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Higgs amplitude mode in ballistic superconducting hybrid junctions
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In superconductors, the Higgs amplitude mode is a coherent oscillation of the order parameter typically
generated by terahertz laser irradiation. In this paper we propose to probe the Higgs mode using electronic
transport in ballistic superconducting hybrid devices. We first confirm the existence of a nonzero amplitude mode
in the clean case using the Keldysh-Eilenberger formalism. We then investigate two different device geometries:
respectively, a normal-insulator-superconductor (NIS) tunnel junction and a normal-superconducting-normal
metal (NSN) junction with two transparent interfaces, the superconductor being irradiated in both situations.
In the NIS case, the Higgs manifests itself in the second-order AC current response which is resonant at the
Higgs frequency. In the NSN case, the DC differential conductance allows one to probe the gaps dynamically
generated by the Higgs mode in the Floquet spectrum.
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I. INTRODUCTION

Superconductivity is characterized by a spontaneous gauge
symmetry breaking from the U (1) group to its Z2 subgroup
[1]. This leads to the appearance of a massive collective mode,
corresponding to the coherent oscillation of the order param-
eter, the superconducting gap �(t ) [2,3]. In superconductors
(SCs), the (Higgs) amplitude mode lies at energy 2�, which
corresponds to few meV, but surprisingly it was not observed
experimentally until 2013 [4]. The reason for this late experi-
mental evidence is that the amplitude Higgs mode is a scalar
mode with no charge, and therefore no direct linear coupling
to electromagnetic probes. Detecting the Higgs mode in SCs
requires nonlinear coupling between light and matter only
available with strong laser fields. It is the development of
terahertz lasers during the last decade that allowed the de-
tection of the Higgs mode. Today, the Higgs mode has been
detected in high-Tc SCs in pump-probe experiments through
the measurement of third harmonic generation (THG) [5,6].
Note that the presence of the Higgs mode was reported earlier
through Raman spectroscopy, but in SCs showing coexistence
between charge-density wave order and superconductivity [7].

A great deal of effort has gone into understanding the role
of impurities in Higgs mode excitation. It is commonly be-
lieved that, in a clean system, the Higgs mode has a negligible
effect on the optical response compared to the quasiparticles
(QPs) excitation (charge density fluctuation) [8]. Using path
integral formalism, Cea et al. [9] found that terahertz light
cannot excite the Higgs mode due to particle-hole symmetry
and that THG originates only from charge-density fluctuations
(CDFs). However, the measurement of the THG in a NbN
superconducting crystal [10] exhibited a strongly isotropic
response (as expected for the Higgs mode), contradicting
the CDF hypothesis, the latter being anisotropic. To explain
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this experiment, several scenarios have been put forward.
Phonon-mediated interactions have been proposed to explain
the strong response due to the Higgs mode [11]. It has been
shown that impurities can drastically modify the excitation
of the Higgs mode [12]. Silaev, using the Eilenberger for-
malism, found that impurities are necessary to excite the
Higgs mode with light [13]. Nevertheless, Yang and Wu,
using a gauge-invariant formalism, came to the opposite
conclusion, namely, that a finite Higgs mode could be gen-
erated even in the ideally clean case, in accordance with the
Ginzburg-Landau equations [14,15]. Vanishing of the CDFs
has also been demonstrated [14,15], in agreement with the
experiment [10].

Most of the experimental and theoretical studies were re-
lated to the all-optical way to detect the Higgs amplitude
mode in SCs, typically as a THG [4]. Recently, a completely
different route has been proposed to detect the Higgs am-
plitude mode, which consists in using electronic transport
measurements in hybrid superconducting devices. For in-
stance, a tunnel interface [normal-insulating-superconductor
(NIS) junction] between a normal metal and a dirty SC has
been studied using Usadel quasiclassical equations [16]. In
such a DC-biased NIS junction, the presence of the Higgs
mode is revealed as a second harmonic in the AC current
flowing through the tunnel interface. Due to the progress of
nanofabrication processes, NIS devices can also be built with
ballistic normal parts and clean superconductors separated by
interfaces ranging from tunnel to transparent ones.

In this paper, we study clean normal-superconducting hy-
brid junctions. Two geometries are considered: a NIS tunnel
interface and a normal-superconducting-normal metal (NSN)
junction with highly transparent interfaces. For the DC-biased
NIS junction, the signature of the Higgs mode is seen in
the second harmonic in the AC current, as in the dirty case.
For the NSN transparent one-dimensional (1D) junction, the
DC differential conductance provides a spectroscopy of the
Floquet gaps which are dynamically induced by the Higgs
amplitude mode.
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FIG. 1. NIS junction. The superconducting region is irradiated
by a monochromatic terahertz field A(t ) = A0e−iωt and the normal
metal is biased by a DC potential V with respect to the grounded SC.
Both DC and AC currents flow through the junction.

The paper is organized as follows. In Sec. II we study the
conductance of a DC-biased tunnel NIS junction when the SC
amplitude mode is pumped by terahertz light. We first solve
the Eilenberger equations for an irradiated clean SC (Sec. II B)
and demonstrate that the Higgs mode can be excited even
in the absence of disorder (Sec. II C). Then we compute the
second harmonic of the current flowing through the clean
NIS junction (Sec. II D). In Sec. III we investigate the NSN
ballistic junction with transparent interfaces. We solve the
transport equations for this junction and obtain a DC differ-
ential conductance revealing the presence of Floquet gaps.

II. NIS JUNCTION

So far the Higgs mode has been mainly studied in bulk
superconductors using optical probes [8]. Here we consider a
NIS junction between a ballistic normal metal (N) and a clean
superconductor (SC) connected by a thin insulating (I) tunnel
junction (Fig. 1). The amplitude mode of the SC is coupled to
the electronic current passing through the interface and could
be detected in transport experiments.

