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Noise-induced transition from superfluid to vortex state in two-dimensional nonequilibrium
polariton condensates: Semianalytical treatment
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We develop a semianalytical description for the Berezinskii-Kosterlitz-Thouless–like phase transition in
nonequilibrium Bose-Einstein condensates. Our theoretical analysis is based on a noisy generalized Gross-
Pitaevskii equation. Above a critical strength of the noise, spontaneous vortex-antivortex pairs are generated.
We provide a semianalytical determination of the transition point based on a linearized Bogoliubov analysis, to
which some nonlinear corrections are added. We present two different approaches that are in agreement with
our numerical calculations in a wide range of system parameters. We find that for small losses and not too small
energy relaxation the critical point approaches that of the equilibrium Berezinskii-Kosterlitz-Thouless transition.
Furthermore, we find that losses tend to stabilize the ordered phase: keeping the other parameters constant and
increasing the losses leads to a higher critical noise strength for the spontaneous generation of vortex-antivortex
pairs. Our theoretical analysis is relevant for experiments on microcavity polaritons.
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I. INTRODUCTION

The interest in nonequilibrium phase transitions of quan-
tum many body systems has witnessed a rapid growth over the
last decade thanks to the developments in Bose-Einstein con-
densation in optical systems (microcavity polaritons and pho-
tons in dye filled cavities) [1], circuit QED [2], and ultracold
atomic gases [3]. One of the most elementary phase transitions
in these systems is the onset of Bose-Einstein condensation,
defined as the emergence of spontaneous long range phase
coherence. Where at thermal equilibrium long range phase
coherence appears when the temperature is lowered below
a density-dependent critical temperature, in nonequilibrium
systems the phase coherence is determined by the interplay
between the Hamiltonian and dissipative parts of the dynamics
or even between competing dissipative mechanisms [4,5].

Since quantum fluids of light are only available in one
or two dimensions, true long range order is actually absent.
In one-dimensional Bose gases, both at thermal equilib-
rium and out of equilibrium, the spatial decay of the first
order coherence function is always exponential [6,7]. In
two dimensions and at equilibrium there is the celebrated
Berezinskii-Kosterlitz-Thouless (BKT) phase transition [8,9]
that separates the normal and the superfluid state, with
exponential and algebraic decay of the spatial coherence re-
spectively. In equilibrium, the phase dynamics is in the XY
universality class and the corresponding universal jump in the
superfluid stiffness has been experimentally observed in

4
He

[10]. More recently, the flexibility of the platform of ultra-
cold atoms allowed a direct observation of the spontaneous
formation of vortex-antivortex pairs above the BKT transition
[11]. The ultracold atomic gases are in the weakly interacting
regime, for which the transition temperature was computed
by Prokof’ev and Svistunov by a clever combination of the
linear Bogoliubov approximation and numerical Monte Carlo
simulations [12].

For photonic systems out of equilibrium, the phase dynam-
ics is actually in the Kardar-Parisi-Zhang (KPZ) universality
class where a nonlinear term in the phase evolution is essential
[13,14]. For one-dimensional polariton systems, the spatial
decay of the correlations remains qualitatively unaffected by
the nonlinearity in the phase dynamics [15], but a specific
spatiotemporal scaling emerges, that was recently observed
experimentally [16].

In two dimensions, the KPZ phase dynamics was pre-
dicted to make long range phase coherence impossible in
isotropic systems [13,17]. Numerical studies on the other
hand have shown a transition toward a state with algebraic
decay of the coherence [18] and an associated disappearance
of vortex-antivortex pairs [18–21] without the formation of
topological defects even when the spatiotemporal correlations
feature KPZ scaling [22,23]. Since computational resources
limit the system sizes for numerical studies, the discrepancy
between the renormalization group studies could be due to
finite size effects, but at present it does not seem that the
issue is fully settled. Even when the numerically observed
BKT transition is due to a limited system size, experimentally
available systems necessarily also work with relatively small
sizes, so that there is a clear interest in the nonequilibrium
BKT transition. Compared to the equilibrium case, the current
understanding of the dependence of the BKT critical point
on the system parameters is much less mature. The reason
therefore is twofold. First, out of equilibrium the standard
Boltzmann-Gibbs ensemble can no longer be used and the
steady state has to be characterized by a more involved sim-
ulation of the system dynamics. Second, the nonequilibrium
dynamics is governed by more parameters: in addition to the
system Hamiltonian and environment temperature, also the
details of the coupling to the environment come into play in
the nonequilibrium situation.

