twisted structures with four and
five layers [11,12], rhombohedral trilayer graphene (RLG)
[13], and Bernal bilayer graphene (BLG) [14,15]. The pres-
ence of multiple electron flavors in these systems, including
the valley, spin, and layer indices, gives rise to a rich phase
space for electrons to pair [16–19]. In some of these sys-
tems, large violations of the Pauli limit have been observed
[10–14], indicating triplet pairing. In TBG and TTG, scanning
tunneling microscopy (STM) experiments [20,21] have found
evidence for gap nodes. Combined with the transport evidence
for rotational symmetry breaking in the SC state [22], these
experiments indicate a non-s-wave pairing symmetry [16].
Planar Josephson junctions are considered in the TBG case,
which further revealed the pairing nature [23–29].

Twisted Josephson junctions, in which two planar super-
conductors are rotated relative to each other, can provide
information about the pairing symmetry. For instance, in a

twisted c-axis Josephson junction between high-Tc cuprates,
the twist angle dependence of the critical current should re-
flect the d-wave symmetry of the order parameter [30–37].
Experimental results on such junctions have been inconsistent
[38–41]; some experiments [39] have detected the predicted
twisted angle dependence and others have not. Compared
to cuprates, heterostructures of van der Waals (vdW) mate-
rials such as graphene and transition-metal dichalcogenides
(TMDs) are better controlled, and clean interfaces exhibit-
ing momentum-resolved tunneling have been demonstrated
[42–44].

Here we propose a general setup for probing the pairing
order parameter symmetry of 2D SCs by twisted Josephson
interferometry, utilizing various symmetries of the system. As
shown schematically in Fig. 1(a), the system is composed of
an s-wave SC as a probe and another SC with an unknown
order parameter symmetry in the other side of the junction.
We focus on materials with C3 symmetry, such as TMDs
and graphene-based systems. Assuming momentum-resolved
tunneling between the two layers, we demonstrate signatures
of different order parameter symmetries, such as the twist
angle dependence of the critical current, the current-phase
relations, and the magnetic field dependence of the Josephson
coupling. For example, combining a chiral order parameter SC
with an s-wave probe generates a dominant third harmonic in
the current-phase relation. However, applying a small in-plane
Zeeman field breaks the C3 symmetry and creates a linear-in-
field first-harmonic Josephson coupling. As a concrete setup,
we study a twisted junction between NbSe2 as an s-wave
probe and magic angle twisted bilayer graphene (MATBG) as
the SC with an unknown order parameter symmetry.

The rest of this article is organized as follows: In Sec. II
we present a symmetry argument based on the Ginzburg-
Landau (GL) theory and a microscopic weak-coupling model.
In Sec. III we demonstrate the probing principle in the twisted
NbSe2 and MATBG junction. Section IV presents in-plane
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FIG. 1. Setup for probing the order parameter symmetry by
twisted Josephson interferometry. (a) A Josephson junction between
an s-wave SC probe (purple) and another SC system (blue) with an
unknown order parameter symmetry. The two SCs are separated by a
tunneling barrier. Both are assumed to have C3 rotation symmetry.
The top probe layer is rotated with respect to the bottom layer.
(b) Fermi surfaces (FSs) and Brillouin zone alignment of the probe
(top layer, purple) and system (bottom layer, blue). Reciprocal lattice
vectors, G1,t/b and G2,t/b, are denoted by purple/blue arrows, respec-
tively. The Bragg scattered FSs of the probe (purple) are plotted
around the system FS (blue) C3 symmetrically. When twisting the
probe, the probe FS is rotating and intersecting the system FS at
different momenta.

magnetic-field-dependent Josephson couplings, and Sec. V
proposes several experimental probing methods.

II. MODEL AND SYMMETRY ARGUMENTS

A. Ginzburg-Landau theory

Here we focus on the twisted Josephson junction in which
both SCs are invariant under C3 rotation symmetry and time-
reversal symmetry (TRS). These symmetries apply to our
primary example of a junction between graphene and TMD-
based SCs. The superconducting order parameter belongs to
one of the following irreducible representations of the C3

group: A (one-dimensional representation, s-wave like) or
E (two-dimensional representation, (px, py) or (dx2−y2 , dxy)
like).1 We assume that spin-orbit coupling is present (pro-
vided by the TMD) and that there is no inversion symmetry;
hence, singlet and triplet superconductivity are not distinct.
For simplicity we will refer to the two representations as s
wave or (px, py) wave, respectively. In the (px, py) case, we
distinguish chiral (px ± ipy) and nematic (αpx + βpy, with
α, β ∈ R) states. If the two SCs forming the junctions have
mirror symmetry with respect to a common vertical plane, fur-
ther distinctions are possible. The different order parameters
considered in this work are summarized in Table I.

The lowest-order symmetry-allowed Josephson coupling
terms between SCs with either of these order parameters and
an s-wave SC as follows: (a) In the s-wave to s-wave case,
both order parameters form the trivial representation under C3

and the first-order term �∗
s �s is allowed. (b) In the s-wave

1In cases where there is an additional C2, the A representation
breaks into A1 (even under C2, s-wave like) and A2 (odd under C2,
f -wave like), and similarly, E breaks into E1 (even, (dx2−y2 , dxy ) like)
and E2 (odd, (px, py ) like). These states remain distinct even in the
absence of C2 symmetry if the system is spin rotationally invariant,
since one of them is a spin singlet and the other is a triplet.

TABLE I. Different order parameters and the corresponding
lowest-order Josephson couplings.

Probe System Josephson coupling

s s �∗
s �s

s p ± ip (�∗
s �p± )3

s px,y, no mirror �∗
s �px,y

s px , mirror �∗
s �px

s py, mirror (�∗
s �py )2

to p ± ip-wave case, the C3 symmetry is compatible with the
chiral order parameter. Under C3 operations, the nth-order
term (�∗

s �p± )n accumulates a phase factor e±i 2π
3 n. Therefore

the lowest-order term coupling is (�∗
s �p± )3, regardless of the

rotation angle between two layers. Given the fact that third-
order coupling is parametrically smaller than the first-order
coupling in the perturbative tunneling regime, if we break
the C3 rotation symmetry it is possible to induce a first-order
coupling larger in magnitude than the existing third order.
Consider breaking of the C3 symmetry by an externally ap-
plied magnetic field B, we can write down the coupling terms
in the Ginzburg-Landau (GL) free energy:

F = αB�∗
s (�p · B) + βB�∗

s (�p × B) · ẑ

+ γ (�∗
s �

+
p )3 + γ (�∗

s �
−
p )3 + c.c., (1)

where γ denotes the third-order C3 symmetric coupling coef-
ficient. αB and βB are the real coupling coefficients (Sec. IV).
(c) For the s-wave to px,y-wave case, the nodal order param-
eter breaks C3 spontaneously; therefore C3 symmetry should
not be respected by the GL theory in this phase. The first-
order term �∗

s �px,y is allowed for general twist angles. If we
consider a case where both materials have mirror symmetry,
the Josephson coupling should respect the mirror symmetry
(D1) when the two mirror planes are aligned. Under this
condition, for the mirror-symmetric order parameter (denoted
by �px , mirror plane xz), the lowest-order coupling is still
�∗

s �px . For a mirror antisymmetric order parameter (denoted
by �py ), the first-order coupling is forbidden, as it accumu-
lates a π phase under the mirror. The lowest order of coupling
is (�∗

s �py )2. Similarly to the chiral case, we can induce a
first-order harmonic by coupling to an external field. The
symmetry-constrained Josephson couplings are summarized
in Table I.

