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We elaborate that s-wave and d-wave superconductors described by mean field theories possess a nontrivial
quantum geometry. From the overlap of two quasihole states at slightly different momenta, one can define a
quantum metric that measures the distance in the curved momentum space. The momentum integration of
the quantum metric represents an average distance that we call the fidelity number, which may be further
expressed as a fidelity marker defined locally on every lattice site. For s-wave superconductors, we unveil
that the quantum metric generally influences the electromagnetic responses at finite wavelength, such as the
infrared absorption and paramagnetic current. In addition, the dielectric response is directly proportional to
the fidelity number, which is found to be determined by the coherence length and suppressed by disorder. For
d-wave superconductors, we demonstrate the singular behavior of the quantum metric near the nodal points, and
a metric-curvature correspondence between the azimuthal quantum metric and the non-Abelian Berry connection
that integrates to a topological charge of the nodal points.
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I. INTRODUCTION

The quantum geometry of the valence band Bloch state
has emerged recently as a key aspect related to various ma-
terial properties of insulators and semiconductors, especially
to their topological properties [1–10]. Starting from the fully
antisymmetric valence band Bloch state |ψ (k)〉 at momentum
k, the notion of quantum geometry arises from considering the
overlap |〈ψ (k)|ψ (k + δk)〉| = 1 − gμνδkμδkν/2 expanded in
terms of the small displacement δk, yielding a prefactor gμν

that is referred to as the quantum metric [11]. The periodic
Brillouin zone (BZ) is then considered as a compact Eu-
clidean manifold equipped with this quantum metric, from
which the usual quantities in differential geometry, such
as the Ricci scalar, Riemann tensor, geodesic, etc., can be
introduced.

Besides these purely mathematical aspects, the quantum
metric has also been linked to various experimental measur-
ables [6,12–18]. Particularly in semiconductors, the exciton
absorption rate at momentum k as a function of the frequency
of polarized light, which can be measured by detecting the
loss of valence band electron population in the pump-probe
type of experiments [19], is described by a quantum metric
spectral function that frequency-integrates to the quantum
metric [10]. In addition, the frequency dependence of the
optical absorption rate, which has been measured in semi-
conductors for decades [20], as well as recently measured
in two-dimensional (2D) materials from their transmittance
[21–24], actually corresponds to the momentum integration
of the quantum metric spectral function that has been called
the fidelity number spectral function [25,26]. The significance
of this spectral function is that it frequency-integrates to a
fidelity number that represents the average distance between
neighboring Bloch states in the momentum space, thereby
serving as a characteristic quantum geometrical property
of the BZ manifold. Moreover, the fidelity number can be

converted into a fidelity marker defined locally on lattice sites,
pointing to the possibility of investigating the influence of real
space inhomogeneity on the quantum geometrical properties
of solids [25].

Besides these experimental measurables, another impor-
tant feature of the quantum metric is its relation with the
topological order. It has been pointed out that in systems
where the topological order is given by the momentum inte-
gration of the Berry connection or Berry curvature, the module
of these quantities is equal to the determinant of the filled
band quantum metric [1–6,6,7,12,27–32]. Along this line of
development, it was recognized recently that, in fact, the
module of the curvature functions that momentum-integrate
to the topological order of Dirac models in any dimension and
symmetry class [33–36] is always equal to the determinant
of the quantum metric, a ubiquitous relation that has been
called the metric-curvature correspondence [9]. As a result,
the aforementioned exciton absorption experiment that mea-
sures the quantum metric can help to reveal the topological
order in these materials.

In addition to these remarkable features in insulating mate-
rials, the quantum metric also manifests in yet another system
that is currently under intensive investigation, namely, the flat
band superconductors (SCs). This subject rises to prominence
owing to the flat band superconductivity recently discovered
in twisted bilayer graphene [37,38]. Although the microscopic
mechanism for the superconductivity in this system is still
under intensive debate, various theories have suggested that
the superfluid density therein is directly related to the quantum
metric of the flat band [39–44].

Motivated by these intensive investigations of flat band
SCs and the knowledge about optical absorption in semi-
conductors, in this paper we present a detailed survey on
the quantum geometrical properties of the quasihole band
of typical singlet SCs, including both the case of s-wave
pairing and the case of d-wave pairing. Our objective is
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to elaborate that typical singlet SCs described by Bardeen-
Cooper-Schrieffer (BCS) mean field theories [45] also have
nontrivial quantum geometrical properties. For s-wave SCs,
we will elaborate the remarkably simple form of the quantum
metric and demonstrate that the metric generally appears in
optical and dielectric responses. However, unlike the optical
absorption in semiconductors, the infrared absorption and the
so-called paramagnetic current of clean SCs is not directly
given by the quantum metric spectral function owing to the
complication coming from the Bogoliubov transformation,
commonly known as the coherence factor [46]. On the other
hand, the zero-frequency dielectric function turns out to be
directly proportional to the fidelity number, which is essen-
tially given by the coherence length measured in units of
the lattice constant. For d-wave SCs, we will emphasize the
very singular momentum profile of the quantum metric, as
well as the metric-curvature correspondence between the non-
Abelian Berry curvature that integrates to a topological charge
and the azimuthal quantum metric.

The structure of the paper is organized in the following
manner. In Sec. II, we elaborate how the notions of the
quantum metric, fidelity number, and fidelity marker arise
from the quasihole state of singlet SCs. To further demon-
strate how these quantum geometrical quantities manifest in
electromagnetic responses of SCs, we proceed to lay out the
general formalism for the infrared absorption, paramagnetic
current, and linear screening. In Sec. III, we turn to 3D and 2D
s-wave SCs to illustrate their quantum geometrical properties
and how they manifest in the electromagnetic responses. In
Sec. IV, the singular behavior of the quantum metric in d-
wave SC is revealed, with a special emphasis on its relation
with the topological charge at the nodal points. Section V
summarizes our results and discusses possible extensions of
our work.