In our previous work on photon condensation [24], we
have pinpointed the nonequilibrium BKT critical point with
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numerical simulations and developed a semianalytical ap-
proach in order to get a better understanding of the location of
the critical point. In our numerical simulations, the transition
was approached from the ordered side with no vortices present
in the initial state. Above a critical value of the noise strength
in the stochastic classical field description of the dynamics,
vortex-antivortex pairs spontaneously appear, signaling the
BKT-like transition to the disordered state. Our paper involved
both numerical simulations and analytical approximations that
capture the dependences of the transition point on all the
system parameters. The analytical approximation for photon
condensates was based on the Bogoliubov approximation,
combined with an infrared cutoff set by the inverse vortex
core size [25]. In our previous study on the BKT transition
for (interacting) polaritons [20], no such analytical estimate
was given.

In the present paper, we wish to fill this gap. Moreover,
we extend our previous results to the regime of vanishing
interactions, so that we can elucidate the effect of both the
nonequilibrium condition and interactions on the BKT tran-
sition point. When the interactions become small compared
to the gain saturation nonlinearity, the vortex core size can
significantly deviate from the usual healing length defined as
ξ = h̄/

√
mgn̄, where m is the mass, g the interaction constant,

and n̄ the density of polaritons in the condensate. The vortex
core size appears in our treatment as a good proxy for the
inverse of the infrared cutoff that we have to introduce to avoid
the divergence of a momentum integral. We therefore carried
out a systematic analysis of the vortex size and structure as a
function of the strength of the interactions and of the driving
and dissipation.

The structure of this paper is as follows. In Sec. II, we
introduce our model for polariton condensates and derive the
density and phase fluctuations within the linear (Bogoliubov)
approximation. In Sec. III, we construct some approximate
formulas for the BKT critical point with a few fitting param-
eters that are able to capture our numerical simulations. We
start with a simple approach that is able to capture the main
dependencies of the critical point on the system parameters
and then present a more refined approach that allows for a very
good fitting of the numerical results. Conclusions are drawn in
Sec. IV and the vortex structure is discussed in the Appendix.

II. MODEL AND LINEARIZATION

We consider nonresonantly excited two-dimensional (2D)
polariton condensates. In the case of sufficiently fast relax-
ation in the exciton reservoir, this reservoir can be adiabati-
cally eliminated and the condensate is described by the noisy
generalized Gross-Pitaevskii equation (gGPE) [26–29]:

(i − κ )h̄
∂ψ

∂t
=

[
− h̄2∇2

2m
+ g|ψ |2

+ i

2

(
P

1 + |ψ |2/ns
− γ

)]
ψ +

√
Dξ . (1)

Here m is the effective mass and the contact interaction
between polaritons is characterized by the strength g. The
imaginary term in the square brackets on the right hand

side describes the saturable pumping (with strength P and
saturation density ns) that compensates for the losses (γ ). We
take into account the energy relaxation κ in the condensate
[30]. The complex stochastic increments have the correlation
function 〈ξ ∗(x, t )ξ (x′, t ′)〉 = 2δ(r − r′)δ(t − t ′). Equation (1)
is a classical stochastic field model that describes all the
fluctuations in the system as classical. This model is therefore
only valid in the weakly interacting regime gm/h̄2 � 1, where
quantum fluctuations are small.

For κ = 0, the zero momentum steady state of Eq. (1) is un-
der homogeneous pumping ψ0(x, t ) = √

n0e−ign0t , with n0 =
ns(P/γ − 1). By expressing the particle density |ψ |2 in units
of n0, dividing time by h̄(1 + κ2)/n0, length by h̄/

√
2mn0, and

noise intensity by h̄3n0/(2m), Eq. (1) takes the form

∂ψ

∂t
= (i + κ )

[
∇2 − g|ψ |2 − iγ

2ns

1 − |ψ |2
1 + ν|ψ |2

]
ψ

+
√

Dξ, (2)

where ν = n0/ns. The steady state density is then in the ab-
sence of noise given by [20]

n̄ =
√(

κ + c

2κν

)2

+ c

κν
−

(
κ + c

2κν

)
(3)

with c ≡ γ /(2gns).
In order to gain some insight into the physics of the fluctu-

ations induced by the noise in Eq. (2), one can consider in
first approximation the linearized equations for the density
and phase fluctuations around the steady state:

ψ (x, t ) =
√

n̄ + δn(x, t )e−ign̄t+iδθ (x,t ). (4)

After a spatial Fourier transform, these obey the linearized
equations of motion

∂

∂t
δθk = − κεkδθk − εk

2n̄
δnk − (g − κγ̃ )δnk

+
√

D

n̄
ξ

(θ )
k , (5)

1

n̄

∂

∂t
δnk = − κεk

δnk

n̄
+ 2εkδθk − 2(κg + γ̃ )δnk

+ 2

√
D

n̄
ξ

(n)
k , (6)

where

γ̃ = γ (1 + ν)

2ns(1 + νn̄)2
. (7)

Using the Ito formula [31], one can obtain from Eqs. (5)
and (6) a set of three equations:

D

n̄εk
= 2κ〈|δθk|2〉 +

〈
δθ−kδnk

n̄

〉

+ 2(g − κγ̃ )n̄

εk

〈
δθ−kδnk

n̄

〉
, (8)

D

n̄εk
=

[
κ

2
+ (κg + γ̃ )n̄

εk

]〈∣∣∣∣δnk

n̄

∣∣∣∣
2
〉

−
〈
δθ−kδnk

n̄

〉
, (9)
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[εk + 2(g − κγ̃ )n̄]

〈∣∣∣∣δnk

n̄

∣∣∣∣
2
〉

= 4εk〈|δθk|2〉

− 4[κεk + (κg + γ̃ )n̄]

〈
δθ−kδnk

n̄

〉
, (10)

where

εk = k2. (11)

Equations (8)–(10) can be solved for the density and phase
fluctuations and are accurate when they are small. Close to
the BKT transition, this condition however breaks down. In
the following, we will outline how these equations can still
be used in order to obtain an estimate for the critical point,
in analogy with our study of the BKT transition in photon
condensates [24].

III. APPROXIMATIONS FOR THE
BKT CRITICAL POINT

A. Heuristic estimate of the density-phase correlator

In order to obtain our estimate of the critical point, we start
by integrating Eq. (8) over all momenta. In the right hand side,
we then use that for a homogeneous system:∫

d2k〈|δθk|2〉 = 〈δθ (x) δθ (x)〉 ≡ 〈δθ2〉, (12)∫
d2k〈δθ−kδnk〉 = 〈δθ (x) δn(x)〉 ≡ 〈δθδn〉. (13)

When integrating the left hand side of Eq. (8) over k, we
assume the presence of a finite UV momentum (energy) cutoff
k+ (ε+ = k2

+). Our numerical simulations are performed for
a lattice with grid size h, for which our UV cutoff equals
k+ = π/h [i.e., ε+ = (π/h)2]. Furthermore, one has to take
into account that for the systems, described by nonlinear equa-
tions similar to Eq. (2), the use of the linear approximation
given by Eq. (11) is physically meaningful [12,24] only for k
above a certain IR momentum (energy) cutoff k− (ε− = k2

−).
Then the Fourier transform of the left hand side of Eq. (8)
can be represented as D[C1 + ln(ε+/ε−)]/(4π n̄), where the
fitting constant C1 approximates the contribution of momenta
smaller than k−.

Physically, the correlator 〈δθδn〉 expresses correlations be-
tween the density and current fluctuations (since the velocity
is the spatial derivative of the phase). In nonequilibrium
condensates, density and velocity fluctuations are correlated
because of the particle balance equation: a local suppression
of the density leads to local reduction of particle losses, which
is compensated by an outward flow of particles. In the context
of the BKT transition, this physics plays an important role,
because the density in a vortex core is reduced so that vortices
are accompanied by outgoing radial currents. The magnitude
of the density-phase correlator was estimated in Ref. [24] for
nonequilibrium photon condensates. Following this approach,
for the system under consideration here, we obtain

〈δθ δn〉 = γ̃

n̄
〈δN2〉, (14)

where δN = ∫ x
0 δn(x′)dx′. In the case of a plane density wave

n = n̄(1 − a cos kx) one has

〈δN2〉 = a2n̄2

2k2
. (15)

At the BKT transition, vortices have to nucleate, which re-
quires in a continuum model strong density fluctuations with
amplitude n̄ (i.e., a = 1) [24]. Those strong fluctuations have
appreciable probability only for relatively large momenta k ∼
k+ as seen from the fact that the best fitting in Ref. [24]
corresponds to the effective momentum value k ≈ 0.3k+ in
Eq. (15). Therefore, we approximate the correlator 〈δθδn〉 by
C2n̄γ̃ /ε+, where C2 ∼ 1 is a fitting parameter.