B. Microscopic weak-coupling model

The above symmetry argument is general for different
types of SCs. Here we consider a simplified microscopic
weak-coupling model to quantitatively describe Josephson
couplings. This toy model well captures generic features
of the twisted interface between TMDs (e.g., NbSe2)
and graphene-based SCs. A concrete example, NbSe2 and
MATBG twisted heterostructure, is considered in the next sec-
tion. It shows consistent features compared to the toy model
but gives quantitative magnitudes. Assuming momentum and
spin-conserving single-electron tunneling element and singlet
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pairing, the toy model Hamiltonian is

H = Ht + Hb + T, (2)

Hl = 1

2

∑
p

�
†
l,p

(
εl (p, σ ) − μl iσy�l (p)

−iσy�
∗
l (p) −(

εT
l (p, σ ) − μl

)
)

�l,p,

(3)

T =
∑

{Gt ,Gb}

∑
p,σ

t(p+Gt )c
†
t,p,σ cb,p′,σ + H.c., (4)

where �
†
l,p = (c†

l,p,σ
, c†

l,p,σ̄
, cl,−p,σ , cl,−p,σ̄ ), and cl,p,σ annihi-

lates a state with spin σ and momentum p in layer l (l = t, b).
The momentum p′ is determined by p + Gt = Rθ (p′ + Gb).
{Gt , Gb} are the reciprocal lattice vectors in both layers
(marked in Fig. 1), and Rθ is a c-axis rotation matrix (θ is
the twist angle between two materials). In our convention the
top layer l = t is the probe (with an s-wave order parame-
ter) and the bottom layer l = b is the measured layer (with
an unknown order parameter). The tunneling element t|p| is
assumed to decay fast with the in-plane momentum [45]. For
the numerical analysis we assume the following low-energy
dispersion: εt (p = Kt + k, σ ) = λt |k|2 for the probe layer,
and εb(p = Kb + k, σ ) = λb0|k|2 + λb1kx(k2

x − 3k2
y ) for the

measured layer. The momentum k here is relative to the Kl

point of each layer l . The spectrum near the other valley K′
l =

−Kl is directly related by TRS. We use the lattice constants
of NbSe2 for the probe layer and graphene for the measured
layer to determine the relative position and twist of valleys.
Due to the fast decay of t|p|, we consider only Bragg scattering
events within the first Brillouin zone (BZ) of the measured
layer. The Fermi surfaces (FSs) of the probe (purple) and
measured (blue) layers are shown in Fig. 1(b), with a twist
angle of θ = 5◦. This picture is in the normal state, without
interlayer tunneling (� = 0, t = 0). Turning on the pairing
potential opens a gap at the FS. With the momentum-resolved
tunneling, these band crossing points near the Fermi level
contribute strongly to the phase dependence of the free energy
[see Eq. (5)].

With the toy model Hamiltonian, we can write down the
first- and higher-order Josephson couplings explicitly for dif-
ferent order parameter symmetries. Expanding the free energy
to the second order in the tunneling element t (Appendix 1),
the leading first-harmonic component is

F (1) = 1

β

∑
i,k

Tr[Gb(k)TiGt (ki )T
†

i ]

= −
∑
i,k,n

2|tk|2|�s||�k| cos (ϕ + αk )

β
(|�k|2 + ω2

n + ξ 2
b,k

)(|�s|2 + ω2
n + ξ 2

t,ki

)
(β=∞)= −

∑
i,k

|tk|2|�s||�k| cos (ϕ + αk )

Eb,kEt,ki (Eb,k + Et,ki )
, (5)

where ωn = (2n + 1)π/β is the Matsubara frequency
and β = 1/kBTtemp (Ttemp is the temperature). Gl (k) is
Green’s function on layer l . ξl,k = εkl − μl and El,k =√

ξ 2
l,k + |�l,k|2. �s is the top-probe-layer order parameter

(assume to be momentum independent) and �k is the bottom-
layer order parameter. ϕ is the relative phase between top
and bottom SCs. αk is the momentum-dependent phase of the

unknown order parameter, for instance, α
(s)
k = 0 for s wave,

α
(nodal p)
k = arg[sgn(k · n)] (where n is the vector along the

nodal direction) and α
(p±ip)
k = arg(kx ± iky) for p ± ip wave.

i ∈ 1, 2, 3 is the Bragg scattering summation, where three
processes are relevant within the first BZ of the measured
layer.

In Eq. (5) we see that each k point gives a finite contribu-
tion to the first harmonic. However, a nontrivial k-dependent
phase αk creates an interference effect upon integration
over momenta and can lead to a vanishing coupling. For
example, in the p + ip case, using C3 symmetry and the
identity

∑2
n=0 cos (ϕ + 2π

3 n) = 0, Eq. (5) gives a vanishing
first-order coupling, as expected from Table I. For higher-
order terms, the nontrivial phase αk similarly enters the
momentum integration and determines the leading harmonics
(Appendix 1).

To quantitatively describe the probing principle, the
Josephson current is numerically calculated by

F = E0 − 2

β

∑
k,n

ln [cosh (Ekn/kBT )],

(6)

IJJ = 2e

h̄

dF

dϕ
,

where E0 is a phase-independent constant and Ekn is the
nth positive-energy eigenvalue of the Bogoliubov–de Gennes
(BdG) Hamiltonian H at momentum k. Equation (6) is non-
perturbative in the tunneling element t , which accounts for
the cases when t � |�|. All plotted results are at zero temper-
ature. The Josephson current at twist angle θ = 1◦ is shown
in Fig. 2(a) for different order parameter symmetries. For the
trivial s-wave–s-wave case, the first harmonic is the leading
term, as expected. For the nodal order parameter �px and
�py , the first-order term �∗

s �px/y is generally allowed but
will be suppressed compared to the s-wave case due to the
sign changing. If the first-order term is strongly suppressed,
the second-order term from the Copper pair cotunneling
(�∗

s �px/y )2 shows up, since this term adds up constructively in
momentum space. From Fig. 2(a) we indeed see a mixture of
the first and second harmonics in both px and py cases. Since
the toy model has mirror symmetry (mirror plane xz) and �py

is odd under the mirror, it leads to perfect cancellation of
the first-order component when two mirror planes are aligned
(θ = 0◦). Even twisted θ = 1◦ away, we still see a strong
second-order Josephson component. On the other hand, the
px wave is even under the mirror and the first harmonic is
dominant near the zero twist angle. For the chiral p + ip order
parameter, only the sin(3ϕ) component exists.

