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Proximity-induced equilibrium supercurrent and perfect superconducting
diode effect due to band asymmetry
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We theoretically investigate the consequences of proximity-induced conventional superconductivity in metals
that break time-reversal and inversion symmetries through their energy dispersion. We discover behaviors impos-
sible in an isolated superconductor such as an equilibrium supercurrent that apparently violates a no-go theorem
and, at suitable topological defects, nonconservation of electric charge reminiscent of the chiral anomaly. The
equilibrium supercurrent is expected to be trainable by a helical electromagnetic field in the normal state.
Remarkably, if the band asymmetry exceeds the critical current of the parent superconductor in appropriate
units, we predict a perfect superconducting diode effect with diode coefficient unity. We propose toroidal metals
such as UNi4B and metals with directional scalar spin chiral order as potential platforms.

DOI: 10.1103/PhysRevB.108.094513

I. INTRODUCTION

Nonreciprocal phenomena in superconductors (SCs) have
a long history. Among diode-like systems, early examples
included amplification of the luminescence of light-emitting
diodes when the diode was attached to a SC [1,2]. More
recently, the asymmetry in the current-voltage characteristics
of noncentrosymmetric metals under a magnetic field was
seen to be enhanced if the metal turned superconducting
[3–5]. Recent theoretical and experimental breakthroughs in
the theory and realization of superconducting and Josephson
diodes [3–26], which carry immense technological potential
by avoiding the enormous heating losses of semiconductor
diodes, have driven fervent activity in the field. These diodes
are characterized by unequal critical supercurrents in opposite
directions, resulting in Ohmic and dissipationless transport,
respectively, for current magnitudes between the two critical
currents. Such diode effects are intimately connected to the
exotic Fulde-Ferrell superconductivity, defined by finite mo-
mentum Cooper pairs in the ground state [7,13,14,18,23,27].
Another exotic nonreciprocal phenomenon entails the exis-
tence of spontaneous supercurrents in a preferred direction
through Josephson junctions [26,28–52] and SCs with spin-
orbit coupling in proximity to magnetism [53–58]. While
details vary, all the above approaches rely crucially on one
principle: broken T and I symmetries. Violation of these
symmetries results in other peculiar phenomena, such as un-
usual vortex dynamics in noncentrosymmetric SCs [59–62].

In this paper, we revisit the problem of nonreciprocity in
superconducting systems and explore it in a minimal sce-
nario. Specifically, we consider metals with an asymmetric
dispersion εk �= ε−k and no Berry phases, proximity couple
them to a conventional s-wave SC, and focus on a uniform
system without any Josephson junctions. We dub metals with
εk �= ε−k band asymmetric metals (BAMs) and refer to BAMs

that acquire conventional superconductivity as band asym-
metric superconductors (BASCs). Since k is inequivalent to
−k in BAM, intrinsic pairing tendencies in them, if any, are
expected to be towards exotic Fulde-Ferrell superconductivity
built from finite momentum Cooper pairs [63]. On the other
hand, band asymmetry eliminates a Cooper instability at weak
interactions, so a more practical route to superconductivity in
BAMs may be extrinsic. We show that even this minimal setup
leads to strange behaviors impossible in isolated SCs, namely,
(i) an apparent violation of a basic no-go theorem due to
an equilibrium current density, (ii) a perfect superconducting
diode effect (SDE) without fine-tuning, and (iii) topological
defects that violate charge conservation.

II. EQUILIBRIUM SUPERCURRENT

We first derive the equilibrium current Ieq in a one-
dimensional (1D) BAM. Generalization to higher dimensions
is straightforward. While spontaneous supercurrents have
been studied before [26,28–58], their significance with respect
to basic quantum mechanics has not been appreciated, which
we do here. In particular, we show how it naively violates a
theorem by Bloch that forbids current densities in the ther-
modynamic limit in arbitrary systems of interacting fermions
[64–68], and then resolve the paradox.