Analogously, the Fourier transform of 〈δθ−kδnk〉/εk in the
last term of Eq. (8) is approximated by C3n̄γ̃ /ε2

+ with a fitting
constant C3. As a result, we obtain the following approximate
expression for the critical noise:

dBKT =
{

2κ〈δθ2〉BKT +
[
C2 + 2C3(g − κγ̃ )

ε+

]
γ̃

ε+

}

× 4π

C1 + ln(ε+/ε−)
, (16)

where dBKT ≡ (D/n̄)|BKT.
In line with Refs. [12,24], we will assume that at the

transition 〈δθ2〉BKT = 1/2. In the equilibrium case (and at
κ2 � 1) the IR momentum cutoff is inversely proportional to
the healing length, so that the corresponding energy cutoff is
∼gn̄. Since the healing length corresponds at equilibrium to
the vortex core size, a natural generalization to the nonequi-
librium situation is to take a cutoff based on an estimate of
the vortex core size. Our estimation of the vortex core size,
detailed in the Appendix, leads to

ε− = n̄

[
g + B0γ̃

(
B0γ̃

g + B0γ̃

)3
]
, (17)

where B0 = 0.524. The average density n̄ in Eq. (17) will
be approximated by its steady state value in the absence of
noise (3).

The results of fitting the numerical data for dBKT with
Eq. (16) are represented by the dashed lines in Figs. 1 and 2
where the determined fitting parameters are C1 = 8.87, C2 =
1.64, and C3 = 5.92 × 10−5. The small numerical value of C3

implies it can actually be set to zero without affecting the qual-
ity of the fits. The numerical data in Figs. 1(a) and 2(a) and the
main panels in Figs. 1(b) and 2(b) are taken from Ref. [20].
To numerically solve Eq. (2), a finite-difference scheme was
used. Specifically, we use periodic boundary conditions for a
square of size Lx = Ly = 40 with grid step equal to 0.2. The
location of the critical point is determined in the following
way: after a long time evolution in the presence of noise, the
system was evolved without noise for a short time (few our
units of time) before checking for the presence of vortices.
This noiseless evolution gives the advantage of cleaning up
the density and phase fluctuations while it is too short for the
unbound vortex-antivortex pairs to recombine. The propensity
for their recombination is reduced [20] with respect to the
equilibrium case thanks to outgoing radial currents that pro-
vide an effective repulsion between vortices and antivortices.
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(a)

(b)

(c)

FIG. 1. Numerically (symbols) and semianalytically (lines) de-
termined renormalized critical noise dBKT = DBKT/nBKT as a func-
tion of c = γ /(2nsg) (a), κ (b), and ν (c). The insets in panels (b) and
(c) show the dependence of dBKT on κ and ν, respectively, in the case
of g = 0. The solid and dashed lines correspond to Eqs. (26) and (16),
respectively.

To determine the critical noise for the BKT transition, DBKT,
we use the following criterion. If for a noise intensity D
unbound vortex pairs are present after a noise exposure time
tD (and hence D > DBKT), while for a certain noise intensity

(a)

(b)

FIG. 2. Numerically (symbols) and semianalytically (lines) de-
termined renormalized critical noise dBKT as a function of the grid
step at κ � 0.1 (a) and κ = 0 (b) for nonzero g. Inset in panel (b):
dBKT as a function of the grid step at g = 0. The solid and dashed
lines correspond to Eqs. (26) and (16), respectively.

D′ < D no vortex pairs appear even at noise exposures a few
times longer than tD, then D′ lies either below DBKT or above
DBKT and closer to DBKT than to D. Therefore, the critical
noise intensity can be estimated as DBKT = D′ ± (D − D′).

As seen from the comparison between the dashed lines and
the symbols in Figs. 1 and 2, Eq. (16) qualitatively reproduces
the main trends in the behavior of the numerically determined
dBKT(c, κ, ν, h) at relatively small grid steps h, when ε+ is
considerably larger than ε−. This qualitative agreement is
ensured, in particular, by taking into account the contributions
related to density-phase correlation, which are zero in equi-
librium systems but play a crucial role for the BKT transition
out of equilibrium. At the same time, this simple and transpar-
ent heuristic estimate of these contributions does not appear
sufficient for a good quantitative description of the numerical
results.