Figure 2(b) shows the twist angle dependence of different
harmonic components (first, second, and third) in the current-
phase relation. For different order parameter symmetries, the
amplitudes all drop down around a twist angle of θ = 15◦.
This is because two FSs do not overlap for larger twist angles.
We also plot the normal-state conductance G versus twist
angle in units of 2eIc(θ = 0◦)/π�s [left panel, Fig. 2(b)].
From the AmbegaokarBaratoff (AB) relation [46], the normal-
state conductance and the critical current between two s-wave
SCs should obey Ic/G = π�s/2e. In our case the in-plane
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FIG. 2. Toy model results. (a) Josephson current at twist angle θ = 1◦ for s, px , py, and p + ip order parameters in the bottom layer. We
used the following values for the model parameters: λt = 5 eV Å2, λb0 = 1 eV Å2, λb1 = 1.5 eV Å3. The interlayer tunneling amplitude is
t = 1 meV. Chemical potentials are set to be μt = 600 meV and μb = 40 meV. The gaps are |�s| = |�k | = 5 meV. (b) Fast Fourier transform
(FFT) amplitude of the current-phase relation vs the twist angle θ . FFT amplitudes of different harmonics up to the third order are plotted for
s, px , py, and p + ip cases. In the s-wave panel, we plot the normal-state conductance G as a function of the twist angle. G is plotted in units of
2eIc (θ=0◦ )

π�s
. Inset of the px-wave case: the first-order harmonics vanish around twist angle 2.3◦, and the second-order term becomes the leading

order, with a sign that leads to spontaneous TRS breaking. Inset of the py-wave case: the first-order harmonics vanish at zero twist angle and
then start rising when rotating away. Inset of the p + ip wave case: there is a local minimum of critical current in the third harmonics, but it
does not vanish.

momentum is conserved (contrary to the assumption used in
the derivation of the AB relation). Nevertheless, we find that
in the s-wave case, the ratio G/Ic is approximately constant
as the twist angle varies. This is apparent in Fig. 2(b), where
Ic(θ ) and G(θ ) are seen to follow a similar twist angle depen-
dence. This is not the case for non-s-wave order parameter
symmetries.

For the chiral p + ip order parameter, only the sin(3ϕ)
component exists for all twist angles, as we predicted by
symmetry. The variation of the fast Fourier transform (FFT)
amplitude depends on the band alignments.

Noticeably, for the px-wave case, we see a V-shaped drop
of the first-order term around twist angle 2.3◦. At this angle
the first-order term vanishes due to destructive interference,
and the second-order coupling is dominant [Fig. 2(b), inset].
The second-order term here has a negative sign, which gives a
free-energy minimum at nonzero phase bias ϕ �= 0, implying
TRS breaking [32]. Note that this V-shaped drop happens at
a generic angle and depends on band alignment details and
not symmetry considerations. It serves as a signature of a
sign-changing order parameter, even in the absence of mir-
ror symmetry. Close to the perfect vanishing angle, the TRS
breaking due to the comparable mixture of first and second
harmonics can be detected by the Josephson diode effect
[47]. Assuming higher-order terms are negligible, there is a

one-to-one correspondence between the amount of asymmetry
in the critical current to the ratio between the first- and second-
harmonic magnitudes (Appendix 7).

III. USING NbSe2 TO PROBE THE ORDER
PARAMETER OF MATBG

The toy model demonstrates how different order parameter
symmetries of the system manifest themselves in the angle-
dependent current-phase relation of the twisted junction. In
order to provide quantitative predictions, we now study a con-
crete example: twisted Josephson junction between NbSe2,
acting as an s-wave SC probe, and MATBG, an SC with an
unknown order parameter symmetry. The two SCs are sepa-
rated by two layers of WSe2 that serve as a tunneling barrier.
The barrier suppresses the interlayer hybridization and charge
transfer, as confirmed by DFT calculations (Appendix 4), such
that the MATBG layer is not strongly perturbed by the NbSe2.
For simplicity, we consider monolayer NbSe2 as a probe.

The MATBG layer is described by the continuum model
[45]. NbSe2 is considered by a three-orbital tight-binding
model with the orbital basis dz2,↑/↓, dxy,↑/↓, and dx2−y2,↑/↓
[48]. The Josephson current is calculated by including a mean-
field pairing potential in each layer and momentum-resolved
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FIG. 3. NbSe2-MATBG twisted heterostructure. (a) FS alignment between NbSe2 and MATBG, over a 60◦ range of rotation angle. Here we
use the crystalline axes of the NbSe2 layer as our reference frame. Purple pockets are from NbSe2 and small blue pockets are from MATBG.
K is the valley of NbSe2, and Kg is the valley of graphene. For MATBG, the Fermi level is set to μ = 5 meV relative to charge neutrality,
corresponding to a carrier density of ∼1.3 × 1012 cm−2 (assuming that all four flavors are filled equally). (b) Zoom in of the FSs at twist angles
θ = 18.5◦ and θ = 19.5◦. �m is the center of the mini-Brillouin zone. (c) The current-phase relation at twist angle θ = 19.5◦ for different order
parameter symmetries in the MATBG: s, px , py, and p + ip.

tunneling between the two SCs, with a tunneling element
t = 0.1 meV (Appendix 2).

The FSs of the twisted junction are shown in Fig. 3(a).
NbSe2 has two types of electron pockets (purple) around the
� point, K and K ′ point. The strong Ising spin-orbit coupling
(SOC) in the probe splits the spin-up and spin-down compo-
nents (Appendixes 2 and 5). The FSs of MATBG (blue) are
also plotted, where we show the trajectory of the MATBG FS
as the twist angle between the two SCs changes from 0◦ to
60◦. Around θ = 20◦, the � pocket of the NbSe2 from the
second BZ intersects the MATBG FS and gives a complicated
band alignment, as shown in Fig. 3(b) for θ = 18.5◦ and
θ = 19.5◦.

Figure 3(c) shows the current-phase relations for different
order parameter symmetries at twist angle θ = 19.5◦. An s-
wave order parameter gives a trivial sin(ϕ) dependence. The
magnitude of the critical current is around 50 nA/µm2, which
is much larger than the critical current for non-s-wave pairing
symmetries. For px and py-wave cases, a mixture of first-
and second-order harmonics is observed, with a magnitude
of around 2 nA/µm2. For the chiral case, the lowest order of
Josephson coupling is sin(3ϕ), with a magnitude of around
2 pA/µm2. If the interlayer coupling is increased by using a
thinner tunneling barrier or by applying pressure to the junc-
tion, the third-order Josephson coupling is strongly enhanced
(as it scales as t6). For instance, by increasing t from 0.1 to
0.4 meV, Josephson current is increased by more than three

orders of magnitude (Appendix 3) and can reach the order of
a few nA/µm2.

