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Proximity effect of time-reversal symmetry broken noncentrosymmetric superconductors
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In noncentrosymmetric superconductors the pair potential has both even-parity singlet and odd-parity triplet
components. If time-reversal symmetry is broken, the superconducting phase of these components is not the
same, for example in anapole superconductors. In this paper it is shown that breaking time-reversal symmetry by
a phase difference between the two components significantly alters both the density of states and the conductance
in s + helical p-wave superconductors. The density of states and conductance in s + chiral p-wave supercon-
ductors are less influenced by adding a phase difference because time-reversal symmetry is already broken in
the s 4+ p-wave superconductor. The Tanaka-Nazarov boundary conditions are extended to 3D superconductors,
allowing us to investigate a greater variety of superconductors, such as Balian-Werthamer superconductors,
in which the direction of the d vector is parallel to the direction of momentum. The results are important
for the determination of pair potentials in potentially time-reversal symmetry broken noncentrosymmetric

superconductors.
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I. INTRODUCTION

Ever since the discovery of high-temperature supercon-
ductors, much attention has been paid to unconventional
superconductors [1-5], with for example triplet [1,6-23] or
odd-frequency [8,24-35] pairing. Historically, most atten-
tion has been paid to superconductors in which time-reversal
symmetry and inversion symmetry are not broken. In such
superconductors the pair potential is either even parity or odd
parity. However, if inversion symmetry is broken, for example
in materials whose crystal structure breaks inversion symme-
try, a type of superconductivity can emerge that is neither even
parity nor odd parity [12,36-46]. In certain materials even
the mixing parameter, the ratio between the singlet and triplet
components, can be varied using electron irradiation [47].

Moreover, there exist several unconventional supercon-
ductors, including possibly Sr,RuQy, in which time-reversal
symmetry is broken [1,14,48-74]. For example, in chiral su-
perconductors [7], time-reversal symmetry is broken in the
bulk. Next to this, time-reversal symmetry has been predicted
to be spontaneously broken near the surface of d-wave super-
conductors [75-83].

In recent advances attention has been paid to so-called
anapole superconductors. In anapole superconductors there
exists a nonzero phase difference between the singlet and the
triplet components [84-88]. Candidates for anapole supercon-
ductivity are UTe, [84—86] or narrow-gap semiconductors, for
example Cu,Bi,Se; or Sn;_,In, Te [87]. In such superconduc-
tors, both time-reversal symmetry (7)) and inversion symmetry
(P) are broken while the product of time-reversal and inver-
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sion symmetry (P7) is preserved. They provide an analogy
to axion electrodynamics [89,90], and may be used for future
applications. For example, anapole superconductors may be
suitable for nonreciprocal transport in Josephson junctions,
such as the Josephson diode effect, since the requirements
of time-reversal and inversion symmetry breaking are already
met by the intrinsic properties of the superconductor. This
greatly simplifies the geometry of the junctions needed for
such effects. Next to this, heavy-fermion noncentrosymmetric
superconductors, such as CePt3Si [12], Ulr [38], CeRh,As;
[91], and CeCu,Si, [92], also have magnetic ordered phases,
which opens up the possibility of a P and 7 broken phase
in those superconductors as well. However, so far little is
known about the proximity effect induced by and the transport
properties of anapole superconductors.

The simplest model for a superconductor which breaks
both time-reversal symmetry and inversion symmetry is an
(i)s + p-wave superconductor, in which there exists a nonzero
phase difference between the singlet and the triplet correla-
tions. Indeed, the phase difference provides the time-reversal
symmetry breaking, while the presence of both even-parity
s-wave and odd-parity p-wave amplitudes indicates inversion
symmetry is broken. In fact, if the phase difference is an odd
multiple of 7 /2 such superconductors do obey PT symmetry,
and are therefore the simplest model of anapole superconduc-
tors.

The proximity effect and transport properties of noncen-
trosymmetric or time-reversal symmetry broken superconduc-
tors have been studied in detail in several limits, showing
that they strongly depend on the presence of both singlet
and triplet components and their relative strengths [93—105].
Recently a theory has been developed to calculate the
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FIG. 1. The three different types of p-wave pair potentials used
in this paper. The d vector is defined by its direction d and its phase
Y, which is illustrated using color. For both the 2D helical and the 3D
B-W superconductor phase the d vector is real, i is constant, but the
direction of the d vector is momentum dependent. On the other hand,
for the 2D chiral superconductor the phase depends on momentum,
while the direction of the d vector is constant over the Fermi surface.
In each case the magnitude of the gap is isotropic.

proximity effect of noncentrosymmetric superconductors in
dirty normal metals using the Keldysh-Usadel formalism
[106-108]. Those works focus on time-reversal symmetric
s + helical p-wave superconductors and on s + chiral super-
conductors in which there is no phase difference between
the singlet and triplet components for the mode of normal
incidence.

In this work, we use the mentioned theory to explore the
density of states, pair amplitudes, and conductance in the pres-
ence of an arbitrary phase difference between the s-wave and
p-wave components of the pair potential in the superconduc-
tor. We will refer to such superconductors as (i)s + p-wave
superconductors. We calculate the conductance in SNN junc-
tions with (i)s + p-wave superconductors. We show that the
phase difference has a large influence on the proximity effect
induced by (i)s + helical p-wave superconductors, and show
that in the absence of time-reversal symmetry the density
of states, pair amplitudes, and conductance are significantly
altered. Notably, the quantization of the zero-energy density of
states and the zero-bias conductance in s 4 helical p junctions
disappears in the presence of a phase difference between the
singlet and triplet components. Next to this, we show that for
(i)s + chiral p-wave superconductors, for which time-reversal
symmetry is broken by the p-wave component of the pair
potential even in the absence of an s-wave component, the
phase difference between the singlet and triplet correlations
has a much smaller influence on the proximity effect. Our
results highlight the importance of confirming the presence
or absence of time-reversal symmetry in noncentrosymmetric
superconductors.

