
PHYSICAL REVIEW B 108, 094505 (2023)

Microwave conductivity due to impurity scattering in cuprate superconductors
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Microwave surface impedance measurements on cuprate superconductors provide crucial information about
the effect of impurity scattering on quasiparticle transport; however, acquiring a full understanding of the effect
of impurity scattering on quasiparticle transport is still challenging. Here, starting from a homogenous electron
propagator and the related microscopic octet scattering model, which are obtained within the square-lattice
t-J model in the fermion-spin representation, the effect of impurity scattering on low-temperature microwave
conductivity in cuprate superconductors is investigated in the self-consistent T -matrix approach. The impurity-
dressed electron propagator obtained in the Fermi-arc-tip approximation of the quasiparticle excitations and
scattering processes is employed to derive the electron current-current correlation function by taking into account
the impurity-induced vertex correction. It is shown that the microwave conductivity spectrum is non-Drude-like,
with a sharp cusplike peak extending to zero energy and a high-energy tail falling slowly with energy. Moreover,
the microwave conductivity decreases with an increase in the impurity concentration or with an increase in the
strength of the impurity scattering potential. In striking contrast to the domelike shape of the doping dependence
of the superconducting transition temperature, the microwave conductivity exhibits a reverse domelike shape of
the doping dependence. The theory also shows that the unconventional features of the microwave conductivity
are generated by both the strong electron correlation and impurity scattering effects.

DOI: 10.1103/PhysRevB.108.094505

I. INTRODUCTION

For a conventional superconductor with an s-wave pair-
ing symmetry, the impurity scattering has little effect on
superconductivity [1,2]. However, cuprate superconductors
are anomalously sensitive to the impurity scattering [3–6],
since superconductivity involves a pairing state with the dom-
inant d-wave symmetry [7]. In particular, the superconducting
(SC) transition temperature Tc in cuprate superconductors
is systematically diminished with impurities [8–15], which
therefore confirms definitely that the impurity scattering has
a large impact on superconductivity [3–6]. In this case,
understanding the effect of the impurity scattering on super-
conductivity is a central issue for cuprate superconductors.

Among the striking features of the SC state in cuprate
superconductivity, the physical quantity which most evidently
displays the dramatic effect of the impurity scattering on su-
perconductivity is the quasiparticle transport [3–6], which is
manifested by the microwave conductivity. This microwave
conductivity contains a wealth of information on the SC-
state quasiparticle response and is closely associated with
the superfluid density [3–6]. By virtue of systematic stud-
ies using the microwave surface impedance measurements,
the low-temperature features of the SC-state quasiparticle
transport in cuprate superconductors have been well estab-
lished [3–6,16–20], where an agreement has emerged that
the microwave conductivity is dominated mainly by ther-
mally excited quasiparticles being scattered by impurities. In
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particular, as evidence of the very long-lived quasiparticle ex-
citation deep in the SC state, the low-temperature microwave
conductivity spectrum has a cusplike shape of the energy
dependence [16–20]. However, it is still unclear how this mi-
crowave conductivity evolves with the impurity concentration.
Moreover, experimental observations have also shown that
even minor concentrations of impurities lead to changes in
the temperature dependence of the magnetic field penetration
depth from linear in pure systems to quadratic [21], while
the ratio of the low-temperature superfluid density and effec-
tive mass of the electrons ns(T → 0)/m∗ is decreased when
one increases the impurity concentration [22–24].

In the d-wave SC state of cuprate superconductors, the
SC gap vanishes along the nodal direction of the electron
Fermi surface (EFS) [7], and then as a natural consequence,
most properties well below Tc ought to be controlled by
the quasiparticle excitations around the nodal region of the
EFS. In this case, the d-wave Bardeen-Cooper-Schrieffer-type
(BCS-type) formalism [3–6], incorporating the effect of the
impurity scattering within the self-consistent T -matrix ap-
proach, has been employed to study the effect of the impurity
scattering on the microwave conductivity of cuprate super-
conductors [25–32], where the impurity scattering self-energy
was evaluated in the nodal approximation of the quasiparti-
cle excitations and scattering processes and then was used
to calculate the electron current-current correlation function
by including the contributions of the impurity-induced vertex
correction and Fermi-liquid correction [26–31]. The obtained
results show that both the impurity-induced vertex correction
and the Fermi-liquid correction modify the microwave con-
ductivity [26–31]. However, (i) although the contribution from
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the Fermi-liquid correction is included, these treatments suffer
from ignoring the strong electron correlation effect in the
homogenous part of the electron propagator [25–31], while
this strong electron correlation effect also plays an important
role in the SC-state quasiparticle transport; (ii) moreover,
angle-resolved photoemission spectroscopy (ARPES) exper-
iments [33–35] have shown clearly that the Fermi arcs that
emerge due to the EFS reconstruction in the case of zero
energy [36–43] can persist into the case for a finite binding
energy, where a particularly large fraction of the spectral
weight is located around the tips of the Fermi arcs. These
tips of the Fermi arcs connected by the scattering wave vec-
tors qi thus construct an octet scattering model, and then
the quasiparticle scattering with the scattering wave vectors
qi contributes effectively to the quasiparticle scattering pro-
cesses [33–35]. In particular, this octet scattering model has
been employed to give a consistent explanation of the ex-
perimental data detected from Fourier transform scanning
tunneling spectroscopy [44–48] and the ARPES autocorre-
lation pattern observed from ARPES experiments [33–35].
These experimental results [33–48] therefore have shown
clearly that the shape of the EFS has deep consequences for
the various properties of cuprate superconductors, while such
an aspect should also be reflected in the SC-state quasiparticle
transport.

In early works [49–52], the SC mechanism and the related
SC-state properties in cuprate superconductors were discussed
based on the square-lattice t-J model in the fermion-spin
representation, where the formation of the Fermi arcs arises
from the coupling of the electrons with the spin excitations,
and then the scattering wave vectors connecting the tips of
the Fermi arcs construct an octet scattering model [52]. In
our recent study [53], we started from the homogenous part
of the electron propagator and the related microscopic octet
scattering model to discuss the influence of the impurity
scattering on the electronic structure of cuprate supercon-
ductors in the self-consistent T -matrix approach, where the
impurity scattering self-energy is derived in the Fermi-arc-tip
approximation of the quasiparticle excitations and scattering
processes, and then the impurity-dressed electron propagator
incorporates both the strong electron correlation effect and the
impurity scattering effect. The obtained results [53] show that
the decisive role played by the impurity scattering self-energy
in the particle-hole channel is the further renormalization of
the quasiparticle band structure with a reduced quasiparti-
cle lifetime, while the impurity scattering self-energy in the
particle-particle channel induces a strong deviation from the
d-wave behavior of the SC gap, leading to the existence of
a finite gap over the entire EFS. In this paper, we study the
effect of the impurity scattering on the microwave conduc-
tivity in cuprate superconductors along this line by taking
into account the impurity-induced vertex correction, where
the impurity-dressed electron propagator [53] is employed to
evaluate the vertex-corrected electron current-current corre-
lation function in the self-consistent T -matrix approach, and
the obtained results in the Fermi-arc-tip approximation of
the quasiparticle excitations and scattering processes show
that the low-temperature microwave conductivity spectrum is
non-Drude-like, with a sharp cusplike peak extending to zero
energy and a high-energy tail falling slowly with energy, in

agreement with the corresponding experiments [16–20]. In
particular, although the low-energy cusplike peak decays as
→ 1/[ω + const], the overall shape of the microwave con-
ductivity spectrum exhibits a special non-Drude-like behavior
with the depicted formula that has also been used to fit the
corresponding experimental data in Ref. [19]. Moreover, the
microwave conductivity decreases with ascending impurity
concentration or with rising strength of the impurity scattering
potential. Our results therefore show that the highly unconven-
tional features of the microwave conductivity are induced by
both the strong electron correlation and the impurity scattering
effects.