The Josephson coupling has a complicated twist angle de-
pendence. Figures 4(a) and 4(b) show the Josephson current
as a function of phase bias and twist angle for the chiral
p + ip and nodal px wave cases, respectively. For a px order
parameter, due to TRS, the current-phase relation is odd with
respect to ϕ → −ϕ mod(2π ), i.e., the free energy F (ϕ) is
even. This does not apply in the p + ip case, since this order
parameter breaks TRS and leads to a phase shift I (ϕ = 0) �= 0
in the current-phase relation.

Figures 4(c) and 4(d) show the corresponding FFT am-
plitude of different harmonics versus the twist angle from
θ = 19◦ to θ = 20.5◦. For p + ip, the lowest order is sin(3ϕ),
but its magnitude varies with the twist angle. In the plotted
angle range we see two strong peaks. These peaks occur when
the FSs of MATBG and NbSe2 are tangent to each other, as
shown in Fig. 4(e).

For the nodal px wave case, the first-order component
generally dominates. There are several sign changes. Around
them, the FFT amplitude shows sharp V-shaped drops in
the first harmonic. Figure 4(f) shows a zoom in of one of
these drops, where the first-order component vanishes but the
sin(2ϕ) component survives. This feature is well captured
by the toy model and occurs quite generally here, given the
complicated band cutting conditions. As in the toy model,
the sign of the second-harmonic term is such that it favors
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FIG. 4. Twist-angle-dependent Josephson current in the NbSe2-MATBG heterostructure. (a), (b) Color map of the Josephson current as
a function of twist angle and phase bias for p + ip and px order parameter in the MATBG, respectively. (c), (d) The FFT amplitude of the
current-phase relations as a function of twist angle for p + ip and px order parameters. (e) The FSs at two twist angles from panel (c).
The FSs of NbSe2 and MATBG are tangent to each other (marked in red). In (f), a zoom-in FFT amplitude and critical current of the px wave
order parameter around twist angle 19.88◦ is shown. The first-order component vanishes. In the shaded area, the Josephson diode effect can be
observed.

time-reversal symmetry breaking (similarly to Ref. [32]). In
the shaded region in Fig. 4(f) we expect to see a Josephson
diode effect [47] (Appendix 7).

IV. IN-PLANE MAGNETIC-FIELD-INDUCED
JOSEPHSON COUPLINGS

For the chiral order parameter, we have shown a robust
sin(3ϕ) dependence in the current-phase relation, regardless
of the twist angle, as long as the C3 symmetry is maintained.
The third-order harmonic scales as the interlayer tunneling
amplitude t to the sixth power in the perturbative limit. On
the other hand, if we slightly break the C3 symmetry (either
by an in-plane magnetic field or by strain), we can gen-
erate a first-order component that scales as t2, which can
be more significant than the intrinsic third-order coupling.
Phenomenologically, the phase-dependent free-energy term is
given in Eq. (1).

Microscopically, an in-plane magnetic field generates both
the Zeeman effect and the orbital effect. For a material with
Rashba SOC, the Zeeman effect distorts the energy bands in a
way that breaks the C3 symmetry. By introducing these effects
in the toy model, the Josephson current to the second order in
t has the form (Appendix 5)

I (1) =
∑

k

[I0k + I1k(B)] cos(ϕ + αk + βk,B), (7)

where αk is the order parameter’s momentum-dependent
phase and ϕ is the phase difference between two SCs. I0k is
independent of the Zeeman field and is invariant under C3

rotations. I1k is a function of (k · B)2, (k × B)2, |B|2. There
is also a phase shift βk,B = bk(k · B), linear in |B| to the
leading order. The coupling coefficient bk is composed of
microscopic parameters such as SOC strength and momenta.

For the trivial s-wave case, αk is a constant and the integration
over momentum gives a nonvanishing first order at zero field.
With an existing first-order component, both the phase shift
βk,B and I1k term from the Zeeman field only generates a
|B|2-dependent critical current. However, for the chiral order
parameter, the first-order term vanishes at zero field due to the
negative interference in the momentum space. When Zeeman
field generates a phase shift βk,B, it translates into a linear-
in-|B| first-harmonic component in the current-phase relation
(Appendix 5).

In the twisted NbSe2-MATBG junction as an example,
Figs. 5(a) and 5(b) show the current-phase relation and
FFT amplitudes at twist angle θ = 19.5◦ for different in-
plane Zeeman field strengths (the calculation is described in
Appendix 2). A p + ip order parameter is assumed in the
MATBG. At zero field there is only a sin(3ϕ) component.
As the field increases a sin(ϕ) component is generated whose
amplitude is linear in the field strength.

Next we consider the orbital effect of the magnetic field.
In an infinite junction, assuming fully momentum-resolved
tunneling, an arbitrarily small in-plane field completely de-
couples the order parameters of the two SCs. This is because
the field creates a momentum mismatch between the two
SC order parameters across the junction. If we relax the
momentum conservation, assuming instead that the tunneling
conserves momentum only up to 1/L (where L is the lateral
size of the junction), we find a symmetry-breaking-induced
first harmonic that is proportional to �2, where � is the flux
through the junction. This is true for all orders in perturbation
theory in t (Appendix 5). Therefore we expect the linear term
related to the interplay of the Zeeman effect and Rashba SOC
to dominate at small in-plane fields.

Another way to create an orbital effect that breaks the
symmetry is to drive an in-plane supercurrent through one
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FIG. 5. Zeeman-field-induced Josephson coupling for a p + ip
order parameter in the probed layer. (a) The current-phase relation at
twist angle θ = 19.5◦ for different Zeeman field strengths. (b) The
FFT amplitudes of the first, second, and third harmonics of the
current-phase relation vs the Zeeman field strength.

of the SCs. Then the order parameter in that layer acquires
finite momentum 2q which results in a similar effect to that
of the in-plane magnetic field. It also generates an additional
symmetry-breaking effect from a shift of the energy spectrum
of the quasiparticles. However, this effect does not contribute
to the first-harmonic Josephson coupling in linear order in q
(Appendix 5).

V. DISCUSSIONS

We have studied how different order parameter symmetries
of two-dimensional SCs manifest themselves in a twisted
Josephson junction with an anisotropic s-wave SC as a probe.
For an s-wave order parameter, the critical current dependence
on the twist angle is expected to closely follow the dependence
of the normal-state conductance. Therefore a strong deviation
from this dependence is an indicator of a sign-changing order
parameter.

The inclusion of SOC does not change the symmetry con-
siderations, since we only assume C3 rotational symmetry
and TRS. Specifically, we have not assumed an independent
spin-rotation symmetry. In the case of either Ising or Rashba
SOC in the probe material, the probe SC order parameter will
have a spin-triplet component. The symmetry arguments still
hold as long as the order parameter of the SC probe transforms
trivially under C3 rotation and does not break TRS.