II. QUANTUM GEOMETRY AND ELECTROMAGNETIC
RESPONSES OF SINGLET SUPERCONDUCTORS

A. Quantum metric and fidelity marker
in singlet superconductors

We start by considering mean field spin-singlet SCs in any
spatial dimension D, whose single-particle Hamiltonian takes
the form of a 2×2 Dirac Hamiltonian

H (k) = d · σ = d1σ1 + d3σ3, (1)

where σi are the Pauli matrices, d1 = �k is the momentum-
dependent superconducting gap, and d3 = εk is the normal
state dispersion. The basis of the Hamiltonian is |ψk〉 =
(ck↑, c†

−k↓)T . The d vector divided by its module defines a
unit vector

n ≡ d/|d| = (d1/d, d3/d ) = (n1, n3), (2)

with ±d =
√

d2
1 + d2

3 = ±
√

ε2
k + �2

k = ±Ek being the dis-
persion of the two bands. We denote the filled quasihole
eigenstate with eigenenergy −Ek by |n(k)〉 ≡ |n〉 [not to be
confused with the n vector in Eq. (2)] and the empty quasi-
particle eigenstate with eigenenergy +Ek by |m(k)〉 ≡ |m〉,

which take the form

|n〉 = 1√
2d (d − d3)

(
d − d3

−d1

)
= Sgn(�k )

(
vk

−uk

)
,

|m〉 = 1√
2d (d + d3)

(
d + d3

d1

)
=

(
uk
vk

)
, (3)

where uk and vk are the usual Bogoliubov coefficients

ck↑ = ukγk↑ + vkγ
†
−k↓, c−k↓ = ukγ−k↓ − vkγ

†
k↑,

uk =
√

1

2

(
1 + d3

d

)
, vk = Sgn(�k )

√
1

2

(
1 − d3

d

)
, (4)

which satisfy ukvk = �k/2Ek = d1/2d . The sign of the gap
Sgn(�k ) = Sgn(d1) is unimportant in practice for s-wave SCs
but will be important for d-wave SCs. This is because when
taking the derivative of momentum on vk, one only takes the
derivative on the square root but not on the sign

∂μvk = Sgn(�k )∂μ

√
1

2

(
1 − d3

d

)
, (5)

because vk and an infinitely small shift along the μ̂ direction
vk+δkμ̂ have the same sign if δk → 0. The derivative ∂μvk is ill
defined where the gap changes sign in a d-wave SC, rendering
the quantum metric ill defined along the nodal lines, as we
shall see below.

We are interested in the quantum metric [11] gμν (k) of the
filled quasihole state |n(k)〉 defined from the inner product of
this state at momentum k and at momentum k + δk

|〈n(k)|n(k + δk)〉| = 1 − 1
2 gμνδkμδkν, (6)

which amounts to several equivalent expressions

gμν = 1

2
〈∂μn|m〉〈m|∂ν〉 + (μ ↔ ν)

= 1

4
∂μn · ∂νn = (uk∂μvk − vk∂μuk )(uk∂νvk − vk∂νuk )

= 1

4d4
(d3∂μd1 − d1∂μd3)(d3∂νd1 − d1∂νd3), (7)

where ∂μ ≡ ∂/∂kμ, and we have used Eqs. (4) and (5). We
see that either the derivative on the unit vector ∂μn/2 or
the derivative on the Bogoliubov coefficients ±(u∂μv − v∂μu)
can play the role of the vielbein, and the expression in terms of
Bogoliubov coefficients in the second line of Eq. (7) is unique
to SCs and has no analogy in semiconductors or insulators.
Equation (7) also implies that the volume form of the curved
momentum space vanishes

√
det g = 0 for D > 1, and conse-

quently, many geometrical quantities that involve integration
over the curved momentum space would vanish at D > 1,
such as the Hilbert action

∫
dDk

√
det gR = 0 given by the

integration of Ricci scalar R.
There is a very intuitive way to visualize the quantum

metric using Bogoliubov coefficients. Suppose that from the
formula of a quasihole state in Eq. (3), one writes the Bo-
goliubov coefficients into a two-component unit vector field
wk = (vk,−uk ) defined in a D-dimensional k space, which
can also be regarded as representing the quasihole state as a
unit vector in the Hilbert space. Then Eq. (6) can be rewritten
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as the dot product between the neighboring vectors

1
2 gμνδkμδkν = 1 − |〈n(k)|n(k + δk)〉|

= 1 − |wk · wk+δk|. (8)

Physically, this means that gμν can be simply understood as
how much the product |wk · wk+δk| deviates from unity, which
is equivalently how much the unit vector in the Hilbert space
wk “twists” as one goes from k to k + δk. If the wk is very
uniform around k, then gμν is small. In contrast, if wk changes
its direction very dramatically around k, meaning that uk
and vk vary significantly near k, then gμν is large. We will
demonstrate this intuitive picture using concrete examples in
the following sections.