The remainder of this paper is organized as follows:
Sec. II contains details regarding the calculation technique of
the microwave conductivity in the presence of the impurity
scattering. The quantitative characteristics of the impurity
scattering effect on the doping and energy dependence of
the microwave conductivity are presented in Sec. III, where
the calculation for the microwave conductivity is performed
numerically on a 120 × 120 lattice in momentum space, and
then the obtained results show that in striking contrast to the
domelike shape doping dependence of Tc, the minimum of the
microwave conductivity occurs around the optimal doping and
then increases in both underdoped and overdoped regimes.
Finally, we give a summary in Sec. IV. In the Appendix, we
present the details of the derivation of the vertex kernels of the
electron current-current correlation function.

II. THEORETICAL FRAMEWORK

It was recognized shortly after the discovery of supercon-
ductivity in cuprate superconductors that the essential physics
of cuprate superconductors is contained in the square-lattice
t-J model [54,55],

H = −
∑
ll ′σ

tll ′C
†
lσCl ′σ + μ

∑
lσ

C†
lσClσ + J

∑
l η̂

Sl · Sl+η̂, (1)

where C†
lσ (Clσ ) creates (annihilates) a constrained electron

with spin index σ = ↑,↓ on lattice site l , Sl is spin operator
with its components Sx

l , Sy
l , and Sz

l , and μ is the chemical po-
tential. The kinetic-energy part includes the electron-hopping
term tll ′ = tη̂ = t between the nearest-neighbor (NN) sites η̂

and the electron-hopping term tll ′ = tη̂′ = t ′ between the next-
nearest-neighbor sites η̂′, while the magnetic-energy part is
described by a Heisenberg term with the magnetic interaction
J between the NN sites η̂. As a qualitative discussion, the
commonly used parameters in the t-J model (1) are chosen as
t/J = 2.5 and t ′/t = 0.3 as in our previous discussions [53].
However, when necessary to compare with the experimental
data, we set J = 1000 K.

The basis set of the t-J model (1) is restricted by the
requirement that no lattice site may be doubly occupied by
electrons [56–59], i.e.,

∑
σ C†

lσClσ � 1. Our method employs
a fermion-spin theory description of the t-J model (1) together
with the on-site local constraint of no double electron occu-
pancy [51,60], where the constrained electron operators Cl↑
and Cl↓ in the t-J model (1) are separated into two distinct
operators as

Cl↑ = h†
l↑S−

l , Cl↓ = h†
l↓S+

l (2)
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[with the spinful fermion operator hlσ = e−i�lσ hl that de-
scribes the charge degree of freedom of the constrained
electron together with some effects of spin configuration re-
arrangements due to the presence of the doped hole itself
(charge carrier) and the spin operator Sl that represents the
spin degree of freedom of the constrained electron], and then
the local constraint of no double electron occupancy is ful-
filled in actual analyses.

Starting from the t-J model (1) in the fermion-spin rep-
resentation (2), the kinetic-energy-driven SC mechanism has
been established [49–52], where the charge carriers are held
together in the d-wave pairs in the particle-particle channel
due to the effective interaction, which originates directly from
the kinetic energy of the t-J model (1) in the fermion-spin
representation (2) by the exchange of spin excitations; then
the d-wave electron pairs originating from the d-wave charge-
carrier pairing state are due to the charge-spin recombination,
and their condensation reveals the d-wave SC state. In these
previous discussions, the homogenous electron propagator of
the t-J model (1) in the SC state has been obtained explicitly
in the Nambu representation as [52]

G̃(k, ω) =
(

G(k, ω), �(k, ω)
�†(k, ω), −G(k,−ω)

)

= 1

F (k, ω)
{[ω − �0(k, ω)]τ0 + �1(k, ω)τ1

+�2(k, ω)τ2 + [εk + �3(k, ω)]τ3}, (3)

where τ0 is the unit matrix; τ1, τ2, and τ3 are Pauli
matrices; εk = −4tγk + 4t ′γ ′

k + μ is the energy disper-
sion in the tight-binding approximation, with γk = (coskx +
cosky)/2 and γ ′

k = coskxcosky; F (k, ω) = [ω − �0(k, ω)]2 −
[εk + �3(k, ω)]2 − �2

1 (k, ω) − �2
2 (k, ω); and the homoge-

nous self-energy has been expanded into its constituent Pauli
matrix components as

�̃(k, ω) =
3∑

α=0

�α (k, ω)τα

=
(

�0(k, ω) + �3(k, ω), �1(k, ω) − i�2(k, ω)
�1(k, ω) + i�2(k, ω), �0(k, ω) − �3(k, ω)

)
,

(4)

with �0(k, ω) and �3(k, ω) that being the antisymmetric and
symmetric parts, respectively, of the homogenous self-energy
in the particle-hole channel, while �1(k, ω) and �2(k, ω) are
the real and imaginary parts, respectively, of the homogenous
self-energy in the particle-particle channel. Moreover, these
homogenous self-energies, �0(k, ω), �1(k, ω), �2(k, ω), and
�3(k, ω), have been derived explicitly in Ref. [52] in terms
of the full charge-spin recombination. In particular, the sharp
peaks visible for temperature T → 0 in �0(k, ω), �1(k, ω),

�2(k, ω), and �3(k, ω) are actually a δ function, broadened
by a small damping used in the numerical calculation for
a finite lattice. The calculation in this paper for �0(k, ω),
�1(k, ω), �2(k, ω), and �3(k, ω) is performed numerically
on a 120 × 120 lattice in momentum space, with the infinites-
imal i0+ → i� replaced by a small damping � = 0.05J .

The homogenous electron spectral function can be ob-
tained directly from the above homogenous electron propaga-
tor (3). In this case, the topology of the EFS in the pure system
has been discussed in terms of the intensity map of the ho-
mogenous electron spectral function at zero energy [61–63],
and the obtained results show that EFS contour is broken
up into disconnected Fermi arcs located around the nodal
region [36–43]; however, a large number of the low-energy
electronic states are available around the tips of the Fermi
arcs, and then all the anomalous properties arise from these
quasiparticle excitations located around the tips of the Fermi
arcs. In particular, these tips of the Fermi arcs connected by
the scattering wave vectors qi naturally construct an octet
scattering model, and then the quasiparticle scattering with
the scattering wave vectors qi therefore contributes effectively
to the quasiparticle scattering processes [44–48]. Moreover,
this octet scattering model can persist into the case for a
finite binding energy [33–35], which leads to the sharp peaks
in the ARPES autocorrelation spectrum with the scattering
wave vectors qi being directly correlated to the regions of the
highest joint density of states.

A. Impurity-dressed electron propagator

In the low-temperature limit, the framework for discus-
sions of the impurity scattering effect is the self-consistent
T -matrix approach [3–6,64–66]. The discussions of the
low-temperature microwave conductivity of cuprate super-
conductors in this paper build on the impurity-dressed
electron propagator, which is obtained from the dress of the
homogenous electron propagator (3) via the impurity scat-
tering [53], where the self-consistent T -matrix approach is
employed to derive the impurity scattering self-energy in the
Fermi-arc-tip approximation of the quasiparticle excitations
and scattering processes. For convenience, in the following
discussions of the microwave conductivity a short summary of
the derivation process of the impurity-dressed electron propa-
gator [53] is therefore given in this section.

The homogenous electron propagator in Eq. (3) is dressed
due to the presence of the impurity scattering [3–6] and can
be expressed explicitly as

G̃I(k, ω)−1 = G̃(k, ω)−1 − �̃I(k, ω), (5)

where, in striking similarity to the homogenous self-energy
(4), the impurity scattering self-energy �̃I(k, ω) can also be
expanded into its constituent Pauli matrix components as

�̃I(k, ω) =
3∑

α=0

�Iα (k, ω)τα

=
(

�I0(k, ω) + �I3(k, ω), �I1(k, ω) − i�I2(k, ω)
�I1(k, ω) + i�I2(k, ω), �I0(k, ω) − �I3(k, ω)

)
. (6)
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FIG. 1. The impurity scattering in the microscopic octet scat-
tering model, where V1 is the impurity scattering potential for the
intratip scattering, V2, V3, V7, and V8 are the impurity scattering
potentials for the adjacent-tip scattering, and V4, V5, and V6 are the
impurity scattering potentials for the opposite-tip scattering. In the
d-wave superconducting state, the tips of the Fermi arcs are divided
into two groups: the tips of the Fermi arcs located in the region
|ky| > |kx| (region A) and the tips of the Fermi arcs located in the
region |kx| > |ky| (region B).