A. Model

The superconducting region is coupled to terahertz light
with vector potential A(t ) = A0e−iωt . The normal metal part
is not irradiated but is connected to the SC by a tunnel in-
terface. In the N region, the electrons are assumed to have
a parabolic dispersion ξ (p) = p2/2m − μ, where μ is the
chemical potential. The relevant momenta are close to the
Fermi momentum pF and the dispersion can be linearized as
ξ (p) = vF · (p − pF ) where vF = pF /m. A static bias poten-
tial V is applied to the N region with respect to the grounded
SC. Our model is closely related to the NIS junction studied in
the dirty case by [16], the main difference being that we treat
the clean limit, for both N and SC.

To describe the dynamics within the whole NIS struc-
ture, we use the quasiclassical (QC) limit of the Eliashberg
equations [17], the so-called Eilenberger equations, which are
valid when �/μ � 1. The Keldysh formalism with closed
time contour addresses the out-of-equilibrium dynamics of
the problem. We therefore introduce the Green’s functions in
Nambu-Keldysh space [18],

ǧ =
(

ĝr ĝk

0 ĝa

)
, (1)

each ĝi being a 2 × 2 matrix in electron/hole Nambu space
and where the superscript i = r, a, k stands, respectively, for
retarded, advanced, and Keldysh (or kinetic) components.

In the superconducting region, the Eilenberger equa-
tion reads [18,19]

i{τ̌3∂t , ǧ} + i[�(t )τ̌2, ǧ] + [eA · vF τ̌3, ǧ] = 0, (2)

where the Pauli matrices τi are embedded in the following 4 ×
4 matrices:

τ̌i =
(

τi 0
0 τi

)
, (3)

the first-order time-derivative operator acts as

{τ̌3∂t , ǧ} = τ̌3∂t ǧ(t, t ′) + ∂t ′ ǧ(t, t ′)τ̌3, (4)

and finally the commutators have to be understood as [O, ǧ] =
O(t )ǧ(t, t ′) − ǧ(t, t ′)O(t ′) regarding the time arguments.

The Higgs mode is nonlinearly coupled to the vector po-
tential A. The leading nonlinear coupling is a second-order
one [20] with amplitude �2 and pulsation 2ω, so that the total
time-dependent order parameter reads

�(t ) = �0 + �2e−2iωt . (5)

In the normal metal, the Eilenberger equation reduces to

i{τ̌3∂t , ǧ} = 0, (6)

whose solution in Fourier space simply reads for the retarded
and advanced components

gr
n(ε) = −ga

n(ε) = τ3. (7)

The Keldysh component in the N region,

gk
n = [tanh (βε−/2) − tanh (βε+/2)]1

+ [tanh (βε−/2) + tanh (βε+/2)]τ3, (8)

is related to the quasiparticle populations and contains the
electrical potential V via the shifted energies ε± = ε ± eV .

The quasiclassical approximation neglects the physics at
distances smaller than the superconducting coherence length,
and therefore the Eilenberger equation cannot be used directly
to describe the interface. Nonetheless, using microscopic
Gorkov Green’s functions, proper boundary conditions have
been established by Zaitsev for the Eilenberger Green’s func-
tions [21]. For a tunnel junction between ballistic normal and
superconducting electrodes, the Zaitsev boundary conditions
[21] can be expressed in the following simple form [22]:

[ǧ+ − ǧ−]/2 = [ǧn, ǧs], (9)

where ǧ± is the Green’s function (GF) for the right (left)
movers, ǧs (respectively, ǧn) being the GF in the supercon-
ducting region (respectively, the N region).

The electric current can be obtained from the kinetic func-
tion [22] as

I = Gt

16e

∫
dε〈Tr[τ3[ǧn, ǧs]

k]〉pF
, (10)

where Gt is the tunnel conductance of the junction when
the SC lead is in normal state. We denote 〈· · · 〉pF

= ∫
d	F /

4π (· · · ) the angular average over the Fermi surface. We can
write the current up to the second order as the real part of

I (t ) = I0 + I2e−2iωt . (11)
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The second-order current can be written as a sum of two
contributions I2 = IV + IH where IV is the current due to the
second-order coupling to the vector potential only while IH is
the current directly associated to the excited Higgs mode (see
Appendix B).

B. Second-order perturbative solution

Solving (2) for an arbitrary shape of the time-dependent
potential A(t ) is difficult. Hence, we perform a perturbative
analysis with respect to the terahertz field amplitude, the small
parameter being AF = eA0 · vF . Note that |AF | is a typical en-
ergy scale and the electromagnetic driven strength is given by
the parameter |AF |/ω. Within a quasiclassical interpretation,
the coupling energy |AF | corresponds to the energy gained by
an electron at velocity vF in an electric field ωA0 during a time
1/ω. The GF can be expressed as a sum of functions scaling
as different powers of AF as

ǧ(t, t ′) = ǧ0(t, t ′) + ǧ1(t, t ′) + ǧ2(t, t ′), (12)

ǧi(t, t ′) being proportional to Ai
F . In order to solve the Eilen-

berger equation (2) in the ε space, we define the Fourier
transforms

ǧ0(t, t ′) =
∫

dε

2π
ǧ0(ε)e−i(t ′−t )ε, (13)

ǧ1(t, t ′) =
∫

dε

2π
ǧ1(ε)e−it ′εeitε1 , (14)

ǧ2(t, t ′) =
∫

dε

2π
ǧ2(ε)e−it ′εeitε2 , (15)

with εn = ε + nω.
In the absence of irradiation, the zeroth-order retarded (ad-

vanced) GF is found to be equal to [18]

gα
0 (ε) = ετ3 + i�0τ2

sα (ε)
, (16)

with α = r, a, where sr (ε) = i
√

�2
0 − (ε + iγ )2 and sa(ε) =

i
√

�2
0 − (ε − iγ )2 with a branch cut in the negative real line

for the square root. The parameter γ is a small positive energy
necessary to impose the proper boundary condition in the ξ

integration. It can also be interpreted as a Dynes parameter
[23], i.e., a small phenomenological constant which describes
depairing effects in the SC, inducing a broadening in the
optical response functions, thereby preventing an infinite res-
onance of the Higgs mode.