Another geometrical quantity that we are interested is the
momentum integration of the quantum metric

Gμν =
∫

dDk
(2π )D

gμν (k), (9)

which we call the fidelity number [25] [not to be con-
fused with the fidelity of neighboring quasihole states
|〈n(k)|n(k + δk)〉|]. Physically, this quantity represents the
average distance between neighboring quasihole states |n(k)〉
and |n(k + δk)〉 and hence serves as a characteristic quantum
geometrical property of the BZ torus. Moreover, it is also
shown to be equivalent to the gauge-invariant part of the
spread of Wannier functions [47–49] (in our case the Wannier
function of the quasihole state). This quantity can be mapped
to lattice sites in real space as a fidelity marker by considering
a lattice Bogoliubov–de Gennes (BdG) Hamiltonian that has
been diagonalized H |E�〉 = E�|E�〉. Introducing the projectors
to the filled En < 0 and empty Em > 0 lattice eigenstates
from the projectors to the quasihole and quasiparticle states
integrated over momentum

P̂ =
∑

n

∫
dDk

(2π )D
|ψnk〉〈ψnk| →

∑
n

|En〉〈En|,

Q̂ =
∑

m

∫
dDk′

(2π )D
|ψmk′ 〉〈ψmk′ | →

∑
m

|Em〉〈Em|, (10)

where 〈r|ψnk〉 = eik·r/h̄〈r|n(k)〉 is the full quasihole state
wave function [and likewise for |m(k)〉], it is found that the
fidelity number can be written as

Gμν = 1

2
Tr[P̂ r̂μQ̂ r̂νP̂ + P̂ r̂νQ̂ r̂μP̂]

=
∑

r

Gμν (r), (11)

where r̂μ and r̂ν are position operators on the lattice. The trace
in this expression is over the lattice sites r and all the internal
degrees of freedom α on every site. Treating the trace as a
summation over all lattice sites r, each term in the summation
defines what we call the fidelity marker at site r

Gμν (r) = 1

2

∑
α

〈r, α|[P̂ r̂μQ̂ r̂νP̂ + P̂ r̂νQ̂ r̂μP̂]|r, α〉

≡ 1

2
〈r|[P̂ r̂μQ̂ r̂νP̂ + P̂ r̂νQ̂ r̂μP̂]|r〉, (12)

where the summation over α stands for summing over the
spin-up particle and spin-down hole at site r. The operator
Ĝμν ≡ [P̂ r̂μQ̂ r̂νP̂ + P̂ r̂νQ̂ r̂μP̂]/2 has been called the fidelity
operator. In the following sections, we shall see how the
fidelity marker can be used to characterize the influence of
real space inhomogeneity on the quantum geometry.

B. Electromagnetic responses of singlet SCs

For a number of responses against external perturbations,
such as a modulating scalar potential or electromagnetic wave,
one often encounters the calculation of the polarization opera-
tor. For singlet SCs, the polarization operator takes the general
form [50]

P(k, q, iω)

= −
∑
σσ ′

∫ β

0
dτ eiωτ 〈Tτ c†

k+qσ (τ )ckσ (τ )c†
k′−qσ ′ (0)ck′σ ′ (0)〉

= 2

β

∑
ip

[G(k, ip)G(k + q, ip + iω)

+ F (k, ip)F †(k + q, ip + iω)], (13)

where q and k are external and internal momenta, respec-
tively, σ is the spin index, and iω and ip are Matsubara
frequencies. The Green’s functions are given by

G(k, ip) = u2
k

ip − Ek
+ v2

k

ip + Ek
,

F (k, ip) = F †(k, ip)

= −ukvk

(
1

ip − Ek
− 1

ip + Ek

)
. (14)

We are interested in the retarded response at zero temperature,
which is given by

P0(k, q, ω) = 2

[
u2

k+qv
2
k − ukvkuk+qvk+q

h̄ω − Ek − Ek+q + iη

− v2
k+qu2

k − ukvkuk+qvk+q

h̄ω + Ek + Ek+q + iη

]
(15)

after an analytical continuation iω → h̄ω + iη, with η being a
small artificial broadening. Furthermore, there are two kinds
of situations that one often encounters in practical applica-
tions. One is the optical absorption process that corresponds
to excitation of quasiparticles, which corresponds to taking the
imaginary part of the first term in Eq. (15) at finite frequency,
yielding

− 1

π
ImP0(k, q, ω) = 2

[
u2

k+qv
2
k − ukvkuk+qvk+q

]
× δ(h̄ω − Ek − Ek+q), (16)

where the δ function ensures the energy and momentum con-
servation. The other typical response is the static response that
corresponds to taking the real part of both terms in Eq. (15) in
the ω = 0 limit, yielding

ReP0(k, q, 0) = −2(uk+qvk − vk+quk )2

Ek + Ek+q
. (17)
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In what follows, we shall see some practical applications
of these two situations, which turn out to both contain the
integration of the quantum metric. In particular, we will focus
on the dynamic current-current correlator that is relevant to
the infrared absorption, the static current-current correlator
relevant to the paramagnetic current, and the static density-
density correlator that is related to the dielectric function, and
elaborate how the quantum metric manifests in these quanti-
ties.

1. Dynamic current-current correlator: Infrared absorption

Consider a singlet SC subject to a transverse electromag-
netic (EM) wave polarized in the μ̂ direction and propagating
along the ν̂ direction with a small but finite wave vector
q = qν̂; so μ̂ ⊥ ν̂. In this situation, the current density oper-
ator in D dimensions flowing along the μ̂ direction Fourier
transformed along the propagation direction ν̂ of the EM
wave is

jμ(q) = e

aD

∑
k

vμ(k)c†
k+qσ ckσ , (18)

where vμ(k) = ∂μεk is the normal state group velocity at k
(not to be confused with the Bogoliubov coefficient vk). The
perturbation is described by

H ′ = −aD jμ(q)Aμ(q, t ), (19)

where Aμ(q, t ) = ∑
r Aμ(r, t )eiq·r is the Fourier component

of the time-dependent vector field polarized along μ̂. Defining
the Matsubara current-current correlator by

