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Robust and tunable coreless vortices and fractional vortices in chiral d-wave superconductors
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Chiral d-wave superconductivity has recently been proposed in a wide range of materials based on both
experiment and theoretical studies. Chiral superconductors host a finite Chern number set by the winding of the
superconducting order parameter and associated topologically protected chiral edge modes. However, the chiral
edge currents and orbital angular momentum (OAM) generated by the edge modes are not topologically protected
and another, more robust, experimental probe is therefore needed to facilitate experimental verification of chiral
d-wave superconductors. We have recently shown the appearance of quadruply quantized coreless vortices (CVs)
in chiral d-wave superconductors, consisting of a closed domain wall decorated with eight fractional vortices, and
generating a smoking-gun signature of the Chern number, chirality, and the superconducting pairing symmetry
[P. Holmvall and A. M. Black-Schaffer, Phys. Rev. B 108, L100506 (2023)]. Specifically, the CV spontaneously
breaks axial symmetry for parallel chirality and vorticity, with a signature appearing directly in the local density
of states (LDOS) measurable with scanning tunneling spectroscopy (STS). In this paper, we first demonstrate a
strong tunability of the CV size and shape directly reflected in the LDOS and then show that the LDOS signature
is robust in the presence of regular Abrikosov vortices, strong confinement, system and normal-state anisotropy,
different Fermi surfaces (FSs), nondegenerate order parameters, and even nonmagnetic impurities. In conclusion,
our paper establishes CVs as a tunable and robust signature of chiral d-wave superconductivity.

DOI: 10.1103/PhysRevB.108.094511

I. INTRODUCTION

Two of the most outstanding issues in condensed matter
physics are the direct identification of the superconducting
pairing symmetry in unconventional superconductors and of
the topological invariant in topologically nontrivial materi-
als. These difficulties severely limit the ability to correctly
interpret experiments and the applicability of newly dis-
covered superconducting and topological materials. This is
particularly problematic in multicomponent superconductors,
especially chiral superconductors, where both topology and
superconducting symmetry need to be identified. Theoret-
ically, chiral superconductors, and more generally chiral
superfluids, are characterized by a nontrivial topology [1–5]
and a discretely degenerate ground state that spontaneously
breaks time-reversal symmetry [6]. They belonging to the
class of integer quantum Hall systems [7–9] with a finite
Chern number generated by the winding of the superfluid
order parameter [10–17], and with topologically protected
chiral edge modes generating spontaneous surface currents
and orbital angular momentum (OAM) [18–23].

The topology and symmetry breaking of a chiral superfluid
are predicted to generate a range of interesting properties
[1–5,24–27], such as the existence of domain walls [1,28–30],
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states with non-Abelian statistics [31–36], proposed as a
platform for topological quantum computing [37,38], and
fascinating vortex defects without analogues in single-
component superfluids [1–5,39]. A prime example is the
continuous “coreless vortex” (CV), which due to its mul-
ticomponent structure is nonsingular with finite superfluid
order parameter everywhere. CVs have primarily been studied
in superfluid 3He [40–55]. In superconductors, CVs have so
far mainly been discussed in the context of spin-triplet chiral
p wave [56–67], with analogous states discussed for various
multiband superconductors and other multicomponent con-
densates [68–73]. In the superconducting scenario, the CV
essentially consists of a closed domain wall, along which
the vorticity enters as fractional vortices, such that the total
superconducting order parameter is nonsingular and finite ev-
erywhere. Fractional vortices have been studied extensively
over the years [6,74–86], and were recently experimentally
observed in superfluids [87] and superconductors [88]. Sim-
ilar to a regular Abrikosov vortex [89], the CV is stabilized
by its reduction of the kinetic energy in an external magnetic
field. But importantly, unlike an Abrikosov vortex (or a giant
vortex [90–95]), the CV by definition has no normal core, and
therefore avoids the usual energy penalty associated with lost
condensation in the core.

Recent decades have seen an intense search for experimen-
tal realizations of chiral superconductors due to their many
interesting properties and proposed applications [2,3,96]. The
hunt for chiral superconductivity has mainly focused on spin-
triplet chiral p-wave and f -wave superconductivity [2,96–
101], and their similarities with superfluid 3He -A [1–5]. In-
terestingly, multiple proposals of spin-singlet chiral d-wave
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superconductivity have more recently emerged based both
on theory and experiments in a range of materials, such as
twisted bilayer cuprates [102,103], twisted bilayer graphene
[104–112], Sn/Si(111) [113], SrPtAs [114–117], LaPt3P
[118], Bi/Ni [119,120], and URu2Si2 [121–124]. Chiral d-
wave superconductivity was recently also proposed as a route
to topologically protected quantum computing [33–36]. The
exact identification of the superconducting pairing symme-
try is, however, still highly debated in these proposed chiral
superconductors. This is further hampered by the fact that
typical fingerprints of chiral superconductivity, namely the
chiral edge currents and OAM are not topologically protected
[7,125,126], and may even often vanish for pairing symme-
tries except for p wave [126–135]. In addition, it is quite
unknown how the higher Chern number and angular momen-
tum of chiral d-wave superconductors influence the vortex
physics and CVs.

In an earlier paper we have demonstrated that CVs natu-
rally emerge as a “quadruple-quantum vortex” in spin-singlet
chiral d-wave superconductors and that they, most impor-
tantly, act as a smoking-gun signature of chirality, pairing
symmetry, and Chern number [136]. These signatures were
demonstrated directly in the local density of states (LDOS)
and indirectly in the area-averaged orbital magnetic moment,
the former measurable with, e.g., scanning tunneling spec-
troscopy (STS) and scanning tunneling microscopy (STM)
[137–147], and the latter with various magnetometry setups
[77,148–160]. The signatures were shown to be fundamen-
tally related to the existence of inequivalent CVs in opposite
magnetic field directions (or equivalently opposite chiralities),
due to either a parallel or antiparallel vorticity and chiral-
ity, and which are also completely different from regular
Abrikosov vortices.

In this complementary paper, we demonstrate a strong
tunability of the CV size and shape, also directly reflected
in, e.g., the LDOS. Furthermore, we provide extensive data
that demonstrate a strong robustness of the results for a range
of realistic models, over extensive parameter ranges, and in
the presence of additional vortices or disorder. Overall, we
relate the robustness of the experimental signatures of chi-
rality, pairing symmetry, and Chern number, to the fact that
they fundamentally stem from the parallel versus antiparallel
alignment of vorticity and chirality, which are both topologi-
cally protected. In contrast, a nonchiral superconductor lacks
this alignment possibility, since it lacks chirality. Our paper
therefore establishes CVs as a robust signature of spin-singlet
chiral d-wave superconductivity, and furthermore the realiza-
tion of fractional vortices in these materials.

This paper is organized as follows. In Sec. II we summarize
our model and methods, and describe basic properties of chiral
d-wave superconductors. In Sec. III we introduce the basic
properties of CVs, also discussing their overall stability and
formation. In Sec. IV we demonstrate the large tunability
of the CV size due to thermodynamics and electrodynamic
interactions. Similarly, we study the interaction between CVs
and other vortices in Sec. V and the behavior of CVs in
confinement in Sec. VI, again demonstrating a tunability of
both the CV size and shape as well as establishing strong
robustness of CVs. We further demonstrate robustness against
more general and anisotropic Fermi surfaces (FSs) in Sec. VII,

nondegenerate order parameter components in Sec. VIII, and
nonmagnetic impurities in Sec. IX. Finally in Sec. X we
briefly summarize our results.

II. MODEL AND METHODS

In this section, we describe our model for a spin-singlet
chiral d-wave superconductor and summarize our methods.
In particular, we use the quasiclassical theory of supercon-
ductivity [161–173], and perform self-consistent numerical
calculations using the open-source framework SuperConga
[174].

A. Model

We consider weak-coupling superconductivity in equilib-
rium and in two dimensions (2D), assuming spin degeneracy,
all appropriate for a quantitative description of a spin-singlet
d-wave superconductor. We start by studying clean supercon-
ductors shaped like discs, with an electron-doped and circular
Fermi surface (FS). We then relax all these assumptions
by studying systems with either different discrete rotational
symmetries or completely irregular shapes, as well as hole-
doped and anisotropic FSs. We also consider nondegenerate
order parameters, as well as dirty superconductors with non-
magnetic impurities. For the specific setup, we align the
superconducting plane with the xy axes and use a perpendicu-
lar (orbital) external magnetic-flux density Bext = (�ext/A)ẑ
with homogeneous flux �ext across the system area A to
induce vortex states. We assume type-II superconductivity
appropriate for most nonelemental or unconventional super-
conductors, but consider different penetration depths λ0 ∈
[2,∞), via the Ginzburg-Landau coefficient κ ≡ λ0/ξ0. The
penetration depth sets the length scale and strength of flux
screening, defined by λ−2

0 = 4πe2v2
FNF/c2, with elementary

charge e = −|e|, Fermi velocity vF on the FS, normal-state
density of state NF on the FS (per spin), and speed of light
c. Here, our natural length unit is ξ0 ≡ h̄vF/(2πkBTc), some-
times referred to as an effective superconducting coherence
length over which superconductivity spatially varies, with
Planck constant h̄, Boltzmann constant kB, and supercon-
ducting transition temperature Tc. We study superconducting
systems with a diameter or side length D ∈ [20, 300]ξ0,
for different temperatures T ∈ [0.01, 0.99]Tc, and external
fluxes �ext ∈ [−15, 15]�0 with flux quantum �0 ≡ hc/2|e|.
We keep all parameters fixed during the self-consistency
simulations.