Since the proposed anapole superconductors are three-
dimensional [84], we extend the Tanaka-Nazarov boundary
condition to 3D unconventional superconductors and study
the Balian-Werthamer (B-W) phase that was first found in
helium [109-111]. The B-W phase is the natural three-
dimensional generalization of the 2D helical p-wave phase,
the d vector is real and parallel to the direction of momentum,
and the magnitude of the gap is isotropic as illustrated in
Fig. 1. We show that contrary to junctions with 2D p-wave
superconductors, junctions with 3D p-wave superconductors
may have a zero-bias conductance dip instead of peak in short
diffusive junctions. For long junctions, there exists a sharp
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FIG. 2. The setup used in our calculations. The junction con-
sists of a dirty (1/7 > A() normal-metal bar sandwiched between a
superconducting electrode and a normal metal. The superconductor
has both singlet s-wave correlations and triplet p-wave correlations
characterized by the d vector d. A voltage V is applied to the
normal metal, while the superconducting electrode is grounded. The
interface with the normal-metal electrode has no boundary resistance
(yss = 0). The interface with the superconductor is resistive, and
Tanaka-Nazarov boundary conditions are used.

T

peak with a width of the order of the Thouless energy due
to coherent Andreev reflection. With this, we provide a sys-
tematic study of p and 7 symmetry broken superconductors in
different dimensions.

II. THEORY

We consider the SNN junction shown in Fig. 2, con-
sisting of a dirty normal-metal bar, with a scattering rate
1/t much larger than any other relevant energy scale ex-
cept the Fermi energy, sandwiched between a normal-metal
electrode to which a voltage may be applied, and an (i)s + p-
wave superconductor with arbitrary phase difference between
the singlet and triplet components:

1 n r
N VN

where A is a real scalar, d(¢) is the d vector, an angle-
dependent vector that is conventionally used to describe the
spin dependence of the pair potential, ¢ is the angle between
the direction of momentum and the normal to the S/N surface
in Fig. 2, o is the vector of Pauli matrices in spin space, r is
the mixing parameter between the even-parity singlet s-wave
component and the odd-parity triplet p-wave component of
the pair potential, and y, is the phase difference between
the singlet and triplet components. The singlet component
of the pair potential will be referred to as Ay, the triplet as
A,,. For r = 0 the expression reduces to conventional s-wave
superconductivity; as r — 00 a p-wave superconductor is ob-
tained. The d vector is different for different types of p-wave
superconductivity. Because p-wave superconductors are odd
parity, it necessarily satisfies d(¢ + ) = —d(¢).

Using the basis (Y44, ¥ 4, wl_k, —w;_k), the Bogo-
liubov—de Gennes (BdG) Hamiltonian is

H(k) =&13 + Alp)a, 2

A@@) = Ao (e’?Xf d() - a>, (1

where £ is the single-particle energy and t; are the Pauli
matrices in Nambu space. In this basis the time-reversal op-
erator is 7 = 0,73K, where K denotes complex conjugation.
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Applying this to the BAG Hamiltonian, the condition for time-
reversal symmetry, H(—k) = o,13H*(k)o, 73, is satisfied if
Alp+m)= oyﬁ*oy. For the set of pair potentials described
by Eq. (1), the superconductor obeys time-reversal symmetry
if x, is an even integer. Indeed, the time-reversal operation
reverses the phase of all components and hence the phase
difference between the singlet and triplet components. This
phase difference remains the same only if it is a multiple of 7;
time-reversal symmetry is broken if this is not the case.

We assume that the Fermi energy is much larger than the
other scales in the problem. In this case the Green’s function
is strongly peaked around the Fermi momentum, so that the
quasiclassical formalism can be used. In the quasiclassical
formalism the magnitude of momentum is fixed at the Fermi
level; the resulting Green’s function only depends on direction
of momentum [112,113]. We consider the density of states and
pair amplitude in the normal-metal bar at the interface with
the superconducting electrode, and the conductance through
the junction when applying a voltage to the normal metal; see
Fig. 2. In many junctions thin films are used, in which the scat-
tering length is limited by the thickness [114,115]. Therefore
they can usually not be described by ballistic transport. There-
fore, we assume that the normal-metal bar is in the dirty limit;
that is, the scattering rate is high and the Green’s function is
almost isotropic. This allows us to use the Usadel equation to
describe the N [112,113]. Notably, the superconductor itself is
assumed to be clean, so that unconventional superconductivity
is allowed. Next to this, we assume that the bar is either very
wide or very narrow compared to the thermal diffusion length
in the directions perpendicular to the transport direction, so
that an effectively one-dimensional model may be used:

D3,.(Go,G) = [iETt;, G, 3)

where D is the diffusion constant of the normal-metal bar, G is
the isotropic component of the Green’s function in Keldysh-
Nambu-spin space, and E is energy. The contact between the
bar and the normal-metal electrode at x = L is assumed to be
very good, ygy = 0, so that the Green’s function is continuous
at this interface:

G(x =L) =Gy, “

where Gy is Green’s function in the normal-metal electrode. It
is equal to the Green’s function in the bulk of a normal metal,
with the retarded part given by GN = 13, and distribution
functions f;7 = §(tanh £ + tanh £2%). At the interface
with the superconductor (x = 0) we use the Tanaka-Nazarov
boundary conditions [116,117], the extension of Nazarov’s
boundary conditions [118], derived using circuit theory, to

junctions with unconventional superconductors:

GVG(x

1
0) = ——(S(¢)), ()
yBsL

where [106]

$(¢) =T (1 + T2 + Ti(CG + GC))(CG - GE),  (6)
C=H'd-H), (7
H, = }(Gs(¢) + Gs(m — ¢)), (®)

= 1(Gs(¢) — Gs( — ). 9

Here Gs(¢) is the bulk Green’s function of an (i)s + p-wave
superconductor. For the superconductors studied in this pa-
per, the magnitude of d does not depend on momentum;
hence d(¢) can be written as d(¢)e’¥®, where d(¢) is a
unit vector and ¥ (¢) is a phase. Specifically, for helical
superconductors the d vector is real and hence ¥ (¢p) =
with d (¢) = (cos ¢, sin ¢, 0), while for chiral superconduc-
tors V¥ (¢p) = ¢ and 3((1)) = (0,0, 1). Therefore, using the
basis (Y4, ¥y, WI, —WD, the bulk Green’s function Gg(¢) is
given by [107]

v 1 ~ 1 E A
GS(¢)=§[1+d(¢)'G]®E2—|A|2|:_Ai _Ei|
— A4
1 ~ 1 E A_
+§[1‘d(¢)'“]®p_—w[_w —Ei|’
T X + pei¥@)
Ay =——p7——. (10)

r24+1
The brackets (-) indicate angular averaging over all modes that
pass through the interface, the symbol ® is used to denote
a Kronecker product, ygs = Rg/Rq is the ratio between the
boundary resistance and the normal-state resistance of the
dirty normal-metal bar, T} = T /(2 — T+2J1—=T), and T
is the interface transparency given by [23]

cos’ ¢

1O = ot

11
where z is the Blonder-Tinkham-Klapwijk (BTK) parameter.
We do not take into account the Fermi surface mismatch,
assuming that the magnitude of the Fermi momentum is
of similar magnitude in the superconductor and the normal
metal.