We assume a single band with degeneracy g; for spin-
degenerate bands, g = 2. The Bloch Hamiltonian for such a
BAM is

HBAM =
∫
k

g∑
n=1

c†
kncknεk, (1)

where
∫

k ≡ ∫
dk
2π

. Let us deposit the BAM wire on a
conventional s-wave SC with zero Cooper pair momen-
tum, as sketched in Fig. 1. The BAM will develop
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FIG. 1. Depositing a BAM wire on a conventional SC will gen-
erate an equilibrium current Ieq, a SDE in general, and a perfect SDE
with unit diode coefficient if the band asymmetry exceeds a threshold
determined by the critical Cooper pair momentum of the parent SC.
(See text for details.)

conventional superconductivity too via the proximity effect.
The Bogoliubov-deGennes Hamiltonian in the basis �k =
(cT

k , T c†
kT −1)T is HBdG = 1

2

∑
k �

†
k (H�

k ⊗ Ig)�k , where

H�
k =

(
εk �∗

0
�0 −ε−k

)
(2)

and Ig is a g × g identity matrix. Ieq is given by

Ieq =
∫

k
Tr

{
jk

[
f
(
H�

k

) − f
(
H0

k

)]}
, (3)

where jk = e
2 (vk 0

0 −v−k
) ⊗ Ig is the current operator, f (X ) =

[eX/T + 1]−1, and we have set h̄ = kB = 1. We have explicitly
subtracted a spurious current due to Hilbert space doubling
that captures the current carried by the filled bands when
� = 0. This current vanishes in general lattice models and
in continuum models with a symmetric dispersion. However,
in an asymmetric continuum, it is nonzero, regularization
dependent, and can even diverge. For weak pairing, we find

Ieq ≈ ge|�0|2
∫

k

v−k

(εk + ε−k )2 tanh

[
εk

2T

]
(4)

to leading order in �0. Ieq is generically nonzero as long
as εk �= ε−k . To gain more insight into this result, suppose
the BAM has Fermi momenta Ki and Fermi velocities vi.
Linearizing the dispersion as εKi+p ≈ vi p, ε−Ki+p ≈ ε−Ki and
assuming |ε−Ki | � �, where � is an energy cutoff, gives

Ieq ≈ ge|�0|2�2

2π

∑
i

v−Ki

|vi|ε3
−Ki

(5)

for T → 0. If we assume
∑

i
�2v−Ki

|vi|ε3
−Ki

∼ 10−9/eV, which

amounts to a one-part-per-million band asymmetry if � and
ε−Ki are each O(meV) and all Fermi velocities are of the same
order, then �0 ∼ 1K gives a large Ieq ∼ 10 mA, which should
be detectable via the magnetic fields it creates.

The above current seems to contradict a seminal theo-
rem by Bloch, which states that the ground or equilibrium
state of a generic, interacting fermionic system cannot carry
a current density [64–68]. In particular, a recent refinement
of the theorem showed that the current density along x is
bounded as |〈Jx〉| < O(L−1

x ), where Lx is the linear dimension
in the x direction [69]. Historically, Bloch’s theorem helped
prove that persistent currents in isolated superconducting and

metallic [70,71] rings necessarily occur in excited states and
are stabilized by the quantization of magnetic flux piercing
the ring. Thus, the persistent currents there have a long life-
time that is limited only by the probability of spontaneous or
stimulated emission that relaxes them to the ground state. In
contrast, BASCs clearly carry a ground-state current with a
truly infinite lifetime, apparently evading Bloch’s theorem.
The spontaneous supercurrents described in Refs. [53–58]
are special cases of Ieq. However, Ieq differs fundamentally
from spontaneous currents in T and I, breaking Josephson
junctions that crucially rely on the presence of a junction and
decay exponentially with junction thickness [26,28–52] while
Ieq is independent of the length of the BAM wire.

The resolution to the paradox lies in the observation
that Bloch’s theorem explicitly assumes charge conservation
whereas the BASC can freely exchange pairs of electrons
with the parent SC. Viewed differently, the BAM-plus-SC
system conserves charge, obeys Bloch’s theorem, and indeed
has a vanishing current density in the thermodynamic limit.
However, the BASC alone can host a nonzero current density,
which physically corresponds to a surface current for the com-
bined system and is not suppressed by Bloch’s theorem. Yet
another interpretation of the result is that the superconducting
instability of an isolated BAM is towards a finite momen-
tum state. In other words, a q �= 0 pairing state minimizes
the Ginzburg-Landau free energy or, equivalently, solves the
superconducting mean-field equations self-consistently, of the
isolated BAM wire with suitable interactions at low tempera-
tures. Then, the induced q = 0 pairing state can be viewed as
an excited state of an isolated superconducting BAM and is
therefore not restricted by Bloch’s theorem.