We perform our numerical simulations using the open-
source framework SuperConga [174], which is a state-
of-the-art implementation of the quasiclassical theory of
superconductivity [161–173], running on graphics processing
units (GPUs), and with extensive documentation and unit
testing [175,176]. SuperConga solves self-consistently [177]
for both the superconducting order parameter �(pF, R) and
vector potential A(R) via the gap equation and Maxwell’s
equations, respectively. Here, pF = pF(cos θF, sin θF) is the
Fermi momentum with angle θF on the FS, while R =
R(cos φ, sin φ) is the in-plane center-of-mass coordinate
with polar angle φ. SuperConga also solves for impurity
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self-energies self-consistently using the well-established t-
matrix approach [178].

B. Quasiclassical theory of superconductivity

Many materials exhibit a clear separation between the su-
perconducting gap |�| and other relevant energy scales, such
as the Fermi energy EF. Consequently, the superconducting
coherence length ξ0 typically becomes much larger than the
atomic length scale a0 and Fermi wavelength λF . In such
materials, the low-energy (long-wavelength) physics can often
to a very good approximation be separated from the high-
energy (short-wavelength) physics. The quasiclassical theory
of superconductivity exploits this via a controlled expansion
in the resulting small parameters, e.g., |�|/EF, T/Tc, and
λF/ξ0, with leading-order terms describing the low-energy
bands close to the FS [161–173]. Higher-energy corrections
can still be inserted from full microscopic theory, e.g., by
using microscopic boundary conditions [170,171,179–184].

The low-energy expansion results in quasiclassical
propagators, which we express in Nambu (particle-hole)
space as

ĝ(pF, R; z) =
(

g(pF, R; z) f (pF, R; z)

− f̃ (pF, R; z) g̃(pF, R; z)

)
, (1)

with quasiparticle propagator g(pF, R; z) and anomalous pair
propagator f (pF, R; z), where “tilde” denotes particle-hole
conjugation α̃(pF, R; z) = α∗(−pF, R; −z∗). Here, z is the
quasiparticle energy associated with the corresponding prop-
agator, and is generally complex valued. Specifically, the
retarded propagators gR(pF, R; ε) are used for spectral quan-
tities, evaluated at zR ≡ ε + iδ with real energy ε and small
positive broadening δ. For all other quantities, we use the Mat-
subara propagators gM(pF, R; εn) and f M(pF, R; εn) in terms
of the Matsubara energies zM ≡ iεn = iπkBT (2n + 1), with
integer n [185–190]. The propagators in Eq. (1) are obtained
via the Eilenberger equation [161]

0 = ih̄vF · ∇ĝ(pF, R; z)

+ [zτ̂3 − ĥ(pF, R; z), ĝ(pF, R; z)], (2)

together with the normalization condition ĝ2 = −π21̂, where
ĥ is the self energy and τ̂i the Pauli matrices in Nambu space.
The self energy in Nambu space is

ĥ(pF, R; z) = �̂(pF, R; z) + �̂(pF, R)

=
(

�(pF, R; z) �(pF, R)

�̃(pF, R) �̃(pF, R; z)

)
, (3)

with mean-field superconducting order parameter �(pF, R),
while the diagonal part in the present paper is

�̂(pF, R; z) = �̂flux(R) + �̂imp(pF, R; z), (4)

capturing electrodynamic interactions via �̂flux(R) (described
further below) and impurity scattering via �̂imp(pF, R; z)
(described in Sec. IX). We parametrize the even-parity

spin-singlet order parameter �(pF, R) via

�(pF, R) =
∑

�

|�� (R)|eiχ� (R)η� (pF), (5)

where � labels the irreducible representations of the crystallo-
graphic point group and the basis function η� (pF) encodes the
pairing symmetry on the FS [191], also related to the attractive
pairing interaction V via

V (pF, p′
F) =

∑
�

V�η� (pF)η†
� (p′

F). (6)

Here, V� is the pairing strength of the respective symmetry
channel. We self-consistently compute �(pF, R) via the su-
perconducting gap equation

�(pF, R) = NFkBT
|εn|<�c∑

n

〈V (pF, p′
F) f (p′

F, R; εn)〉p′
F
, (7)

with cutoff energy �c [172], and FS average [192,193]

〈. . . 〉pF
= 1

NF

∮
FS

d pF

(2π h̄)2|vF(pF)| (. . . ). (8)

The electrodynamics is modeled via

�̂flux(pF, R) = −e

c
vF(pF) · A(R)τ̂3, (9)

where A(R) = Aext (R) + Aind(R) is the magnetic vector po-
tential. It is related to the external (ext) magnetic-flux density
via Maxwell’s equation Bext (R) = ∇ × Aext (R), and to the
induced (ind) magnetic-flux density Bind(R) (i.e., screening)
from the total charge-current density j(R) via Ampère’s law

4π

c
j(R) = ∇ × Bind(R) = ∇ × ∇ × Aind(R). (10)

We compute j(R) via

j(R) = 2eNFkBT
|εn|<�c∑

n

〈vF(pF) gM(pF, R; εn)〉pF . (11)

We further compute the LDOS via

N (R; ε) = −2NF

π
〈Im[gR(pF, R; ε)]〉pF . (12)

Finally, we note that the quasiparticle energies are ef-
fectively Doppler shifted by the vector potential and any
phase gradients [194–197], seen by applying a unitary
gauge transformation to the Eilenberger equation as in,
e.g., Refs. [174,198,199], modifying Eq. (9), �flux(pF, R) →
vF(pF) · ps(R) with the gauge-invariant superfluid momentum
(superflow)

ps(R) = h̄

2
∇χ (R) − e

c
A(R). (13)

This allows phase gradients and vector potentials to be treated
on an equal footing, and leads to the Doppler shifted quasi-
particle energy zp = z − vF(pF) · ps(R) in the Eilenberger
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equation (2) [200–202], thus also influencing the LDOS in
Eq. (12).

C. Chiral superconductivity

We consider spin-singlet chiral d-wave superconduc-
tivity, modeled using an attractive pair potential for the
two irreducible d-wave representations � ∈ {dx2−y2 , dxy} with
ηdx2−y2 (θF) = √

2 cos(2θF) and ηdxy (θF) = √
2 sin(2θF). Fol-

lowing the notation in Eq. (5), the resulting order parameter
components �dx2−y2 (pF, R) and �dxy (pF, R) are referred to as
the nodal components. We initially assume that these chan-
nels are degenerate, since such a degeneracy is guaranteed
by symmetry in any material with a three- or sixfold ro-
tationally symmetric lattice [17], relevant for many of the
recently proposed chiral d-wave superconductors [104–117].
Still, for sake of full completeness, we later relax this assump-
tion. Furthermore, we note that our theoretical framework
includes other pair correlations allowed by symmetry, e.g.,
s wave [174], while the possibility of additional attractive
interactions in other pair channels is left as an outlook
[203].

In order to better quantify chiral superconductivity, we
transform the nodal order parameters to the eigenbasis

η±(pF) ≡ e±i|M|θF , (14)

of the OAM operator L̂orb
z = (h̄/i)∂θF with eigenvalues lorb

z =
±|M|h̄, yielding

�(pF, R) = �+(pF, R) + �−(pF, R) (15)

with the chiral order parameter components

�±(pF, R) ≡ |�±(R)|eiχ±(R)η±(pF), (16)

which are the two degenerate ground states in a bulk chiral
superconductor. Below Tc the system spontaneously chooses
one of these as the dominant bulk chirality, e.g., �(pF, R) =
�+(pF, R), while the opposite chirality �−(pF, R) becomes
subdominant and vanishes asymptotically in the translation-
ally invariant bulk [204]. Thus, the ground state of a chiral
superconductor is described by a complex-valued order pa-
rameter that spontaneously breaks time-reversal symmetry
[10,205,206], with a fully gapped bulk spectrum and Cooper
pairs with an OAM lorb

z = ±|M|h̄ [21]. In 2D, even (odd)
|M| correspond to spin singlet (spin triplet), and |M| = 1, 2
generate chiral p, d-wave order parameters, respectively. In
this paper we focus on spin-singlet chiral d-wave super-
conductivity with |M| = 2, such that η±(pF) = [ηdx2−y2 (pF) ±
iηdxy (pF)]/

√
2, which when equating Eq. (5) with Eq. (15)

yields the relation between the two parametrizations∣∣�dx2−y2 (R)
∣∣eiχd

x2−y2 (R)

= 1√
2

(|�+(R)|eiχ+(R) + |�−(R)|eiχ−(R) ), (17)

∣∣�dxy (R)
∣∣eiχdxy (R) = i√

2
(|�+(R)|eiχ+(R) − |�−(R)|eiχ−(R) ).

(18)

In a chiral superconductor, the topological invariant is
the Chern number M corresponding to the winding of the

superconducting order parameter on the FS and giving rise to
|M| chiral edge modes traversing the bulk gap whenever the
topological invariant changes, in particular at vacuum inter-
faces but also domain walls [10–17]. While these edge modes
are topologically protected, they generate chiral edge currents
and OAM, which are not [7,125,126]. Furthermore, close to
the edges, the opposite (subdominant) chirality is often also
locally induced, such that the order parameter takes the more
general form in Eq. (15). This extends more generally to other
forms of spatial inhomogeneities such as domain walls and
vortices, and we therefore always use the most general form in
Eq. (15) in our calculations, allowing for a completely general
spatial dependence of both amplitudes and phases. We note
that this in principle allows the system to go into a different
state, e.g., a nodal d-wave or nematic d-wave state [207], but
we always find the chiral state to be robust.

Chiral superconductors also host domain walls, which are
topological defects separating regions of opposite dominant
chirality [1,28,29]. Domain walls thus have |M| chiral edge
modes on each side with opposite winding [30], also gener-
ating chiral currents on either side. These currents, together
with the exchange of chirality across the domain wall, lead to
a slight increase in free energy and an effective line tension
[70]. This usually makes domain walls metastable, but they
are often trapped and further stabilized by pinning, geometric
effects, and vortices [208].