The first-order contribution to the retarded and advanced
Green’s function reads (see Appendix A)

ĝα
1 (ε) = AF

τ3 − ĝα
0 (ε1)τ3ĝα

0 (ε)

sα (ε1) + sα (ε)
. (17)

The second-order contribution to the Green’s function is gα
2 =

gα
V + gα

H where

ĝα
V (ε) = A2

F

sα
3 (ε)

[

α (ε)ĝα

0 (ε2) ¯̂gα
0 (ε1)ĝα

0 (ε) − ξ2 − ξ̄1 − ξ
]
,

(18)

ĝα
H (ε) = i�2

sα (ε2) + sα (ε)

[
τ2 − ĝα

0 (ε2)τ2ĝα
0 (ε)

]
, (19)

with Ō = τ3Oτ3, ξi = εiτ3+i�0τ2 and

sα
3 (ε) = [sα (ε2) + sα (ε1)][sα (ε2) + sα (ε)][sα (ε1) + sα (ε)],

(20)


α (ε) = sα (ε) + sα (ε1) + sα (ε2). (21)

Now let us consider the Keldysh components of the Green’s
functions which describe the nonequilibrium quasiparticle
populations. In the absence of irradiation, namely, at the ze-
roth order in AF , the stationary Keldysh GF is simply the
equilibrium one [18],

ĝk
0(ε) = [

ĝr
0 − ĝa

0

]
tanh (βε/2), (22)

with β = 1/kBT . For all orders we define ĝk
i = ĝreg

i + ĝan
i ,

where ĝreg
i = gr

i (ε) tanh (βε/2) − tanh (βεi/2)ga
i (ε).

The derivation for the other orders can be found in
Appendix A. The first-order contribution reads

ĝan
1 (ε) = AF

tanh (βε1/2) − tanh (βε/2)

sr (ε1) + sa(ε)

× [
τ3 − ĝr

0(ε1)τ3ĝa
0(ε)

]
. (23)

The second-order Keldysh component is the sum of two terms,
ĝan

2 (ε) = ĝan
V (ε) + ĝan

H (ε), respectively given by

ĝan
V (ε) = A2

F [tanh (βε2/2) − tanh (βε1/2)]

[sr (ε2) + sa(ε1)][sr (ε2) + sa(ε)][sa(ε1) + sa(ε)]

{
[sa(ε) + sa(ε1) + sr (ε2)]ĝr

0(ε2) ¯̂ga
0(ε1)ĝa

0(ε) − ξ2 − ξ̄1 − ξ
}

+ A2
F [tanh (βε1/2) − tanh (βε/2)]

[sr (ε2) + sr (ε1)][sr (ε2) + sa(ε)][sr (ε1) + sa(ε)]

{
[sa(ε) + sr (ε1) + sr (ε2)]ĝr

0(ε2) ¯̂gr
0(ε1)ĝa

0(ε) − ξ2 − ξ̄1 − ξ
}
, (24)

ĝan
H (ε) = i�2[tanh (βε2/2) − tanh (βε/2)]

sr (ε2) + sa(ε)

[
τ2 − ĝr

0(ε2)τ2ĝa
0(ε)

]
. (25)

Finally, the Higgs mode amplitude �2 is calculated self-consistently from the relation

�(t ) = −i
πλ

4
Tr[〈τ2ĝk (t, t )〉pF

]. (26)

The equilibrium gap �0 depends on the temperature and we use the well-known BCS interpolation formula

�0(T ) = �0,0 tanh [1.74
√

T/Tc − 1], (27)

where Tc is the critical temperature, �0,0 ≡ �0(T = 0).
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FIG. 2. Higgs mode amplitude �2/�0 versus the reduced light
pulsation ω/�0. The parameters are the amplitude Ac

F = e|A0||vF | =
0.36�0, Dynes broadening γ = 0.01�0, and temperature T =
0.05Tc.

C. Higgs mode

A theoretical discussion is currently addressing the pos-
sibility to excite the Higgs mode in an ideally clean BCS
superconductor. Using different formalisms in the clean
regime, some works claimed that the Higgs mode cannot be
excited using optical techniques [9,13,24] while others ob-
tained a finite Higgs mode response [14,15]. Using Keldysh
real-time formalism to solve the corresponding Eilenberger
equations (see the previous section), we obtain a nonzero
Higgs mode for all frequencies ω and observe a resonance
at ω = � (Fig. 2), as expected from previous theoretical [20]
results. Nevertheless, we also obtain that the Higgs mode
amplitude is in principle smaller (but nonzero) in a clean SC
than in a dirty SC.

We discuss now the differences between the clean and dirty
cases, emphasizing the crucial role of the anomalous contri-
butions. First, there is a major difference between the typical
energy involved in the excitations induced by irradiation:
Ac

F = e|A0||vF | in the clean case and Ad
F = Dh̄(eA0/h̄)2 in

the dirty case, with D the Usadel diffusion constant measuring
the amount of disorder. We can write the amplitude in terms
of a regular and anomalous function Breg = Br − Ba and Ban

[see Eq. (A23)]. An interesting difference in behavior appears
at this level. In the dirty case, the regular and anomalous
terms share the same sign and both constructively contribute
to the Higgs mode amplitude. On the contrary, in a clean SC,
those two terms have different signs and, being of same order,
almost compensate each other. This sign difference explains
qualitatively why the dirty case can in principle induce a
stronger Higgs response from optical excitation. Still, a
nonzero Higgs mode is excited in the clean SC. Typically
the diffusion coefficient D ∼ 1 m2 s−1. For a Higgs mode of
same amplitude in the clean and dirty cases, we find that the
vectors potential amplitude ratio |Ad

0 |/|Ac
0| ∼ 0.1, such that

a less intense pulse in the dirty case can create a response
of the same intensity as the clean case with a stronger pulse.
Note that in a recent preprint, Yang and Wu [25] partially

solved the Eilenberger equations in the clean case. Yet, they
neglected the anomalous GF contributions to the Higgs mode
(see Appendix A).