It is instructive to contrast the above current with topologi-
cal boundary phenomena. In particular, topological condensed
matter physics is rife with phenomena that are forbidden in
isolated systems, but occur robustly on the boundaries of
topological phases. There, the violation of the relevant no-go
theorems on one boundary is cured by the opposite boundary.
From this perspective, the above current is a nontopological
phenomenon that is forbidden in an isolated SC, but occurs
robustly on the surface of a conventional SC. Here, the appar-
ent violation of the relevant no-go theorem is rectified by the
parent SC that acts as an infinite reservoir of Cooper pairs.

III. PERFECT SDE

We now argue that the above system realizes a perfect
superconducting diode for large enough band asymmetry with
a diode coefficient at its theoretical maximum, η = 1, while
small band asymmetry still results in a nonzero η. Unlike,
for instance, Ref. [23], where perfect diode behavior requires
fine-tuning to a tricritical point, the perfect behavior here
appears immediately once the band asymmetry exceeds a
threshold. This remarkable behavior directly aligns with the
central pursuit of the field of achieving a large η. While
experimental nonidealities such as contact resistance will un-
doubtedly reduce η in our proposal, the fact that the ideal
scenario predicts η = 1 without fine-tuning is exciting. In
comparison, the largest η experimentally achieved so far
is η ≈ 0.35 in a heterostructure of β-Sn superconducting
nanowires embedded in α-Sn Dirac semimetal [72].
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The proof of the perfect SDE is as follows. The ground
state supports a nonzero current Ieq through the BAM wire
mediated by q = 0 Cooper pairs in the parent SC. Thus,
driving a different dissipationless current through the BAM
wire will require q �= 0 Cooper pairs. Explicitly, the general-
izations of Eqs. (2) and (3) are

H�
k (q) =

(
εk+q �∗

q
�q −ε−k

)
, (6)

I (q) =
∫

k
Tr

{
jk (q)

(
f
[
H�

k (q)
] − f

[
H0

k (q)
])}

, (7)

where �q is the pairing amplitude associated with

momentum-q Cooper pairs and jk (q) = e
2 (vk+q 0

0 −v−k
) ⊗ Ig.

Since the parent SC is conventional, we expect |�q| = |�−q|
and �q = 0 when |q| exceeds a critical value qc. For weak
pairing, the generalization of Eq. (4) is

I (q) = −ge|�q|2 d

dq

∫
k

tanh
( εk+q

2T

) + tanh
(

ε−k

2T

)
2(εk+q + ε−k )

≡ −ge|�q|2F ′(q). (8)

Note that F (q) depends purely on the normal state band struc-
ture. It peaks when q is such that k and k + q are distinct
Fermi points. Consequently, F ′(q) changes signs when q con-
nects a pair of Fermi momenta. For instance, in a minimal
1D dispersion with a single left (right) mover with Fermi
momentum, −KL (KR), F ′(q∗) = 0, where q∗ = KR − KL. We
demonstrate this property in Figs. 2(c) and 2(d) for a lattice
dispersion of the form εk = −2t cos k − 2t ′ sin(2k + θ ) − μ,
which corresponds to ordinary nearest-neighbor and complex
second-neighbor hopping. F (q) is analyzed more closely in
the Appendix B.

The implication of this behavior for the SDE, illustrated
in Figs. 2(e) and 2(f), is the following: If qc < |q∗|, a current
I such that 0 < I < Ieq (we choose the convention Ieq > 0)
will be nondissipative and be carried by Cooper pairs in
the BAM with the appropriate q, whereas no value of q
can accommodate a negative supercurrent. Thus, the critical
currents are I+

c = Ieq and I−
c = 0, and the diode coefficient

η = I+
c −I−

c
I+
c +I−

c
= 1.