Just like any superconductor, a chiral superconductor can
also host vortex defects. A chiral superconductor with total
vorticity m is associated with an m × 2π quantized phase
winding in the dominant chiral component [56], i.e., χ+(R) ≈
mφ along any path sufficiently far from and encircling all
vortex defects. Abrikosov vortices (antivortices [209–214])
correspond to m = −1 (m = +1) in positive external flux
�ext > 0, and vice versa for negative flux, also with a cor-
responding 2π phase winding in each nodal component
χdx2−y2 (R) and χdxy (R′) if the vortex cores are overlapping,
R = R′. Spatially separating the nodal winding centres R �=
R′ leads to a disassociation of the Abrikosov vortex into
two fractional vortices, one for each winding center, and to
a Josephson-like term in the free energy that usually grows
with the separation distance [75,215,216], thus making the
fractional vortices unstable. However, inside a domain wall
such a separation typically becomes favorable instead [70].
Furthermore, the slight suppression of the total order param-
eter in the domain wall acts as an attractive pinning center
for Abrikosov vortices, providing a mutual stabilization of
the domain wall and fractional vortices [217], and thereby
a mechanism for forming a CV as demonstrated in the next
section (Sec. III A).

Finally, changing magnetic flux direction allows for the
vorticity to either be aligned antiparallel or parallel with the
chirality, which leads to inequivalent vortices and also to
inequivalent CVs. We illustrate this by first considering the
total angular momentum, L̂z = L̂orb

z + L̂c.m.
z , and the winding

quantization. Here, L̂orb
z is the OAM generated by chirality

as explained earlier in this subsection, while L̂c.m.
z = (h̄/i)∂φ

is the generator of c.m. angular momentum with eigenvalue
lc.m.
z = mh̄ for a state with vorticity m. Thus, the total an-

gular momentum of the Cooper pair is lz = lorb
z + lc.m.

z =
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0 1.76|Δ|/kBTc −1 1χ/π

0 0.2|j|/j0 −0.2 0.2jx/j0 −0.2 0.2jy/j0 −2 2Bind

B0
×103

FIG. 1. Antiparallel CV in disk-shaped system with radius R =
15ξ0, bulk chirality �+, T = 0.1Tc, λ0 = 10ξ0, �ext = 7.5�0. First
(second) row: Nodal (chiral) component amplitudes and phases.
Third row: Magnitude and x, y components of charge-current den-
sity j, and induced magnetic-flux density Bind. Natural units: j0 ≡
h̄|e|v2

FNF/ξ0, B0 ≡ �0/(πξ 2
0 ), �0 ≡ hc/2|e|.

(M + m)h̄, and is therefore a superposition between the OAM
generated by chirality (i.e., Chern number) and the c.m.
angular momentum generated by vorticity (i.e., winding quan-
tization). Thus, antiparallel (parallel) alignment of vorticity
and chirality leads to a negative (positive) superposition of
the total angular momentum. Similarly, the phase winding of
the subdominant chirality also shows such a behavior. Close
to a vortex defect, the subdominant chirality is generally
induced with finite amplitude and phase χ−(R) ≈ pφ. The
quantized phase winding p is constrained according to the
relation [56,136]

p = m + 2M + n, (19)

here with integer n capturing higher-order harmonics gener-
ated by, e.g., a noncircular system or anisotropic FS [191].
Despite such terms often being unimportant [56], we in
this paper include them for full completeness. Equation (19)
shows that the phase winding of the subdominant component
also is a superposition of the vorticity and Chern number and
can therefore be minimized (maximized) for an antiparallel
(parallel) alignment.

III. CORELESS VORTICES

We begin this section by briefly summarizing the basic
structure and properties of CVs in spin-singlet chiral d-wave
superconductors in Sec. III A. In Sec. III B we discuss the
stability and formation of CVs, and that the most stable CV
is typically quadruply quantized in chiral d-wave supercon-
ductors.

0 1.76|Δ|/kBTc −1 1χ/π

0 0.2|j|/j0 −0.2 0.2jx/j0 −0.2 0.2jy/j0 −2 2Bind

B0
×103

FIG. 2. Same as Fig. 1 but for a parallel CV with �ext = −7.5�0.

A. Coreless vortex structure

In this subsection we summarize the basic properties of
antiparallel and parallel CVs. In comparison to our earlier
paper [136], we here choose to study a somewhat smaller
system with slightly different parameters, to illustrate that the
important qualitative features do not depend on such parame-
ters. Note that the spatial inhomogeneities induced by the CVs
therefore are significant compared to the system size. Still,
when we use the term “dominant bulk chirality”, we refer to
the spontaneously chosen ground state chirality in the absence
of vorticity, or equivalently, the dominant chirality in a much
larger but otherwise analogous system. For reference, see
Appendix A showing that the important qualitative features
discussed here remain in systems with radius R � 150ξ0,
i.e., an order of magnitude larger. Figure 1 (Fig. 2) shows
an antiparallel (parallel) CV in a disk-shaped system with
radius R = 15ξ0, dominant bulk chirality �+, temperature
T = 0.1Tc, penetration depth λ0 = 10ξ0, and external flux
�ext = 7.5�0 (�ext = −7.5�0). The first (second) row shows
the amplitudes and phases of the nodal (chiral) components,
while the third row shows the charge-current density and
induced magnetic-flux density. Each nodal component has
four 2π -phase windings that suppress the corresponding nodal
amplitude but not the other nodal component. Since they lie at
different coordinates for the two nodal components, the total
order parameter is everywhere nonsingular with no normal-
state regions or core. The vortices are therefore fractional, in
contrast to singular Abrikosov vortices, which have spatially
overlapping phase windings. A total of eight fractional vor-
tices lie on a circularly (octagonally) formed domain wall,
the latter seen in the second row of Fig. 1 (Fig. 2), where it
separates the outer and inner regions of dominant chiralities
�+ and �−, respectively. There is a total vorticity of m = ±4
in the disk, seen by the m × 2π winding of the dominant
chirality χ+(R) = mφ in the outer region, which means this
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is a quadruply quantized CV. There is no phase winding in the
inner region, since there the dominant phase is constant χ− =
0, indicating that the vorticity is distributed along the domain
wall. We next turn to the subdominant phase, which shows a π

shift across the domain wall in Fig. 1, which further stabilizes
the structure but is otherwise unimportant [136]. Thus, apart
from this phase shift, the phase χ− is completely trivial in
Fig. 1. In contrast, Fig. 2 shows a total of eight winding centers
in the subdominant component χ− in the outside region. These
results are in full agreement with the phase winding constraint
in Eq. (19), with p = −4 + 4 = 0 (p = 4 + 4 = 8) in Fig. 1
(Fig. 2) corresponding to a CV with antiparallel (parallel)
alignment of vorticity and chirality. Importantly, Fig. 2 shows
that the winding centers lie outside the CV, spontaneously
breaking axial symmetry, as defined by the winding not being
generated by rotation around a single central axis. This oc-
curs in order to lower the free energy, since the hypothetical
axisymmetric state with p = 8 would correspond to a giant
vortex with a large normal core [56], consequently suppress-
ing superconductivity and increasing the free energy. We have
verified that such a giant vortex is indeed unstable. In contrast,
the axially symmetry-breaking CV is stable since it avoids the
energy penalty, while still lowering the kinetic energy caused
by the external flux. Thus, the antiparallel (parallel) CV is
axisymmetric (nonaxisymmetric) with a continuous (discrete
eightfold) rotational symmetry. Our earlier study showed that
this leads to a smoking-gun signature in the LDOS of both
the topologically protected and quantized Chern number and
vorticity [136]. The third row shows a corresponding rotation
symmetry of the charge-current density and induced magnetic
flux, with multiple sign changes due to the chiral edge modes,
domain wall, and overlapping Meissner screening currents.
The paramagnetism is maximal along the domain wall, lead-
ing to a characteristic ring-like magnetic structure, in contrast
to a point-like structure of an Abrikosov vortex [136].

Overall these results demonstrate the structure and basic
properties of quadruply quantized CVs in chiral d-wave su-
perconductors, i.e., quadruple-quantum vortices. This is the
chiral d-wave extension of the double-quantum vortex in chi-
ral p-wave superfluids [56–66]. Beyond this comparison, we
note that an extension between the two different systems can
in general be very nontrivial due to the different spin sym-
metries and angular momentum quantization, and therefore it
is not a priori certain that the same kind of vortex defects
are even stable in both systems, let alone have the same
qualitative properties. For example, the parallel CV in Fig. 2
shows multiple sign changes, compared to no sign changes
for the parallel CV in a chiral p-wave double-quantum vortex
reported in Ref. [56]. More generally, “p wave is special”
[127] in many regards compared to all systems with higher
Chern number, e.g., when it comes to the chiral edge currents
and OAM [126–134].

B. Stability and coreless vortex formation

We next discuss the stability and formation of CVs. The
peculiar combination of a domain wall and vorticity in a CV
allows the system to carry finite vorticity, which reduces the
kinetic energy caused by external flux but without paying
the price of a normal core. This is significant, since the su-

perconducting state is per definition the most energetically
favorable state below the second critical field Bc,2(T ). The
CV will thus be energetically more favorable than Abrikosov
vortices if this gain outweighs the cost of the domain wall.
However, the CV is very robust even when there are other
vortex configurations with a lower free energy, i.e., even
when technically metastable. This is a general feature of both
Abrikosov vortices and CVs, related to the fact that they are
topological defects that cannot be trivially removed from the
system. They typically have to enter and exit the system via
the edges, but such entrance and expulsion is hampered by
large energy barriers, e.g., geometric and Bean-Livingston
barriers [174,218–222]. Moreover, vortex motion is hampered
by pinning and dissipation associated with normal-state resis-
tance. Thus, once a particular arrangement of vortex defects
has entered the system, it can become extremely robust even
far into the flux-temperature regime where other vortex ar-
rangements technically have even a significantly lower energy.
Summarized briefly, experiments to a large degree observe
metastable states [223], and such behavior is also typical in
self-consistency simulations. Thus, the most relevant question
is not necessarily whether a particular vortex configuration
has the lowest energy, but if the necessary conditions for its
formation can be prepared [220].