D. Second-harmonic current

We now discuss the transport properties of the NIS junction
and focus on the AC current at pulsation 2ω. The amplitude
I2 of this current is computed from the Green’s functions
Eqs. (18) and (24) using Eq. (10). We have split the second-
order Green’s functions into contributions proportional to A2

F
and �2, respectively. This results in two contributions in the
current: (i) a current IV directly induced by the nonlinear cou-
pling with the electromagnetic field and (ii) a Higgs current IH

directly proportional to the Higgs amplitude �2, the formula
being given in Appendix B as Eq. (B6).

Since the Higgs amplitude �2 is resonant at ω = �0(T ),
the Higgs current inherits this resonant behavior, while IV is
not resonant (Fig. 3).

Qualitatively the results are quite similar to the dirty system
of [16]. Nonetheless interesting differences between the clean
and dirty can still be seen by studying the second-order AC
current [Eq. (B6)]. In the dirty case, the current IV is much
stronger than the Higgs current IH at the resonance. We see
from Fig. 4 that in the clean case the two are of the same
order, IH being still higher than IV . Outside the resonance
IV rapidly takes over the Higgs contribution. Qualitatively
the two cases are still very similar. As in the dirty case, the
current is resonant at ω = �0 and it is a clear signature of the
Higgs mode. More quantitatively, in the dirty case, the Higgs
mode current is of the order of ∼30Gt Ad

F /e at resonance,
against ∼0.08Gt Ac

F /e in the clean case. Knowing that for a
same Higgs amplitude Ad

F will be around ten times smaller
than Ac

F we get an estimate that, for equal Higgs amplitude
mode, the current in the dirty case Id

H ∼ 10Ic
H with Ic

H the
current in the clean system.

At resonance, the current grows quasilinearly until the bias
eV = �0. At this point the current starts to decrease with
increasing V . This is due to the fact that the Higgs mode is a
coherent pairing/depairing of Cooper pairs of frequency 2�0,
such that the AC current is maximum for a DC bias at the
SC band edge, i.e., for eV = �0 [16]. As in the dirty case, IV
presents different pics at frequency �0 + nω, which are signs
of photon-assisted transport.

III. NSN JUNCTION

In this section we study a ballistic transport problem in a
clean NSN junction, where the central grounded SC part is
irradiated (Fig. 5). A signature of the Higgs mode is found in
the DC differential conductance of the system.

A. Model

Here we propose a model consisting of a normal-irradiated
SC–normal metal junction. The SC has a finite length L. The
terahertz light is characterized by the real vector potential
A(t ) = A0[eiωt + e−iωt ]. The junction is purely ballistic and
we use the Bogoliubov–de Gennes (BdG) equation

i
d

dt

(
u
v

)
= H(t )

(
u
v

)
, (28)
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FIG. 3. (a) and (b) Maps of the AC currents IV and IH at different reduced temperatures T/Tc and bias for coupling Ac
F = 0.36�0, γ =

0.01�0. The laser pulsation is taken to be ω = �0(T ). The currents are in units of Gt/8e.

where u and v are, respectively, the electron and hole ampli-
tudes. The BdG Hamiltonian reads

H =
(

H0 − μ �(t )
�∗(t ) μ − TH0T−1

)
, (29)

where �(t ) = �0 + �2e−i2ωt inside the SC and �(t ) = 0 in
the normal electrodes, H0 = [ p̂ + eA(t )]2/2m, and T being
the time-reversal operator. Due to the fact that �0/EF � 1,
we can use the quasiclassical limit of this equation [18]

i
du

dt
= vF · [−i∂ + eA(t )]u − μu + �(t )v,

i
dv

dt
= −vF · [−i∂ − eA(t )]v + μv + �∗(t )u. (30)

In this approximation we completely neglect the effects of
reflected electrons and crossed Andreev reflections, which
is expected to be accurate in the case of fully transparent
junctions [26].

FIG. 4. Amplitude of the second-harmonic currents IV (dotted
line) and IH (solid line) as a function of the bias potential V for
slightly different pulsations ω near the resonance. The Higgs current
IH depends strongly on the pulsation, in contrast to IV . Those ampli-
tudes are nonmonotonic for increasing DC bias voltage and decrease
as 1/V at high bias. Here T = 0.05Tc.

As the BdG Hamiltonian

H(t ) = H(t + T ) (31)

is periodic in time with period T = 2π/ω, we use the Floquet
formalism [27–29]. In the same way that the Bloch theorem
tells that an eigenstate of a periodic in space Hamiltonian can
be labeled with quasimomentum, each state has an associated
quasienergy, i.e.,

�ε (k, t ) = e−iεt�(k, t ), (32)

where �(k, t + T ) = �(k, t ).
Defining the Floquet–BdG Hamiltonian as HF (t ) =

H(t ) − id/dt , we find a pseudostationary Schrödinger equa-
tion for �(k, t ),

HF �(k, t ) = ε �(k, t ). (33)

At this point it is useful to introduce the following Fourier
expansions:

H(t ) =
∑
n∈Z

Hne−inωt , (34)

�(k, t ) =
∑
n∈Z

�n(k)e−inωt . (35)

FIG. 5. NSN junction. The SC is irradiated by a monochromatic
terahertz field A(t ) = A0[eiωt + e−iωt ] and the left normal metal is
biased by DC voltage V with respect to SC and the right N electrode.
The scattering problem consists of an incident electron which can be
either transmitted as an electron or Andreev reflected as a hole.
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FIG. 6. Floquet spectrum in the case where Ac
F = 0.36�0,0 and (a) �2 is arbitrarily fixed to 0, and (b) �2 = 0.12�0,0 (value taken from

Fig. 2). We consider the zero-temperature limit T = 0. Gaps appear only in the presence of a finite amplitude mode �2.

We then have to solve an infinite number of time-
independent equations for the Fourier coefficients∑

m∈Z
[Hn−m − mωδm,n]�m = ε�n, (36)

with

Hn = [(vF k − μ)τ3 + �0τ1]δn,0 + AF1[δn,1 + δn,−1]

+ �2τ+δn,2 + �2τ−δn,−2, (37)

where τ± = τ1 ± iτ2. In practice, to solve the equations, we
choose a cut-off Nc in the number of Floquet replicas. More-
over, we will use in this section the relation between �2 and
the field amplitude A0 obtained self-consistently in Sec. II
(Fig. 2).