B. Bogoliubov theory with nonlinear correction

In order to obtain a better quantitative description of the
numerics for the nonequilibrium BKT transition, we develop
below a different approach that leads to a slightly more in-
volved expression. To this purpose, we start from the linear

094510-4



NOISE-INDUCED TRANSITION FROM SUPERFLUID TO … PHYSICAL REVIEW B 108, 094510 (2023)

approximation for the phase fluctuations in the steady state,
obtained by solving Eqs. (8)–(10). Inserting D/n̄ from Eq. (8)
and 〈|δnk/n̄|2〉 from Eq. (10) into Eq. (9), we obtain the
relation [

εk + 3gn̄ + 2
(
g2 + γ̃ 2

) n̄2

εk

]〈
δθ−kδnk

n̄

〉

= 2γ̃ n̄〈|δθk|2〉. (18)

Using Eq. (18), we express 〈δθ−kδnk/n̄〉 through 〈|δθk|2〉 and
insert the result into Eq. (8). For the phase fluctuations, this
leads to the equation

〈|δθk|2〉 = D

n̄
f (εk ), (19)

where

f (ε) = 1

2κ

ε + 3n̄g + 2(g2 + γ̃ 2)n̄2/ε

(ε + ε1)(ε + ε2)
(20)

with

ε1 = n̄

(
g + γ̃

κ

)
, ε2 = 2n̄g. (21)

From Eqs. (19) and (20), one sees that the phase fluctuations
are, as expected, proportional to the noise strength D and
decrease as a function of the density n̄ and energy relaxation
κ . For what concerns their energy dependence, Eq. (20) shows
a 1/ε behavior both at small and large energies. As a conse-
quence, the Fourier transform of phase fluctuations needed to
obtain their real space correlations requires the introduction of
an infrared cutoff ε−, analogous to the treatment in Sec. III A.
As a result of Fourier transformation, the local phase variance
becomes

〈δθ2〉 = D

4π n̄
(F + F−) (22)

where

F =
∫ ε+

ε−
f (ε)dε = 1

2

g2 + γ̃ 2

g(κg + γ̃ )
ln

(
ε+
ε−

)

+ γ̃

γ̃ + κg

(
1

2κ
+ κγ̃

γ̃ − κg

)
ln

(
ε+ + ε1

ε− + ε1

)

− γ̃ 2

2g(γ̃ − κg)
ln

(
ε+ + ε2

ε− + ε2

)
, (23)

where the logarithmic dependence on the lower and upper
energy cutoffs is a consequence of the 1/ε behavior of f (ε)
at low and high energies. The term

F− = C−ε− f (ε−) (24)

in Eq. (22) approximates the contribution of the integral over
ε from zero to ε−, where C− is a fitting parameter.

Expression (22), derived with the use of linearized equa-
tions for the phase and density fluctuations, is expected to
be applicable when these fluctuations are small. As discussed
above, at the BKT transition, where both phase and den-
sity fluctuations are large, the real space correlator 〈δθδn〉 is
mainly determined by the contributions of k ∼ k+. According
to Eq. (18), the quantity 〈|δθk|2〉 contains a term that is ex-
actly proportional to 〈δθ−kδnk〉. This implies that at the BKT

FIG. 3. Renormalized critical noise dBKT/κ , given by Eq. (26),
as a function of γ̃ /g and κ at three different values of ε+/ε−.

transition the expression for the phase fluctuations 〈δθ2〉, de-
rived above, needs an additional “nonlinear correction,” which
would describe an enhanced contribution of large momenta
k ∼ k+ (large energies ε ∼ ε+). Here, we approximate this
correction by adding to F the term

F+ = C+ε+ f (ε+), (25)

where C+ is a fitting parameter. Then at the BKT point we
have

dBKT = 〈δθ2〉BKT
4π

F + F− + F+
, (26)

where again we take 〈δθ2〉BKT = 1/2.
Applying Eq. (26) to fit the numerical data for dBKT, we

obtain for the two fitting parameters C− = 2.24 and C+ =
7.33. As compared to the results of the heuristic approach
described in the previous subsection (dashed lines in Figs. 1
and 2), the results corresponding to the more involved and
accurate Eq. (26), which are shown by the solid lines in Fig. 1,
demonstrate a much better quantitative agreement with the
numerically determined dBKT.