We see the vortex stability repeatedly in our simulations,
both for CVs and Abrikosov vortices. In particular, we find
that CVs spontaneously enter the system instead of Abrikosov
vortices in certain parameter regimes, or can easily form
when both domain walls and vortices are present. In the latter
scenario, we find that the domain wall attracts and pins the
Abrikosov vortices and, upon entering the domain wall, they
disassociate into fractional vortices that lowers the free energy
[57,70,75,215,216]. Conversely, to break the CV, the vortices
have to exit the domain wall or the domain wall has to dis-
appear. However, such vortex expulsion is prevented by the
pinning, and more importantly, the instability of the fractional
vortices outside the domain wall. Thus, fractional vortices
typically first have to recombine to a regular Abrikosov vortex
before expulsion, but such recombination increases the free
energy. For the domain wall to disappear, it either has to
shrink to zero size or expand to the system edges. Such shrink-
ing is, however, prevented by the strong repulsive interaction
between vortices, while expansion of the CV is counterbal-
anced by the attractive interaction (line tension) caused by the
domain-wall currents, as well as the repulsive interaction be-
tween the fractional vortices and system boundaries. Among
the very rare instances where we find the CV becoming un-
stable, it is this latter scenario that seems the most plausible;
the line tension is significantly modified by nondegenerate
order parameter components (e.g., competing nodal supercon-
ductivity discussed in Sec. VIII) or the CV expanding to the
system edge combined with a flux-temperature combination
very far from the energy minimum (e.g., in Sec. IV). Apart
from these scenarios, we find the CV to be extremely robust in
all our calculations and often spontaneously appearing, even
in the presence of strong perturbations, disorder, and when
there are other vortex configurations with considerably lower
free energy.

Finally, we discuss the most stable CV, which we generally
find to be the quadruply quantized CV with |m| = 4, shown
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in Figs. 1 and 2, and discussed in our previous paper [136].
This is easy to understand for the antiparallel CV, since it
corresponds to the special commensurate scenario, such that
the phase winding of the subdominant chirality vanishes p =
m + 2M = 0 [Eq. (19)]. In contrast, a finite phase winding
p > 0 would either suppresses superconductivity if axisym-
metric (thus costing energy), or increase the phase winding
generating a modified superfluid momentum and line ten-
sion if nonaxisymmetric (also costing energy). Furthermore,
beyond commensurability, there is also the matter of balanc-
ing the repulsive versus attractive interactions, which overall
stabilize the CV and its finite size (as discussed in Sec. IV),
which is then important for the parallel CV, since there can-
cellation in p is impossible by definition. Considering, for
example, higher vorticity |m| > 2|M|, this leads to increased
repulsion, but also modified line tension due to the additional
phase windings in p. As a consequence, the CV becomes less
energetically favorable and less robust. The latter is also true
for lower vorticity |m| < 2|M|, as there might no longer be
enough vortices to stabilize the domain wall. We verify these
arguments during the extensive self-consistency calculations
of the present paper, including the large parameter ranges and
model comparisons. Although we have found some parameter
regimes where CVs with higher or lower vorticity become
metastable rather than completely unstable, these states were
generally less favorable and significantly more difficult to
get to appear in the system. In summary, the commensurate
scenario m = −2M allows the antiparallel CV to be coreless
with maximized order parameter, leading to quadruple-
quantum vortices in chiral d-wave superconductors, and
more generally 2|M|-quantum vortices for other chiral
superfluids.

IV. TUNABLE CORELESS VORTEX SIZE

This section demonstrates the large tunability of the CV
size, via easily accessible parameters in experiment such as
external flux �ext and temperature T , but also via the pen-
etration depth λ0 and system size R. For all the parameter
ranges considered in this section, we note that the overall
qualitative features presented in Figs. 1 and 2 remain the
same.

The CV has a finite radius RCV balanced by attractive
and repulsive interactions, acting to contract and expand the
CV, respectively [220]. The attractive interaction is exerted by
the effective line tension from the domain wall and its chiral
currents [70], while there is a mutual repulsive interaction
between the fractional vortices in the domain wall [75,215].
Hence, a closed domain wall will typically collapse and dis-
appear in the absence of vorticity (we have verified this in
our self-consistent calculations) [70]. Furthermore, anything
influencing the currents or vortices will change the balance,
and therefore also RCV. This is also further demonstrated by
studying the interaction between CVs and Abrikosov vortices
in Sec. V or with the system edges in Sec. VI.

We start by describing how to unambiguously define and
calculate RCV for antiparallel and parallel CVs. The midpoint
of the CV is always well defined, and a straight line across this
point will generally intersect the domain wall of the CV twice,
i.e., in two different points with degeneracy |�+| = |�−| as
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FIG. 3. Tunability of the CV radius RCV. (a) Line cut through
the center of a CV, defining RCV as half the distance between the
two degeneracy points |�+| = |�−|. Here, t ≡ T/Tc, ϕ ≡ �ext/�0,
and κ = λ0/ξ0. (b) Heatmap of |�+| for parallel CV, showing how
RCV varies with angle, with red line indicating |�+| = |�−| and
minimum (maximum) CV radius Rmin

CV (Rmax
CV ). RCV vs external flux

(c), penetration depth (d), temperature (e), system radius (f) for
antiparallel CV (markers) and parallel CV (shaded regions Rmin

CV and
Rmax

CV ).

indicated in Fig. 3(a). We note that these points generally co-
incide with the maximum of the zero-energy LDOS [136]. For
the antiparallel CV, the CV diameter is the distance between
the intersection points and is independent of the angle, and
RCV is therefore unambiguously defined as half this distance
as in Fig. 3(a). For the parallel CV, we instead define RCV

from the average half distance for all angles, as displayed
in Figs. 3(b) where the thick red line shows the numerically
extracted point |�+| = |�−| and arrows show the minimum
(maximum) radius Rmin

CV (Rmax
CV ). However, we find that RCV

is practically unambiguously defined even for the parallel
CV, since �RCV ≡ Rmax

CV − Rmin
CV � 1ξ0 in all our simulations

across all parameter ranges.
In Fig. 3(c) we illustrate that RCV can be effectively tuned

by an externally applied magnetic field. Specifically, RCV

decreases as |�ext| increases, since the currents grow in mag-
nitude, while the distance between fractional vortices reduce
(hence an overall stronger contraction). This is in a sense anal-
ogous with how larger flux causes smaller vortex separation
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and denser vortex lattices in regular type-II superconductors
[224]. Similarly, a shorter penetration depth λ0 also leads to
a smaller vortex-vortex separation, implying a smaller effec-
tive repulsive interaction as seen in Fig. 3(d). The overall
dependence on λ0 can be divided into two regimes: λ0 < R,
where screening becomes considerable and strongly modifies
RCV, and λ0 > R, where the system is poorly screened and
the effect is minimal. In the limit of small λ0 such that ξ0 �
λ0 
 R, the CV radius is almost completely determined by
the screening regardless of system size, while in the opposite
limit of large λ0, RCV eventually reaches the asymptotic limit
λ0 → ∞ (zero screening). We here note that the penetration
depth is a material’s property, which can be modified by the
inclusion of impurities, as nonmagnetic and magnetic impu-
rities typically increase and decrease the penetration depth,
respectively [225].

Figure 3(e) shows that RCV decreases at lower temper-
atures. We interpret the overall temperature dependence to
be directly proportional to the effective coherence length
ξeff ≡ h̄vF/|�(T )|, which reduces but saturates at small
temperatures (due to saturating |�(T )|) and increases dramat-
ically at large temperature (due to vanishing |�(T )|). Note
that this is consistent with stronger but saturating chiral cur-
rents at lower temperatures, hence increasing the contraction.
Of course, RCV is strictly limited by the size of the system
(relative to the coherence length), consistent with the observed
small (large) temperature dependence in small (large) systems
in Fig. 3(e). Specifically, in the small systems there is a
strong overlap between the boundary and CV at all temper-
atures leading to saturation, while the much weaker overlap
in larger systems leave considerably more room for variation
in RCV with T . We note an overall trend that RCV → 0.4R
for large temperature, for all system sizes R considered in
our simulations. In other words, the system size, and more
generally surrounding environment, can strongly influence the
maximum RCV and its temperature dependence.

Figure 3(f) shows directly how RCV increases with system
size R. This is a mesoscopic finite-size effect, which can be
divided into two regimes, corresponding to small and large
R. For small R, the CV-induced currents strongly overlap
with the chiral edge currents of the system. More importantly,
the system edges impose an energy barrier [174,218–222]
and an effective repulsive interaction (at least at sufficiently
high flux), which contracts the CV. This effect is also seen
in Sec. VI, and is well known for vortex lattices, leading
to a number of interesting mesoscopic finite-size and shape
effects [148,154,210,211,226–234], see also Ref. [174] and
references therein. For large R, the repulsion from the edges
eventually becomes negligible, but there is still a slow asymp-
totic behavior of RCV, which we interpret to be due to a slow
saturation also present in properties related to the spectrum
and chiral currents surrounding the CV [135].