The above impurity scattering self-energy together with the
dressed electron propagator (5) can be analyzed in the self-
consistent T -matrix approach [64–66], where �̃I(k, ω) can be
derived approximately as

�̃I(k, ω) = niNT̃kk(ω), (7)

with the impurity concentration ni, the number of sites on a
square lattice N , and the diagonal part of the T matrix T̃kk(ω),
while the self-consistent T -matrix equation can be expressed
formally by the summation of all impurity scattering pro-
cesses as

T̃kk′ = 1

N
τ3Vkk′ + 1

N

∑
k′′

Vkk′′τ3G̃I(k′′, ω)T̃k′′k′ , (8)

where Vkk′ is the momentum dependence of the impurity
scattering potential. It thus shows that the initial and final
momenta of an impurity scattering event must always be equal
to the momentum space sited in the Brillouin zone (BZ).

However, in the microscopic octet scattering model [53]
shown in Fig. 1, a particularly large fraction of the spectral
weight is accommodated around eight tips of the Fermi arcs
in the case of low temperatures and low energies, indicating
that a large number of the quasiparticle excitations are induced
only around these eight tips of the Fermi arcs. On the other
hand, the strength of the impurity scattering potential Vkk′ in
the T -matrix equation (8) falls off quickly when the momen-
tum shifts away from the tips of the Fermi arcs. In this case,
the initial and final momenta of an impurity scattering event
are always approximately equal to the momentum space sited
around one of these eight tips of the Fermi arcs. In this Fermi-
arc-tip approximation [53], we only need to consider three

possible cases as shown in Fig. 1 for the impurity scattering
potential Vkk′ in the T -matrix equation (8): (i) the impurity
scattering potential for the scattering process at the tip of the
Fermi arc Vkk′ = V1, where k and k′ are located at the same
tip of the Fermi arc; (ii) the impurity scattering potentials
for the scattering process at the adjacent tips of the Fermi
arcs Vkk′ = V2, Vkk′ = V3, Vkk′ = V7, and Vkk′ = V8, where k
and k′ are located at the adjacent tips of the Fermi arcs; (iii)
the impurity scattering potentials for the scattering process at
the opposite tips of the Fermi arcs Vkk′ = V4, Vkk′ = V5, and
Vkk′ = V6, where k and k′ are located at the opposite tips of the
Fermi arcs. Then the impurity scattering potential Vkk′ in the
self-consistent T -matrix equation (8) is reduced as an 8 × 8
matrix,

Ṽ =

⎛
⎜⎜⎝

V11 V12 · · · V18

V21 V22 · · · V28
...

...
. . .

...

V81 V82 · · · V88

⎞
⎟⎟⎠, (9)

where the matrix elements are given by Vj j = V1 for j =
1, 2, 3, . . . , 8; Vj j′ = Vj′ j = V2 for j = 1, 2, 3, 6 with the cor-
responding j′ = 7, 4, 5, 8, respectively; Vj j′ = Vj′ j = V3 for
j = 1, 2, 3, 4 with the corresponding j′ = 8, 7, 6, 5, respec-
tively; Vj j′ = Vj j′ = V4 for j = 1, 2, 3, 4 with the correspond-
ing j′ = 6, 5, 8, 7, respectively; Vj j′ = Vj′ j = V5 for j =
1, 2, 3, 4 with the corresponding j′ = 5, 6, 7, 8, respectively;
Vj j′ = Vj′ j = V6 for j = 1, 2, 4, 5 with the corresponding j′ =
3, 8, 6, 7, respectively; Vj j′ = Vj′ j = V7 for j = 1, 2, 5, 6 with
the corresponding j′ = 4, 3, 8, 7, respectively; and Vj j′ =
Vj′ j = V8, for j = 1, 3, 5, 7 with the corresponding j′ =
2, 4, 6, 8, respectively.

With the help of the above impurity scattering potential
matrix Ṽ , the self-consistent T -matrix equation (8) is reduced
as a 16 × 16-matrix equation around eight tips of the Fermi
arcs as

T̃j j′ = 1

N
τ3Vj j′ + 1

N

∑
j′′k′′

Vj j′′ [τ3G̃I(k′′, ω)]T̃j′′ j′ , (10)

where j, j′, and j′′ label the tips of the Fermi arcs, the sum-
mation k′′ is restricted within the area around the tip j′′ of
the Fermi arc, and T̃j j′ is now an impurity-average quantity.
Then the impurity scattering self-energy �̃I(k, ω) in Eq. (7) is
obtained as

�̃I(ω) = niNT̃j j (ω). (11)

It has been shown that the diagonal propagator in Eq. (5) is
symmetrical about the nodal direction, while the off-diagonal
propagator is asymmetrical about the nodal direction, since
the SC state has a d-wave symmetry [53]. In this case, the
region of the location of the tips of the Fermi arcs has been
separated into two groups: the tips of the Fermi arcs located in
the region |ky| > |kx| (region A) and the tips of the Fermi arcs
located in the region |kx| > |ky| (region B). Then the dressed
electron propagator G̃I (k, ω) in Eq. (5) can also be derived in
regions A and B as [53]

G̃(A)
I (k, ω) = 1

F (A)
I (k, ω)

{
[ω − �0(k, ω) − �I0(ω)]τ0

+[
�1(k, ω) + �

(A)
I1 (ω)

]
τ1
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+[
�2(k, ω) + �

(A)
I2 (ω)

]
τ2

+[εk + �3(k, ω) + �I3(ω)]τ3
}
, (12a)

G̃(B)
I (k, ω) = 1

F (B)
I (k, ω)

{
[ω − �0(k, ω) − �I0(ω)]τ0

+[
�1(k, ω) + �

(B)
I1 (ω)

]
τ1

+[
�2(k, ω) + �

(B)
I2 (ω)

]
τ2

+[εk + �3(k, ω) + �I3(ω)]τ3
}
, (12b)

respectively, where F (A)
I (k, ω) = [ω − �0(k, ω) − �I0(ω)]2

− [εk + �3(k, ω) + �I3(ω)]2 − [�1(k, ω) + �
(A)
I1 (ω)]2 −

[�2(k, ω) + �
(A)
I2 (ω)]2 and F (B)

I (k, ω) = [ω − �0(k, ω) −
�I0(ω)]2−[εk+�3(k, ω)+�I3(ω)]2 − [�1(k, ω)+�

(B)
I1 (ω)]2

− [�2(k, ω) + �
(B)
I2 (ω)]2. In the self-consistent T -matrix

approach, these impurity scattering self-energies, �
(A)
I0 (ω)

[�(B)
I0 (ω)], �

(A)
I1 (ω) [�(B)

I1 (ω)], �
(A)
I2 (ω) [�(B)

I2 (ω)],
and �

(A)
I3 (ω) [�(B)

I3 (ω)], and the related T matrix
T̃ (A)

j j′ = ∑
α T (α)

A j j′τα [T̃ (B)
j j′ = ∑

α T (α)
B j j′τα] with the matrix

elements T (α)
A j j′ [T (α)

B j j′ ] in Eq. (10) have been obtained in the
Fermi-arc-tip approximation of the quasiparticle excitations
and scattering processes and are given explicitly in Ref. [53].

With the help of the above dressed electron propagator
(12) (then the dressed electron spectral function), we [53]
have also discussed the influence of the impurity scattering
on the electronic structure of cuprate superconductors, and the
obtained results of the line shape in the quasiparticle excita-

tion spectrum and the ARPES autocorrelation spectrum are
well consistent with the corresponding experimental results
[33–35,67–73].