We emphasize that this reasoning for the perfect SDE is
immune to the specific form of �q as long it vanishes beyond
a critical value of |q|. In fact, the perfect SDE will persist even
if the parent SC inherits a slight asymmetry due to the BAM
and acquires unequal critical momenta, q+

c �= q−
c , provided

|q∗| > max q±
c . Then, I (q) has the same sign ∀q for which

�q �= 0.
On the other hand, if qc > |q∗|, then Cooper pairs with

momentum q such that |q∗| < |q| < qc will enable negative
supercurrents in the BAM and yield a diode coefficient 0 <

η < 1. Naively, if a supercurrent vanishes at a certain q and
has a negative slope at that point—as happens for q = q∗ in
Fig. 2(f)—the superconducting phase is rendered unstable as
the the corresponding free energy reaches a local maximum
or saddle point [73]. However, this is only true in intrinsic
SCs; for proximity-induced superconductivity in the BASC,
the parent SC effectively provides a training field in Nambu
pseudospin space that creates a nonzero �(q) proportional to
the pairing amplitude in the parent SC. As a result, the BASC

FIG. 2. An asymmetric dispersion (a), (b), the corresponding
F (q) (c), (d) and the resulting I (q) following Eq. (8). We use εk =
−2 cos k + 0.5 sin(2k + π/3) − μ with μ = 1 for (a), (c), (e) and
μ = 0 for (b), (d), (f), set T = 0.01, and phenomenologically choose
�q = �0(1 − q2/q2

c ) with qc = 0.15. Note that q∗ = KR − KL to
very good accuracy in both columns. When |q∗| > qc (left column),
I (q) is always positive and vanishes at q = qc, resulting in a per-
fect SDE. If |q∗| < qc, I (q) < 0 for |q| ∈ (|q∗|, qc ) and the SDE is
imperfect.

does not extremize the free energy of an isolated BAM and
can remain stable as long as the parent SC is well-behaved.

IV. TOPOLOGICAL DEFECTS

In d dimensions, a BAM would naturally be described
by a vector order parameter with symmetries of velocity or
momentum. For instance, at low energies compared to the
bandwidth, an intuitive choice for an order parameter is the
average Fermi momentum. Alternately, a real-space quantity
with the same symmetries as Q that has gained recent interest
is the toroidal moment, ∼r × m, where r is a position vector
and m is a magnetic moment [74–80]. Yet another choice is a
spin chiral order along a preferred direction [81,82]. On purely
symmetry grounds, Q can couple to electromagnetic fields as
Q · (E × B) and, hence, can be trained by mutually perpen-
dicular electric and magnetic fields. We now investigate the
effects of topological defects in Q on the equilibrium current
density Jeq and demonstrate an anomalous nonconservation of
electric charge.
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FIG. 3. (a) Domain wall (orange dot) in the BAM leads to charge
nonconservation in the BASC due to opposite Ieq on either side of the
domain wall. Here, BAM± schematically denotes 1D BAMs with op-
posite Qx . (b) Applying a spatially uniform E × B on a ring geometry
drives currents in the same average direction in two halves of the ring
(left to right in the figure), which results in a pair of domain walls that
emit (orange dot) and absorb (orange circle) charge. (c) An electric
vortex with ∇ · Q �= 0 also acts as a charge source or sink based on
the sign of ∇ · Q while (d) a magnetic vortex with ∇ · Q = 0 does
not exhibit charge nonconservation.

Suppose Q has a domain wall, Q(r) = Q0�(x)x̂. Then the
x > 0 and x < 0 regions will carry opposite Ieq [Fig. 3(a)], so
x = 0 will be a source or sink of electric charge depending on
the directions of Ieq in the two regions. Interestingly, a uniform
E × B field will create a pair of domain walls which will
result in a charge source and a sink in the BASC [Fig. 3(b)].
Similarly, an electric vortex Q(r) = Q0

xx̂+yŷ√
x2+y2

also acts as

a source/sink of charge [Fig. 3(c)], but a magnetic vortex
Q(r) = Q0

yx̂−xŷ√
x2+y2

does not [Fig. 3(d)]. In general, time in-

dependence of physical quantities at equilibrium means the
continuity equation for charge conservation is violated when

∂ρ

∂t
+ ∇ · Jeq ∝ ∇ · Q �= 0. (9)

This is an anomalous charge nonconservation that resembles
the chiral anomaly in 1D quantum Hall edges and 3D Weyl
semimetals [83–91]. Like the chiral anomaly, charge depleted
from one region appears in a different region that could be
macroscopically far away. Also, the violation is enabled by a
charge reservoir in both cases—the parent SC for the BASC
and a bulk insulator for the chiral anomaly. On the other
hand, the charge nonconservation here differs from that in
the chiral anomaly in crucial ways. First, it can occur in any
number of dimensions in principle—including 2D, where a
chiral anomaly is absent. Moreover, it depends on material
details whereas the chiral anomaly is determined by universal
constants e and h̄.