In summary, these results demonstrate a strong tunability
of the CV size, traced back to the effective attractive and
repulsive interactions balancing the finite size [220], but also
to the effective coherence length and its dependence on the
superconducting gap. We note that while there are significant
differences in the LDOS for the antiparallel and parallel CVs,
due to symmetry breaking for the latter, the overall CV size
is roughly similar for both CVs. In Secs. V and VI we further

demonstrate a tunability of the CV shape in the presence of
other vortices or anisotropic effects.

V. INTERACTION WITH ABRIKOSOV VORTICES

In this section, we address how CVs coexisting with
Abrikosov vortices changes the CV shape. In Figs 4 and 5
we show results for an antiparallel CV, and in Fig. 6 for a
parallel CV. Before describing these figures in detail, we note
that unlike the mostly point-like Abrikosov vortex, the CV
has an intrinsic structure whose shape is to a large degree
set by the repulsive interaction between its fractional vortices
and their interaction with the environment, as established in
the previous section (Sec. IV). For example, the CV inter-
acts repulsively with other vortices, whether it is Abrikosov
vortices or other CVs, or attractively with antivortices. This
section also establishes robustness of both the CV and its
distinctive LDOS signature in the presence of such strong per-
turbations as additional vortices, and furthermore shows the
distinctly different LDOS signatures of CVs versus Abrikosov
vortices. We note that the section also essentially studies the
interaction between fractional vortices and regular Abrikosov
vortices. Apart from illustrating all these aspects, combina-
tions of CVs and Abrikosov vortices are reasonable to expect
in a chiral d-wave superconductor, as discussed in the end of
the section.

In Fig. 4 we present in the different columns the order
parameter amplitudes and phases, while each row represents
a different configuration of one antiparallel CV with one or
more Abrikosov vortices or an antivortex. We start by an-
alyzing the amplitudes and the overall CV shape, and then
analyze the phases. The figure explicitly shows how the
Abrikosov vortices completely suppress both the nodal com-
ponents |�dx2−y2 | and |�dxy | at its core, as well as both the
chiral components |�+| and |�−|. By contrast, the fractional
vortices in the domain wall of the CV only suppress the cor-
responding nodal component. Importantly, the figure shows
significant modification of the overall CV size and shape.
To explain these results, we note that at a sufficiently high
external flux, Abrikosov vortices and CVs are both repelled
from the system edges, related to the geometric barriers and
the Bean-Livingston barrier [174,218–222]. This confinement
leads to relatively small distances between Abrikosov vortices
and the CV, which deforms the CV due to the mutual repul-
sive interaction. The resulting shape depends on the exact
number and spatial arrangement of the Abrikosov vortices.
Hence, we find that different deformation modes appear, as
clearly seen in rows three to six. However, we note that the
CV still keeps an overall elliptical form, which is clearly
traced back to its original unperturbed circular form. If the
Abrikosov vortex is instead situated at the center of the CV
(first row), it is trapped and the CV expands due to the mu-
tual repulsive interaction. If instead an antivortex is situated
inside the CV (second row), it attracts the CV, which then
shrinks substantially. However, we find that this configura-
tion is always unstable unless pinning centers are artificially
added (thus stabilizing the configuration), since the slightest
deviation will otherwise fully attract the antivortex into the
CV domain wall where it will be annihilated against two
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0 1.76|Δ|/kBTc −1 1χ/π

FIG. 4. Systems containing both an antiparallel CV and Abrikosov vortices or antivortices, in a disk-shaped system with radius R = 25ξ0,
dominant bulk chirality �+, at T = 0.1Tc and λ0 = 80ξ0. Columns show, from left to right, the chiral and nodal amplitudes, then the chiral and
nodal phases. In the first (second) row, an Abrikosov (anti)vortex trapped inside the CV, remaining rows an increasing number of Abrikosov
vortices (one to four) outside the CV. External flux is from top to bottom row: 8�0, 8�0, 12�0, 12�0, 14�0, and 14�0 in order to stabilize the
various configurations.

of the fractional vortices. We note that all other results and
scenarios considered here are very robust even without such
pinning, and we only choose to plot the antivortex scenario as
it clearly illustrates how competing attractive and repulsive in-
teractions set the overall shape and size of the coreless vortex.
Specifically, all other results show a fully converged self-
consistent solution, stabilized and trapped in the system by
large energy barriers, and corresponding to a minimum of free
energy.

Next, we study the phases and note in particular that the
dominant chiral phase (i.e., χ± outside and inside the CV,
respectively) always winds according to the vorticity m, both
locally around each vortex defect, and globally around the
perimeter of the disk. For example, consider positive exter-
nal flux and a vortex defect located at (x, y) = (x0, y0) with
winding m, where m = ∓1 for Abrikosov vortices and an-
tivortices, respectively, while m = −4 for the CV considered
here. Close to (x0, y0), the dominant phase is described by

χ+(R) ≈ mφ with polar angle φ. Far from all the vortices at
the disk perimeter, the dominant chiral phase globally winds
χ+(R) ≈ mtotφ, with total vorticity mtot = −(NV + 4NCV) +
NAV, where NV counts the number of vortices, NCV the num-
ber of CVs, and NAV the number of antivortices. Thus, from
top to bottom row, mtot = −(1 + 4), mtot = −4 + 1, mtot =
−(4 + 1), mtot = −(4 + 2), mtot = −(4 + 3), mtot = −(4 +
4). We also find that the winding constraint p = m + 2M
from Eq. (19) for the subdominant chiral phase is always
fulfilled.

In Fig. 5 we display the spatially-resolved LDOS for the
exact same systems and solutions as in Fig. 4, where each
column is taken for a different fixed subgap energy ε (i.e.,
bias voltage). Importantly, at low energies, each Abrikosov
vortex appears as a point-like peak representing the Caroli-de-
Gennes-Matricon states [147,232,235–237], which expands to
a size of roughly ∼1ξ0 at higher energies. By contrast, the
CV appears like a ring-like peak that is an order of magnitude
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0 1.5N(ε)/2NF

FIG. 5. Same as Fig. 4, but with each column showing the LDOS at a fixed subgap energy ε, with gap roughly 1.76kBTc.

larger already at zero energy, RCV ∼ 10ξ0. The CV expands
into two concentric rings at higher energies, corresponding to
the combined superflow generated by vorticity and the edge
modes on either side of the domain wall. The intensity of
the subgap states in the CV and Abrikosov vortex are also
separated by an order of magnitude, but the LDOS peak of the
CV should still be observable as it can be significantly larger
than the coherence peak and is tunable by both temperature
and flux, as shown in our earlier paper [136]. Notably, as the
CV is deformed by the Abrikosov vortices, we also see how
the LDOS is correspondingly deformed in rows 2–6. Thus the
LDOS is explicitly tracking the CV shape.

Figure 6 shows the LDOS for similar combinations of
a CV with Abrikosov vortices, but now for a parallel CV
(�ext < 0 such that m = +4 and p = 8 instead of m = −4
and p = 0), and without the antivortex scenario. For com-
pleteness, Appendix B contains a plot of the corresponding
order parameter amplitudes and phases for these scenarios
(i.e., the analog of Fig. 4). The overall trend in Fig. 6 is similar
to that of the antiparallel CV, but importantly, we note that
the distinct LDOS signature of the axial symmetry breaking
is clearly present, including the eightfold symmetry related

to p = m + 2M = 8 for the CV (instead of p = 0 for the
antiparallel CV). Hence, despite the strong local perturbation
caused by the presence of Abrikosov vortices, the overall
Doppler shift caused by finite superflow from the p = 8 wind-
ing centers remains clearly distinguishable, as is thus then the
direct signature of the Chern number M. Interestingly, the last
row of Fig. 6 was initialized with four vortices outside the
CV (i.e., the same arrangement as the last row Fig. 5), but
during the self-consistency loop, one of the vortices was spon-
taneously absorbed into the center of the CV, thereby lowering
the free energy. Notably, this is a self-consistent and robust
solution, illustrating that it is realistic to study and expect
the appearance of configurations with an Abrikosov vortex
trapped inside the CV. Importantly, during the trapping of the
Abrikosov vortex in the self-consistency loop, the vortex was
at some point located at the domain wall of the CV where
it could have been disassociated into fractional vortices, thus
leading to a higher quantized CV with m = +5 and p = +9.
However, the displayed solution with m = 4 and p = 8 was
still preferred. Hence, this is another strong indication that
the quadruply quantized CV is the most robust CV in chiral
d-wave superconductors.
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0 1.5N(ε)/2NF

FIG. 6. Same as Fig. 5, but for a parallel CV, without any antivortex scenario, and where one of the four vortices in the last row has
spontaneously been trapped at the CV center. The system has dominant bulk chirality �+, at T = 0.1Tc and λ0 = 80ξ0, and is exposed to
negative external fluxes, from top to bottom: −8�0, −12�0, −12�0, −14�0, and −14�0.

Finally, on more general grounds, we point out that study-
ing a combination of CVs and Abrikosov vortices is relevant,
since both are robust topological defects and can thus appear
simultaneously in a sample. This is further supported by the
high-energy barriers associated with vortex dynamics, mean-
ing that a particular vortex solution can be trapped in the
system far into its metastable regime [174,218–222], where
another vortex solution technically has a lower energy but can
still not enter the system. Generally, both Abrikosov vortices
and domain walls can be “kicked” into the system by, e.g.,
annealing and rapid quenches in temperature and flux, and
they can be further stabilized and trapped by pinning centers
and certain geometry [208,238]. Indeed, we find that combi-
nations of CVs and Abrikosov vortices spontaneously enter
and stabilize in our self-consistency calculations for different
flux-temperature combinations.