B. Microwave conductivity

Now we turn to derive the microwave conductivity of
cuprate superconductors in the presence of impurities, which
is closely associated with the dressed electron propagator (12).
The linear response theory allows one to obtain the microwave
conductivity in terms of the Kubo formula [64],

↔
σ (, T ) = − Im�↔()


, (13)

where �↔() is the retarded electron current-current corre-
lation function and can be expressed explicitly as

↔
�(im) = − 1

N

∫ β

0
dτeimτ 〈Tτ J(τ )J(0)〉, (14)

with β = 1/T , the bosonic Matsubara frequency m =
2πm/β, and the current density of electrons J. This current
density of electrons can be obtained in terms of the electron
polarization operator, which is a summation over all the parti-
cles and their positions [64], and can be expressed explicitly in
the fermion-spin representation (2) as P = ∑

lσ RlĈ
†
lσĈlσ =

1
2

∑
lσ Rl hlσ h†

lσ . Within the t-J model (1) in the fermion-spin
representation (2), the current density of electrons is obtained
by evaluating the time derivative of the polarization operator
using Heisenberg’s equation of motion as

J = −ie[H, P] = −i
1

2
et

∑
〈l η̂〉

η̂(h†
l+η̂↑hl↑S+

l S−
l+η̂ + h†

l+η̂↓hl↓S†
l S−

l+η̂ ) + i
1

2
et ′ ∑

〈l η̂′〉
η̂′(h†

l+η̂′↑hl↑S+
l S−

l+η̂′ + h†
l+η̂′↓hl↓S†

l S−
l+η̂′ )

= i
1

2
et

∑
〈l η̂〉σ

η̂C†
lσCl+η̂σ − i

1

2
et ′ ∑

〈l η̂′〉σ
η̂′C†

lσCl+η̂′σ ≈ −eV F

∑
kσ

C†
kσ

Ckσ , (15)

with the electron charge e and the electron Fermi velocity V F,
which can be derived directly from the energy dispersion εk
in the tight-binding approximation in Eq. (3) as

V F = V (x)
F k̂x + V (y)

F k̂y = VF[k̂x cos θkF + k̂y sin θkF ], (16)

where V (x)
F = t sin k(x)

F − 2t ′ sin k(x)
F cos k(y)

F , V (y)
F =

t sin k(y)
F − 2t ′ sin k(y)

F cos k(x)
F , cos θkF = V (x)

F /VF, sin θkF =
V (y)

F /VF, and VF =
√

[V (x)
F ]2 + [V (y)

F ]2. For convenience, in
the following discussions of the electron current-current
correlation function (14) the electron operators can be
rewritten in the Nambu representation as �

†
k = (C†

k↑,C−k↓)

and �k = (Ck↑,C†
−k↓)T, and then the current density

of electrons in Eq. (15) can be rewritten in the Nambu
representation as

J = −eV F

∑
k

�
†
kτ0�k. (17)

With the help of the above current density of electrons (17),
the impurity-induced vertex-corrected current-current correla-
tion function (14) can be formally expressed in terms of the
dressed electron propagator as

↔
�(im) = 1

N

∫ β

0
dτeimτ

↔
�(τ ) = (eVF)2 1

N

∑
k

1

β

∑
iωn

k̂ Tr[G̃I(k, iωn)G̃I(k, iωn + im)�̃(k, iωn, im)], (18)

where ωn = (2n + 1)π/β is the fermionic Matsubara frequency, while the impurity-induced vertex correction in the ladder
approximation can be generally expressed as [64]

�̃(k, iωn, im) = k̂τ0 + niN
∑

k′′
T̃kk′′ (iωn + im)G̃I(k

′′, iωn + im)�̃(k′′, iωn, im)G̃I(k
′′, iωn)T̃k′′k(iωn). (19)
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Starting from the homogenous part of the d-wave BCS-type formalism, the effect of the impurity scattering on the microwave
conductivity has been discussed in the self-consistent T -matrix approach by taking into account the impurity-induced vertex
correction [26–31], where the vertex-corrected electron current-current correlation function and the related impurity-dressed
electron propagator have been evaluated in the nodal approximation. In the following discussions, the vertex-corrected electron
current-current correlation function is generalized from the previous case obtained in the nodal approximation [26–31] to the
present case in the Fermi-arc-tip approximation, where the impurity-induced vertex correction for the electron current-current
correlation function (19) can be expressed explicitly in regions A and B as

�̃(A)(k, iωn, im) = k̂( j)
F τ0 + k̂( j)

x �̃(A)
x (iωn, im) + k̂( j)

y �̃(A)
y (iωn, im), for j ∈ odd, (20a)

�̃(B)(k, iωn, im) = k̂( j)
F τ0 + k̂( j)

x �̃(B)
x (iωn, im) + k̂( j)

y �̃(B)
y (iωn, im), for j ∈ even, (20b)

respectively, while the vertex kernels �̃(A)
x (iωn, im), �̃(A)

y (iωn, im), �̃(B)
x (iωn, im), and �̃(B)

y (iωn, im) satisfy the following
self-consistent equations:

k̂( j)
x �̃(A)

x (iωn, im) + k̂( j)
y �̃(A)

y (iωn, im) = niN

{ ∑
k∈A

j′′∈odd

T̃j j′′ (iωn + im)G̃(A)
I (k, iωn + im)

×[
k̂( j′′ )

F τ0 + k̂( j′′ )
x �̃(A)

x (iωn, im) + k̂( j′′ )
y �̃(A)

y (iωn, im)
]
G̃(A)

I (k, iωn)T̃j′′ j (iωn)

+
∑
k∈B

j′′∈even

T̃j j′′ (iωn + im)G̃(B)
I (k, iωn + im)

[
k̂( j′′ )

F τ0 + k̂( j′′ )
x �̃(B)

x (iωn, im)

+k̂( j′′ )
y �̃(B)

y (iωn, im)
]
G̃(B)

I (k, iωn)T̃j′′ j (iωn)

}
, for j ∈ odd, (21a)

k̂( j)
x �̃(B)

x (iωn, im) + k̂( j)
y �̃(B)

y (iωn, im) = niN

{ ∑
k∈A

j′′∈odd

T̃j j′′ (iωn + im)G̃(A)
I (k, iωn + im)

×[
k̂( j′′ )

F τ0 + k̂( j′′ )
x �̃(A)

x (iωn, im) + k̂( j′′ )
y �̃(A)

y (iωn, im)
]
G̃(A)

I (k, iωn)T̃j′′ j (iωn)

+
∑
k∈B

j′′∈even

T̃j j′′ (iωn + im)G̃(B)
I (k, iωn + im)

[
k̂( j′′ )

F τ0 + k̂( j′′ )
x �̃(B)

x (iωn, im)

+k̂( j′′ )
y �̃(B)

y (iωn, im)
]
G̃(B)

I (k, iωn)T̃j′′ j (iωn)

}
, for j ∈ even. (21b)

Substituting the above results from Eq. (21) into Eqs. (19) and (18), the vertex-corrected electron current-current correlation
function (18) now can be expressed as

↔
�(im) = (

eV (TFA)
F

)2 1

N

∑
k

1

β

∑
iωn

(k̂x + k̂y)Tr
{
G̃I(k, iωn)G̃I(k, iωn + im)[k̂Fτ0 + k̂x�̃x(iωn, im) + k̂y�̃y(iωn, im)]

}

= (
eV (TFA)

F

)2 ∑
j∈odd

1

β

∑
iωn

(
k̂( j)

x + k̂( j)
y

)
Tr

{
1

N

∑
k∈A

G̃(A)
I (k, iωn)G̃(A)

I (k, iωn + im)
[
k̂( j)

F τ0 + k̂( j)
x �̃(A)

x (iωn, im)

+k̂( j)
y �̃(A)

y (iωn, i)m
]} + (

eV (TFA)
F

)2 ∑
j∈even

1

β

∑
iωn

(
k̂( j)

x + k̂( j)
y

)
Tr

{
1

N

∑
k∈B

G̃(B)
I (k, iωn)G̃(B)