π (q, iω) = −aD

h̄

∫ β

0
dτ eiωτ 〈Tτ jμ(q, τ ) jμ(−q, 0)〉

= e2

aD

∑
k

v2
μP(k, q, iω), (20)

the optical conductivity σμμ(q, ω) ≡ σ (q, ω) along the direc-
tion of polarization μ̂ for a clean SC at zero temperature can
be calculated. According to the linear response theory, the
conductivity corresponds to taking the imaginary part of the
first term of Eq. (15) and correspondingly in Eq. (20), which
represents the absorption process, and then integrating over
momentum [50,51]

σ (q, ω) = 2πe2

ω

∫
dDk

(2π h̄)D
v2

μ

[
u2

k+qv
2
k

−ukvkuk+qvk+q
]
δ(h̄ω − Ek − Ek+q). (21)

We shall see below how the coherence factor in this expression
should be treated.

2. Static current-current correlator: Paramagnetic current

In the presence of a static vector field that modulates with
a finite wave vector q = qν̂, the zero-temperature London
equation (in SI units) is modified by [46]

Jμ(q) = Jμ1(q) + Jμ2(q) = K1(q)Aμ(q) + Jμ2(q), (22)

where Jμ2(q) is the usual diamagnetic current that gives the
Meissner effect and is determined by the penetration depth λL

in 3D. Equation (22) also implies that we work in the London
gauge where the vector potential is proportional to the current.
The Jμ1(q) is a paramagnetic current that acts against Jμ2(q)
and only occurs at q �= 0. The paramagnetic current may be
regarded as a response to the static vector field, described by
the perturbation in Eq. (19) but with a static Aμ(q, t ) = Aμ(q),
and may be calculated by a linear response theory

Jμ1(q) = 〈 jμ(q)〉 = −Re π (q, 0)|T =0Aμ(q), (23)

yielding the response coefficient

K1(q) = Re π (q, 0)|T =0 = e2

aD

∑
k

v2
μReP0(k, q, 0)

= −2e2
∫

dDk
(2π h̄)D

v2
μ

(uk+qvk − vk+quk )2

Ek + Ek+q
, (24)

which agrees with the result directly calculated from applying
first-order perturbation theory to the BCS ground state [46].

3. Static density-density correlator: Linear screening

The static ω = 0 dielectric function at zero tempera-
ture within the random phase approximation (RPA) is given
by [50]

ε(q, 0) = 1 − VqP0(q, 0), (25)

where V (q) = ∑
r eiq·rV (r) is the Fourier transform of the

Coulomb potential and P0(q, 0) is precisely that in Eq. (17)
integrated over the internal momentum k

P0(q, 0) =
∫

dDk
(2π h̄/a)D

ReP0(k, q, 0)

= −2
∫

dDk
(2π h̄/a)D

(uk+qvk − vk+quk )2

Ek + Ek+q
. (26)

The result is an expression very similar to that in Eq. (24).

III. s-WAVE SUPERCONDUCTORS

A. Mean field theory for s-wave SCs

Our first concrete example concerns the clean, prototype
s-wave superconductor in which analytical results for the
quantum metric can be given. For simplicity, we consider
the D-dimensional cubic lattice models with nearest-neighbor
hopping t and chemical potential μ, in which the dispersion is
given by

εk = −2t
D∑

i=1

cos ki − μ. (27)

The gap is a constant d1 = � and is treated as a parame-
ter (hence ∂μd1 = 0), and the derivative on the normal state
dispersion ∂μd3 = ∂μεk = vμ(k) ≡ vμ just gives the normal
state group velocity along the μ direction at momentum k.
Using Eq. (7), the quantum metric is

gμν = �2vμvν

4E4
k

. (28)

We see that �vμ/2Ek plays the role of a vielbein. We are
particularly interested in the region near the Fermi momentum
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k ≈ kF where the dispersion can be expanded by εk ≈ vF (k −
kF ). In addition, the BCS coherence length in the mean field
theory is given by

ξ = h̄vF

π�
. (29)

Denoting the quantum metric exactly at the Fermi momentum
as gμν (kF ), the quantum metric near the Fermi momentum
takes the Lorentzian form

gμν (k ≈ kF ) ≈ gμν (kF )

1 + 2π2(ξ/h̄)2(k − kF )2
,

gμν (kF ) = vμvν

4�2
. (30)

This simple formula allows us to plot the profile of the quan-
tum metric in momentum space.

To apply the optical conductivity formula in Eq. (21) to
s-wave SCs, we expand the coherence factor to second order
in q = qν̂, yielding

u2
k+qv

2
k − ukvkuk+qvk+q

≈ (qukvk + q2vk∂νuk )(vk∂νuk − uk∂νvk )

=
(

q�

2Ek
+ q2�3vν

4(Ek + εk )E3
k

)
�vν

2E2
k

. (31)

Moreover, we will approximate the argument in the δ function
by h̄ω − Ek − Ek+q ≈ h̄ω − 2Ek, which allows us to replace
the inverse frequency in the expression by 1/ω ≈ h̄/2Ek.
These approximations are justified because, given the typical
band gap � ∼ 0.01 eV of s-wave SCs, the minimal wave vec-
tor of the light that can excite quasiparticles is much smaller
than the Fermi momentum q � kF , allowing us to expand the
optical conductivity to first and second order in q. The reader
should be reminded that this expansion in q is appropriate for
clean SCs where momentum conservation is satisfied, in con-
trast to the seminal work of Mattis and Bardeen that discuss
the limit of dirty SCs where k and k + q are treated as two
unrelated momenta [50,51].