B. Floquet spectrum

The Floquet energy spectrum of the SC region presents
various intercrossing bands (Fig. 6). The bands exhibit gaps
at different energies. There is the superconducting gap at
ε = 0, and another one at ε = �0. This type of gap induced
by terahertz excitation has already been discussed in the
context of irradiated graphene [30–32]. The gaps present a
rich structure depending on the electromagnetic field strength.
Here we found similar results in the quasiclassical limit BdG
equation. An important observation is that a gap opens only
in the presence of the Higgs mode for ε = �0. We found that
the gap size � at kF is to a very good approximation given by
the Higgs mode amplitude � � �2 [33]. Of course those gaps
are second order in the potential vector, as �2 ∼ Ac2

F . In Fig. 6
we compare the case with and without the Higgs mode in the
SC. To do that we artificially fixed �2 = 0 in the left figure.
In this case the gaps close, showing the necessity of the Higgs
mode to open a gap at ε = �0.

C. BdG–Floquet scattering problem

We consider the following 1D scattering problem: an elec-
tron comes from the left and can be reflected as a hole
or transmitted as an electron on the right. The quasiclassi-
cal approximation prevents the existence of crossed Andreev

reflection in the junction or reflected electron. In the left N
region (x < 0), we have the following electronlike incident
and holelike reflected waves:

�in =
(

1
0

) ∑
n

eik+
n xe−iεt e−inωt , (38)

�out =
(

0
1

) ∑
n

rneik−
n xe−iεt e−inωt , (39)

with vF k±
n = μ ± (ε + nω).

In the right N region (x > L), the transmitted wave is
electronlike and reads

�trans =
(

1
0

)∑
n

tneik+
n xe−iεt e−inωt , (40)

where rn (respectively, tn) is the reflection (respectively. trans-
mission) coefficient for the nth Floquet level.

Inside the SC, the solution of the Floquet–BdG equa-
tion reads

�SC =
∑

m

∑
n

ameikmx�m
n e−iεt e−inωt , (41)

where �m
n (respectively, k±

m ) are the Floquet eigenvectors
(respectively, eigenvalues) inside the superconductor. Those
excitations are coherent superpositions of electronlike and
holelike, and the spinors �m

n are obtained by solving the
following eigenmode problem:

(vF k − μ)�n = (ε + nω)τ3�n − i�0τ2�n

+ AF τ3(�n−1 + �n+1)

− �2τ+�n−2 + �2τ−�n+2. (42)

The new matrix on the right-hand side of (42) is not Her-
mitian, so nothing prevents k from having some nonzero
imaginary part (if this is the case, the mode is an evanes-
cent one). The Hamiltonian is a matrix of length 2(2Nc +
1) × 2(2Nc + 1) so the number of km is 2(2Nc + 1). The full
solution is obtained using the boundary condition at each
interface, i.e., the continuity of the spinors (see Appendix C
for full details). This gives us the S matrix for this scattering
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FIG. 7. Differential conductances as a function of the DC bias
V for different SC length L. The SC coherent length h̄vF /π�0 is
noted ξ . The parameters are taken to be Ac

F = 0.36�0, �2 = 0.12�0,
Nc = 10.

problem. From the unitarity of S we obtain the conserved law

R + T =
∑

n

|rn|2 + |tn|2 = 1, (43)

with R (T ) the total reflection (transmission) coefficient.

D. DC differential conductance

Here we show that the differential conductance of the
NSN junction is a simple way to probe and realize an
electronic/transport spectroscopy of the BdG–Floquet band
gaps discussed in Sec. III B (Fig. 6). From the S matrix,
the DC current IDC is obtained using the extended Landauer-
Büttiker formalism [34,35]

IDC = e

h

2∑
α=1

∑
n

∫
dE |Sα1(En, E )|2

× [
f in
1 (E − eV ) − f out

α (En)
]

(44)

with E the incident energy, fα the distribution function in the
lead α, and V the bias potential. The lead α = 1 (respectively,
α = 2) is the normal metal on the left (respectively, right) of
the junction. The local differential conductance in the left part
is given by [36–38] (see also Appendix B)

GDC = ∂IDC

∂V
= e2

h
[1 + R(eV )]. (45)

By applying a DC bias V in the left normal metal, we
expect a local differential conductance given by Eq. (45). The
results are given in Fig. 8. The oscillations originate from
the resonant mode inside the superconducting part. The Higgs
mode appears when eV ∼ �0. Indeed, we observe the appear-
ance of a plateau in differential conductance centered around
�0 and of width ∼�2. This plateau comes from the gap
�. Indeed, the reflection coefficient for this range of energy
will be close to 1, as the probability for elastic transmission
will be very low. For Ac

F = 0.36�0, �2 = 0.12�0, the first-
order inelastic transmission coefficient becomes dominant
such that |t−1| � 10|t0|; elastic scattering being preferred, we
have |r0|2 � |t−1|2. Thus, GDC � 2e2/h in this interval and
this gives the plateau. To confirm this interpretation we look

FIG. 8. (a) Differential conductances as a function of the DC
bias V with L = 100 ξ , Ac

F = 0.36�0, �2 = 0.12�0 (blue solid line),
�2 = 0 (black dotted line), and number of Floquet replicas Nc = 10.
(b) Zoom of the plot (a) around eV = �0.

at the differential conductance in the case where we artificially
put �2 = 0. We saw before that now the gaps are closed, and
we do not see any plateau anymore.

Looking at Fig. 7, we see that the effect is only visible for
large enough junction length L. Indeed for too small junction,
the electrons injected, even inside the gap, can simply tunnel
through the junction, giving this GDC � e2/h at all bias. For
�2 = 0, the deeps of the oscillations are obtained for energy
bias eV res

n that obey the resonant condition

eV res
n =

√
�2

0 +
(

nπ

L
h̄vF

)2

. (46)

In this case the electron can tunnel through the SC and the
differential conductance drops.