I (k, iωn + im)

×[
k̂( j)

F τ0 + k̂( j)
x �̃(B)

x (iωn, im) + k̂( j)
y �̃(B)

y (iωn, im)
]}

, (22)

with the electron Fermi velocity V (TFA)
F around the tips of the Fermi arcs. However, in the absence of an external magnetic field,

the rotational symmetry in the system is unbroken, indicating that �xy() = �yx() = 0 and �xx() = �yy(), and then the
above vertex-corrected electron current-current correlation function (22) is reduced as

↔
�(im) =

(
�xx(im) 0

0 �yy(im)

)
= τ0�xx(im), (23)
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where �xx(im) is given by

�xx(im) = (
2eV (TFA)

F

)2 1

β

∑
iωn

Jxx(iωn, iωn + im), (24)

with the kernel function

Jxx(iωn, iωn + im) = 1

N

3∑
α=0

{
cos2 θ

(A)
F Ĩ (A)

0 (α, iωn, iωn + im)Tr
[
τα

[
τ0 + �̃(A)

x (iωn, im)
]]

+ cos2 θ
(B)
F Ĩ (B)

0 (α, iωn, iωn + im)Tr
[
τα

[
τ0 + �̃(B)

x (iωn, im)
]]}

, (25)

where the functions Ĩ (A)
0 (α, iωn, iωn + im) and Ĩ (B)

0 (α, iωn, iωn + im) are defined as

∑
k∈A

G̃(A)
I (k, iωn)τγ G̃(A)

I (k, iωn + im) =
3∑

β=0

Ĩ (A)
γ (β, iωn, iωn + im)τβ, (26a)

∑
k∈B

G̃(B)
I (k, iωn)τγ G̃(B)

I (k, iωn + im) =
3∑

β=0

Ĩ (B)
γ (β, iωn, iωn + im)τβ, (26b)

respectively. After a quite complicated calculation, the function Tr[τα�̃(A)
x (ω,)] in the above kernel function (25), which is a

trace of the product of the vertex kernel �̃(A)
x (ω,) and matrix τα with α = 0, 1, 2, 3 in region A of the BZ, and the function

Tr[τα�̃(B)
x (ω,)] in the above kernel function (25), which is a trace of the product of the vertex kernel �̃(B)

x (ω,) and matrix
τα in region B of the BZ, can be derived straightforwardly (see the Appendix), and then the above kernel function Jxx(ω,ω + )
can be obtained explicitly.

On the other hand, the dressed electron propagators G̃I(k, iωn) and G̃I(k, iωn + im) are involved directly in the above kernel
function Jxx(iωn, iωn + im) in Eq. (25); then the singularity of Jxx(iωn, iωn + im) only lies on the real axes (ε ∈ R) and those
parallel to the real axes (ε − im). In this case, the contribution for the summation of the kernel function Jxx(iωn, iωn + im)
in Eq. (24) over the fermionic Matsubara frequency iωn comes from the two branch cuts, ε ∈ R and ε − im, and then the
vertex-corrected electron current-current correlation function (24) can be expressed as

�xx(im) = i
(
2eV (TFA)

F

)2
∫ ∞

−∞

dε

2π
nF(ε)[Jxx(ε + iδ, ε + im) − Jxx(ε − iδ, ε + im)

+ Jxx(ε − im, ε + iδ) − Jxx(ε − im, ε − iδ)], (27)

By virtue of the analytical continuation im →  + iδ, the above vertex-corrected electron current-current correlation function
(27) can be obtained explicitly as

�xx() = i
(
2eV (TFA)

F

)2
∫ ∞

−∞

dε

2π
{nF(ε)[Jxx(ε + iδ, ε +  + iδ) − Jxx(ε − iδ, ε +  + iδ)]

+nF(ε + )[Jxx(ε − iδ, ε +  + iδ) − Jxx(ε − iδ, ε +  − iδ)]}, (28)

and then the microwave conductivity σ↔(, T ) = τ0σ (, T ) in Eq. (13) in the presence of impurities is obtained as

σ () = − Im�xx()


= (

2eV (TFA)
F

)2
∫ ∞

−∞

dε

2π

nF(ε) − nF(ε + )


[ReJxx(ε − iδ, ε +  + iδ) − ReJxx(ε + iδ, ε +  + iδ)].

(29)

III. QUANTITATIVE CHARACTERISTICS

In the self-consistent T -matrix approach, the strength of
the impurity scattering potential is an important parameter.
Unless otherwise indicated, the adjacent-tip impurity scat-
tering V2, V3, V7, and V8, and the opposite-tip impurity
scattering V4, V5, and V6 in the following discussions are
chosen as V2 = 0.85V1, V3 = 0.8V1, V7 = 0.8V1, V8 = 0.9V1,
V4 = 0.7V1, V5 = 0.65V1, and V6 = 0.75V1, respectively, as in
the previous discussions of the influence of the impurity scat-
tering on the electronic structure [53], while the strength of the
intratip impurity scattering V1 is chosen as V1 = Vscaletan( π

2 d )

with Vscale = 58J and the adjustable parameter d of the im-
purity scattering potential strength, where the case of d ∼ 0
[then tan( π

2 d ) ∼ 0] corresponds to the case Vj ∼ 0 with j =
1, 2, 3, . . . , 8 in the Born limit, while the case of d ∼ 1 [then
tan( π

2 d ) ∼ ∞] corresponds to the case Vj ∼ ∞ in the unitary
limit.

We are now ready to discuss the effect of the impurity
scattering on the microwave conductivity in cuprate supercon-
ductors. We have performed a calculation for the microwave
conductivity σ (ω, T ) in Eq. (29), and the results of the
microwave conductivity σ (ω, T ) as a function of energy
at the doping concentration δ = 0.15 for temperatures T =
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FIG. 2. The microwave conductivity as a function of energy at
the doping concentration δ = 0.15 for temperatures T = 0.005J ∼
5 K (black line), T = 0.009J ∼ 9 K (red line), and T = 0.015J ∼
15 K (blue line) together with the impurity concentration ni =
0.0025 and parameter of the impurity scattering potential strength
d = 0.05. Inset: the corresponding experimental result of the mi-
crowave conductivity observed in YBa2Cu3O6.993 taken from Ref.
[20].

0.005J ∼ 5 K (black line), T = 0.009J ∼ 9 K (red line),
and T = 0.015J ∼ 15 K (blue line) together with the im-
purity concentration ni = 0.0025 and the parameter of the
impurity scattering potential strength d = 0.05 are plotted in
Fig. 2 in comparison with the corresponding experimental
results of the microwave conductivity observed on the cuprate
superconductor [20] YBa2Cu3O6.993 (inset). The results in
Fig. 2 therefore show clearly that the energy dependence of
the low-temperature microwave conductivity in a cuprate su-
perconductor [16–20] is qualitatively reproduced, where the
highly unconventional features of the low-temperature mi-
crowave conductivity spectrum can be summarized as follows:
(i) A sharp cusplike peak develops at the low-energy limit,
(ii) the low-temperature microwave conductivity spectrum is
non-Drude-like, and (iii) a high-energy tail falls slowly with
the increase in energy. To see this non-Drude-like behavior in
the low-temperature microwave conductivity spectrum more
clearly, the results of the low-temperature microwave conduc-
tivity spectra shown in Fig. 2 have been numerically fitted in
terms of the fit form

σ (ω, T ) = σ0

1 + (ω/C0T )y
, (30)

as has been done in experiments [19], and the fit result at the
temperature T = 0.015J ∼ 15 K is plotted in Fig. 3 (black
line), with the fit parameters σ0 = 238.073, C0 = 4.145, and
y = 1.333. For a better understanding, we have also fitted
the low-energy part of the microwave conductivity spectrum
alone with the fit form σ (ω, T ) = A0/[ω + B0], and the nu-
merically fitted result at the same temperature T = 0.015J ∼
15 K is also plotted in the inset of Fig. 3, with the fit param-
eters A0 = 15.676 and B0 = 0.063. These fit results in Fig. 3