The periodicity of the dominant term in the current-phase
relation can be directly detected by Shapiro steps in the ac
Josephson effect. Instead of integer steps in the dc voltage
from the current bias, Vdc = n h̄ωac

2e , we expect to see fractional
steps, Vdc = n

m
h̄ωac
2e , for a sin(mϕ) term. A further discussion

of the fractional Shapiro steps, including estimates for exper-
imental parameters where they may be observed, is provided
in Appendix 6.

For nodal order parameters the Hamiltonian has TRS
and the current-phase relation is odd with respect to ϕ →
−ϕ mod(2π ), i.e., I (ϕ = 0) = 0. We predict the suppression
of the first-order Josephson coupling at generic twist angles
(not necessarily dictated by symmetry). The first-order cou-
pling shows V-shaped drops versus the twist angle. Around
these angles, the energy-phase relation is expected to be dom-
inated by the second harmonic. Generically, the second-order
Josephson coupling has a sign that favors TRS breaking (i.e.,
the minimum of the energy occurs away from 0 and π ) [32].
We show that an asymmetry in the critical current is expected
in this case (the so-called Josephson diode effect). Note that
TRS breaking is necessary but not sufficient to get a Joseph-
son diode effect. Multiple nonzero harmonic components are
needed to generate the diode effect [49].

The direct measurement of the angle-dependent critical
current is also interesting. For the specific NbSe2-MATBG
case, a strong enhancement of the critical current is predicted
between twist angle θ = 20◦ and θ = 40◦. In this twist angle
range, the large NbSe2 FSs around the � point in the sec-
ond BZ intersects the tiny FSs of the MATBG around the K
point. A similar situation is expected in other graphene-based
superconductors. The recently developed quantum twisting
microscope [44] is a promising tool to study the twist-angle-
dependent critical currents and current-phase relations, and
identify different order parameter symmetries.
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APPENDIX

1. Higher-order expansions from the toy model

In the toy model from Sec. II, the Green’s function of the
twisted junction is

G−1 = G−1
0 + T

=

⎛
⎜⎜⎜⎜⎜⎝

G−1
b (k) T1(k, k1) T2(k, k2) T3(k, k3)

T †
1 (k, k1) G−1

t (k1) 0 0

T †
2 (k, k2) 0 G−1

t (k2) 0

T †
3 (k, k3) 0 0 G−1

t (k3)

⎞
⎟⎟⎟⎟⎟⎠

.

(A1)

The diagonal part Gl (k) = Hl (k)−1, where Hl is the Hamil-
tonian in layer l . T is the off-diagonal part, the interlayer
tunneling matrix. We assume Ti = tτ3, where τi are Pauli
matrices that act in Nambu space. In the perturbative limit in
t , we can expand the free energy as

F = − 1

β
Tr

[
log

[
G−1

0

]] + 1

β

∑
n

1

2n
Tr[G0T ]2n. (A2)
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The leading first-harmonic term is

F (1) = 1

2β
Tr[G0T ]2 = 1

β

∑
n,k, j

Tr[Gb(k, iωn)TjGt(kj, iωn)T†
j ] = F(1)

0 −
∑
n,k,j

2|t|2|�k||�s| cos(αk + ϕ)

β
(
ω2

n + |�k|2 + ξ 2
b,k

)(
ω2

n + |�s|2 + ξ 2
t,kj

)

= F (1)
0 −

∑
n,k, j

|t |2|�k||�s|
E2

b,k − E2
t,k j

[
f (Eb,k ) − f (−Eb,k )

Eb,k
− f (Et,k j ) − f (−Et,k j )

Et,k j

]
cos (αk + ϕ)

(β=∞)= F (1)
0 −

∑
k, j

|t |2|�k||�s|
Eb,kEt,k j (Eb,k + Et,k j )

cos (αk + ϕ), (A3)

where ωn is the Matsubara frequency and f (E ) is the Fermi-Dirac distribution function. El,k =
√

ξ 2
k + |�l |2, with l = t/b. The

order parameter phase α
(s)
k = 0 for s-wave, α

(py )
k = arg[sgn(k · n)] and α

(p±ip)
k = arg(kx ± iky) for p ± ip wave. n is the vector

along the nodal direction. ϕ represents the phase difference between the two SCs, and j is the Bragg scattering summation.
Within the first BZ of the measured layer, the momentum k is coupled to three different momenta k j in the probe layer, related
by Bragg scattering j. F (1)

0 is the part of the free energy that does not depend on ϕ. In the last equation we have taken the
zero-temperature limit, which gives Eq. (5) in the main text.

For the leading second-harmonic term, we have

F (2) = 1

4β
Tr[G0T ]4 = 1

2β

∑
j1, j2,n,k

Tr[Gb(k, iωn)Tj1 Gt(kj1 , iωn)T†
j1

Gb(kj2 , iωn)Tj2 Gt(kj3 , iωn)T†
j2

]

= F (2)
0 +

∑
j1, j2,n,k

|t |4|�k|
∣∣�k j2

∣∣|�s|2 cos
(
αk + αk j2

+ 2ϕ
)

β
(
ω2

n + |�k|2 + ξ 2
b,k

)(
ω2

n + |�s|2 + ξ 2
t,k j1

)(
ω2

n + ∣∣�k j2

∣∣2 + ξ 2
b,k j2

)(
ω2

n + |�s|2 + ξ 2
t,k j3

) , (A4)

where j1 and j2 are Bragg scattering summations. Momentum k j3 is determined once specifying j1 and j2 processes. Here we
only kept the phase-dependent second-harmonic Josephson couplings. The other terms are included in F (2)

0 (a phase-independent
term and also a correction to the first harmonic at fourth order in t). For the nodal order parameter py (odd under mirror) the
first harmonic vanishes, as seen from Eq. (5) in the main text. For the second harmonic here, one possible term in Eq. (A4)
is αka = αkb = αk, which gives the phase cos(2αk + 2ϕ). In this case, inserting α

(py )
k = arg[sgn(k · n)] gives a nonvanishing

second-harmonic coupling.
The leading third-harmonic coupling is generated at sixth order in t :

F (3) = 1

6β
Tr[G0T ]6 = F (3)

0

−
∑

j1, j2, j3,n,k

2|t |6|�k||�k j2
||�k j4

||�s|3 cos(αk + αk j2
+ αk j4

+ 3ϕ)

3β
(
ω2

n + |�k|2 + ξ2
b,k

)(
ω2

n + |�s|2 + ξ2
t,k j1

)(
ω2

n + |�k j2
|2 + ξ2

b,k j2

)(
ω2

n + |�s|2 + ξ2
t,k j3

)(
ω2

n + |�k j4
|2 + ξ2

b,k j4

)(
ω2

n + |�s|2 + ξ2
t,k j5

) ,

(A5)

where j1,2,3 are Bragg scattering summations, and the mo-
mentum k j4 and k j5 are determined once specifying j1,2,3

processes.