The resonances observed at subgap bias are understood to
come from photon-assisted scattering (PAS). In this case, still
for �2 = 0,

eV res
n,N =

√
�2

0 +
(

nπ

L
h̄vF

)2

− Nh̄ω, (47)

for n, N such that eV res
n,N > 0. In our case only first-order PASs

are visible, i.e., the resonant bias is correctly predicted by
taking N = 1.

094515-7
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E. Rotating wave approximation

If the Higgs mode is present, the conductance deeps are
slightly shifted compared to the case without Higgs mode,
which can be explained by the modulation of the SC gap.
Unfortunately, the full BdG equations (30) are analytically
intractable. Therefore, in order to get an analytical solution we
consider here a simpler model where �0 = 0 while �2 
= 0.
Then the Hamiltonian (29) reduces to

H̃ = (vF p − μ)τz + vF eA(t )1 + �2e−2iωtτ+ + �2e2iωtτ−.

(48)

To get rid of the time dependence, we perform a “rotating
frame method” by applying the unitary transformation

U = eitωτz eievF
∫

Adt (49)

to the Hamiltonian. The new time-independent Hamiltonian is
given by

H̃′ = UH̃U† + i
dU
dt

U† (50)

= (vF p − μ − ω)τz + �2τx, (51)

whose positive eigenvalues are

ε =
√

�2
2 + (vF p − μ − ω)2. (52)

This result is formally similar to what can be found in irra-
diated semiconductors, and in that context the �2 is called a
dynamical gap, induced by the electromagnetic field [39,40].
For this system the resonance deeps will be found at bias

eṼ res
n =

√
�2

2 +
(

nπ

L
h̄vF − ω

)2

. (53)

This shift
nπ

L
h̄vF −→ nπ

L
h̄vF − ω (54)

in the resonance bias qualitatively explains the phase shift
between the resonance deeps with and without Higgs mode
in Fig. 8. We also note that at the Higgs resonance (ω = �0),
a gap appears at momentum k � kF of size 2�2. As we saw,
the gap reduces to � = �2 when we add a real �0 SC gap
in the model. The full model with �0 
= 0 is not solvable
analytically. Nonetheless the general ideas are expected to still
be true. Indeed small oscillations can be seen in Fig. 8, around
eV ∼ 0.92�0. Those resonances appear only in the presence
of the Higgs mode and can be explained by the same sort of
shifting of Eq. (54).

IV. CONCLUSION

In this work we investigated how to generate and detect
the Higgs amplitude mode in ballistic superconducting hybrid
devices. The Higgs mode is generated by irradiating the SC
and is probed via AC or DC electronic current measurements.
First, we have shown that the Higgs mode can be generated
even in ideally clean SCs. Then we have studied two different
geometries. We have computed the current in a NIS tunnel
junction and we found a typical signature of the Higgs mode
in the AC second-harmonic current, like in the dirty case. The

intensity of the response is nonetheless smaller in the clean
case. We then studied an irradiated ballistic NSN junction
within Bogoliubov–de Gennes formalism. We discovered that
the Higgs mode opens gaps in the Floquet band energy. Those
gaps can be seen by measuring the local differential conduc-
tance of the junction around the gap energy, eV � �0, and
their width is equal to the amplitude of the Higgs mode. The
differential conductance measurements act as an electronic
spectroscopy revealing the Floquet gaps dynamically gener-
ated by the presence of a finite Higgs amplitude mode.
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APPENDIX A: RESOLUTION OF THE EILENBERGER
EQUATIONS

We use the quasiclassical formalism corresponding to
μF � �0. From the exact Gorkov GF Ǧ, we define the quasi-
classical one

ǧ = i

π

∫
dξp Ǧ, (A1)

where the integration ranges from ξp = −∞ to ξp = ∞ and
the Ǧ is peaked around ξp = 0. These quasiclassical integrals
typically smooth out the fast oscillating behavior of the GF at
small scales.

It fulfills the Eilenberger equation in the homogeneous case
[18]

i{τ̌3∂t , ǧ} + i[�(t )τ̌2, ǧ] + [eA · vF τ̌3, ǧ] = 0, (A2)

where {τ̌3∂t , ǧ} = τ̌3∂t ǧ(t, t ′) + ∂t ′ ǧ(t, t ′)τ̌3, [O, ǧ] =
O(t )ǧ(t, t ′) − ǧ(t, t ′)O(t ′), A = A0e−iωt , τi are Pauli
matrices, and

ǧ =
(

ĝr ĝk

0 ĝa

)
(A3)

are the quasiclassical GFs in the 2D Keldysh space; each ĝ
is a 2 × 2 matrix where, respectively, r, a, k are for retarded,
advanced, and Keldysh (or kinetic) GFs. Finally

τ̌i =
(

τi 0
0 τi

)
, (A4)

where τi are the Pauli matrices.
With the Higgs mode being a second-order correction of

�(t ), we define

�(t ) = �0 + �2e−2iωt . (A5)

As usual, the gap has to be obtained self-consistently from
(A2); in our case this is

�(t ) = −i
πλ

4
Tr[〈τ2ĝk (t, t )〉pF

], (A6)

with λ the pairing constant and 〈· · · 〉pF
= ∫

d	F /4π (· · · ) is
the average over the Fermi surface. Equations (A2) and (A6)
are not sufficient to get a unique solution—a normalization
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condition is necessary; it is given by

ǧ ◦ ǧ(t, t ′) = δ(t − t ′), (A7)

with ◦ the time convolution symbol. This equation cannot be
solved in a simple form when A is time dependent. We will
consider a perturbative approach: we expand the GFs in order
of A and write

ĝ(t, t ′) = ĝ0(t, t ′) + ĝ1(t, t ′) + ĝ2(t, t ′). (A8)

It is useful at this point to define the Fourier transforms:

ĝ0(t, t ′) =
∫

dε

2π
e−iε(t−t ′ )ĝ0(ε), (A9a)