FIG. 3. The numerical fit (black line) with Eq. (30). The blue
squares are the result of the microwave conductivity with T =
0.015J ∼ 15 K taken from Fig. 2. Inset: the numerical fit (black
line) with the fit form σ (ω, T ) = A0/[ω + B0], where A0 = 15.676
and B0 = 0.063. The blue squares are the result of the low-energy
microwave conductivity with T = 0.015J ∼ 15 K taken from Fig. 2.

thus indicate clearly that although the lower-energy cusplike
peak in Fig. 2 decays as → 1/[ω + B0], the overall shape
of the low-temperature microwave conductivity spectrum in
Fig. 2 exhibits a special non-Drude-like behavior, which can
be well fitted by the formula in Eq. (30), in agreement with
the corresponding experimental observations [19,20]. More
specifically, in comparison with other fit results at the tem-
peratures T = 0.005J ∼ 5 K and T = 0.009J ∼ 9 K, we also
find that the fit parameter y in the fit form (30) is almost inde-
pendent of temperature and remains relatively constant, taking
an average value of y = 1.333. This anticipated value of the
fit parameter y = 1.333 is not too far from the correspond-
ing value of y = 1.45(±0.06), which has been employed in
Ref. [19] to fit the corresponding experimental data with the
same fit formula (30). The qualitative agreement between
the present theoretical results and experimental data therefore
also shows that the kinetic-energy-driven superconductivity,
incorporating the effect of the impurity scattering within the
framework of the self-consistent T -matrix theory, can give a
consistent description of the low-temperature microwave con-
ductivity spectrum found in microwave surface impedance
measurements on cuprate superconductors [16–20].

As a natural consequence of the doped Mott insulator, the
microwave conductivity in cuprate superconductors evolves
with doping. In Fig. 4, we plot the result of σ (ω, T ) (black
line) as a function of doping with T = 0.002J for energy
ω = 0.0025J together with ni = 0.0025 and d = 0.05. For a
comparison, the corresponding result [50–52] of Tc obtained
within the framework of the kinetic-energy-driven supercon-
ductivity is also shown in Fig. 4 (red line). Apparently, in
striking contrast to the domelike shape of the doping depen-
dence of Tc, the microwave conductivity exhibits a reverse
domelike shape of the doping dependence, where σ (ω, T ) is
a decreasing function of the doping concentration, and the
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FIG. 4. The microwave conductivity (black line) as a function of
doping with T = 0.002J for ω = 0.0025J together with ni = 0.0025
and d = 0.05. The red line is the corresponding result of Tc.

system is thought to be in the underdoped regime. The system
is at around the optimal doping, where σ (ω, T ) reaches its
minimum. However, with the further increase in the doping
concentration, σ (ω, T ) increases in the overdoped regime.
This reverse domelike shape of the doping dependence of the
microwave conductivity at low energies and low temperatures
is also qualitatively consistent with the microwave conduc-
tivity σul ∝ 1/�̄ in the universal limit of ω → 0 and T → 0,
since the SC gap parameter �̄ obtained within the framework
of the kinetic-energy-driven superconductivity [50–52] has a
similar domelike shape of the doping dependence.

For a further understanding of the intrinsic effect of the
impurity scattering on the SC-state quasiparticle transport in
cuprate superconductors, we now turn to discuss the evolution
of the microwave conductivity with the impurity concen-
tration in the case of the universal limit. The microwave
conductivity σul in the universal limit can be obtained di-
rectly from the energy and temperature dependence of the
microwave conductivity (29) in the zero-temperature (T → 0)
and zero-energy ( → 0) limits as

σul = lim
→0
T →0

σxz()

=
(
2eV (TFA)

F

)2

2π
lim
ε→0

[ReJxx(ε − iδ, ε + iδ)

−ReJxx(ε + iδ, ε + iδ)]. (31)

In this case, we have made a series of calculations for σul

at different impurity concentrations and different strengths
of the impurity scattering potential, and the results of σul as
a function of the impurity concentration ni at δ = 0.15 for
d = 0.05 (black line) and d = 0.5 (red line) are plotted in
Fig. 5, where the main features can be summarized as follows:
(i) For a given set of impurity scattering potential strengths,
the microwave conductivity gradually decreases with the in-
crease in the impurity concentration; (ii) for a given impurity
concentration, the microwave conductivity decreases when
the strength of the impurity scattering potential is increased. In

FIG. 5. The microwave conductivity in the universal limit as a
function of the impurity concentration at δ = 0.15 with T = 0.002J
for d = 0.05 (black line) and d = 0.5 (red line).

other words, the crucial role played by the impurity scattering
is the further reduction of the microwave conductivity.

In the present theoretical framework, the effect of the
strong electron correlation on the microwave conductivity is
reflected in the homogenous part of the electron propaga-
tor (then the homogenous self-energy), while the effect of
the impurity scattering on the microwave conductivity is re-
flected both in the impurity-dressed electron propagator (then
the impurity scattering self-energy) and the impurity-induced
vertex correction to the electron current-current correlation
function. In other words, the microwave conductivity is fur-
ther renormalized by the impurity-induced vertex correction.
To understand this renormalization of the microwave con-
ductivity from the impurity-induced vertex correction, the
microwave conductivity in the case of the universal limit in
Eq. (31) can be rewritten as

σul = βvcσ
(0)
ul , (32)

where the characteristic factor βvc is the impurity-induced
vertex correction to the universal bare result of the microwave
conductivity σ

(0)
ul , while this σ

(0)
ul can be reduced directly from

σul in Eq. (31) by ignoring the impurity-induced vertex cor-
rection as

σ
(0)
ul =

(
2eV (TFA)

F

)2

π
lim
ε→0

∑
μ=A,B

�(μ)(θF)

× Re
[
Ĩ (μ)
0 (0, ε − iδ, ε + iδ)−Ĩ (μ)

0 (0, ε + iδ, ε + iδ)
]
,

(33)

with the function

�(μ)(θF) =
{

cos θ
(A)
F , for μ = A

cos θ
(B)
F , for μ = B.

In Fig. 6, we plot the characteristic factor βvc − 1 as a function
of the impurity concentration ni at δ = 0.15 for d = 0.05
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FIG. 6. The characteristic factor of the impurity-induced vertex
correction as a function of the impurity concentration at δ = 0.15 for
d = 0.05 (black line) and d = 0.5 (red line).

(black line) and d = 0.5 (red line), where for a given set of
the impurity scattering potential strength, the characteristic
factor monotonically increases as the impurity concentration
is increased. On the other hand, for a given impurity con-
centration, βvc − 1increases with the increase in the strength
of the impurity scattering potential. It thus shows clearly that
the impurity-induced vertex correction is quite significant in
the renormalization of the microwave conductivity [26–32],
and then all the effects of the strong electron correlation,
the impurity-scattering self-energy, and the impurity-induced
vertex correction lead to the highly unconventional behaviors
in the microwave conductivity of cuprate superconductors
[16–20].