The equations for the retarded part GX in Keldysh space
are solved numerically. The advanced Green’s function G4
is directly related to the retarded part via G* = —13(G®)'r3
[112,113]. Based on the solutions for the retarded and ad-
vanced components, the Keldysh component can be found
numerically using the distribution function h= ﬁ ®1;
fr ® 13 for GK = GRh — hGA [112,113], where 1, is the 1den-
tity matrix in Nambu space, 73 is the third Pauli matrix in
Nambu space, and fL and fT are the so-called longitudinal and
transverse components of the distribution function [119,120]
to be determined.

We consider the density of states and pair amplitudes at the
interface with the superconductor, given by

p =Tr[(1, ® 13)GR(x = 0)]/4, (12)
FE, =Trl(1, ® 11,)GR(x = 0)1/4, (13)
FR, =Tild -0 ® 112)G"(x = 0)]/4, (14)

where 7, » 3 are the Pauli matrices in Nambu space and o 53
the Pauli matrices in spin space, while 1, is the identity matrix
in spin space.

The functions Fy;, and F;, are the pair amplitudes
(Y, — Y ¥4) and (Y4 + YY) in the normal metal,
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FIG. 3. The local density of states for %% s + helical p-wave superconductors for s-wave-dominant, r = 0.5 (a) and p-wave-dominant,
r = 2 (b) superconductors. If the s-wave component is dominant, for x, = 0 at E = 0 only singlet correlations are present. For y, # 0 also
triplet correlations are present, enhancing the zero-energy density of states. If the p-wave component is dominant, for x, = O there are only
triplet correlations, for x, # 0 also singlet pairs, suppressing the density of states. Other parameters are set to ygs = 2, z = 0.75, Em,/Ao =

0.02.

where 1, | correspond to the £1 eigenstates of d-o. In
the absence of the superconductor these pair correlations
are absent; however, due to the proximity effect they can
be nonzero. Due to the Pauli principle, the singlet correla-
tions are even-frequency correlations on the Matsubara axis,
thus satisfying F ,(—E) = [F}} ,(E)]*, while the triplet cor-
relations are odd-frequency correlations, therefore satisfying
FX (—E) = —[F} ,(E)]*. The subscripts 1, 2 refer to the
traces of the 7| , components, respectively, that is, to the phase
of the superconductor. For an s-wave superconductor at zero
phase only the component F;; is nonzero; if its phase is £ /2
only the component F;; is nonzero. For a p-wave component
at zero phase the conversion of ETO (even frequency triplet
odd parity) to OTE pairing implies only the component F;
to be nonzero in the metal; if its phase is 77 /2 only the com-
ponent Fj, is nonzero. Similarly, if the superconductor is an
s + p-wave superconductor, only Fy, and F;; correlations are
induced in the normal metal. However, if there is a phase dif-
ference between the s + p-wave correlations, all components
may be induced and their proportion can be energy dependent.

Using the Keldysh component the conductance can be cal-
culated as

al
o= —,
v
OoN o v K
I'=1es dETr{(1, ® 13)(GVG)"}, 15)
€ J

where oy is the normal-state conductance of the bar and
(GVG)X is the Keldysh component of GV G.

III. HELICAL p-WAVE SUPERCONDUCTORS

In this section, we present the result for (i)s + helical p-
wave superconductors. For helical p-wave superconductors
the d vector is given by d(¢) = (cos ¢, sin ¢, 0). For x; =0,
there is no time-reversal symmetry breaking and this model
reduces to the model studied in [106—-108]. Another special

case is y, = 1. In that case the quantities

e+ r
A = ——Ag (16)
1472

both have magnitude A, irrespective of r or angle ¢. This
implies that the double-peak structure obtained for x;, = 0 is
not to be expected for y, = 1.

The dependence of |AL| on x;, , and ¢ is described by

2rcos Z x
T}i’)A%. (17)

Al = (1 +
In the next section, we discuss the dependence of the density
of states, pair amplitudes, and conductance on x, for various
ratios of the s-wave and p-wave components of the pair po-
tential while setting the other parameters equal to the values
used in [108] for the case x, = 0, that is, ygs = 2, z = 0.75,
and AO/ETh = 50.

A. Density of states and pair amplitudes

From the retarded part of the Green’s function GR, the
local density of states at the SN interface (x = 0) can be
extracted. The local density of states is shown in Fig. 3. For
s-wave-dominant superconductors, Fig. 3(a), the zero-energy
density of states is almost independent of x,; the phase dif-
ference between the s-wave and p-wave components of the
pair potential only influences the details of the density of
states. Most notably, the most pronounced peak shifts from
E = A_to E = A with increasing x,. On the other hand, for
p-wave-dominant superconductors the zero-energy density of
states is influenced by y;, as shown in Fig. 3(b). For x;, =0
there is a large zero-energy peak. If x; is nonzero the zero-
energy peak is highly suppressed; there are both a broad dip
and a sharp peak centered at zero energy. In contrast to junc-
tions with s + helical p-wave superconductors with x; = 0 the
zero-energy density of states is not guaranteed to be higher
than the normal density of states.
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FIG. 4. The singlet pair amplitudes for e 3 s 4 helical p-wave superconductors for s-wave-dominant superconductors with r = 0.5 (top
row) and p-wave-dominant superconductors with r = 2 (bottom row). The singlet pair amplitudes are even frequency and hence satisfy
F(—E) = F*(E). Other parameters are set to ygs = 2, z = 0.75, E,/ Ao = 0.02.

The singlet and triplet pair amplitudes are shown respec-
tively in Figs. 4 and 5. The phase of the induced correlations
depends on x,. For x, = 0, that is, for s + p-wave supercon-
ductors, only Fy; and F;; can be nonzero. On the other hand,
for x, = 1, that is, for is + p-wave superconductors, only Fj;
and F;; are nonzero. For 0 < yx, < 1 all components of the pair
amplitude can be nonzero and the phase of the correlations
depends on energy.