ĝ1(t, t ′) =
∫

dε

2π
e−iε1t eiεt ′

ĝ1(ε), (A9b)

ĝ2(t, t ′) =
∫

dε

2π
e−iε2t eiεt ′

ĝ2(ε), (A9c)

where we define εn = ε + nω. At the zeroth order the solution
is

ĝα
0 (ε) = ετ3 + i�0τ2

sα (ε)
, (A10)

sr(a)(ε) = i

√
�2

0 − (ε
+

(−) iγ )2, (A11)

where the square-root branch cut is placed in the real neg-
ative line. For higher orders, we will use the following
properties:

i{τ3∂t , ĝi(t, t ′)}

=
∫

dε

2π
e−iεit eiεt ′

[εiτ3ĝi(ε) − εĝi(ε)τ3], (A12a)

i[�2e−i2ωtτ2, ĝi(t, t ′)]

= i�2

∫
dε

2π
e−iεi+2t eiεt ′

[τ2ĝi(ε) − ĝi(ε2)τ2], (A12b)

[eA · vF τ3, ĝi(t, t ′)]

= AF

∫
dε

2π
e−iεi+1t eiεt ′

[τ3ĝi(ε) − ĝi(ε1)τ3], (A12c)

with AF = eA0 · vF . From those, it is straightforward to get
the equations for the first- and second-order corrections of the
GF:

ξ1ĝ1(ε) − ĝ1(ε)ξ = AF [ĝ0(ε1)τ3 − τ3ĝ0(ε)], (A13)

ξ2ĝ2(ε) − ĝ2(ε)ξ = AF [ĝ1(ε1)τ3 − τ3ĝ1(ε)]

+ i�2[ĝ0(ε2)τ2 − τ2ĝ0(ε)]. (A14)

We define the matrices ξi = εiτ3 + iτ2�0. To solve (A13)
[(A14)], simply multiply by ξ1 (ξ2) from the left and ξ from
the right and add the two equations together.

ĝα
1 (ε) =

[
AF

s(ε1) + s(ε)
[τ3 − ĝ0(ε1)τ3ĝ0(ε)]

]α

, (A15)

ĝα
V (ε) =

[
A2

F

[s(ε2) + s(ε1)][s(ε2) + s(ε)][s(ε1) + s(ε)]
{[s(ε) + s(ε1) + s(ε2)]ĝ0(ε2) ¯̂g0(ε1)ĝ0(ε) − ξ2 − ξ̄1 − ξ}

]α

, (A16)

ĝα
H (ε) =

[
i�2

s(ε2) + s(ε)
[τ2 − ĝ0(ε2)τ2ĝ0(ε)]

]α

. (A17)

with Ō = τ3Oτ3.
To find the Keldysh function it is useful to write the solution as a sum of regular and anomalous term

gk
i (ε) = greg

i (ε) + gan
i (ε) (A18)

with greg
i (ε) = gr

i (ε)h0(ε) − h0(εi)ga
i (ε) where the distribution function h0(ε) = tanh (βε/2). After some tedious but straightfor-

ward calculations we find

ĝan
1 (ε) = eA0 · vF

tanh (βε1/2) − tanh (βε/2)

sr (ε1) + sa(ε)

[
τ3 − ĝr

0(ε1)τ3ĝa
0(ε)

]
; (A19)

noting ĝan
2 (ε) = ĝan

V (ε) + ĝan
H (ε),

ĝan
V (ε) = (eA0 · vF )2[tanh (βε2/2) − tanh (βε1/2)]

[sr (ε2) + sa(ε1)][sr (ε2) + sa(ε)][sa(ε1) + sa(ε)]

[
[sa(ε) + sa(ε1) + sr (ε2)]ĝr

0(ε2) ¯̂ga
0(ε1)ĝa

0(ε) − ξ2 − ξ̄1 − ξ
]

+ (eA0 · vF )2[tanh (βε1/2) − tanh (βε/2)]

[sr (ε2) + sr (ε1)][sr (ε2) + sa(ε)][sr (ε1) + sa(ε)]

{
[sa(ε) + sr (ε1) + sr (ε2)]ĝr

0(ε2) ¯̂gr
0(ε1)ĝa

0(ε) − ξ2 − ξ̄1 − ξ
}
,

(A20)

ĝan
H (ε) = i�2[tanh (βε2/2) − tanh (βε/2)]

sr (ε2) + sa(ε)

[
τ2 − ĝr

0(ε2)τ2ĝa
0(ε)

]
. (A21)

From (A6) we have

�2 = �0

∫
dεTr

[〈
τ2ĝk

2(ε)
〉
pF

]∫
dεTr

[〈
τ2ĝk

0(ε)
〉
pF

] . (A22)
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The previous equation can be rewritten as

�2 = −Ac2
F �0

3

Br − Ba + Ban

Cr − Ca + Can
, (A23)

with

Bα =
∫

dε bα (ε) tanh (βε(2)/2), (A24)

Ban =
∫

dε ban
2 (ε)[tanh (βε2/2) − tanh (βε1/2)] + ban

0 (ε)[tanh (βε1/2) − tanh (βε/2)], (A25)

Cα =
∫

dε cα (ε) tanh (βε(2)/2) − tanh (βε/2)/sα (ε), (A26)

Can =
∫

dε can(ε)[tanh (βε2/2) − tanh (βε/2)], (A27)

where

bα (ε) =
{

1

[s(ε2) + s(ε1)][s(ε2) + s(ε)][s(ε1) + s(ε)]

[
[s(ε) + s(ε1) + s(ε2)]

ε1ε + ε2ε + ε1ε2 + �2
0

s(ε)s(ε1)s(ε2)
− 1

]}α

, (A28)

ban
2 = 1

[sr (ε2) + sa(ε1)][sr (ε2) + sa(ε)][sa(ε1) + sa(ε)]

[
[sr (ε2) + sa(ε1) + sa(ε)]