2. MATBG-NbSe2 Josephson coupling

The MATBG layer is described by the continuum model
[45]:

HMAT BG = Ht + Hb + Htb, (A6)

Ht =
∑
s,ξ ,q

a†
t,s,ξ (q)ξ h̄v f R̂+q · σat,s,ξ (q), (A7)

Hb =
∑
s,ξ ,q

a†
b,s,ξ (q)ξ h̄v f R̂−q · σab,s,ξ (q), (A8)

Htb =
∑

s,ξ ,q,q′
a†

t,s,ξ (q)T ξ

q,q′ab,s,ξ (q′). (A9)

Here a†
t/b,s,ξ is a two-component spinor of creation oper-

ators for electrons in the two sublattices in the top or
bottom (t or b) graphene layer, with spin s and val-
ley ξ . R̂± = cos θtbg

2 ± iσy sin θtbg

2 is the rotation matrix of
the top/bottom graphene layer with a relative twist an-
gle θtbg. v f is the Fermi velocity of the graphene layer.
σα are Pauli matrices that act in sublattice space. q and
q′ are electron momentum related by Bragg scatterings:

q − q′ = {qb, qtr, qt l}, where qb = 8π sin
θtbg

2

3
√

3a
(−1, 0), qtr =

8π sin
θtbg

2

3
√

3a
(
√

3
2 , 1

2 ), qt l = 8π sin
θtbg

2

3
√

3a
(−

√
3

2 , 1
2 ). a is the bond length

in graphene. T ξ

q,q′ is the interlayer tunneling matrix, given in
Ref. [45].

NbSe2 is modeled by a tight-binding model with three Nb
d orbitals: dz2,↑/↓, dxy,↑/↓, and dx2−y2,↑/↓. The Slater-Koster
hopping between these orbitals is given in Ref. [48].
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The Josephson current of the twisted interface is calculated
by including the pairing potential in each layer and also the
momentum-resolved interlayer tunneling. The pairing poten-
tial is added in the BCS mean-field way. For NbSe2 we use a
constant superconducting gap �s = 0.67 meV. For MATBG,
we assume the nodal and chiral order parameter takes the
form

�px = �0 cos(αk ), (A10)

�py = �0 sin(αk ), (A11)

�p±ip = �0eiαk , (A12)

with �0 = 0.2 meV. αk is the angle between k and the x axis,
measured relative to the center of mini-BZ.

The Cooper pair tunneling events include Bragg scatterings
within the range of the first BZ of the graphene layer. Includ-
ing the microscopic orbital symmetry, the largest interlayer
coupling comes from the pz orbital of graphene and dz2 orbital
of NbSe2. The interlayer tunneling term is

Hinter =
∑

s,ξ ,k, j,σ

a†
t,s,ξ ,σ (k)T σ

j dz2,s(k
′), (A13)

T σ
j = teiGT, jτσ . (A14)

σ is the sublattice index, with the corresponding sublattice
vector τσ . j is the Bragg scattering processes, which relates
momentum by

k + Kg,ξ + G j,T = k′ + G j,NbSe2 . (A15)

G j,T and G j,NbSe2 are reciprocal lattice vectors in the top
graphene layer and NbSe2, respectively. Kg,ξ is the K point
of the top graphene.

To calculate the Zeeman-field-dependent Josephson cou-
pling, we include Ising and Rashba SOC in the MATBG
continuum model, with the SOC strength λIsing and λRashba =
1 meV, consistent with the value reported in the literature
[50]. Here, in this twisted Josephson junction setup, both the
inserted WSe2 tunneling barrier and NbSe2 can generate SOC
in MATBG.

3. Interlayer tunneling dependence of the Josephson coupling

As discussed in the main text, the critical current of a
nontrivial order parameter can be enhanced by increasing the
interlayer tunneling strength t . Figure 6 shows the critical
current for the p + ip case of the NbSe2-MATBG twisted
junction at twist angle θ = 19.5◦. Ic is significantly increased
to ∼5 nA/µm2 when t = 0.4 meV. When increasing t from
0.05 meV to 0.3 meV, Ic scales approximately as t6, as ex-
pected.

4. Suppression of interlayer hybridization by tunneling barrier

We performed the density function theory (DFT) calcu-
lation using the Vienna ab initio Simulation Package (VASP)
[51,52]. The exchange correlation is described by the Perdew-
Burke-Ernzerhof (PBE) formulation under the generalized
gradient approximation (GGA) [53]. Here we consider a het-
erostructure of monolayer NbSe2-bilayer WSe2-graphene, as

FIG. 6. Critical current dependence on the tunneling amplitude t
in the case of a p ± ip order parameter in twisted NbSe2-MATBG
junction at θ = 19.5◦. (a) The current-phase relation for different
interlayer tunneling amplitude t . (b) The critical current vs t .

shown in Fig. 7(a). The band structure is shown in Fig. 7(b).
The red and blue color represents the weight of wave func-
tion on NbSe2 (red) and graphene (blue). In the low-energy
region we see that the graphene Dirac cone approximately
retains its original shape and is shifted by 35 meV due to the
work-function differences, which can be gated to the charge
neutrality. For the case of a few layers of graphene (such as
MATBG), we expect the work-function differences to be of a
similar magnitude.

FIG. 7. (a) The monolayer NbSe2-bilayer WSe2-graphene het-
erostructure. (b) Band structure of the heterostructure. Red and blue
colors represent the weight of the wave function on NbSe2 (red) and
graphene (blue). The WSe2 bands are outside of the energy window
shown here.
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5. Magnetic-field-dependent Josephson couplings

a. Zeeman effect

Here we add Zeeman field, Rashba, and Ising SOC in the toy model to study the Zeeman-field-induced Josephson couplings.
The toy model Hamiltonian is

Ht = 1

2

∑
k

�
†
t,k

(
ξt (k, σ ) + gt B · σ + λtσz iσy�t (k)

−iσy�
∗
t (k) −(ξt (−k, σ ) + gt B · σ − λtσz )T

)
�t,k, (A16)

Hb = 1

2

∑
k

�
†
b,k

(
ξb(k, σ ) + gbB · σ + λbk × σ iσy�b(k)

−iσy�
∗
b(k) −(ξb(−k, σ ) + gbB · σ − λbk × σ)T

)
�b,k, (A17)

where Ht is the probe layer and Hb is the measured layer. �
†
l,k = (c†

l,k,σ
, c†

l,k,σ̄
, cl,−k,σ , cl,−k,σ̄ ), and cl,k,σ annihilates a state with

spin σ and momentum k in layer l . The momentum k is measured relative to the K point. The Ising SOC λtσz is included in the
probe layer, which mimics the strong Ising SOC in NbSe2. The interlayer tunneling remains in the form of Eq. (4) in the main
text. For simplicity, we do not consider Bragg scatterings in the analytical expression shown below, and momentum k determines
k′ by the relation k + Kb = R(θ )(k′ + Kt ). The second-order perturbation gives