To apply the paramagnetic current formula in Eq. (24) to
an s-wave SC, we observe that the expansion of the coherence
factor to leading order in q = qν̂ yields the diagonal element
of the quantum metric along q

(uk+qvk − vk+quk )2 ≈ q2(vk∂νuk − uk∂νvk )2 = q2gνν, (32)

according to Eq. (7). In addition, an analytical expression for
these electromagnetic responses can be given for continuous
models with a quadratic dispersion, which has the expres-
sions of the energy dispersion, quantum metric, and coherence
length near the Fermi surface

Ek =
[(

k2

2m
− k2

F

2m

)2

+ �2

]1/2

≈ �

[
1 + 1

2

(
πξ

h̄

)2

(k − kF )2

]
,

gνν ≈ (k cos θ/m)2

4�2
[
1 + 2

(
πξ

h̄

)2
(k − kF )2

] ,

ξ = h̄kF /πm�. (33)

FIG. 1. (a) The Bogoliubov coefficients plotted as a two-
component vector field (vk, −uk ) in the momentum space of a 3D
s-wave SC. Without loss of generality the two-component vectors
are chosen to be lying on the xy plane. (b) The magnitude of quantum
metric gxx of the 3D s-wave SC in momentum space, which coincides
with the twisting of the vector field (vk,−uk ) in (a).

Moreover, because the width of the Lorentzians is extremely
small 1/ξ � kF , one may approximate them as δ functions

1[
1 + 1

2

(
πξ

h̄

)2
(k − kF )2

]n

≈ 1[
1 + 2nπ4

(
ξ

a

)2
(x − xF )2

]
= η2

η2 + (x − xF )2
≈ πηδ(x − xF ) (34)

after a change in the variable x = k/(2π h̄/a) and defining
η = a/

√
2nπ2ξ , where n is any power in the calculation.

These approximations allow us to express the electromagnetic
responses in terms of the fidelity number, as we shall see
below for the 3D and 2D cases.

B. Quantum geometry and electromagnetic response
of 3D s-wave SCs

1. Profile of the quantum metric in momentum space

To simulate the s-wave SC on a 3D cubic lattice, we use
the tight-binding model in Eq. (27) with t = 1 and μ = −0.2,
and a rather large gap � = 0.5 just to visualize the effect.
The profile of the Bogoliubov coefficients (vk,−uk ) plotted
as a two-component vector field in the 3D momentum space,
which can also be considered as the quasihole state |n〉 as a
unit vector in the Hilbert space at momentum k, is shown in
Fig. 1(a). One sees that both below and above the Fermi sur-
face, the vector field is fairly uniform, indicating that the wave
function is either holelike or electronlike. Only near the Fermi
surface does the vector field start to twist dramatically in order
to go from holelike to electronlike. As a result, the quantum
metric gxx(k) peaks at the Fermi surface of the normal state,
in accordance with Eq. (8).

For the continuous model, by using the approximations in
Eqs. (33) and (34), one can obtain the analytical expression
for the fidelity number

G3D
μμ =

∫
d3k

(2π )3
gμμ

= π2

6
√

2

(
ξ

a

)(
kF

2π h̄/a

)2( h̄

a

)
. (35)
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The factor kF /(2π h̄/a) in this expression is of the order
of unity; so the fidelity number is essentially given by the
coherence length divided by the lattice constant ξ/a times
the correct unit h̄/a. Remarkably, this result implies that the
fidelity number, or equivalently the spread of the Wannier
function [47–49], is synonymous with the coherence length,
and hence any property of SCs that is proportional to the
coherence length can as well be written in terms of the fidelity
number.

For the typical coherence length ξ ∼ micrometers and lat-
tice constant a ∼ nanometers of 3D s-wave SCs [46], one
obtains G3D

μμ ∼ 103(h̄/a). This value can be compared with
the fidelity number in 3D topological insulators (TIs) whose
dimensionless part scales as |M|a/h̄v + const ∼ O(1), where
v is the Fermi velocity and M is the band gap, which yields a
number that is of the order of unity [25]. Thus we see that the
fidelity number of s-wave SCs is actually two to three orders
of magnitude larger than that of a typical TI, indicating that
the BZ manifold of an s-wave SC is much more distorted, or
equivalently the Wannier functions are much more spread out
[47–49], in comparison with that of a 3D TI.

2. Infrared absorption

For a 3D s-wave SC, the optical conductivity in Eq. (21)
expanded to first order in q = qν̂ vanishes

σ 1st (q, ω) ≈ πe2h̄q
∫

d3k
(2π h̄)3

gμμvνδ(h̄ω − 2Ek )

= 0, (36)

since the quantum metric is even but the velocity is odd in k.
Thus the first nonvanishing contribution is second order in q

σ 2nd(q, ω) ≈ 2πe2 h̄q2

2m

∫
d3k

(2π h̄)3

[
mv2

ν�
2

E2
k (Ek + εk )

]
× gμμδ(h̄ω − 2Ek ), (37)

given by the integration of the quantum metric gμμ weighted
by the dimensionless factor mv2

ν�
2/E2

k (Ek + εk ) and the en-
ergy conservation condition. This expression is conceptually
different from the optical conductivity in semiconductors,
where the quantum metric is exactly the matrix element for
the excitation of electrons from the valence to the conduction
band [9,10,12]. In contrast, the Bogoliubov transformation
renders a more complicated form for the matrix element.
Nevertheless, the matrix element in Eq. (37) still contains the
contribution from the quantum metric.