ε1ε + ε2ε + ε1ε2 + �2
0

sa(ε)sa(ε1)sr (ε2)
− 1

]
, (A29)

ban
0 = 1

[sr (ε2) + sr (ε1)][sr (ε2) + sa(ε)][sr (ε1) + sa(ε)]

[
[sr (ε2) + sr (ε1) + sa(ε)]

ε1ε + ε2ε + ε1ε2 + �2
0

sa(ε)sr (ε1)sr (ε2)
− 1

]
, (A30)

cα (ε) =
[

εε2 + �2
0 + s(ε2)s(ε)

[s(ε2) + s(ε)]s(ε2)s(ε)

]α

, (A31)

can(ε) = εε2 + �2
0 + sr (ε2)sa(ε)

[sr (ε2) + sa(ε)]sr (ε2)sa(ε)
. (A32)

We denote the Higgs mode as

�2 = Fω

1 − �ω

, (A33)

with Fω and �ω the amplitude and polarization functions
defined in [13]. From [16], we see that �ω is the same in
the clean and dirty cases, as shown also using the equilib-
rium Matsubara formalism in [13]. The eventual presence of
disorder affects only the amplitude function Fω. In our case
Fω ∝ Br − Ba + Ban.

APPENDIX B: CURRENT IN THE NIS JUNCTION

In a clean tunnel junction the boundary condition (BC) can
be expressed in a simple form [22]

I = Gt

16e

∫
dε〈Tr[τ3[ǧn, ǧs]

k]〉pF
, (B1)

with Gt the conductance of the junction. Because 〈ǧ1〉pF
= 0,

we can consider only the terms

[ǧn, ǧs]
k
0 = ĝr

nĝk
0(ε) + ĝk

n(ε)ĝa
0(ε)

− ĝr
0(ε)ĝk

n(ε) − ĝk
0(ε)ĝa

n, (B2)

[ǧn, ǧs]
k
2 = ĝr

nĝk
2(ε) + ĝk

n(ε2)ĝa
2(ε)

− ĝr
2(ε)ĝk

n(ε) − ĝk
2(ε)ĝa

n. (B3)

We now focus on the second-order contribution to the current.
Because ĝk

2 is traceless we have [ǧn, ǧs]k
2 = ĝk

n(ε2)ĝa
2(ε) −

ĝr
2(ε)ĝk

n(ε). We now need to find the terms proportional to τ3

in ĝα
2 (indeed τ3ĝk

n ∝ 1 + τ3). We get

gα
V,3(ε) =

[
(eA0 · vF )2

[s(ε2) + s(ε1)][s(ε2) + s(ε)][s(ε1) + s(ε)]

×
εε1ε2 + (ε + ε1 + ε2)
[

�2

0 − s(ε)s(ε1)s(ε2)
]

s(ε)s(ε1)s(ε2)

]α

,

(B4)

gα
H,3(ε) =

[
2�0�2(ε + ω)

s(ε)s(ε2)[s(ε) + s(ε2)]

]α

, (B5)

where 
α = sα (ε) + sα (ε1) + sα (ε2). We can write the cur-
rent I2 = IV + IH where

IV (H ) = Gt

8e

∫
dε{tanh [β(ε2 − eV )/2]

− tanh [β(ε2 + eV )/2]}〈ĝa
V (H ),3

〉
pF

(B6)

−
∫

dε[tanh (βε−/2) − tanh (βε+/2)]
〈
ĝr

V (H ),3

〉
pF

.

(B7)
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APPENDIX C: S-MATRIX SOLUTION FOR THE
FLOQUET SCATTERING IN NSN JUNCTION

We use the notations of Sec. III C and define the vectors
r = [r−Nc . . . rNc ]

T , t = [t−Nc . . . tNc ]
T , A, and B, the last two

being the amplitudes for an incoming electron on the left and
an incoming hole on the right of the junction. The S matrix is
defined by the relation (

t
r

)
= S

(
A
B

)
. (C1)

The boundary conditions, i.e., the continuity of the spinors,
gives us the equations(

1
0

)
An +

(
0
1

)
rn =

∑
m

am�m
n , (C2)(

1
0

)
eik+

n Ltn +
(

0
1

)
eik−

n LBn =
∑

m

eikmLam�m
n . (C3)

From this we get (
A

Beik−L

)
=

(
�1

�2eikL

)
a (C4)

with (Beik−L )n = Bneik−
n L, an = an, (�i )mn = �m

n,i, and
(�ieikL )mn = �m

n,ie
ikmL with i indicating the spinor coordinate.

The S matrix immediately follows:

S =
(

�1eikL

�2

)(
�1

�2eikL

)−1

. (C5)

We can rewrite

S =
(

R R′

T T ′

)
(C6)

with R and T the matrix coefficients for the incoming electron
from the left. For an incoming electron in Floquet band n = 0,
we will get the correct coefficients within the middle column
of R and T .

APPENDIX D: DIFFERENTIAL CONDUCTANCE
IN THE NSN JUNCTION

The current in the junction

IDC = e

h

2∑
α=1

∑
n

∫
dE |Sα1(En, E )|2

× [
f in
1 (E − eV ) − f out

α (En)
]

(D1)

can be written in terms of the reflection and transmission
coefficient

IDC = e

h

∫
dE

[
f in
1 (E − eV ) − f out

2 (En)
]
T (E )

+ [
f in
1 (E − eV ) − f out

1 (E − eV )
]
R(E ). (D2)

In the case of an Andreev reflection, the incident electron is
reflected as a hole, such that

f out
1 (E − eV ) = 1 − f in

1 (E − eV ). (D3)

Only keeping the term proportional to eV we get

IDC ∝ e

h

∫
dE f in

1 (E − eV )[T (E ) + 2R(E )]. (D4)

Finally, from the conserved relation R + T = 1, we get

GDC = ∂IDC

∂V
= e

h

∫
dE

∂ f in
1 (E − eV )

∂V
[1 + R(E )]. (D5)

In the low-temperature limit, ∂ f in
1 (E − eV )/∂V = δ(E − eV )

and

GDC = e2

h
[1 + R(eV )]. (D6)
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