In summary, these results show a robustness of the CV
in the presence of Abrikosov vortices. At the same time,
a tunability of the shape is demonstrated, although the CV
shape can still be traced back to its original circular (octago-
nal) shape for the antiparallel (parallel) CV. Specifically, the
LDOS at different energies appear as concentric and convex
(concave) line segments, corresponding to the Doppler shifts

caused by the axisymmetric (nonaxisymmetric) superflow,
which in turn is generated by the internal (external and in-
ternal) phase windings for the antiparallel (parallel) CV. We
also note that these results give rise to an even stronger exper-
imental signature in the LDOS, as the point-like Abrikosov
vortex is distinctly different from the line-like CV. Finally, we
propose that similar deformations might be caused by other
strong local electromagnetic perturbations, e.g., an appropri-
ately prepared STM tip with strong magnetization.

VI. NONCIRCULAR GEOMETRY AND STRONG
CONFINEMENT

The previous two sections (Secs. IV and V) illustrated that
the overall size and shape of the CV is balanced by effec-
tive attractive versus repulsive electrodynamical interactions,
traced back to the domain wall currents and fractional vortices
respectively. In this section, we further illustrate this via the
interaction with the system edges, and show how confinement
alone can induce asymmetric deformation modes in the CV.
In addition, the results show that the LDOS signature remains
robust and is not relying on the symmetry (or lack thereof) of
the system itself.
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0 1.76|Δ|/kBTc 0 0.2|j|/j0 0 1.0N(ε)/2NF

FIG. 7. CVs in various noncircular samples, with antiparallel (parallel) CVs in odd (even) rows. Columns, from left to right, show
magnitude of the chiral order parameter components, charge-current density, and LDOS at different fixed subgap energies. Here, dominant
bulk chirality is �+, with T = 0.1Tc, λ0 = 80ξ0, and with �ext = ±8�0 for antiparallel and parallel CVs respectively.

Figure 7 shows an antiparallel (parallel) CV in odd
(even) rows in systems with different shapes, where the
columns show from left to right: magnitude of the chiral order
parameter components, charge-current density, and LDOS at
different fixed subgap energies. The first two rows show a
sample shaped like a pentagon, importantly illustrating that
the overall circular versus octagon rotation symmetries of the
CVs remain, even when incommensurate with the rotation
symmetry of the system. Furthermore, this is an example of
a system with higher-order harmonics discussed in Sec. II C,
where Eq. (19) is modified with an additional term, such
that p = m + 2M + n, here with integer n = −5 due to the

fivefold rotational symmetry of the superconducting grain.
This leads to additional phase gradients and therefore super-
flow, which in turn generates additional current components.
This effect is responsible for helping the current turn the sharp
corners of the system, which is a well-known effect in chiral
superfluids [14]. Furthermore, the additional phase gradients
and superflow also leads to a locally enhanced LDOS at the
corners at finite energies, again via the Doppler shift discussed
in relation to Eq. (13). As a result, the subdominant phase χ−
of the antiparallel CV has integer winding p = −4 + 4 + n =
−5, while p = 4 + 4 + n = 3 for the parallel CV. Hence, the
higher-order harmonics is superimposed with the antiparallel
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TABLE I. Parametrization of tight-binding Fermi surfaces (FSs)
for the normal-state dispersion in Eq. (20) with nearest-neighbor
hopping t , next-nearest-neighbor hopping t ′, next-next-nearest-
neighbor hopping t ′′, chemical potential μ, and hopping anisotropy
αxy. Resulting FSs are illustrated in Fig. 8.

FS t ′ t ′′ μ αxy

#1 −0.250t 0 0 0
#2 −0.437t 0.034t −1.203t 0
#3 −0.437t 0.034t −1.203t 0.1
#4 −0.495t 0.156t −1.267t 0

versus parallel vorticity and chirality, especially seen by
the additional signatures with fivefold rotational symmetry
in the LDOS at high energies in the last column Fig. 7(h).
Importantly, the higher-order harmonics still does not modify
the overall strong signature of vorticity and chirality in the
LDOS. In other words, the strong LDOS distinction between
parallel and antiparallel CVs remains robust. Next, the third
and forth rows show a completely irregular system without
any rotation symmetry. Again, the LDOS signature is robust,
but the sharp wedges together with the overall asymmetry
between x and y directions cause a slight deformation of the
CVs. The last two rows show a rectangular system, with an
even stronger asymmetry between x and y directions. Due to
the effectively repulsive interaction between the system edges
and the fractional vortices in the CV, the resulting CV shape
is strongly deformed, with a clear x and y asymmetry. The
effective repulsive interaction with the system edges is related
to the energy barriers for vortex entrance and expulsion at
sufficiently high external flux [174,218–222]. In summary,
this section illustrates both a tunability of the CV shape due
to mesoscopic confinement, and most importantly that despite
these CV shape changes, the experimental signatures in the
LDOS are robust at all subgap energies and do not rely on the
overall rotation symmetry of the system.

VII. NONCIRCULAR FERMI SURFACES

So far, we have assumed a circular and electron-doped FS
as in our previous paper [136]. Here we show that our main
results and conclusions do not depend on the shape of the
FS or particular doping level. In particular, we consider FSs
formed in a hole-doped material and with weak to strong
deviation from a circular shape, and also with anisotropy
between kx- and ky-momentum directions, to further mimic
possible broken symmetries in the normal state. In partic-
ular, we parametrize a noncircular FS via the momentum
k = kxk̂x + kyk̂y through the normal-state dispersion εk on a
square lattice

εk = − 2t[(1 + αxy) cos(kxa0) + (1 − αxy) cos(kya0)]

− 4t ′ cos(kxa0) cos(kya0) − 2t ′′[(1 + αxy) cos(2kxa0)

+ (1 − αxy) cos(2kya0)], (20)

in terms of the lattice constant a0, nearest-neighbor hopping
t > 0 (which we use as a natural unit for all tight-binding en-
ergies), next-nearest-neighbor hopping t ′, next-next-nearest-
neighbor hopping t ′′, and with anisotropy αxy between kx

−3 −2 −1 0 1 2 3 4 5
E/t

−2−1 0 1 2 3 4 5 6 7
E/t

−2−1 0 1 2 3 4 5 6 7
E/t

−2−1 0 1 2 3 4 5 6 7
E/t

FIG. 8. Normal-state band structures for the noncircular tight-
binding hole-doped FSs defined in Table I. Colors indicate band
energy E , solid lines denote FS (E = 0), with arrows indicating the
Fermi velocity vF(pF ) used as input in the quasiclassical parametriza-
tion [193].

and ky [239]. We here consider four different tight-binding
models taken from the literature [147,240,241], labeled as
FS #1 to #4, defined in Table I and illustrated in Fig. 8.
Here, the noncircular FS leads to a modified vF(pF) entering
the Eilenberger equation (2), thus modifying the propagators
and all other quantities defined in Sec. II correspondingly.
See Ref. [193] for further details on parametrizing such a
microscopic tight-binding Fermi surface within quasiclassical
theory of superconductivity. We further note that all of these
FSs are hole doped, corresponding to being centered around
(kx, ky) = (π/a0, π/a0), and show either a fourfold (FSs #1,
#2, #4) or twofold (FS #3) discrete rotational symmetry. There
is a weak to strong deviation from circular shape in changing
between FS #1 to FS #4. In contrast, an electron-doped FS is
centered around (kx, ky) = (0, 0).

We show the antiparallel (parallel) CV computed with
these FSs in odd (even) rows in Fig. 9 for an octagonal sample
and in Fig. 10 for a square sample. In all figures, the columns
show from left to right the chiral order parameter amplitudes,
charge-current density, and LDOS at different subgap energies
ε. Overall, we find that both types of CVs show traces of
the underlying symmetry of the FS, which can be explained
in terms of higher-order harmonics superimposed on the CV
as discussed in Sec. II C and studied for noncircular sam-
ples in Sec. VI, but here they are instead originating from

094511-13



P. HOLMVALL et al. PHYSICAL REVIEW B 108, 094511 (2023)

0 1.76|Δ|/kBTc 0 0.2|j|/j0 0 1.0N(ε)/2NF

FIG. 9. CVs in an octagon-shaped sample. Different rows show the different FSs defined in Table I, FS #1 to FS #4, with antiparallel
(parallel) CV in odd (even) rows. Columns, from left to right, show magnitude of the chiral order parameter components, charge-current density,
and LDOS at different fixed subgap energies. Here, �+ is the dominant bulk chirality with T = 0.1Tc, λ0 = 80ξ0, and with �ext = ±8�0 for
antiparallel and parallel CVs respectively.

the FS. For example, a fourfold rotational symmetry of the
FS (or sample) leads to a corresponding fourfold rotational
symmetry with nodes and kinks developing in the CV. Sim-
ilarly, an anisotropic FS with twofold rotational symmetry
(FS #3) deforms the otherwise circular CV into an ellipse,
due to suppression (enhancement) of vF along ky (kx), as
illustrated in Fig. 8(c). Interestingly, the elliptical deforma-
tion occurs along opposite directions for the antiparallel and
parallel CVs, which we interpret to be due to opposite signs
of vF(pF) · ps(R) for the two CVs, which can be traced back
to opposite signs of A (i.e., opposite external field directions)
entering ps in Eq. (13). Furthermore, we note here that FS #4

is very distorted compared to a circular FS, leading to also
very strong distortions in the CV.