3. Paramagnetic current

For a 3D s-wave SC, using Eqs. (24) and (32) yields the
response coefficient for the paramagnetic current

K3D
1 (q) ≈ −e2q2

∫
d3k

(2π h̄)3
v2

μ

gνν

Ek
. (38)

For the continuous model, we may define the ν̂ direction to be
along the solid angles (θ, φ) that are to be integrated out, and
the velocity factor to be vμ = cos(θ − α)k/m, where α is the
angle between the polarization μ̂ and the spatial modulation
ν̂ ‖ q̂ directions of the vector field A. The integration in the

spherical coordinate can then be carried out using Eqs. (33)
and (34), yielding

K3D
1 (q) ≈ −e2 4π6 f (α)√

10ma3

(
ξ

a

)2( q

2π h̄/a

)2( kF

2π h̄/a

)3

,

f (α) ≡ 4

15
+ 2

15
cos2 α. (39)

The kF /(2π h̄/a) is again of the order of unity, q/(2π h̄/a) is
the spatial modulation of the vector field measured in units
of the Fermi wavelength, and e2/ma3 is the correct unit for
K1(q) in 3D. Note that the factor [kF /(2π h̄/a)]3 essentially
represents the volume of the Fermi sea measured in units of
the BZ, which also roughly represents the electron density.
For most situations, the polarization and propagation of the
vector field are perpendicular, μ̂ ⊥ ν̂, yielding α = π/2, and
the angular factor is just f (α) = 4/15. Equation (39) means
that K1(q) is essentially given by the square of the coherence
length measured in units of the lattice constant (ξ/a)2 ∼ 106,
which can reach a very large number. Moreover, it can be
expressed in terms of the fidelity number Gνν in Eq. (35) as

K3D
1 (q) = −288π2

√
10

f (α)e2

ma3

(
q

2π h̄/a

)2

×
(

kF

2π h̄/a

)−1(G3D
νν

h̄/a

)2

, (40)

manifesting a quadratic dependence on the fidelity number.
Note that the quadratic dependence on q is well known in the
literature [46], and our calculation gives the prefactor of this
dependence a quantum geometrical interpretation.

4. Linear screening

For the linear screening, putting the expansion in Eq. (32)
into the dielectric response in Eq. (26) and approximating
Ek + Ek+q ≈ 2Ek yields

P3D
0 (q, 0) ≈ −q2

∫
d3k

(2π h̄/a)3

gνν

Ek
. (41)

Using the approximations in Eqs. (33) and (34), and also using
the fidelity number in Eq. (35), for the continuous model we
obtain

P3D
0 (q, 0) ≈ − 4π4

3
√

10�

(
ξ

a

)(
kF

2π h̄/a

)2( q

2π h̄/a

)2

= − 8π2

√
5�

(
q

2π h̄/a

)2 G3D
νν

h̄/a
, (42)

which may be used to extract Gνν provided that the lattice
constant a and gap � are known.

5. Fidelity marker near an impurity

In Figs. 2(a) and 2(b), we show the central region of a
cubic lattice in which we perform numerical calculations for
the fidelity marker Gxx(r) in the presence of a nonmagnetic
impurity with local impurity potential U . The marker is fairly
constant for sites far away from the impurity, but it is lo-
cally suppressed on the impurity site. Increasing the impurity
potential further suppresses the marker until it is completely
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FIG. 2. The fidelity marker in a 3D s-wave SC around a nonmag-
netic impurity with (a) a weak impurity potential U = 2, where the
largest sphere represents magnitude 0.332, and (b) a strong impurity
potential U = 1000, where the largest sphere corresponds to 0.339.

diminished, as can be seen by comparing Figs. 2(a) and 2(b).
Through calculating the spatial average of the marker, we find
that the average marker is suppressed by the impurity, indicat-
ing that nonmagnetic impurities reduce the average distance
between the quasihole states in momentum space for a 3D
s-wave SC.

C. Quantum geometry and electromagnetic
response of 2D s-wave SCs

1. Profile of the quantum metric in momentum space

An SC may be considered 2D if its thickness is smaller
than the in-plane coherence length [52]. We will consider
strictly 2D systems with an s-wave pairing and assume that the
Mermin-Wigner theorem [53] can be overcome by some other
factors not included in the mean field theory, such as weak
coupling between the planes. The Bogoliubov coefficients as
a 2D vector field are shown in Fig. 3(a). At a momentum k,
the twisting of this vector field under a small displacement δkx

along the x̂ direction gives the quantum metric gxx(k) shown
in Fig. 3(b). We obtain a profile of gxx(k) that highly peaks at
the Fermi surface, in agreement with Eq. (8).

For the continuous model of 2D s-wave SCs, analytically
carrying out the polar integration using the approximations in

FIG. 3. (a) The Bogoliubov coefficients as a 2D vector field for
a 2D s-wave SC in the first quartet of the BZ. The twisting of this
vector field under a small displacement δkx along the x̂ direction is
essentially the quantum metric gxx (k) shown in (b), which peaks at
the Fermi surface (dashed line).

Eqs. (33) and (34) yields the fidelity number

G2D
μμ =

∫
d2k

(2π )2
gμμ ≈ π2

8
√

2

(
ξ

a

)(
kF

2π h̄/a

)
. (43)

Once again the kF /(2π h̄/a) factor is of the order of unity;
so we see that the fidelity number is a dimensionless number
determined by the coherence length measured in units of the
lattice constant ξ/a, just as in the 3D case. As a result, any
property that is proportional to the coherence length is a direct
measurement of the fidelity number. Note that various 2D
SCs with evidence for s-wave pairing have been discovered
[54–59], although not much information about their coher-
ence length has been extracted. Nevertheless, within the BCS
framework and estimating from their low critical tempera-
tures, the coherence length of these materials should also be
of the order of micrometers, yielding a fidelity number ∼103.
This number is much larger than that in 2D TIs, which is
logarithmic to the band gap, ∼ ln |M|a/h̄v, and hence of the
order of unity, indicating a much more distorted BZ manifold
in 2D s-wave SCs.