The semianalytical expression for dBKT, given by Eq. (26)
together with Eqs. (17), (20), (21), and (23)–(25), can be
considered as a function of three independent parameters:
γ̃ /g, κ , and ε+/ε−. In Fig. 3, the renormalized critical noise
dBKT/κ , corresponding to Eq. (26), is plotted for a wide range
of the parameters γ̃ /g and κ at three different values of the
ratio ε+/ε−.
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For small losses and not too small κ , the ratio dBKT/κ is
of order 1, in line with the equilibrium BKT transition where
according to the fluctuation-dissipation relation D = κT [32]
and where the critical temperature scales in first approxi-
mation as TBKT ∼ n. In line with our previous studies for
polariton condensates [20] and photon condensates [24], we
see that the losses stabilize the ordered phase: when γ̃ is
increased at fixed κ , the noise required to make the transition
to the state with free vortex-antivortex pairs increases. We
explained this trend by the reduction of the density fluctua-
tions for increased driving and dissipation [20], that manifests
itself through density-phase correlations [24] [see discussions
preceding Eqs. (16) and (25)].

In the limit without losses (γ̃ = 0), our estimate for the
critical point reduces to

nBKT = TBKT

2π

[
log

(
1

mh2gnBKT

)
+ A1

]
. (27)

Here, we have used that TBKT = DBKT/κ , defined A1 = C+ +
C− + log(π2/2) ≈ 11.2, and restored physical units. We can
compare this expression with the equilibrium BKT transi-
tion for the weakly interacting lattice Bose gas [Eq. (12) in
Ref. [12]]:

nBKT = mTBKT

2π
log

A

mh2gTBKT
, (28)

with A = 6080. This expression can be written as

nBKT = mTBKT

2π

[
log

(
1

mh2gnBKT

)
+ A2

]
, (29)

with

A2 = log

[
A

2π
log

(
A

m2h2gTBKT

)]
. (30)

Assuming here m2h2gTBKT ≈ 1, one obtains A2 ≈ 9.1, which
is reasonably close to our A1 ≈ 11.5 given the simplicity of
our approach and considering that the equilibrium case is
actually a somewhat singular limiting case of our model where
the gain and losses simultaneously tend to zero.

IV. CONCLUSIONS

In this paper, we have developed a semianalytical approach
to describe the BKT transition point for driven-dissipative
weakly interacting Bose gases. We start from the linearized
equations of motion for the density and phase fluctuations and
subsequently correct phenomenologically for nonlinearities
that are important close to the BKT transition. Our resulting
analytical formulas contain some fitting parameters that are
fitted to a series of numerical simulations in a wide parameter
range. The good fitting of our numerical results indicates the
validity of the physical intuition underlying our semianalytical
approach and promotes our formulas to a concise summary of
the numerical results.

Of course, our numerical results were obtained for a finite
size system and we can therefore not settle what will hap-
pen for much larger system sizes, where it remains possible
that the KPZ nonlinearity may destabilize the algebraically
ordered phase [13,17], even though recent numerical work has

shown that KPZ scaling can be witnessed in 2D nonequilib-
rium condensates without the phase coherence being destabi-
lized by the formation of vortex antivortex pairs [22,23].
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APPENDIX: VORTEX DENSITY PROFILE

The vortex core size plays an important role in the BKT
physics, because it provides the low energy cutoff in our
analytical treatment. In this Appendix, we discuss how the
vortex core size depends on the system parameters through an
approximate solution of the gGPE, that is shown to compare
favorably with the exact numerical solution.

We consider a single-quantum vortex in an infinite 2D
condensate. Assuming that the vortex-center position is fixed,
the density distribution is circularly symmetric and the order
parameter can be written in the cylindrical coordinates ρ and
φ as ψ = χ (ρ)e−iφ , so that the condensate density is given by
n = |χ |2. Inserting this into the noise-free form of Eq. (2), one
has

∂χ

∂t
= (i + κ )

[
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− 1

ρ2
− g|χ |2

+ iγ

2ns

1 − |χ |2
1 + ν|χ |2

]
χ. (A1)

For analytical estimates it is convenient to represent χ as
χ (ρ) = √

n̄y(ρ)eiθ (ρ), where the real function y(ρ) is normal-
ized by 1. Then, taking into account that for a steady state
∂y/∂t = 0, while ∂θ/∂t = −μ(1 + κ2) with μ, the chemical
potential, one obtains from Eq. (A1) the following two cou-
pled stationary differential equations:

κμ = γ

2ns

1 − n̄y2

1 + νn̄y2
− 1

ρy2

∂

∂ρ

(
ρy2 ∂θ

∂ρ

)
, (A2)

1

ρ2
− 1

ρy

(
ρ

∂y

∂ρ

)
=μ −

(
∂θ

∂ρ

)2

− gn̄y2. (A3)

In Eq. (A3), the first term corresponds to circulating vortex
flows, while the second term in the right hand side is due to
outward radial flows from the vortex core [33].