For s-wave dominant superconductors, the real part of the
singlet pair amplitudes, see Fig. 4 (top), is maximized at zero
energy, regardless of x,. On the other hand, for the p-wave-
dominant case, Fig. 4 (bottom), the singlet pair amplitudes
vanish at zero energy if x, = 0. In contrast, for nonzero yx,
the real parts of singlet pair amplitude are maximized at zero
energy. Also here, the phase depends strongly on ;.

The triplet pair amplitudes depend more strongly on ;
if the s-wave component of the pair potential is dominant.
Indeed, for s-wave-dominant junctions with x, = 0, Fig. 5

Re(F)
Im(Ff)

& &
Sé \ﬁ =0 ._.E
-1 —xt = 0.5
—xt=1
2
-2 -1 0 1 2 - -
E/A E/A

(top), the triplet pair amplitudes vanish at zero energy. On
the other hand, for x; # O the imaginary parts of the triplet
pair amplitudes are maximized at zero energy. For p-wave-
dominant superconductors, the imaginary parts of the triplet
pair amplitude are maximized at zero energy for all x,, as
shown in Fig. 5 (bottom). An increase of the phase differ-
ence between the singlet and triplet components suppresses
this maximum, but only slightly. Summarizing, a nonzero x,
enhances the subdominant pair amplitudes at zero energy,
while only moderately altering the magnitude of dominant
pair amplitudes. The phase yx, does in all cases have a large
influence on the phase of the induced correlations.

The different behavior of the local density of states and
the pair amplitudes in the presence of a phase difference
between singlet and triplet pair potentials can be explained
using topology. The helical p-wave superconductor is a topo-
logical superconductor protected by time-reversal symmetry
breaking [2,121,122]. The addition of an s-wave component
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o
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FIG. 5. The triplet pair amplitudes for ¢’ % s + helical p-wave superconductors for s-wave-dominant superconductors with r = 0.5 (top
row) and p-wave-dominant superconductors with r =2 (bottom row). The triplet pair amplitudes are odd frequency and hence satisfy
F(—E)= —F(E)*. For x, € {0, 1} only 7, components are induced because of the additional 7z /2 phase drop at the interface for triplet
correlations. For 0 < x, < 1 the phase depends on energy. Other parameters are set to ygs = 2, z = 0.75, Eq,/A¢ = 0.02.
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FIG. 6. The dependence of the conductance on the relative phase difference between the s-wave and helical p-wave components of the pair
potential for r = 0.5 (left) and r = 2 (right). If there is no time-reversal symmetry breaking (y, = 0), the conductance has sharp features at
|Ay| = Ay £ A,|. As the phase difference between the s-wave and p-wave components of the pair potential increases, these features come
together, resulting in one smooth peak for x, = 1. Parameters are set to ygs = 2, z = 0.75, Emn/ Ao = 0.02.

does not violate the symmetries of the topological class, and
zero-energy bound states appear also in the noncentrosym-
metric case [123], and therefore a topological phase transition
must appear when changing the mixing parameter from he-
lical p wave to s wave. The gap closes if and only if r =
1, which must therefore be the topological phase boundary.
On the other hand, for is 4+ p-wave superconductors time-
reversal symmetry is broken and there is no topological phase
transition; all properties change continuously from s-wave
to p-wave as the mixing parameter r is increased. For the
zero-energy density of states and pair amplitudes, this can be
shown explicitly. The density of states and pair amplitude at
zero energy are fully determined by Ii_i\ and ‘i—:‘ [108,124].
If x, = 0, both A and A_ are necessarily real, and therefore,
using that A, > 0 by definition, the zero-energy density of
states and pair potentials are fully determined by the sign of
A_. However, if x; # 0 the quantities Iiil and ﬁ are both
complex and continuous functions of r. Therefore, at E = 0
the results are neither s wave nor p wave, but rather a mixture
and both singlet and triplet correlations are present.

B. Conductance

The effect of a finite phase difference between the s-wave
and the p-wave components of the pair potential on the
conductance is illustrated in Fig. 6 for an s-wave-dominant su-
perconductor with r = 0.5 [Fig. 6(a)] and a p-wave-dominant
superconductor with r = 2 [Fig. 6(b)]. Forr = 0.5and x, =0
the conductance is maximized at eV = A, but if y, = 1 the
peaks merge together into a single peak at A(. Notably, a
small peak at zero bias remains even for the time-reversal
symmetry breaking superconductors. This is in contrast with
the zero-bias conductance in junctions in which the time-
reversal symmetry is broken by an exchange field, in which
case the small peak disappears [108]. The difference can
be explained as follows. Without an exchange field the cor-
relations in the normal-metal bar decay on a length scale
/D/(2E), irrespective of the phase difference between the
s-wave and p-wave components of the pair potential, which

are not mixed. On the other hand, in the presence of an
exchange field, the singlet and triplet components are mixed,
and the correlations decay on a length scale \/D/[2(E £ h)],
where & is the exchange field strength. Therefore, in the
presence of an exchange field, crossed Andreev reflection is
suppressed, but in SNN junctions with time-reversal sym-
metry breaking superconductors it is preserved. The results
for junctions in which the p-wave component of the pair
potential is dominant, e.g., r = 2, are shown in Fig. 6(b). The
sharp change in do/dV at eV = |A_| and the conductance
peak at eV = A, likewise get closer together, merging into a
small conductance dip at eV = A for x, = 1. Moreover, an
increase of y;, decreases the zero-bias conductance peak.

0.5

eV/Aoy

FIG. 7. The conductance of the junction for different mixing
parameters r if x, = 1. There is not a quantization of the zero-
bias conductance peak, unlike for x, = 0, but rather a continuous
change between a small zero-bias conductance peak that does not
exceed the normal-state conductance and has a width on the order
of the Thouless energy for r < 1 and a larger peak for r > 1 that ex-
ceeds the normal-state conductance and may have a width larger than
the Thouless energy. Other parameters are set to ygs = 2, z = 0.75,
Em/Ap = 0.02.
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FIG. 8. The conductance near the transition between the s-wave-dominated and p-wave-dominated regime for s 4 helical (a) and is +
helical (b) p-wave superconductors. For s 4 helical p-wave superconductors there is a topological transition and the zero-bias conductance
has a discontinuity at r = 1; for is + helical p-wave superconductors the topological protection is broken and the zero-bias conductance is
continuous at » = 1. Other parameters are set to ygs = 2,z = 0.75, Em, /Ao = 0.02.