Despite these symmetry-breaking terms in the FS causing
distortion of the CV, we find that both CV solutions are always
robust, and the important asymmetry remains clear in the
LDOS. Specifically, the CV with antiparallel vorticity and chi-
rality (odd rows) generates convex and concentric lines in the
LDOS, from the axisymmetric angular momentum and super-
flow. In contrast, the CV with parallel vorticity and chirality
(even rows) always generates characteristic concave LDOS
patterns due to the multiple phase winding centers, which
are nonoverlapping (i.e., axial symmetry breaking). Moreover,
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0 1.76|Δ|/kBTc 0 0.2|j|/j0 0 1.0N(ε)/2NF

FIG. 10. Same as Fig. 9 but for a square-shaped sample.

the emergent discrete rotational symmetry and interweaving
resonances at higher energies is a direct experimental signa-
ture of the quantized vorticity and Chern number, due to it
tracing back to winding superposition p = m + 2M, which is
robust due to quantization and topology [136]. These results
establish that the signatures of CVs are robust even for a
highly anisotropic FS, reflecting broken symmetries of the
normal state.

VIII. NONDEGENERATE NODAL COMPONENTS

In all other sections and our previous paper [136] we
assumed degeneracy between the two nodal d-wave pair-
ing symmetries, dx2−y2 and dxy, such that their transition
temperatures are the same. Such an exact degeneracy is

experimentally relevant: It is enforced by the symmetry and
group theory in any material with a three- or sixfold rotation-
ally symmetric lattice [17]. This includes triangular, hexag-
onal, and honeycomb materials and is as such guaranteed in
many of the materials currently proposed as chiral d-wave su-
perconductors [104–117]. Still, for sake of full completeness,
in this section we show that our main results and conclu-
sions in addition hold for systems where this degeneracy
is somehow broken. Specifically, we consider nondegenerate
pairing interactions modeled by different coupling constants
resulting in different transition temperatures, quantified by the
ratio

α ≡ T
dxy

c

T
dx2−y2

c

∈ [0, 1]. (21)
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0 1.76|Δ|/kBTc 0 0.2|j|/j0 0 1.0N(ε)/2NF

FIG. 11. CVs with broken degeneracy between the two nodal order parameter components, quantified by the Tc ratio α in Eq. (21), in a
system with dominant bulk chirality �+ at T = 0.1Tc, λ0 = 80ξ0, and R = 25ξ0. Antiparallel (parallel) CVs in odd (even) rows corresponding
to �ext = +8�0 (�ext = −8�0).

Hence, we set the dxy component to be subdominant for all
α < 1, resulting also in different bulk amplitudes |�dxy | <

|�dx2−y2 |. However, apart from inserting these different cou-
pling strengths, we do not constrain the order parameter
components in any way, and solve for both of them completely
self-consistently. For example, performing self-consistent cal-
culations without any vorticity, we still find that the chiral
d-wave state is the ground state even for highly nondegenerate
systems with α < 0.8, thus surviving a strong suppression of
the dxy component. Notably, such a state is still fully gapped
in the bulk, with a Chern number M = ±2. Hence, the possi-
bility of antiparallel versus parallel superposition of vorticity
and chirality in a CV is still possible.

In order to investigate the effects on the CV from nonde-
generate d-wave nodal components, we begin by summarizing
the scenario of full degeneracy (α = 1) studied so far. Here,
both the axially symmetric CV with antiparallel vorticity and
chirality, and the axial symmetry-breaking CV with parallel
vorticity and chirality, are extremely robust solutions over a

large range of temperatures and flux. Notably, for degenerate
nodal d-wave components in a disk-shaped system and FS,
the total superconducting order parameter has full rotation
symmetry for the antiparallel CV, and thus physical properties
such as currents and magnetic fields generally do not reflect
the fourfold symmetry of the individual nodal components.
However, as the degeneracy between the nodal components
is broken, it is reasonable to expect that the nodal fourfold
rotational symmetry will be imprinted also on the antiparallel
CV.

In Fig. 11 we study antiparallel and parallel CVs from
weak nondegeneracy α = 0.99 (top two rows) and continue
to strong nondegeneracy α = 0.8 (lowest two rows). For this
full range of asymmetry, we find that both CVs are still very
robust, but over a slightly narrower range of flux. By decreas-
ing α we find that the broken degeneracy and fourfold nodal
symmetry become more apparent in the CV, as expected. For
example, along the domain wall, the suppression of �dx2−y2

(�dxy ) now occurs over a smaller (larger) region, as compared
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to α = 1. As α is further reduced, the dominant �dx2−y2 covers
nearly the whole domain wall, except at four isolated points.
Consequently, these points become the only locations in the
domain wall where �dxy is finite. The fractional vortices are,
however, still well separated, and the CV structure is no-
tably still intact. This spatial structure of the individual nodal
components leads to signatures also in all other quantities,
including the chiral order parameters components, and also
the currents, induced flux (not shown here), and LDOS. Still,
the results in Fig. 11 show that the overall conclusions and
experimental signatures established in the rest of the paper
for the degenerate case remain robust and clear also with
a strong asymmetry between the two nodal d-wave compo-
nents. In particular, the LDOS for the antiparallel CV keeps
its overall concentric and convex circular lines due to the
order parameters and currents also exhibiting such a profile,
with nondegeneracy only turning the circles more square like.
Meanwhile, the parallel CV still shows concave octagonal
structures, with eightfold interweaving resonances at higher
energy due to nontrivial additional phase winding in the sub-
dominant chirality (but now overlapped with strong fourfold
structure). Thus the antiparallel CV keeps the axisymmetry,
while the parallel CV does not, just as established in the
rest of the results. This robustness in the different LDOS
patterns between the two CVs is expected: after all, the LDOS
patterns stem directly from a positive versus negative super-
position of the quantized and topologically protected Chern
number (OAM from chirality) and vorticity (c.m. angular
momentum), as introduced in Sec. II C. Thus, as long as there
is a chiral state, the positive versus negative superposition
generates completely different scenarios, but possibly super-
imposed with higher-order contributions, in this case due to
the additional broken nodal degeneracy.

Finally, for completeness, let us address the extreme limit
of nondegeneracy, although this is not expected for stable
chiral d-wave superconductors and thus not of central im-
portance here. Eventually, the local variation of the current
leads to a modified line tension, modifying the stability. In-
deed, as α → 0.6, the parameter-space region of stable CV
shrinks rapidly. At some point, the CV also becomes un-
stable and multiple regular Abrikosov vortices are instead
stabilized. We define the critical ratio where this occurs as
α∗(T,�ext, λ0,R), hence possibly depending on all param-
eters such as temperature, flux, penetration depth, and system
size. The full parameter space is of course far beyond the
scope of the present paper, but we consider a subset of
the parameter space for illustrative purposes. For example,
at fixed temperature T = 0.1Tc, external flux |�ext| = 8�0,
and λ0 = 80ξ0, we find that the antiparallel CV is unstable
below α∗ ≈ 0.70 at R = 25ξ0, α∗ ≈ 0.60 at R = 50ξ0, and
α∗ ≈ 0.55 at R = 75ξ0, while the parallel CV is unstable
below α∗ ≈ 0.73 at R = 25ξ0, α∗ ≈ 0.64 at R = 50ξ0, and
α∗ ≈ 0.61 at R = 75ξ0. The CV is thus less stable in smaller
systems, especially for increased nondegeneracy. We interpret
this to stem from that smaller systems exhibit significant
overlap between opposite system edges where both of the
nodal components are suppressed, as well as between the CV
and the system edge. This suppression is naturally enhanced
by the nondegeneracy. As a result, the chiral state competes
with both the normal state and a nodal d-wave state, which

effectively hampers the formation of the chiral state, and con-
sequently therefore also the formation of domain walls and
CVs.

IX. NONMAGNETIC IMPURITIES

Our earlier paper [136] demonstrated that the LDOS
signatures of the CV are robust under the inclusion of a phe-
nomenological energy broadening δ of the spectrum. Such an
energy broadening can be caused by, e.g., disorder, impurity
scattering, fluctuations, or interfaces with finite transparency
[242–247]. Here we exemplify this by studying dirty systems
with nonmagnetic impurities, and show that the CV as well as
the LDOS signatures, are robust.

We model the nonmagnetic impurities using the well-
established t-matrix approach within the quasiclassical theory
of superconductivity [178,248]. The diagonal impurity self-
energy from Eq. (4) then takes the form

�̂imp(pF, R; z) =nit̂ (pF, p′
F → pF, R; z), (22)

with dilute impurity concentration ni and impurity-scattering
matrix t̂ fulfilling the additional self-consistency equation

t̂ (pF, p′
F, R; z) = NF〈û0(pF, p′′

F; z)ĝ(p′′
F, R; z)

× t̂ (p′′
F, p′

F, R; z)〉p′′
F
+ û0(pF, p′

F; z), (23)

with scattering potential û0(pF, p′
F; z). Equation (23) results

from a diagrammatic expansion describing multiple scattering
of quasiparticles and pairs by an impurity, connecting differ-
ent scattering channels with momenta pF and p′

F on the FS
(here integrated over the momentum p′′

F). Here we assume
equilibrium, a noncrossing approximation, and an isotropic
scattering potential, such that û0(pF, p′

F; z) = u01̂, yielding

�̂imp(R; z) = �u

sin δ0 cos δ01̂ + sin2 δ0
〈

1
π

ĝ(pF, R; z)
〉
pF

cos2 δ01̂ − sin2 δ0
(

1
π
〈ĝ(pF, R; z)〉pF

)2 ,

(24)

with scattering energy �u = ni/(πNF) and scattering phase
shift δ0 = arctan(πu0NF). We solve Eq. (24) self-consistently,
together with the gap equation and Maxwell’s equation. We
define the “pair-breaking energy” as � = �u sin2 δ0, related to
the normal-state mean-free-path l = h̄vF/(2�). We consider
two extreme limits, namely the weak-scattering Born limit
(δ0 → 0 and �u → ∞, such that � is constant) and the strong-
scattering unitary limit (δ0 → π/2 and u0 → ∞, such that
� = �u). In these limits, the equilibrium solutions simplify to

�̂Born
imp (R; z) = �

π
〈ĝ(pF, R; z)〉pF , (25)

�̂
unitary
imp (R; z) = −π�

〈ĝ(pF, R; z)〉pF

〈ĝ2(pF, R; z)〉pF

, (26)

respectively. We vary the scattering energy over orders
of magnitude, γu ≡ �/(2πkBTc) ∈ [0.002, 0.1]. By
comparison, the zero-temperature bulk gap is roughly
|�0|/(2πkBTc) ≈ 0.280. We still use a phenomenological
broadening δ/(2πkBTc) = 0.0005 to avoid divergent LDOS
for small γu, but this value is an order of magnitude smaller
than used in the rest of this paper, δ/(2πkBTc) = 0.005.