Considering Eq. (A3) in the limit ρ → ∞, one obtains for
the chemical potential

μ =
(

∂θ

∂ρ

)2
∣∣∣∣∣
ρ→∞

+ gn̄. (A4)

Note that in the equilibrium case, when ∂θ/∂ρ = 0, the right
hand side of Eq. (A3) is obviously positive. In order to keep
it positive also far from equilibrium, one has to assume that
(∂θ/∂ρ )2|ρ→∞ is nonzero. In other words, in the presence of
a vortex the chemical potential of a nonequilibrium system
should increase.

In the limit ρ → 0, when (∂θ/∂ρ )2 and y2 become negligi-
bly small, the general nondivergent solution of the “reduced”
equation, resulting from Eq. (A3), is simply CJ1(qρ), where
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J1(x) is the Bessel function and q = √
μ. Let us consider the

“equilibriumlike” version of Eq. (A3):

1

ρ2
− 1

ρy

(
ρ

∂y

∂ρ

)
=μ(1 − y2). (A5)

Its solution can be approximated by the normalized by 1
nonoscillating function

y1(ρ) = 1

J1(x∗)
J1

(
x√

1 + (x/x∗)2

)
, (A6)

where x = sqρ. The parameters s and x∗ are determined from
the following two requirements.

(i) At small ρ, the function y1(ρ) should coincide
with CJ1(qρ) ≈ C[qρ/2 − (qρ)3/16]. This leads to s = (1 +
4/x2

∗ )−1/2.
(ii) y1(ρ) should satisfy Eq. (A5) in the limit ρ → ∞. In

this limit, one has 1 − y1(ρ) ∝ ρ−2 and Eq. (A5) becomes

1

ρ2
=μ

x3
∗J ′

1(x∗)

(sqρ)2J1(x∗)
, (A7)

leading for x∗ to the equation J ′
1(x∗)(x3

∗ + 4x∗) = J1(x∗),
which gives x∗ = 1.72 and, correspondingly, s = 0.653. As
we will see later, in the case of weak nonequilibrium, the
function

n1(ρ) = n̄y2
1(ρ) (A8)

describes almost perfectly the vortex density profiles, found in
numerical simulations. Moreover, close to the vortex center,
this function works quite well even at relatively strong devi-
ations from equilibrium. This is not surprising: close to the
vortex center, the vortex circulating-current density, which is
proportional to 1/ρ, is much stronger than the radial-current
density, so that just the former governs the particle-density
suppression.

Let us estimate ∂θ/∂ρ, which determines the radial particle
flow. At ρ → ∞, the last term of Eq. (A2) (which is propor-
tional to div jρ) vanishes, while y goes to 1, so that we have

κμ = γ

2ns

1 − n̄

1 + νn̄
. (A9)

Therefore, Eq. (A2) can be rewritten as

1

ρy2

∂

∂ρ

(
ρy2 ∂θ

∂ρ

)
=γ̃ n̄

1 − y2

1 − p(1 − y2)
(A10)

with p = νn̄/(1 + νn̄). From Eq. (A10) one obtains

∂θ

∂ρ
= γ̃ n̄

sq
Qp(ρ), (A11)

where

Qp(ρ) = sq

ρy2(ρ)

∫ ρ

0
dρ ′ρ ′ y

2(ρ ′)[1 − y2(ρ ′)]
1 − p[1 − y2(ρ ′)]

. (A12)

A finite nonzero value of ∂θ/∂ρ|ρ→∞ is possible only if we
assume that at ρ → ∞

n(ρ) = n̄y2(ρ) ≈ n̄

(
1 − R

ρ

)
. (A13)

FIG. 4. Function Qp(x) with y = y1 for three different values of
p. Inset: Parameter Bp as a function of p.

Then we have from Eqs. (A11) and (A12)

∂θ

∂ρ

∣∣∣∣
ρ→∞

= Rγ̃ n̄. (A14)

At moderate distances from the vortex center, the radial cur-
rent density increases with ρ. For sufficiently large γ̃ , the
suppressive effect of redial currents on y2 becomes domi-
nating above certain ρ, so that the behavior described by
Eq. (A13) emerges.

