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Lattice strain effects on the finite-temperature magnetism of two-dimensional single-layer CrI3
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The magnetic properties of two-dimensional single-layer CrI3 at finite temperatures are self-consistently
calculated within the nonlinear spin wave formalism, where the Heisenberg exchange interaction and the
single-ion magnetic anisotropy energy are calculated from first principles. The lattice strain modulates the
exchange interactions and determines the magnetic ground state of the single-layer CrI3 as the ferromagnetic
or antiferromagnetic configuration. In both cases, the magnon-magnon interaction at finite temperature softens
the magnon spectra. The Curie temperature for the ferromagnetic state varies nonmonotonically with decreasing
lattice constant, and the maximum value appears at the compressive strain of −2.1%. The Néel temperature
for the antiferromagnetic order linearly increases with increasing compressive strain. The exchange interactions
between the next-nearest and third-nearest-neighbor spins are found to play an important role in magnetism.
Neglecting these exchange interactions results in a significant deviation in estimating the critical temperature.
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I. INTRODUCTION

Recently discovered two-dimensional (2D) magnetic ma-
terials [1–6] open up an exciting arena for fundamental
investigations and promising applications. These atomically
thin layers favor strong perpendicular magnetic anisotropy
that overwhelms thermal fluctuations, which were predicted to
rule out any long-range magnetic order at finite temperatures
in 2D materials according to the Mermin-Wagner theorem
[7]. This long-range magnetic order breaks the time-reversal
symmetry of these materials, leading to the emergence of
some unique quantum states, such as the intrinsic quantum
anomalous Hall state [8,9], giant valley splitting [10], and
the half-excitonic insulator [11]. To create more opportunities
for applications in spintronics and nanoelectronics, various
approaches, such as applying an external electric field [4,12–
17], strain [14,18–29], and stacking [27,30], have been em-
ployed to manipulate the anisotropy and in turn the magnetic
properties. Stacking, as well as substrates on which 2D FM
materials are grown, usually imposes strain on 2D FM materi-
als owing to the lattice mismatch. Therefore, it is necessary to
comprehensively understand the dependence of the magnetic
properties of 2D FM materials on the lattice strain.

For the purpose of applications, which are carried out at
finite temperatures, one has to consider the temperature de-
pendence of the magnetic properties of 2D magnetic materials
[31]. Being able to precisely evaluate these temperature-
dependent magnetic properties has been a general research
interest. Much effort has been devoted to developing effec-
tive methods for calculating them. The Ising model, with
an analytical solution for 2D magnetism, readily applies to
2D magnetic systems. It is, however, restricted to within the
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limit of infinite single-ion anisotropy and thus provides the
upper bound for the Curie temperature [32,33]. Mean-field
theory, although it gives a reasonably good description of
finite-temperature magnetism in three-dimensional FM met-
als [34], neglects atomic fluctuations and cannot characterize
the collective excitation of spins at low temperatures. These
disadvantages are inevitable in its application to 2D magnetic
systems [18,35,36]. Monte Carlo (MC) simulations are often
employed in theoretical studies of 2D magnetic materials
[37–45], where finite anisotropy and atomic fluctuations are
treated on an equal footing. Nonlinear spin-wave theory (NL-
SWT), or renormalized spin-wave theory (RSWT) [46–55],
with a much smaller computational cost than MC simulations,
provides another effective method to study 2D magnetic sys-
tems.

As an extension of the standard linear spin-wave theory
(LSWT), NLSWT introduces the magnon-magnon interac-
tion by including higher-order terms in the Hamiltonian [56].
The excitation of magnons, whose distribution is subject to
Bose-Einstein statistics, results in demagnetization at finite
temperatures. By self-consistently solving the magnon Hamil-
tonian, one can determine the magnon spectrum at a given
temperature and corresponding magnetization. The latter van-
ishes at the critical temperature. Characteristic parameters of
the system, such as the magnetic anisotropy that helps the
2D long-range magnetic order survive at finite temperatures
and the Heisenberg exchange interaction that describes the
coupling between atomic spins, are essential in NLSWT. Re-
liable evaluation of them, in this study, is provided through
first-principles calculations based on the electronic structure
of the materials.