The dependence on the mixing parameter r is illustrated in
Figs. 7 and 8. For an is + p-wave superconductor there is no
quantization of the zero-bias conductance, as shown in Fig. 7.
This can be understood as follows. The zero-bias conductance
depends on the quantities Ay /|AL|. As discussed before, for
x: = 1 these quantities are complex, with the phase depending
on the actual value of r, and therefore, the zero-bias conduc-
tance depends nontrivially on r. This is in contrast with the
case x; = 0, when AL /|AL| are both real, giving the quan-
tization of conductance [108,124]. An analytical description
can be found in the 1D case. The matrix C(E = 0, r) entering
the boundary condition Eq. (7) is for is 4+ helical p-wave
superconductors given by

—iroy 2+l 1,
m 1, iroy

where 1, is the identity matrix in spin space and o, is the
first Pauli matrix in spin space. For finite r the quantity
C (E =0, r) is finite, showing that there is no pole at E = 0, in
contrast to cases of a one-dimensional p-wave superconductor
[106] or a two-dimensional s + helical p-wave superconduc-
tor [107]. This means there is no zero-energy Andreev bound
state for is + p-wave superconductors. The boundary quan-
tity C changes continuously as a function of r, and in the
limit r — oo the p-wave expression is recovered; in the limit
r — 0 the s-wave expression is recovered, showing that the
zero-bias conductance continuously changes from the value
attained by s-wave superconductors to the value attained by
p-wave superconductors.

The broadness of the peak can be understood by consider-
ing the poles of C, which is connected to the existence of the
Andreev bound state in the clean limit [106]. The quantity C
is for is + p-wave superconductors given by

C(E:o,r):[ } (18)

3 y . 1
C@p)=H, —H'H_=
(@) =H, —Hy E? — (A2 + A2sin® ¢)
E1 N |
2 _ A2 o isp+Lo
X (‘/E AO|:Aisp—10 _E1, :|+

[A,;Y,,Jr A, cos ¢o,

—E A, cos ¢o,
—E A, cos go, ’

—Ajspr Ap COS PO,

Aisps = i £ A, sin ¢, (19)

The denominator has zeros for £ = AgyV Hﬁ%zd’ There-
fore, the conductance peak is enhanced for voltages satisfying
A = \/ﬁ"? < eV < Ay. Thus, with increasing mixing pa-
rameter r the peak width increases, as confirmed by the results
in Fig. 7.

The continuity of C as a function of r implies that the tran-
sition between the s-wave dominated as p-wave dominated
regimes is vastly different for s + helical and is + helical p-
wave superconductors, as shown in Fig. 8. For the s + helical
p-wave superconductors there is a topological phase transition
at r = 1 [125], which leads to a discontinuity of the conduc-
tance at zero bias [107], as shown in Fig. 8(a). On the other
hand, for is + helical p-wave superconductors the topological
protection is absent and the conductance is continuous as a
function of r, even at r = 1; see Fig. 8(b). The conductance
for r ~ 1 has similarities with both the conductance in s-wave
junctions and the conductance in p-wave junctions. The zero-
bias conductance for » & 1 is larger than the normal-state
conductance, as for p-wave junctions. However, the peak at
eV = Ay is distinctly larger than the one at eV = 0, which is
reminiscent of s-wave junctions.

IV. CHIRAL SUPERCONDUCTORS

The calculations were repeated for chiral superconductors.
Chiral superconductors are distinctly different from helical
superconductors; time-reversal symmetry is broken for the
p-wave state, even in the absence of an s-wave component of
the pair potential. In chiral superconductors, the phase of the
p-wave correlations depends on the angle ¢ with the normal
of the surface; the d vector is given by

d(¢) = €%(0,0,1). (20)
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FIG. 9. The density of states in the (i)s 4 chiral p-wave superconductor junctions for different y,. If r = 0.5 (a) there is a zero-energy dip;
if r = 2 (b) there is a zero-energy peak. For nonzero y; the dip and peak are suppressed because the nondominant pair amplitude is enhanced.

Other parameters are set to ygs = 2, z = 0.75, Em,/Ao = 0.02.

The phase difference between the s-wave and the p-wave
pair amplitudes will be defined as the phase difference for
the singlet and triplet correlations for the mode normal to
the interface. For all calculations we used the same set of
parameters as for the (i)s + helical p-wave superconductors,
that is, ygs = 2,z = 0.75, and Ag/E1, = 50.

For (i)s + chiral p-wave superconductors we define y, us-
ing the phase difference of the mode normal to the interface.
The terms s + chiral p-wave or is + chiral p-wave supercon-
ductors will refer x, = 0 and x, = 1. In practice this means
that a single material can act both as an s+ chiral and an
is + chiral superconductor, depending on in which direction
the junction is made. For example in a setup with two dis-
jointed SN junctions that make an angle of 7 [108], both types
can be probed.

3 2
—xt=0
2 —xt = 0.5 1
& —xe=1 &
5= )
k2 E N —
0 -1 —x:=0.5
—xt=1
-1 2
2 -1 0 1 2 2 -1 0 1 2
E/A E/A
3 1
—x:=0
2 —x: =05 0.5
& —X=1 T
By = 0
2 E —xt =0
al " 05 —xi =05
—xt=1
-1 -1
2 -1 0 1 2 2 0 2

E/A E/A

A. Density of states and pair amplitudes

The local density of states for s + chiral p-wave junctions
is shown in Fig. 9. The results are similar to those of s+
helical p-wave junctions, although the effects of x, are smaller
for (i)s 4 chiral p-wave junctions. If the s-wave component
of the pair potential is dominant the zero-energy density of
states is well below the normal density states, as shown in
Fig. 9(a). If the p-wave component of the pair potential is
dominant, see Fig. 9(b), the structure with both a broad dip
and a narrow peak appears when y; is nonzero. It differs from
the s 4 helical p-wave case by having a distinctly broader
dip and a zero-energy density of states that is well above the
normal density of states.