F (1) = 1

β

∑
n,k

Tr[Gb(k, iωn)TGt(k′, iωn)T†]

=
n=∞∑
k,n=0

8�b�t

[

cos(ϕ + αk )

β f1 f2

[−(−g2
t |B|2 + �2

t + ξ 2
t + λ2

t + ω2
n

)(−g2
b|B|2 + �2

b + ξ 2
b + λ2

b|k|2 + ω2
n

)

+ 4gtωn[ωngb|B|2 − iξbλb(k × B)
]] + 4 sin (ϕ + αk )

β f1 f2
[λtλb(k · B)(ξt gb + ξbgt )]], (A18)

where

f1 = (
gt |B|2 + ω2

n + λ2
t − �2

t − ξ 2
t

)2 + 4
(
�2

t ω
2
n + �2

t λ
2
t + ω2

nξ
2
t

)
,

f2 = g4
b|B|4 + 2g2

b|B|2(ω2
n − �2

b − ξ 2
b

) + (
�2

b + ω2
n + ξ 2

b + λ2
b|k|2)2 − 4λ2

b|k|2ξ 2
b

+ 2g2
bλ

2
b[(k · B)2 − (k × B)2] + 8iωnξbλbgb(k × B). (A19)

We sum the Matsubara frequency in pairs: ωn = (2n + 1)/β and ω−n−1 = −(2n + 1)/β. To the lowest order in |B|, the above
Eq. (A19) can be written in the form

F (2) =
∑

k

[F0k + F1k[(k · B)2, (k × B)2, |B|2]] cos(ϕ + αk + βk,B), (A20)

where F0k is independent of the Zeeman field and has C3 symmetry. F1k is a function of (k · B)2, (k · B)2, |B|2, second order
in |B|. There is also a phase shift βk,B = bk(k · B) + O(|B|2), where bk, obtained from combining the sine and the cosine in
Eq. (A18), depends on microscopic parameters, e.g., momentum k, gt/b, and λt/b.

For the s-wave case, we have a constant αk, which gives a nonzero F (2) = ∑
k F0k cos(ϕ) in the absence of Zeeman field.

Given the existing first-order term, both the B-induced F1k term and the phase shift βk,B give a |B|2-dependent critical current.
For the p + ip case,

∑
k F0k cos(ϕ + αk ) vanishes by C3 symmetry. In the presence of an in-plane field, βk,B = bk(k · B)

destroys the destructive interference in the summation
∑

k F0k cos(ϕ + αk + βk,B). As a result, a first-harmonic Josephson
coupling with a magnitude proportional to |B| is generated [seen directly from Eq. (A20)].

b. Orbital effect

Here we derive the orbital effect of an in-plane magnetic field. If the tunneling between the two superconductors is perfectly
momentum conserving, then any arbitrarily small in-plane orbital field completely decouples the two order parameters. To mimic
the effect of the finite size of the system and the effect of disorder, we first relax the momentum conservation assumption made
in Eq. (4), and instead, we write the tunneling element in the absence of magnetic field as t (p, p′) = t

( p+p′
2 )

· f (p − p′). f is a

real and symmetric function peaked at zero (taking f to be a δ function recovers the momentum-conserving limit). We assume
an in-plane magnetic field and write the vector potential as A = zB × ẑ. The Hamiltonian is written as

H = Ht + Hb + T, (A21)

where Ht,b are as defined in Eq. (3), and T is given by

T =
∑
p,p′

Tp,p′ =
∑
p,p′

∑
G1,G2

t
( p̃+ p̃′

2 )
�†

t,p

(
f (p̃ − p̃′ + q) 0

0 − f (p̃′ − p̃ + q)

)
�b,p′ , (A22)
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where p̃ = p + G1, p̃′ = p′ + G2, and q = e
h̄ dB × ẑ is the momentum boost due to the magnetic field. d is the distance between

the two SCs. Using the fact that f is symmetric, we can expand to first order:

Tp,p′ =
∑

G1,G2

t( p̃+ p̃′
2

)�†
t,p[ f (p̃ − p̃′)τz + q · ∇ f τ0]�b,p′ . (A23)

The nth contribution to the free energy is given by

F (n) = 1

nβ

∑
{p},{p′},ω

Tr[
n∏

i=1

(Tpi,p′
i−1

Gt (pi, ω)Tpi,p′
i
Gb(p′

i, ω))]. (A24)

Using Eq. (A23) and the trace invariance to circular shifts we can show that its linear expansion in q is given by

F (n) = F (n)(q = 0) + 1

β

∑
{p},{p′},ω,

G1,G2

Tr

[(
t( p̃1+ p̃′n

2

)q · ∇ f (p̃1 − p̃′
n)Gt (p1, ω)T q=0

p1,p′
1
Gb(p′

1, ω)

+ T q=0
p1,p′

n
Gt (p1, ω)t( p̃1+ p̃′1

2

)q · ∇ f (p̃1 − p̃′
1)Gb(p′

1, ω)
) n∏

i=2

(
T q=0

pi,p′
i−1

Gt (pi, ω)T q=0
pi,p′

i
Gb(p′

i, ω)
)]

. (A25)

Since we sum over all momenta and Matsubara frequency, we can use the following map for the second term in the parenthesis:
ω ↔ −ω, p′

i+1 ↔ p′
n−i, and pi+2 ↔ pn−i (p1 maps to itself) to get

∇qF (n) = 1

β

∑
{p},{p′},ω,

G1,G2

t( p̃1+ p̃′n
2

)∇ f (p̃1 − p̃′
n)Tr

[
Gt (p1, ω)T q=0

p1,p′
1
Gb(p′

1, ω)
n∏

i=2

(
T q=0

pi,p′
i−1

Gt (pi, ω)T q=0
pi,p′

i
Gb(p′

i, ω)
)

+ T q=0
p1,p′

1
Gt (p1,−ω)Gb(p′

n,−ω)
2∏

i=n

(
T q=0

pi,p′
i
Gt (pi,−ω)T q=0

pi,p′
i−1

Gb(p′
i−1,−ω)

)]
. (A26)

Performing a circular shift for the second term and using the fact that G†
l (p, ω) = Gl (p,−ω), let us write it as

∇qF (n) = 1

β

∑
{p},{p′},ω,

G1,G2

t( p̃1+ p̃′n
2

)∇ f (p̃1 − p̃′
n)Tr[M + M†], (A27)

where

M = Gt (p1, ω)T q=0
p1,p′

1
Gb(p′

1, ω)
n∏

i=2

(
T q=0

pi,p′
i−1

Gt (pi, ω)T q=0
pi,p′

i
Gb(p′

i, ω)
)
. (A28)