Such anomalous nonconservation of charge does not occur
in isolated SCs. Even though their mean-field condensates
violate charge conservation, the nature of the violation is very
different. In particular, they break gauge symmetry sponta-
neously, which leads to charge nonconserving microscopic
processes such as Andreev reflection at an interface with a

nonsuperconducting material. However, the actual bulk mate-
rial still conserves particle number and obeys the continuity
equation. Inhomogeneities do create local currents in the
equilibrium state, for example, around SC vortices. However,
the continuity equation and time independence of equilib-
rium ensure that such currents necessarily form loops and are
divergence-free. Thus, they do not contain local sources or
sinks or charge, let alone a mechanism for pumping charge
nonlocally over macroscopic distances. The latter is a unique
property of BASCs.

V. EXPERIMENTAL PLATFORMS

BAMs are the generic low-energy limit of any metal that
breaks T and I. This encompasses well-studied systems
where I is broken by spin-orbit coupling or ferroelectricity
and T is broken by a Zeeman field or magnetic order. It also
includes an emerging family of metals with toroidal order
such as UNi4B, where T and I are broken by a vector order
parameter but T I is preserved [75–81]. Finally, itinerant elec-
trons in the background of certain unidirectional spin chiral
orders are BAMs too [81,82]. In principle, any of these sys-
tems proximity coupled to a conventional SC should exhibit
the phenomena discussed in this paper, as the essential ingre-
dient is an order parameter with the symmetries of E × B.
However, determining the ideal platform with a large effect
will require a more sophisticated study of the proximity effect
from a parent SC that is left for future work.

VI. SUMMARY

We have studied proximity-induced conventional super-
conductivity in metals with asymmetric dispersions, which
can be viewed as the low-energy limit of generic metals that
break T and I symmetries. We showed that the resulting SC
carries a persistent equilibrium supercurrent that causes topo-
logical defects in the band asymmetry to act as sources and
sinks of charge, both of which are absent in isolated SCs. For
large enough band asymmetry, the SC also exhibits a perfect
SDE while smaller asymmetry still gives a nonzero SDE. This
work reveals reveals strange behaviors in systems that would
normally be considered ordinary, as they are at equilibrium,
lack band Berry phases, and acquire conventional, s-wave
superconductivity.
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APPENDIX A: DERIVATION OF Ieq AND I(q)

1. Ieq

We begin with

Ieq =
∫

k
Tr

{
jk

[
f
(
H�

k

) − f
(
H0

k

)]}
, (A1)
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where H�
k = ( εk �∗

0
�0 −ε−k

), jk = e
2 (vk 0

0 −v−k
) ⊗ Ig is the cur-

rent operator,
∫

k ≡ ∫
dk
2π

, f (X ) = [eX/T + 1]−1. It is easiest to
evaluate the trace in the eigenbasis of H�

k . This gives

Ieq = ge

4

∫
k

∑
n=±

f
(
En

k

)〈
ψn

k

∣∣(vk − v−k ) + (vk + v−k )τz

∣∣ψn
k

〉
− (� = 0 contribution) (A2)

= ge

4

∫
k

∑
n=±

f
(
En

k

)[
(vk − v−k ) + n(vk + v−k )√

1 + ∣∣ 2�0
εk+ε−k

∣∣2

]

− (� = 0 contribution), (A3)

where τz is a Nambu Pauli matrix and and
H�

k |ψ±
k 〉 = E±

k |ψ±
k 〉 with E±

k = εk−ε−k

2 ± sgn(εk +
ε−k )

√
( εk+ε−k

2 )2 + |�0|2 . Thanks to particle-hole symmetry,
E±

k = −E∓
−k , changing k → −k in the n = − term simplifies

this to

Ieq = −ge

4

∫
k

tanh

(
E+

k

2T

)⎡
⎢⎣(vk − v−k ) + vk + v−k√

1 + ∣∣ 2�0
εk+ε−k

∣∣2

⎤
⎥⎦

− (� = 0 contribution). (A4)

To leading order in �0,

Ieq = −ge|�0|2
2

∫
k

[
vk

2T (εk + ε−k )
sech2

(
εk

2T

)

− vk + v−k

(εk + ε−k )2
tanh

(
εk

2T

)]
. (A5)

Integrating the first term by parts further reduces this to

Ieq = ge|�0|2
∫

k

v−k

(εk + ε−k )2
tanh

(
εk

2T

)
, (A6)

which is the expression in the main paper.