The pair amplitudes are shown in Figs. 10 and 11. The
magnitudes of the dominant pair amplitude [Figs. 10 (top)

3 2
—xt =0
2t —xt = 0.5 1
= —x=1 =
B S
&3‘ g —Xt=
fi=i
-1 —xt = 0.5
—xt=1
1 -2
-2 -1 0 1 2 -2 -1 0 1 2
E/A E/A
1.5 0.4

Ef)
o
[ N
Ff)
o
o N

E —x: =0
[ ——~ p— | -0.2 _;((t i (1)'5
—xt =
-0.5 -0.4
-2 0 2 -2 0 2

E/A E/A

FIG. 10. The singlet pair amplitudes for ¢’ 3 s + chiral p-wave superconductors for s-wave-dominant superconductors with r = 0.5 (top
row) and p-wave-dominant superconductors with » = 2 (bottom row). The singlet pair amplitudes are even frequency and hence satisfy
F(—E) = F*(E). Other parameters are set to ygs = 2, z = 0.75, Ety/Ao = 0.02.
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FIG. 11. The triplet pair amplitudes for ¢%% s + chiral p-wave superconductors for s-wave-dominant superconductors with r = 0.5 (top
row) and p-wave-dominant superconductors with r = 2 (bottom row). The triplet pair amplitudes are even frequency and hence satisfy
F(—E) = —F*(E). Other parameters are set to ygs = 2,z = 0.75, Ety/ A = 0.02.

and 11 (bottom)] are, similarly to the (i)s + helical case,
very similar for different y,, though the phase of the induced
correlations strongly depends on x,. On the other hand, the
results for the subdominant pair amplitude depend strongly
on y, and they are distinctly different from the s -+ helical
p-wave superconductors. First of all, even if x, = O the sub-
dominant component need not vanish at zero energy. Indeed,
Re[Fy»(E = 0)] # 0 for triplet dominant pair potentials, see
Figs. 10 (bottom), and similarly Im[F;;,(E = 0)] # 0 for
singlet dominant junctions, as shown in Fig. 11 (top). This
is due to the time-reversal symmetry breaking of the chiral
p-wave component of the pair potential. Next to this, even for
Xx: = 1 there is a small and narrow dip around zero energy
in the triplet pair amplitude. The singlet pair amplitude has a
zero energy peak even for triplet dominant s 4 chiral p-wave
superconductors. This peak increases when y; is increased.

These effects can be attributed to the angle dependence of
the phase difference between the s-wave and p-wave compo-
nents of the pair potential. Whereas for the helical p-wave
junction this phase difference is y; for all modes, for the chiral
p-wave case the phase difference between singlet and triplet
components varies between x; — 7 and x; + 5. Therefore the
results are a weighted average over this range of phase differ-
ences. Because the transmission for normal incidence is larger
than for oblique incidences there is a difference between s +
chiral p-wave and is + chiral p-wave superconductors, but it
is less pronounced than for (i)s + helical p-wave supercon-
ductors. All pair amplitudes can exist at zero energy for any
phase difference between the s-wave and p-wave components
of the pair potential.

B. Conductance

The conductance in s+ chiral p-wave superconductor
junctions is different compared to s + helical p-wave junc-
tions. First of all, for the s + chiral p-wave superconductor
there are no sharp peaks at eV = A because the eigenvalues
of the matrix pair potential are complex and angle dependent
even for x, = 0 [126]. Thus, there is no transition between two
sharp peaks and a single broad one when using (i)s + chiral

p-wave superconductors. Instead, as shown in Fig. 12, the
zero-bias conductance is slightly increased by an increase of
X:» Whereas the conductance for |A_| < eV < A, is slightly
decreased with increasing ;.

The difference between the s + chiral p- and is + chiral
p-wave superconductors is most clearly visible around r =
1, the transition point between s-wave-dominant and p-
wave-dominant superconductors. In contrast with s + helical
p-wave superconductor junctions, there is no discontinuity
in the conductance in either case. For the s + chiral p-wave
superconductor (x, = 0), as shown in Fig. 13(a), the conduc-
tance is more similar to the conductance of a junction with
an s-wave superconductor, with the zero-bias conductance
rapidly increasing as a function of r, and the broad peak
around eV = A( decreasing slowly with r. On the other hand,
for the is + chiral p-wave superconductor (x; = 1), as shown
in Fig. 13(b), the conductance is more similar to a p-wave-
dominated superconductor. Also for this case, the zero-bias
conductance highly depends on », whereas the peak around
eV = Ay develops slowly with decreasing r. Summarizing,
for the (i)s + chiral p-wave superconductors, the influence
of the phase difference y, between the s-wave and p-wave
components of the pair potential on all properties of the
junction is smaller because the phase difference between the
singlet and triplet correlations is different for each mode that
contributes.

V. 3D B-W SUPERCONDUCTORS

Time-reversal and inversion symmetry broken supercon-
ductors are not restricted to two-dimensional materials, but
may also appear in three dimensions [84]. Therefore we gener-
alized the formalism to include superconductors whose order
parameter depends on k, , .. For the 3D superconductor, we
need to extend the Tanaka-Nazarov boundary conditions. This
extension is straightforward. The reflected mode has opposite
ky and k; instead of only opposite k;, and integration needs to
be performed over a half sphere instead of a half circle. It is
assumed that the transmission only depends on the angle made
with the surface normal. The inclusion of 3D angles in the

094503-9



KOKKELER, GOLUBOV, BERGERET, AND TANAKA

PHYSICAL REVIEW B 108, 094503 (2023)

1.6

—_—t=0

oloy

0.6 - -
0 0.5 1 15 2
eV/Ag

(a)

2.4

—_—t=0

ofoy

0 0.5

1
eV/Aoy

(b)

FIG. 12. The dependence of the conductance on x, for s-wave-dominant (left, »r = 0.5) and p-wave-dominant (right, » = 2) (i)s 4 chiral
p-wave superconductors. The influence of x; on the conductance is comparably small because the phase difference between singlet and triplet
pair amplitudes is mode dependent and attains all values. x, is determined by this phase difference for the normal mode, which has the largest
transmission eigenvalue. Other parameters are set to ygs = 2, 7 = 0.75, Em,/ Ao = 0.02.

boundary condition does make the code more computationally
expensive. However, for certain types of three-dimensional
p-wave superconductors symmetry can be exploited to reduce
the computational costs.