Both T q=0
p,p′ and Gi(p, ω) are traceless and can be written as a sum of Pauli matrices in Nambu space. Hence M is given by a

linear sum of products of an odd number of Pauli matrices. After summing over Matsubara frequencies, tracing over M gives a
purely imaginary contribution. Using the fact that Tr[M†] = Tr[M]∗ we find that ∇qF (n) = 0.

c. In-plane current effect

A similar effect to that of an in-plane field can be obtained by driving an in-plane current through one of the SCs. In this
case the order parameter acquires a finite momentum �t (p) → �t (p)ei2q·R (assuming current in the top layer, where R is the
center-of-mass coordinate). This modifies the BdG Hamiltonian of the top layer. The bottom Hamiltonian is left unchanged, and
the interlayer tunneling Tp,p′ is modified in the same way as in the previous section, allowing for non-momentum-conserving
tunneling between the two SCs. To lowest order in q = 0, we can set q = 0 in the tunneling matrix element (the linear in q = 0
term from the matrix element was shown to vanish in the previous section). The Hamiltonian is given by

H = Ht + Hb + T, (A29)

Ht = 1

2

∑
p

�†
t,p

(
ξt (p + q, σ ) iσy�t (p)
−iσy�

∗
t (p) −(ξT

t (−p + q, σ ))

)
�t,p, (A30)

Hb = 1

2

∑
p

�
†
b,p

(
ξb(p, σ ) iσy�b(p)

−iσy�
∗
b(p) −(ξT

b (−p, σ ))

)
�b,p, (A31)

094520-11



JIEWEN XIAO, YAAR VITURI, AND EREZ BERG PHYSICAL REVIEW B 108, 094520 (2023)

where �
†
t,p = (c†

t,p+q,σ , c†
t,p+q,σ̄ , ct,−p+q,σ , ct,−p+q,σ̄ ), �

†
b,p = (c†

b,p,σ
, c†

b,p,σ̄
, cb,−p,σ , cb,−p,σ̄ ), p′ is defined as in Eq. (4), and T is

as defined in Eq. (A22), substituting q = 0. Expanding the free energy to second order in T and to first order in q gives

F (1) = 1

β

∑
p,p′,ω

Tr[Gb(p, ω)Tp,p′Gt (p′, ω)Tp,p′ ]

=
∑

{p},{p′},ω,
G1,G2

4
[
t
( p̃+ p̃′

2 )
f (p̃ − p̃′)

]2|�s||�p′ | cos (ϕ + αp′ )

β
(|�p′ |2 + ω2

n + ξ 2
b,p′

)
[Et,p + ∇ξt (p) · q − iω][Et,p − ∇ξt (p) · q + iω]

. (A32)

The linear order term in q vanishes.

6. Fractional Shapiro steps

To calculate the Shapiro steps, we use the resistively ca-
pacitance shunted junction (RCSJ) model [54]. The Josephson
junction is described by a circuit composed of a Josephson el-
ement, resistor, and capacitor in parallel. This model gives the
Josephson dynamics under microwave irradiation. Assuming
the junction is current biased, we have

Ibias = Idc + Iac cos (ωt ) = IJJ (ϕ) + VJJ

R
+ C

dVJJ

dt
,

VJJ = h̄

2e

dϕ

dt
,

(A33)

where R and C are the junction resistance and capaci-
tance. We input different current-phase relations for IJJ (ϕ)
for different order parameter symmetries. Specifically, here
we consider sin(3ϕ) case for the chiral order parameter
and mixed first- and second-order harmonics case for the
nodal order parameter. By solving Eq. (A33) numerically, we

FIG. 8. Fractional Shapiro steps. (a) The dVdc
dIdc

signal vs Iac and
Idc parameters in the current bias, with the current-phase relation
I (ϕ) = Ic3 sin 3ϕ, Ic3 = 5nA. The parameters used in this calculation
are given in the text. (b) Vdc as a function of Idc at Iac = 65 nA
for the current-phase relation used in (a). (c) Same as (a) for the
current-phase relation I (ϕ) = Ic1 sin ϕ + Ic2 sin 2ϕ, Ic1 = 2nA, Ic2 =
4nA. (d) Vdc as a function of Idc at Iac = 65 nA for the current-phase
relation used in (c).

derive the junction dynamic behavior. As shown in Figs. 8(a)
and 8(b), the IJJ (ϕ) = Ic3 sin(3ϕ) relation is reflected as
fractional steps as Vdc = n

3
h̄ω
2e . For the mixed case IJJ (ϕ) =

Ic1 sin(ϕ) + Ic2 sin(2ϕ) in Figs. 8(c) and 8(d), we see half-
integer steps as Vdc = n

2
h̄ω
2e . Here, we used the following

parameters: microwave angular frequency ∼40 GHz, critical
current ∼5nA/µm2, normal-state resistance ∼5 k�/µm2, and
interlayer geometrical capacitance 20 fF/µm2. The geomet-
ric capacitance is estimated from the interlayer distance d ∼
2 nm.

7. Josephson diode effect

In cases where time-reversal symmetry is spontaneously
broken, the critical current through the junction can depend on

FIG. 9. Diode ratio for a junction with spontaneously broken
TRS. We define the diode ratio as the ratio between the larger to the
smaller critical current through the junction. Plotted here is the diode
ratio as a function of the ratio between the first- and second-harmonic
coefficients [F = −I1 cos(ϕ) + (I2/2) cos(2ϕ)]. Its maximal value is
3.27, obtained for I1/I2 ≈ 0.8 (a larger diode can be achieved by
including higher-order terms). For larger I1/I2, the diode ratio is 1,
since once the current exceeds the lower of the two critical currents
near one of the minima and the phase is retrapped at the other mini-
mum of F (ϕ). The top-left inset shows F (ϕ) as a function of relative
phase for I1/I2 < 0.8, which results in a diode effect. The line in red
is tangent to the free-energy curve which corresponds to the smaller
of the two critical currents. The top right is for 0.8 < I1/I2 < 2,
where time reversal is broken but there is no diode effect.
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the direction of the current [47]. We can define a measure of
the asymmetry as the ratio between the two critical currents.
An intuitive argument can be made regarding the possibility
to have a diode effect using the washboard potential picture.
Assuming that time-reversal symmetry is broken, the ground
state has a phase difference ϕ which, in general, is neither
0 nor π . Around ϕ, the phase-dependent free energy F (ϕ)
is not symmetric. There are two points of maximal (min-
imal) slope which determine the externally applied current

required to drive the system out of the local minimum. Once
the critical current is exceeded, the shape of F (ϕ) could
be such that the phase is retrapped in the other minimum
(Fig. 9, top right) or the phase keeps increasing indefinitely
under the influence of the dc current, corresponding to a
dissipative state (Fig. 9, top left). In the case where retrap-
ping occurs, since the total F (ϕ) relation is time-reversal
symmetric, the critical currents in the two directions are
equal.
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