IV. SUMMARY

Starting from the homogenous electron propagator and
the related microscopic octet scattering model, which are
obtained within the framework of the kinetic-energy-driven

superconductivity, we have rederived the impurity-dressed
electron propagator in the self-consistent T -matrix approach,
where the impurity scattering self-energy is evaluated in
the Fermi-arc-tip approximation of the quasiparticle excita-
tions and scattering processes, and then the impurity-dressed
electron propagator incorporates both the strong electron
correlation and impurity scattering effects. By virtue of
this impurity-dressed electron propagator, we then have
investigated the effect of the impurity scattering on the
low-temperature microwave conductivity of cuprate super-
conductors, where the electron current-current correlation
function is derived by taking into account the impurity-
induced vertex correction. The obtained results show clearly
that the low-temperature microwave conductivity spectrum
is non-Drude-like, with a sharp cusplike peak extending to
zero energy and a high-energy tail falling slowly with energy,
in agreement with the corresponding experimental observa-
tions [16–20]. In particular, although the low-energy cusplike
peak decays as → A0/[ω + B0], the overall shape of the
low-temperature microwave conductivity spectrum exhibits
a special non-Drude-like behavior and can be well fitted
by the formula σ (ω, T ) = σ0/[1 + (ω/C0T )y] with the rel-
atively temperature-independent constant y. Moreover, the
low-temperature microwave conductivity decreases with the
increase in the impurity concentration or with the increase in
the strength of the impurity scattering potential. Our results
therefore indicate that the highly unconventional features of
the microwave conductivity in cuprate superconductors arise
from both the strong electron correlation and impurity scatter-
ing effects. The theory also predicts a reverse domelike shape
of the doping dependence of the microwave conductivity,
which is in a striking contrast to the domelike shape of the
doping dependence of Tc and therefore should be verified by
further experiments.
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APPENDIX: DERIVATION OF VERTEX KERNELS OF THE ELECTRON CURRENT-CURRENT
CORRELATION FUNCTION

Starting from the homogenous part of the d-wave BCS-type formalism, the electron current-current correlation function has
been discussed by taking into account the impurity-induced vertex correction [26–32], where the T -matrix approach has been
employed to derive the vertex kernels of the electron current-current correlation function in the nodal approximation. In this
Appendix, we generalize these previous calculations [26–32] for the vertex kernels of the electron current-current correlation
function in the nodal approximation to the present case in the Fermi-arc-tip approximation. In the microscopic octet scattering
model shown in Fig. 1, the tips of the Fermi arcs labeled by odd numbers are located in region A of the BZ, where |ky| > |kx|,
while the tips of the Fermi arcs labeled by even numbers are located in region B of the BZ, where |kx| > |ky|. For convenience
in the following discussions, j = 1 in Eq. (21a) is chosen in region A of the BZ, and j = 2 in Eq. (21b) is chosen in region B of
the BZ; then the trace of the product between the self-consistent equation (21a) and the unit vector k̂(1)

x in region A and the trace
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of the product between the self-consistent equation (21b) and the unit vector k̂(2)
x in region B can be obtained as

Tr
[
τ0�̃

(A)
x (ω,)

] = niN

cos2 θ
(A)
F

∑
k∈A

Tr

⎡
⎣G̃(A)

I (k, ω)
∑

j′′∈odd

k̂(1)
x · k̂( j′′ )

F T̃j′′1(ω)T̃1 j′′ (ω + )G̃(A)
I (k, ω + )

[
τ0 + �̃(A)

x (ω,)
]⎤⎦

+ niN

cos2 θ
(A)
F

∑
k∈B

Tr

⎡
⎣G̃(B)

I (k, ω)
∑

j′′∈even

k̂(1)
x · k̂( j′′ )

F T̃j′′1(ω)T̃1 j′′ (ω + )G̃(B)
I (k, ω + )

[
τ0 + �̃(B)

x (ω,)
]⎤⎦,

(A1a)

Tr
[
τ0�̃

(B)
x (ω,)

] = niN

cos2 θ
(B)
F

∑
k∈A

Tr

⎡
⎣G̃(A)

I (k, ω)
∑

j′′∈odd

k̂(2)
x · k̂( j′′ )

F T̃j′′2(ω)T̃2 j′′ (ω + )G̃(A)
I (k, ω + )

[
τ0 + �̃(A)

x (ω,)
]⎤⎦

+ niN

cos2 θ
(B)
F

∑
k∈B

Tr

⎡
⎣G̃(B)

I (k, ω)
∑

j′′∈even

k̂(2)
x · k̂( j′′ )

F T̃j′′2(ω)T̃2 j′′ (ω + )G̃(B)
I (k, ω + )

[
τ0 + �̃(B)

x (ω,)
]⎤⎦,

(A1b)

respectively, where the Fermi velocity unit vectors k̂( j)
F with j = 1, 2, 3, . . . , 8 at the tips of the Fermi arc are defined as

follows: k̂(1)
F = k̂x cos θF + k̂y sin θF, k̂(2)

F = k̂x sin θF + k̂y cos θF, k̂(3)
F = k̂x cos θF − k̂y sin θF, k̂(4)

F = k̂x sin θF − k̂y cos θF, k̂(5)
F =

−k̂x cos θF − k̂y sin θF, k̂(6)
F = −k̂x sin θF − k̂y cos θF, k̂(7)

F = −k̂x cos θF + k̂y sin θF, and k̂(8)
F = −k̂x sin θF + k̂y cos θF. In particu-

lar, it is easy to verify the relations

niN

cos2 θF

∑
j′′∈odd

k̂(1)
x · k̂( j′′ )

F T̃j′′1(ω)T̃1 j′′ (ω + ) = niN[T̃11(ω)T̃11(ω + ) + T̃31(ω)T̃13(ω + )

−T̃51(ω)T̃15(ω + ) − T̃71(ω)T̃17(ω + )], (A2a)

niN

cos2 θF

∑
j′′∈even

k̂(1)
x · k̂( j′′ )

F T̃j′′1(ω)T̃1 j′′ (ω + ) = tan θFniN[T̃21(ω)T̃12(ω + ) + T̃41(ω)T̃14(ω + )

−T̃61(ω)T̃16(ω + ) − T̃81(ω)T̃18(ω + )], (A2b)

niN

sin2 θF

∑
j′′∈odd

k̂(2)
x · k̂( j′′ )

F T̃j′′2(ω)T̃2 j′′ (ω + ) = cot θFniN[T̃12(ω)T̃21(ω + ) + T̃32(ω)T̃23(ω + )

−T̃52(ω)T̃25(ω + ) − T̃72(ω)T̃27(ω + )], (A2c)

niN

sin2 θF

∑
j′′∈even

k̂(2)
x · k̂( j′′ )

F T̃j′′2(ω)T̃2 j′′ (ω + ) = niN[T̃22(ω)T̃22(ω + ) + T̃42(ω)T̃24(ω + )

−T̃62(ω)T̃26(ω + ) − T̃82(ω)T̃28(ω + )], (A2d)

in regions A and B of the BZ, respectively, with the T matrix

T (α)(ω) =
(

T (α)
AA (ω) T (α)

AB (ω)

T (α)
BA (ω) T (α)

BB (ω)

)
, (A3)

where the matrices T (α)
μν (ω) (μ, ν = A, B) with the corresponding matrix elements have been given explicitly in Ref. [53].

Moreover, a general formalism is satisfied by T̃jn(ω)T̃n j (ω + ) as

T̃jn(ω)T̃n j (ω + ) =
3∑

α, β=0

ταT (α)
jn (ω)τβT (β )

n j (ω + ) =
3∑

α, β,γ=0

iε̄αβγ T (α)
jn (ω)T (β )

n j (ω + )τγ , (A4)

with iε̄αβγ that is defined as

iε̄αβγ = δαβδγ 0 + (1 − δα0)δβ0δγα + δα0(1 − δβ0)δγβ + iεαβγ , (A5)
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where εαβγ is the Levi-Civita tensor, and then iε̄αβγ satisfies the following identities: τατβ = ∑
γ iε̄αβγ τγ and iε̄αβγ = iε̄γ αβ .