2. Infrared absorption

The infrared absorption in 2D is precisely that in 3D given
by Eq. (37) with a reduction of the dimension of integration∫

d3k/(2π h̄)3 → ∫
d2k/(2π h̄)2. As a result, the quantum

metric still enters the integrand of the momentum integration.

3. Paramagnetic current

The paramagnetic current in 2D is given by that in
Eq. (38) with a reduction in the integration

∫
d3k/(2π h̄)3 →∫

d2k/(2π h̄)2. The analytical result for the continuous model
is

K2D
1 (q) = −2π5e2 f (α)√

10ma2

(
q

2π h̄/a

)2(
ξ

a

)2( kF

2π h̄/a

)2

= −256πe2 f (α)√
10ma2

(
q

2π h̄/a

)2(
G2D

νν

)2
,

f (α) ≡ π

4
+ π

2
cos2 α, (44)

which is quadratic in the fidelity number.

4. Linear screening

The linear screening in 2D can be calculated from re-
placing

∫
d3k/(2π h̄/a)3 → ∫

d2k/(2π h̄/a)2 in Eq. (41).
Applying the approximations in Eqs. (33) and (34) yields the
result for the continuous model

P2D
0 (q, 0) ≈ − π4

√
10�

(
ξ

a

)(
kF

2π h̄/a

)(
q

2π h̄/a

)2

= − 8π2

√
5�

(
q

2π h̄/a

)2

G2D
νν , (45)

which again implies that G2D
νν can be measured by detecting

P2D
0 (q, 0) in 2D in the q → 0 limit.
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FIG. 4. The fidelity marker in a 2D s-wave SC around a nonmag-
netic impurity with (a) impurity potential U = 2, where the largest
circle represents magnitude 0.433, and (b) U = 1000, where the
largest circle corresponds to 0.474.

5. Fidelity marker near an impurity

The fidelity marker around a nonmagnetic impurity in a
square lattice of a 2D s-wave SC is shown in Figs. 4(a) and
4(b). We find a behavior similar to that of 3D s-wave SC
shown in Sec. III B 5, namely, the marker is locally suppressed
on the impurity site by the impurity potential, causing the
average marker to be reduced. This implies that nonmagnetic
impurities also reduce the average distance between the quasi-
hole states in momentum space of a 2D s-wave SC.

IV. d-WAVE SUPERCONDUCTORS

A. Mean field theory for d-wave SCs

Finally, we investigate the quantum geometrical properties
of a d-wave SC within the context of mean field theory, which
may be particularly relevant to the overdoped regime of the
phase diagram [60,61]. The energy dispersion and the gap are
parametrized by

εk = −2t (cos kx + cos ky) + 4t ′ cos kx cos ky − μ = d3,

�k = 2�0(cos kx − cos ky) = d1, (46)

and Ek =
√

ε2
k + �2

k . For concreteness, we use (in units of
eV) t = 0.15, t ′ = 0.04, μ = −0.13, and �0 = 0.1; these val-
ues are appropriate for optimally doped to slightly overdoped
[62] Bi2Sr2CaCu2O8+x. The quantum metric calculated from
Eq. (7) takes the vielbein form

gμν = eμeν,

ex = �0

E2
k

sin kx(4t cos ky − 4t ′ cos2 ky + μ),

ey = �0

E2
k

sin ky(−4t cos kx + 4t ′ cos2 kx − μ). (47)

In Fig. 5(a), we present the unit vector field wk = (vk,−uk )
of the quasihole state, which exhibits a vortexlike feature
near the nodal point k0 where the energy dispersion Ek0 = 0,
meaning that the quasihole state as a unit vector in the Hilbert
space rotates very dramatically near the nodal point. As a
result, the quantum metric shown in Fig. 5(b) also displays
a very singular behavior that has a pair of maxima around the
nodal point.

FIG. 5. (a) The vector field of (vk, −uk ) in the momentum space
of a d-wave SC, and (b) the quantum metric gxx (k) that corresponds
to the twisting of this vector field.

To get a clear physical picture about the peculiar momen-
tum profile of the metric, an analytical expression can be
given for the pedagogical case when we manually turn off
t ′ = μ = 0 such that the Fermi surface has a diamond shape
and the nodal point is located at k0 = (π/2, π/2). In this case,
the corresponding bare quantum matric gμν expanded around
the nodal point k = k0 + δk takes the form

gxx ≈ �2
0 t2δk2

y[(
t2 + �2

0

)(
δk2

x + δk2
y

) + 2
(
t2 − �2

0

)
δkxδky

]2 ,

gyy ≈ �2
0 t2δk2

x[(
t2 + �2

0

)(
δk2

x + δk2
y

) + 2
(
t2 − �2

0

)
δkxδky

]2 , (48)

gxy ≈ −�2
0 t2δkxδky[(

t2 + �2
0

)(
δk2

x + δk2
y

) + 2
(
t2 − �2

0

)
δkxδky

]2 ,

which matches fairly well with the numerical results. We
see that approaching the nodal point {δkx, δky} → 0, the bare
quantum metric diverges. In addition, by changing to polar
coordinates (δkx, δky) = (k cos θ, k sin θ ), the expansion in
Eq. (48) becomes

gxx ≈ 1

k2
× �2

0t2 sin2 θ[(
t2 + �2

0

) + (
t2 − �2

0

)
sin 2θ

]2 ,

gyy ≈ 1

k2
× �2

0t2 cos2 θ[(
t2 + �2

0

) + (
t2 − �2

0

)
sin 2θ

]2 ,

gxy ≈ 1

k2
× −�2

0t2 sin θ cos θ[(
t2 + �2

0

) + (
t2 − �2

0

)
sin 2θ

]2 , (49)

which after a polar integration
∫

k dk dθ gμν diverges logarith-
mically, indicating that the fidelity number in Eq. (9) diverges
for d-wave SCs, and therefore it may not be directly related
to the electromagnetic responses we have discussed for s-
wave SCs. This also implies that the average distance between
Bloch states in the BZ of d-wave SCs diverges, owing to the
very singular behavior near the nodal points.
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B. Topological charge and metric-curvature
correspondence in d-wave SCs