In order ro determine the parameter R, let us consider the
crossover between the two regimes, described by Eqs. (A8)
and (A13). Let us start with the case of noninteracting par-
ticles, g = 0. The suppressive effect of the radial currents on
the particle density is determined by (∂θ/∂ρ )2. At ρ below the
crossover point, y in Eq. (A12) can be approximated by y1, so
that Qp depends on ρ only through x (see Fig. 4). It seems nat-
ural to expect that the crossover occurs at a distance ρc, where
the value of Qp(x) is close to its maximum. For simplicity, we
will assume that the crossover point ρc(p) just corresponds to
the position of this maximum, xm(p), i.e., ρc = xm/(sq). At
the crossover point, the solution y1 for small ρ should match
the solution for large ρ, described by Eq. (A13). This leads to

R =
√

Bp

γ̃ n̄
(A15)

with

Bp = xm

s

[
1 − y2

1(ρc)
]
, (A16)

where, as seen from Eq. (A6), y1(ρc) is determined solely by
xm(p). The numerically determined dependence of Bp on p is
shown in the inset of Fig. 4.

We can expect that in the general case, where the interpar-
ticle interaction is non-negligible, the crossover occurs when,
with increasing ρ, the density of the radial current becomes
comparable with that of the circulating current, so that [see
Eq. (A11)] (

γ̃ n̄

sq

)
Qp(ρc) = C

ρc
. (A17)
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(a)

(b)

FIG. 5. Numerically (solid lines) and analytically (dotted and
dashed lines) calculated density profiles for noninteracting particles
(a) and three finite values of the parameter c = γ /(2nsg) (b) at
different ν and κ .

Obviously, with increasing g the suppressive effect of radial
currents on the particle density becomes relatively weaker.
Therefore, R should decrease with increasing g or decreasing
γ (R = 0 at γ = 0). This means that at non-negligible g the
matching condition at the crossover point, R/ρc = 1 − y2

1(xc),
corresponds to a rather small value of 1 − y2

1(xc), which can
be approximated [see Eqs. (A6) and (A7)] by 1/(qρc)2. Then
the matching condition becomes 1/ρc = Rq2. Inserting this

into Eq. (A17), we obtain

R = Qp(ρc)

sC

(γ̃ n̄)

q3
. (A18)

For simplicity, in the denominator q3 we approximate R by
the value given by Eq. (A15). The constant C is determined
by requiring that in the limit g → 0 the R, given by Eq. (A18),
fits Eq. (A15). Then for R we finally have

R =
√

Bp

γ̃ n̄

(
Bpγ̃

g + Bpγ̃

)3/2

. (A19)

From Eqs. (A4) and (A14) with (A19), we obtain the
relation

μ = n̄

[
g + Bpγ̃

(
Bpγ̃

g + Bpγ̃

)3
]
. (A20)

Equations (A20) and (A9) completely define the chemical
potential μ and average density n̄, which, together with
the parameter R given by Eq. (A19), enter the density
distributions (A8) and (A13) at small and large ρ, respectively.
As a “smooth interpolation” between these distributions, we
introduce the function

n2(ρ) = 1

1 + R/ρ
n1(ρ). (A21)

Obviously, this function can somewhat underestimate n
at ρ ∼ R, close to the “bottom” of the vortex core. Apart
from this, as seen from Fig. 5(a), at g = 0 the function n2(ρ)
approximates rather well the vortex shape, found by solv-
ing Eq. (A6) numerically, although the analytical value of n̄
appears not quite accurate for (experimentally less relevant)
large κ (red curves) and large ν (green curves). For strongly
interacting particles and/or for week deviations from equi-
librium, when the parameter c = γ /(2nsg) is smaller than 1,
the numerical results are almost perfectly described by the
equilibriumlike profile n1(ρ) [see the black and red curves
in Fig. 5(b)]. For c > 1, the numerically determined n(ρ) at
large ρ is well approximated by n2(ρ) [see the green and blue
curves in Fig. 5(b)].

The obtained results show that the μ given by Eq. (A20)
(q−1 = 1/

√
μ) adequately describes the chemical potential

(vortex core size) in the systems under consideration. This
implies that Eq. (A20) can provide a suitable estimate for
the lower energy cutoff ε−. Since for experimentally relevant
p < 0.9 the parameter Bp relatively weakly depends on p, in
this estimate, for simplicity, we replace Bp with B0 = 0.524.
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