Figures 12 and 13 show the resulting LDOS in the presence
of nonmagnetic impurities for an antiparallel and parallel CV,
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FIG. 12. LDOS for an antiparallel CV in a system with nonmag-
netic impurities, with dominant bulk chirality �+, T = 0.1Tc, �ext =
8�0, and λ0 = 80ξ0. Left (right) column corresponds to the Born
limit (unitary limit) with scattering phase shift δ0 = 0 (δ0 = π/2).
[(a),(b)] Zero-energy LDOS. [(c),(d)] Zero-energy LDOS across hor-
izontal dashed line in (a) and (b). [(e),(f)] LDOS in the domain wall.
Line colors in (c)–(f) denote γu ≡ �/(2πkBTc ).

respectively, with left and right columns showing the Born
and unitary limits, respectively, with the panels (c) and (d)
showing line-cuts across the CV at zero energy and panels (e)
and (f) showing the LDOS at the domain wall. As expected,
the LDOS peaks are broadened when increasing the scattering
energy, eventually becoming almost completely broadened for
γu → 0.1 as indicated by red lines in (c)–(f). This result is
expected because such strong γu is comparable with the bulk
gap. The broadening is also naturally not as strong in the Born
limit (left) as in the unitary limit (right). Consequently, panels
(a) and (c) illustrate that both CVs are strongly distinguish-
able in the spatially resolved LDOS even for γu = 0.1 in the
Born limit, while panels (b) and (d) show that both CVs are
distinguishable at γu = 0.05 in the unitary limit. We note that
the peak at the disk center in Fig. 12 is a resonance related to
the perfect rotation symmetry [136].

Finally, we note that the antiparallel CV radius RCV

slightly increases by 1ξ0 (2ξ0) as γu changes from 0.002 to
0.1 for the Born (unitary) limit, as indicated in Figs. 12(c)
and 12(d). For the parallel CV, the increase in RCV is even
smaller, about 0.5ξ0, see Figs. 13(c) and 13(d). We expect
RCV to increase more significantly with γu in systems where
R � λ0. This is because nonmagnetic impurities generally in-
crease the penetration depth λ0 [225], which in turn increases
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FIG. 13. Same as Fig. 12, but for a parallel CV with �ext = −8�0.

RCV as shown in Sec. IV. Here, in contrast, λ0 = 80ξ0 is
much larger than R, explaining the small variation in RCV.
In summary, we find that the LDOS signatures of the Chern
number, superconducting pairing symmetry, and chirality is
robust against strong (moderate) scattering energy in the Born
(unitary) limit, despite a corresponding broadening of the
LDOS peaks. Furthermore, we find that the CV itself is very
robust in all cases considered. This demonstrates the viability
of CVs and its signatures to identify chiral superconductivity
also in dirty systems.

X. CONCLUSIONS

In this paper, we show a strong tunability of CVs in spin-
singlet chiral d-wave superconductors, as well as a robustness
of their experimental signature for a large range of mate-
rial models, parameter regimes, perturbations, anisotropy, and
disorder.

In terms of tunability, we find that the finite size of the
CV is balanced by the attractive and repulsive interactions
exerted by its domain wall currents and fractional vortices,
respectively. Thus, we show that the overall size is easily
tuned directly by changing an externally applied magnetic
flux and the temperature, but also depend on system size and
penetration depth, the latter generally tunable by artificially
adding impurities. We also find that the overall shape is tun-
able and deforms in an anisotropic environment, e.g., due to
other vortices, an irregular system shape, or an anisotropic FS.

For the experimental signatures, our earlier study estab-
lished that the LDOS host distinct signatures for the two
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inequivalent CVs, with antiparallel or parallel chirality and
vorticity, and that this can be used to clearly identify chi-
rality, Chern number, and even the superconducting pairing
symmetry [136]. More specifically, the antiparallel CV is ax-
isymmetric with a continuous rotation symmetry, associated
with LDOS peaks appearing as concentric and convex circular
lines. The parallel CV spontaneously breaks axial symmetry,
generating additional winding centers outside the CV, deform-
ing its shape into a concave structure with discrete rotation
symmetry, directly related to the Chern winding number. At
zero energy (bias voltage), the LDOS directly probes the
domain wall structure of the CV and its overall rotation sym-
metry and thereby the Chern number. At higher energies, there
are additional interweaving resonances between the additional
winding centers, even more clearly exhibiting the rotation
symmetry and Chern number. This forms strong experimental
signatures, directly measurable with STS and STM. In this
paper we establish that all of these signatures are robust for
a large range of possible perturbations, system, and model
changes. In particular, we demonstrate how the results hold
in systems with incommensurate or no rotation symmetry, at
strong confinement, for both electron-doped and hole-doped
FSs or anisotropic FSs, nondegenerate nodal d-wave compo-
nents, as well as when nonmagnetic impurities are present. We
also find robustness for large ranges of temperatures, external
flux strength, penetration depths, and system sizes, as well as
when additional Abrikosov vortices are present.

In conclusion, our paper establishes CVs as a tunable and
robust experimental signature of spin-singlet chiral d-wave
superconductivity, which furthermore provide a platform to
study fractional vortices.
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APPENDIX A: CORELESS VORTICES IN LARGER
SYSTEMS AND OPPOSITE CHIRALITY

In this Appendix we show that the qualitative CV features
studied in Sec. III remain for much larger systems where the
influence of the boundary becomes negligible, and in sys-
tems with opposite dominant bulk chirality �−. In particular,

0 1.76|Δ|/kBTc −1 1χ/π

0 0.1|j|/j0 −0.1 0.1jx/j0 −0.1 0.1jy/j0 −3 3Bind

B0
×104

FIG. 14. Parallel CV in a disk-shaped system with radius R =
150ξ0, dominant chirality �−, T = 0.1Tc, �ext = 8�0, λ = 80ξ0,
b0 ≡ 10−4B0. First row: Amplitudes and phases of the nodal com-
ponents, second row: same but for chiral components, third row:
charge-current density magnitude and x, y components, as well as
induced magnetic-flux density. To be compared with Fig. 2.

Fig. 14 shows various quantities for a parallel CV in a disk
with radius R = 150ξ0, dominant bulk chirality �−, exter-
nal flux �ext = 8�0, temperature T = 0.1Tc, and penetration
depth λ0 = 80ξ0, to be compared to Fig. 2. There is still four
well-separated fractional vortices in each nodal component,
an octagonal-shaped domain wall in the chiral amplitudes, and
integer phase windings m = −4 in the dominant phase χ− and
p = −8 in the subdominant phase χ+ (reversed signs due to
reversed bulk chirality). Furthermore, the currents still show
the same overall spatial profile and number of sign changes.
Interestingly, the additional p = −8 phase windings in the
subdominant phase χ+ remains at a small distance outside the
CV. We note that for an antiparallel CV in such a large system,
the π shift in the dominant chirality instead remains closer to
the edge (not shown here).

APPENDIX B: ADDITIONAL RESULTS: INTERACTION
WITH ABRIKOSOV VORTICES

This Appendix contains additional numeric results for the
interaction between CVs and Abrikosov vortices. In particu-
lar, Fig. 15 shows the order parameter amplitudes and phase
windings for the same system as in Fig. 6, i.e., this is the
analog of Fig. 4 but for a parallel (symmetry-broken) CV
caused by negative external flux. Importantly, we note that
despite all the additional Abrikosov vortices generating phase
windings that overlap with the p = 8 winding centers of the
CV, the latter still generates the distinct shape of the parallel
CV studied in the rest of the paper.
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0 1.76|Δ|/kBTc −1 1χ/π

FIG. 15. Same as in Fig. 4, but for a parallel CV and without the antivortex scenario.
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Rev. B 86, 024512 (2012).
[86] V. P. Mineev, Low Temp. Phys. 39, 818 (2013).
[87] S. Autti, V. V. Dmitriev, J. T. Mäkinen, A. A. Soldatov, G. E.

Volovik, A. N. Yudin, V. V. Zavjalov, and V. B. Eltsov, Phys.
Rev. Lett. 117, 255301 (2016).

[88] Y. Iguchi, R. A. Shi, K. Kihou, C.-H. Lee, M. Barkman, A. L.
Benfenati, V. Grinenko, E. Babaev, and K. A. Moler, Science
380, 1244 (2023).

[89] A. A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957).
[90] H. J. Fink and A. G. Presson, Phys. Rev. 151, 219 (1966).
[91] V. V. Moshchalkov, M. Baert, V. V. Metlushko, E. Rosseel,

M. J. Van Bael, K. Temst, R. Jonckheere, and Y. Bruynseraede,
Phys. Rev. B 54, 7385 (1996).

[92] V. A. Schweigert, F. M. Peeters, and P. S. Deo, Phys. Rev. Lett.
81, 2783 (1998).

[93] A. Kanda, B. J. Baelus, F. M. Peeters, K. Kadowaki, and Y.
Ootuka, Phys. Rev. Lett. 93, 257002 (2004).
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