Specifically, we consider the proximity effect induced by a
superconductor with a B-W pair amplitude. The proximity ef-
fect of B-W superconductors was first studied for the charge-
less helium superfluid [111]. For the B-W phase the d vector
is given by d(¢, ¥) = (cos ¢, sin ¢ sin ¢, sin ¢ cos ¢). The
B-W phase is therefore the natural extension of the 2D helical
superconductor to a 3D material. The magnitude of the gap
is constant over the Fermi surface, and the direction of the d
vector is the same as the direction of momentum. Moreover,
like the 2D helical superconductor, the 3D B-W superconduc-
tor is a topological superconductor protected by time-reversal
symmetry [2,125]. The results are therefore predicted to be
similar as well.

oloy

0 0.5 1 1.5 2
eV /Ao

(a)

For the 2D helical superconductors it has been shown
following symmetry arguments for the modes at (k, k) in
the absence of a magnetic field only singlet correlations and
triplet correlations with d vector proportional to (d) - o = oy
are induced [107]. Because in 3D B-W superconductors k,
and k, are equivalent symmetry dictates that this feature holds
for 3D B-W superconductors as well. Even more, this equiv-
alence dictates that the singlet and o, -triplet contributions of
all modes with fixed k, are the same. The ¢-integral can thus
be performed analytically and yields a factor 2. Therefore,
for the B-W superconductor we do not need to numerically
integrate over two dimensions and the numerical costs are
comparable to those for junctions with a 2D superconductor.
To improve convergence, a Dynes parameter I' = 0.01A was
added as an imaginary part of the energy. Here we focus on
conductance; the density of states and pair amplitudes are
discussed in the Appendix.

0 0.5 1 1.5 2
GV/A()

(b)

FIG. 13. The transition between the regimes of s-wave-dominant and p-wave-dominant superconductors for the s 4 chiral p-wave (a) and
is 4 chiral p-wave superconductors (b). For chiral superconductors there is no topological protection even for x, = 0, and hence the
conductance is always continuous. Other parameters are set to ygs = 2, z = 0.75, Ety/ Ao = 0.02.
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FIG. 14. The conductance in an SNN junction with a B-W-phase
p-wave superconductor for different lengths of the junction with
z=0.75 and ygs = 2. For longer junctions, the peak at zero energy
is larger and sharper. For larger voltages o /oy decreases with in-
creasing length.

First, we consider the case of a p-wave B-W supercon-
ductor, that is, without inclusion of any s-wave component
in the pair potential. The conductance is shown for different
lengths in Fig. 14. In long junctions, there is a sharp zero-bias
conductance peak with a width on the order of the Thouless
energy. For short junctions, however, there exists no zero-bias
conductance peak. This is in contrast with other types of
p-wave superconductors such as the 2D helical and chiral
superconductors described in previous sections.

The absence of a zero-bias conductance peak in the short
limit can be understood by considering the tunneling via

2D 3D

~

Ky

FIG. 15. The dispersion of the Andreev bound states for 2D he-
lical and 3D B-W p-wave superconductors. In both cases, the energy
of the bound states is linear in the magnitude of the momentum. For
the 2D case, this remains that the density of Andreev bound states is
constant around £ = 0; for the 3D case the density of Andreev bound
states vanishes at £ = (. Parameters are set to ygs = 2, z = 0.75,
Em/Ao = 0.02.

Andreev bound states in ballistic junctions, which has a
much wider range of possibilities for three-dimensional super-
conductors compared to their two-dimensional counterparts
[109,127-131]. The dispersion of the Andreev bound states
in junctions with helical or B-W p-wave superconductors is
shown in Fig. 15. In each case there is a zero-energy Andreev
state at normal incidence, and the energy is approximately lin-
ear in the magnitude of momentum. For 2D superconductors
this means that the density of Andreev bound states is approx-
imately constant and finite around £ = 0 [132,133], leading
to a broad conductance peak centered at eV = 0. On the
other hand, for 3D superconductors, the density of Andreev
bound states vanishes at £ = 0 and is finite for nonzero
energies. This leads to an enhancement of the conductance
for nonzero voltages compared to the zero-bias conductance.
The balance between this effect and coherent Andreev re-
flection determines whether there is a zero-bias conductance
peak or zero-bias conductance dip in junctions with B-W
superconductors.

As shown in Fig. 16(a) an increase of the boundary re-
sistance, i.e., an increase yjps, leads to a suppression of the
zero-bias conductance peak but an increase in the conduc-
tance peak between eV = 0.5A and eV = A, while the dip
around eV = A, is also more pronounced. The conductance
strongly depends on the z parameter, as shown in Fig. 16(b).
For small z, that is, an interface with low transparency, the
zero-bias conductance consists of the usual sharp peak and
an almost flat peak, whereas for large z a zero-bias conduc-
tance dip is found. With increasing z also the conductance
for eV =~ A is strongly suppressed and may even decrease
below the normal-state conductance. These effects can be un-
derstood as follows. As ygs increases the boundary resistance
increasingly dominates the total resistance. The coherent An-
dreev reflection suppresses the resistance inside the bar, but
not the boundary resistance. Therefore, the coherent Andreev
reflection peak is suppressed if the boundary resistance be-
comes more dominant. Next, we considered the s 4+ p-wave
and is 4+ p-wave junctions with Et,/A¢ = 0.02 and z = 0.75.
The results in Fig. 17 for s + p-wave superconductors are
shown and in Fig. 18 for is + p-wave superconductors. The
main features are similar to that of the two-dimensional helical
p-wave superconductors. As shown in Fig. 17(a), if a subdom-
inant B-W pair potential is added to an s-wave superconductor
with the same phase, the peak at eV = A splits into two peaks
at eV = A.. The zero-bias conductance is not altered since
the B-W superconductor, like the helical superconductor, is
a topological superconductor protected by time-reversal sym-
metry [2,125]. On the other hand, if a subdominant B-W is
added to an s-wave superconductor with a phase difference of
7 /2, a single peak remains, as highlighted in Fig. 18(a). This
peak is suppressed, broadened, and shifted toward slightly
lower voltages. The zero-bias conductance is almost constant
but slightly increases since in the absence of time-reversal
symmetry there is no topological protection.