2. I(q)

The starting point now is

H�
k (q) =

(
εk+q �∗

q
�q −ε−k

)
, (A7)

I (q) =
∫

k
Tr

{
jk (q)

(
f
[
H�

k (q)
] − f

[
H0

k (q)
])}

, (A8)

where jk (q) = e
2 (vk+q 0

0 −v−k
) ⊗ Ig. Particle-hole symmetry

now reads E±
k+q/2 = −E∓

−k+q/2. Thus, it is convenient to shift
k → k − q/2 and change k → −k in the n = − term. Paral-
leling the steps used for Ieq yields

I (q) = ge
∣∣�q

∣∣2
∫

k

v−k+q/2 tanh
( εk+q/2

2T

)
(εk+q/2 + ε−k+q/2)2

(A9)

to leading order in �q, which clearly equals Ieq at q = 0.
To shed light on the q dependence, we use the freedom in
redefining the integration variable k to rewrite I (q) as

I (q) = ge|�q|2
∫

k

v−k+q tanh
(

εk
2T

)
(εk + ε−k+q )2

(A10)

= −ge|�q|2 d

dq

∫
k

tanh
(

εk
2T

)
εk + ε−k+q

(A11)

= −ge|�q|2
2

d

dq

∫
k

tanh
( εk+q

2T

) + tanh
(

ε−k

2T

)
εk+q + ε−k

(A12)

= −ge|�q|2F ′(q), (A13)

as given in the main paper.

APPENDIX B: EVALUATION OF F(q)

We have

F (q) = 1

4T

∫
k

tanh
( εk+q/2

2T

) + tanh
( ε−k+q/2

2T

)
εk+q/2+ε−k+q/2

2T

(B1)

= T
∫

k

sinh
( εk+q/2+ε−k+q/2

2T

)
(εk+q/2 + ε−k+q/2)

[
cosh

( εk+q/2+ε−k+q/2

2T

) + cosh
( εk+q/2−ε−k+q/2

2T

)] . (B2)

This integral is sharply peaked at εk+q/2 = ε−k+q/2. Let us refer to the points that satisfy εk+q/2 = ε−k+q/2 as Ki and the
corresponding energies as εi. Note that Ki and εi depend on q. We can evaluate F (q) using Laplace’s method by defining

Gq(k) = ln

{
tanh

( εk+q/2

2T

) + tanh
( ε−k+q/2

2T

)
εk+q/2+ε−k+q/2

2T

}
, (B3)

so

F (q) ≈
∑

i

√
2π

|G′′
q (Ki )|

tanh εi
2T

2εi
. (B4)
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Straightforward algebra yields

G′′
q (Ki ) = −v2

Ki+q/2 + v2
−Ki+q/2

4T 2 cosh2
(

εi
2T

) + v′
Ki+q/2 + v′

−Ki+q/2

2T

[
1

sinh
(

εi
T

) − 1(
εi
T

)
]

+
(

vKi+q/2 − v−Ki+q/2

2T

)2
[

1(
εi
T

)2 − 1

sinh2
(

εi
T

)
]

(B5)

≈ −v′
Ki+q/2 + v′

−Ki+q/2

2εi
for |εi| � T, |q(vKi − v−Ki )|. (B6)

Thus,

F (q) ≈
∑

i

√
π

|εi(v′
Ki+q/2 + v′

−Ki+q/2)| for |εi| � T, |q(vKi − v−Ki )|. (B7)

Clearly, F (q) is maximum when εi, i.e., the momenta Ki are Fermi momenta. At larger εi, it decays as 1/
√

εi.
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(2021).
[48] T. Liu, L. Zhou, and Y. C. Tao, Europhys. Lett. 136, 17004

(2021).
[49] K. Halterman, M. Alidoust, R. Smith, and S. Starr, Phys. Rev.

B 105, 104508 (2022).
[50] D. Monroe, M. Alidoust, and I. Žutić, Phys. Rev. Appl. 18,
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