The issue of topological charge in 2D d-wave SCs has been
discussed within the context of nodal SCs, where it has been
pointed out that the nodal points possess nonzero winding
numbers [63,64]. In this section, we elaborate that the winding
number can be visualized by the n field defined in Eq. (2), and
moreover it has a correspondence with the quantum metric.
Our observation is that the non-Abelian Berry connection
between quasihole and quasiparticle states of a singlet SC can
generally be written as

〈m|∂μn〉 = −sgn(�k )〈n|Ĉi∂μ|n〉

= −sgn(d1)
d1∂μd3 − d3∂μd1

2d2

= − sgn(�k )

2
(n1∂μn3 − n3∂μn1). (50)

In the first line of this equation we have used the operator
Ĉ = σ2K that implements the particle-hole (PH) symmetry
[64] ĈH (k)Ĉ−1 = −H (−k), which indicates that the non-
Abelian Berry connection can as well be implemented as a
kind of charge-conjugated Berry connection that is dressed by
the PH operator Ĉ. In a 2D d-wave SC, one can introduce
a winding number that counts how many times the n vector
winds along a circle enclosing a nodal point. The integration
of the non-Abelian Berry connection weighted by the sign
of the gap along such a circle is equivalently this winding
number (not to be confused with the PH operator Ĉ)

C =
∮

dφ

2π
(n1∂φn3 − n3∂φn1)

= −2
∮

dφ

2π
sgn(�k )〈m|∂φn〉 = 2

∮
dφ

2π
〈n|Ĉi∂φ|n〉

≡
∮

dφ

2π
Jn, (51)

where φ is the polar angle along the circle. As shown in
Fig. 6, by plotting the n vector in the momentum space, we see
clearly that each nodal point corresponds to a nonzero winding
number [64] (or topological charge) C = ±1. Furthermore,
the integrand of this topological charge may be written as a
determinant

Jn = det(n, ∂φn) =
∣∣∣∣n1 ∂φn1

n3 ∂φn3

∣∣∣∣ ≡ det En. (52)

As a result, the square of the integrand is equal to the az-
imuthal quantum metric

|Jn|2 = det ET
n En = det

(
n · n n · ∂φn

∂φn · n ∂ϕn · ∂ϕn

)
= ∂ϕn · ∂ϕn = 4 gφφ, (53)

after using n · n = 1 and Eq. (7). This relation between the
integrand of the topological charge and the quantum metric
has been referred to as the metric-curvature correspondence,
which is found to be true in any TIs and topological super-
conductors described by a Dirac model, as well as 2D Dirac
semimetals such as graphene. In this sense, graphene and

FIG. 6. The vector n = (n1, n3) defined in Eq. (2) plotted as unit
vectors in the momentum space of a d-wave SC. One sees that
the vector field has a nonzero winding about each nodal point as
indicated by the circles, and the winding is opposite between two
pairs of nodal points (red circles and green circles have opposite
winding numbers).

d-wave SCs actually have very similar topological and quan-
tum geometrical properties.

V. CONCLUSIONS

In summary, we elaborate that the filled quasihole state
|n〉 of singlet SCs possesses nontrivial quantum geometrical
properties. The quantum metric defined from the overlap of
quasihole states at momenta k and k + δk is nonzero and
can be simply understood as the twisting of the quasihole
state as a unit vector in the Hilbert space that can be visu-
alized from the Bogoliubov coefficients wk = (vk,−uk ). In
addition, the momentum integration of the quantum metric
yields a nonzero fidelity number, which is a measure of the
average distance between neighboring quasihole states in the
BZ, and equivalently the spread of quasihole Wannier func-
tions. For s-wave SCs, the fidelity number is essentially the
coherence length measured in terms of the lattice constant
and then multiplied by the correct unit. In other words, the
coherence length is actually a measure of the quantum ge-
ometry in s-wave SCs. We further show that the quantum
metric and fidelity number enter various electromagnetic re-
sponses such as infrared absorption, paramagnetic current,
and dielectric function, indicating that these responses are
directly related to the quantum geometry. The fidelity number
can be further defined on lattice sites as a fidelity marker,
and we find that nonmagnetic impurities locally suppress the
marker, signifying the influence of disorder on the quantum
geometrical properties of the s-wave SC. In contrast, for d-
wave SCs, we find that the quantum metric exhibits a very
singular profile near the nodal points, rendering a divergent
fidelity number. Besides, the non-Abelian Berry connection
that integrates to a topological charge of the nodal points is ac-
tually equivalent to the azimuthal quantum metric, satisfying
a metric-curvature correspondence. Our theory thus clarifies
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the quantum geometrical properties of singlet SCs and the
possibility of measuring them experimentally, as well as how
disorder may influence these properties. Many related issues,
such as whether the same aspects also apply to triplet SCs of
various pairing symmetries, await to be explored.
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