The case in which the p-wave component of the pair po-
tential is dominant is different compared to the 2D s + helical
p-wave superconductors, since the conductance for a 3D p-
wave superconductor is different from the conductance for
a 2D p-wave superconductor as shown before in Fig. 14.
However, the main influence of the inclusion of an s-wave
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FIG. 16. The dependence of the conductance on the boundary parameters ygs (left) and z (right) of the s + B-W/N/N junction. The
Thouless energy was set to Et,/Ap = 0.02 in all calculations. In the left panel z = 0.75; in the right panel ygs = 2. An increase of ygg
leads to a decrease of the zero-bias conductance, but an increase of the conductance peak between eV = 0.5A and eV = A,. For small
z the conductance decreases monotonically with voltage, whereas for large z the peak between ¢V = 0.5A¢ and ¢V = A, becomes more
pronounced, whereas there exists a zero-bias conductance dip in this case.

component in the pair potential at the same is similar; see
Fig. 17(b). The sharp feature in the conductance at eV = A,
splits into two peaks at eV = A, = A, while the zero-bias
conductance is unaltered. For A, — A; <« A, this peak ap-
proaches the zero-bias conductance peak. The two peaks are
clearly distinguishable as long as A, — Ay > Ery. If time-
reversal symmetry is broken, see Fig. 18(b), the zero-bias
conductance is decreased if an s-wave component is included
in the pair potential, and the peak in the conductance at finite
voltage becomes sharper and larger. Moreover, it increases
toward eV = Ay.

VI. CONCLUSIONS

In conclusion, we have shown that the phase difference
that may appear between the singlet and triplet correlations

25
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in time-reversal symmetry broken noncentrosymmetric su-
perconductors has a large influence on the local density of
states, pair amplitudes, and conductance in dirty SNN junc-
tions. Novel features are particularly visible if the p-wave
superconductor is of the 2D helical or 3D B-W type, topo-
logical superconductors protected by time-reversal symmetry.
We have shown that in the absence of topological protection,
the zero-bias conductance varies continuously as a function
of the mixing parameter between the s-wave and p-wave
components of the pair potential. Our results provide a new
way to detect time-reversal symmetry breaking in s 4+ p-wave
superconductors. Next to this, they highlight that the breaking
of topological protection significantly alters the proximity
effect.

For (i)s 4 chiral p-wave superconductors the phase dif-
ference between singlet and triplet components is mode
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FIG. 17. The conductance of the s+B-W/N/N (x, = 0) junction for different ratios of the s-wave and p-wave components of the pair
potential. The zero-bias conductance is quantized; it only depends on whether the s-wave or p-wave component of the pair potential is
dominant. The height of the zero-bias conductance peak is significantly suppressed compared to the two-dimensional s + helical p-wave
junctions. The conductance has sharp features at eV = Ery, and eV = A_.. Parameters are set to ygs = 2, z = 0.75, Emy/Ao = 0.02.
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FIG. 18. The conductance of the is+B-W/N/N (x, = 1) junction for different ratios of the s-wave and p-wave components of the pair
potential. The zero-bias conductance depends on the particular ratio of the s- and p-wave components, crossing the normal-state conductance

at r = 1. Parameters are set to ygs = 2,z = 0.75, Emn/ Ao = 0.02.

dependent, and therefore the dependence of the density of
states and conductance on the phase of the s-wave compo-
nent of the pair potential is much weaker. Next to this, our
results show that a zero-bias conductance peak can be absent
when using three-dimensional odd-parity superconductors.
This clearly distinguishes three-dimensional odd-parity super-
conductors from their two-dimensional counterparts.

The main results in our paper depend on the presence of
both singlet and triplet correlations, their phase difference,
and their relative presence. Our results show that the type of
triplet correlations plays an important role as well; the pres-
ence or absence of topological invariants crucially influences
the dependence on the mixing parameter. Therefore, while
several features of our results such as the suppression of the
zero-energy (bias) peaks and dips in the density of states (con-
ductance) can be immediately generalized to other inversion
and time-reversal symmetry broken superconductors such as
s+ (i)f,d + (i)p, and s + helical p + chiral p wave, the be-
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havior around the transition point » = 1 can be significantly
different for each type of superconductor and needs further
investigation.
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APPENDIX: DENSITY OF STATES
AND PAIR AMPLITUDES IN THE (i)s+B-W JUNCTION

In this section, we present the density of states and
pair amplitudes in junctions with (i)s+B-W superconductors.
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FIG. 19. The local density of states for s + p-wave (a) and is + p-wave (b) superconductors for s-wave-dominant and p-wave-dominant

s+B-W superconductors.
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FIG. 20. The singlet pair amplitude for s 4+ p-wave (top) and is + p-wave (bottom) superconductors for s-wave dominant and p-wave

dominant s+B-W superconductors.

We find that the results are similar to those for the
two-dimensional junctions with s 4 helical p-wave supercon-
ductors. The density of states and pair amplitudes are shown
in Figs. 19-21, respectively. The results are similar to the 2D
helical superconductor. For the s + p-wave superconductor,
the zero-energy density of states is independent of the sub-
dominant component; it depends only on whether the s-wave
or p-wave component of the pair potential is dominant. On
the other hand, for the is + p-wave superconductor, the zero-
energy density of states continuously changes from the s-wave
to the p-wave value, being lower than the normal density of
states for r = 2. Because we consider only s 4+ p and is + p
wave superconductors the phases of the singlet and triplet
components of the pair potential are independent of energy
and either only the t; component or only the 7, component
is nonzero. In the following we show only those pair am-
plitudes which are not identically zero for all r. The singlet
pair amplitude is absent for p-wave superconductors, and has
a large peak at £ = 0 with two smaller peaks at £ = +A,
for s-wave superconductors. If the s-wave component of the
pair potential is dominant the induced singlet pair amplitude
peaks at E = 0, having exactly (s + pwave) or approximately

(is +p wave) the same value at zero energy as for the s-wave
superconductor.

For s + p-wave superconductors there are peaks at |E| =
Ay + A;, whereas for is+p-wave superconductors there
are only broader peaks at |E| = Ay. For p-wave-dominant
junctions the singlet pair amplitude strongly depends on the
relative phase between the s-wave and p-wave components
of the pair potential. A common feature it that the singlet
pair amplitude is always smaller than in s-wave-dominant
junctions. However, for s+ p-wave superconductors the
singlet pair amplitude vanishes at E =0, whereas for
is + p-wave junctions the singlet pair amplitude has a peak
at zero energy. For the triplet pair amplitude the reverse
holds. It vanishes for s-wave superconductors, peaks around
E =0 for p-wave or p-wave dominant superconductors,
and for s-wave dominant superconductors the result highly
depends on the phase difference between the s-wave and
p-wave components of the pair potential. For s+ p-wave
superconductors it vanishes at E =0; for is-+ p-wave
superconductors the triplet pair amplitude has a peak at zero
energy, though it is much smaller than for p-wave (dominant)
superconductors.
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