With the help of the above general formalism (A4), the relations in Eq. (A2) can be derived as

niN

cos2 θF

∑
j′′∈odd

k̂(1)
x · k̂( j′′ )

F T̃j′′1(ω)T̃1 j′′ (ω + ) =
∑

γ

C(x)
A1 (γ )τγ , (A6a)

C(x)
A1 (γ ) = niN

3∑
α, β=0

iε̄αβγ

[
T (α)

11 (ω)T (β )
11 (ω + ) + T (α)

31 (ω)T (β )
13 (ω + ) − T (α)

51 (ω)T (β )
15 (ω + ) − T (α)

71 (ω)T (β )
17 (ω + )

]
,

(A6b)

niN

sin2 θF

∑
j′′∈odd

k̂(2)
x · k̂( j′′ )

F T̃j′′1(ω)T̃1 j′′ (ω + ) =
∑

γ

C(x)
A2 (γ )τγ , (A6c)

C(x)
A2 (γ ) = cot θFniN

3∑
α, β=0

iε̄αβγ

[
T (α)

12 (ω)T (β )
21 (ω + ) + T (α)

32 (ω)T (β )
23 (ω + ) − T (α)

52 (ω)T (β )
25 (ω + ) − T (α)

72 (ω)T (β )
27 (ω + )

]
,

(A6d)

niN

cos2 θF

∑
j′′∈even

k̂(1)
x · k̂( j′′ )

F T̃j′′1(ω)T̃1 j′′ (ω + ) =
∑

γ

C(x)
B1 (γ )τγ , (A6e)

C(x)
B1 (γ ) = niN tan θF

3∑
α, β=0

iε̄αβγ

[
T (α)

21 (ω)T (β )
12 (ω + ) + T (α)

41 (ω)T (β )
14 (ω + ) − T (α)

61 (ω)T (β )
16 (ω + ) − T (α)

81 (ω)T (β )
18 (ω + )

]
,

(A6f)

niN

sin2 θF

∑
j′′∈even

k̂(2)
x · k̂( j′′ )

F T̃j′′2(ω)T̃2 j′′ (ω + ) =
∑

γ

C(x)
B2 (γ )τγ , (A6g)

C(x)
B2 (γ ) = niN

3∑
α, β=0

iε̄αβγ

[
T (α)

22 (ω)T (β )
22 (ω + ) + T (α)

42 (ω)T (β )
24 (ω + ) − T (α)

62 (ω)T (β )
26 (ω + ) − T (α)

82 (ω)T (β )
28 (ω + )

]
.

(A6h)

Substituting the above results from Eq. (A6) into Eqs. (A1a) and (A1b), Tr[τ0�̃
(A)
x (ω,)] and Tr[τ0�̃

(B)
x (ω,)] can be obtained

explicitly as

Tr
[
�̃(A)

x (ω,)
] =

3∑
β=0

{
Tr

[
τβ

[
τ0 + �̃(A)

x (ω,)
]]

R(x)
A1β

(ω,ω + ) + Tr
[
τβ

[
τ0 + �̃(B)

x (ω,)
]]

R(x)
B1β (ω,ω + )

}
, (A7a)

Tr
[
�̃(B)

x (ω,)
] =

3∑
β=0

{
Tr

[
τβ

[
τ0 + �̃(A)

x (ω,)
]]

R(x)
A2β

(ω,ω + ) + Tr
[
τβ

[
τ0 + �̃(B)

x (ω,)
]]

R(x)
B2β (ω,ω + )

}
, (A7b)

respectively, with the functions

R(x)
A1β

(ω,ω + ) =
3∑

γ=0

C(x)
A1 (γ )Ĩ (A)

γ (β, ω, ω + ), R(x)
A2β

(ω,ω + ) =
3∑

γ=0

C(x)
A2 (γ )Ĩ (A)

γ (β, ω, ω + ), (A8a)

R(x)
B1β (ω,ω + ) =

3∑
γ=0

C(x)
B1 (γ )Ĩ (B)

γ (β, ω, ω + ), R(x)
B2β (ω,ω + ) =

3∑
γ=0

C(x)
B2 (γ )Ĩ (B)

γ (β, ω, ω + ). (A8b)

Now we turn to evaluate the similar traces of the product between the vertex kernel �̃(A)
x (ω,) and matrix τα with α =

1, 2, 3 in region A and the product of the vertex kernel �̃(B)
x (ω,) and matrix τα in region B in the kernel function (25),

where the derivation processes are almost the same as the derivation processes for the above Tr[τ0�̃
(A)
x (ω,)] in Eq. (A7a) and
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Tr[τ0�̃
(B)
x (ω,)] in Eq. (A7b), and the obtained results can be expressed explicitly as

Tr
[
τα�̃(A)

x (ω,)
] =

3∑
β=0

{
Tr

[
τβ

[
τ0 + �̃(A)

x (ω,)
]]

R(x)
A1β

(α, ω, ω + ) + Tr
[
τβ

[
τ0 + �̃(B)

x (ω,)
]]

R(x)
B1β (α, ω, ω + )

}
,

(A9a)

Tr
[
τα�̃(B)

x (ω,)
] =

3∑
β=0

{
Tr

[
τβ

[
τ0 + �̃(A)

x (ω,)
]]

R(x)
A2β

(α, ω, ω + ) + Tr
[
τβ

[
τ0 + �̃

(B)
(x) (ω,)

]]
R(x)

B2β (α, ω, ω + )
}
,

(A9b)

with the functions

R(x)
A1β

(α,ω, ω + ) =
3∑

λ=0

C(x)
A1α

(λ)Ĩ (A)
λ (β, ω, ω + ), (A10a)

C(x)
A1α

(λ) = niN
3∑

μ, ν=0

(∑
σ

iε̄μνσ iε̄σαλ

)
ηα (ν)

[
T (μ)

11 (ω)T (ν)
11 (ω + ) + T (μ)

31 (ω)T (ν)
13 (ω + )

−T (μ)
51 (ω)T (ν)

15 (ω + ) − T (μ)
71 (ω)T (ν)

17 (ω + )
]
, (A10b)

R(x)
B1β (α,ω, ω + ) =

3∑
λ=0

C(x)
B1α (λ)Ĩ (B)

λ (β, ω, ω + ), (A10c)

C(x)
B1α (λ) = niN tan θF

3∑
μ, ν=0

(∑
σ

iε̄μνσ iε̄σαλ

)
ηα (ν)

[
T (μ)

21 (ω)T (ν)
12 (ω + ) + T (μ)

41 (ω)T (ν)
14 (ω + )

−T (μ)
61 (ω)T (ν)

16 (ω + ) − T (μ)
81 (ω)T (ν)

18 (ω + )
]
, (A10d)

R(x)
A2β

(α,ω, ω + ) =
3∑

λ=0

C(x)
A2α

(λ)Ĩ (A)
λ (β, ω, ω + ), (A10e)

C(x)
A2α

(λ) = niN cot θF

3∑
μ, ν=0

(∑
σ

iε̄μνσ iε̄σαλ

)
ηα (ν)

[
T (μ)

12 (ω)T (ν)
21 (ω + ) + T (μ)

32 (ω)T (ν)
23 (ω + )

−T (μ)
52 (ω)T (ν)

25 (ω + ) − T (μ)
72 (ω)T (ν)

27 (ω + )
]
, (A10f)

R(x)
B2β (α,ω, ω + ) =

3∑
λ=0

C(x)
B2α (λ)Ĩ (B)

λ (β, ω, ω + ), (A10g)

C(x)
B2α (λ) = niN

3∑
μ, ν=0

(∑
σ

iε̄μνσ iε̄σαλ

)
ηα (ν)

[
T (μ)

22 (ω)T (ν)
22 (ω + ) + T (μ)

42 (ω)T (ν)
24 (ω + )

−T (μ)
62 (ω)T (ν)

26 (ω + ) − T (μ)
82 (ω)T (ν)

28 (ω + )
]
, (A10h)

where
∑

σ iε̄μνσ iε̄σαλ satisfies the identity∑
σ

iε̄μνσ iε̄σαλ = − 4δμ0δν0δα0δλ0 + δαμδλ0δν0 + δανδμ0δλ0 + δλμδν0δα0 + δμ0δα0δλν + δαλδμν + δανδλμ − δαμδλν

+ iδα0ελμν + iδλ0εαμν + iδμ0εναλ + iδν0εμαλ (A11)

and the tensor ηα (ν) is defined as

ηα (ν) =
{

1, ν = 0, α

−1, otherwise. (A12)

Substituting the above results from Eqs. (A7) and (A9) into Eq. (25) of the main text, we therefore obtain the kernel function
Jxx(ω,ω + ) in Eq. (25) of the main text.
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