In this paper, taking single-layer CrI3 as an example, we
carry out first-principles total energy calculations for different
collinear spin configurations [57] and determine the Heisen-
berg exchange coefficients and single-ion magnetic anisotropy
energy. Feeding these parameters into the NLSWT formalism,
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we obtain the magnon spectra as a function of temperature and
the related temperature-dependent magnetic properties. Previ-
ous studies have shown that single-layer CrI3 is soft (Young’s
modulus of 24 Nm−1) [37] compared with other 2D materials,
such as FeSe (80 Nm−1) [28] and MoS2 (180 Nm−1) [58].
We systematically investigate the lattice strain effects on the
magnetic properties at various temperatures below the critical
temperature. As compressive strain changes the ground state
of single-layer CrI3 from the FM to AFM state, we extend the
application of the NLSWT formalism to AFM CrI3 and study,
as in the FM case, the magnon spectra and related properties.
We find that the Curie temperature TC of FM CrI3 varies
nonmonotonically with the lattice strain, with the maximum
TC = 57 K appearing at the compressive strain of −2.1%,
and the Néel temperature TN of AFM CrI3 linearly increases
with lattice strain. Ignoring exchange interactions between the
next-nearest and/or third-nearest neighbors leads to a signifi-
cant deviation in the evaluation of the critical temperature.

The rest of this paper is organized as follows. In Sec. II
the first-principles calculations are detailed, and the material
parameters needed in NLSWT are presented as a function of
the lattice strain. The NLSWT method is derived in Sec. III for
a single-layer honeycomb lattice in the FM and AFM states.
The calculated magnon spectra, demagnetization, and other
magnetic properties at finite temperatures within NLSWT are
presented and discussed in Sec. IV. A brief summary is given
in Sec. V. Appendix A provides the detailed derivation of
the magnon Hamiltonians for both the FM and AFM con-
figurations. Fewer exchange interaction terms are explicitly
examined in Appendix B.

II. FIRST-PRINCIPLES CALCULATIONS

CrI3 is a newly found ferromagnetic van der Waals (vdW)
insulator [16]. The weak vdW bonding facilitates extrac-
tion of thin layers down to atomic thicknesses, where strong
magnetocrystalline anisotropy protects long-range magnetic
order. As schematically shown in Fig. 1, there are two types
of chromium atoms occupying inequivalent Wyckoff sites,
marked as CrA and CrB, forming a honeycomb lattice. Each
Cr atom is surrounded by six iodine atoms forming a slightly
warped octahedron. Atomic magnetization is localized on
Cr atoms. The exchange interactions between Cr atoms are
denoted as J1, J2, and J3, representing the interactions between
the nearest, next-nearest, and third-nearest neighbors, respec-
tively.

To evaluate the exchange interaction, we first map the total
energy of the single-layer CrI3 system to two terms,

Etot = E0 + 1

2

∑
i �= j

Ji jSi · S j, (1)

where E0 is the energy of the system excluding spin-spin
interactions and Si is the atomic spin of the ith Cr atom
with magnitude S = 3/2. The total energy is calculated us-
ing density functional theory implemented in the Vienna
ab initio simulation package (VASP) [59,60]. The Perdew-
Burke-Ernzerhof [61] functional is employed to describe the
exchange and correlation. The PBE version of the all-electron
projector augmented wave [62,63] potential is adopted, with

(a) (b)

(c) (d)
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CrB

CrA

FIG. 1. Schematic illustration of the lattice structure of mono-
layer CrI3, top view (a) and side view (b), and of an octahedron
formed by eight I atoms around every Cr atom (c). The Heisenberg
exchange interactions between the nearest, next-nearest, and third-
nearest neighbors are denoted by J1, J2, and J3, respectively (orange
line). (d) First Brillouin zone of CrI3 with high symmetry points.

the 3p63d54s1 states of chromium and 4d105s25p2 states of
iodine treated as valence electrons. The plane-wave basis
set is truncated with a cutoff energy of 600 eV, and the k
points in the BZ are sampled with a 10 × 10 × 1 mesh using
the Monkhorst-Pack scheme [64]. In the calculations, lat-
tice structures are fully relaxed until the residual interatomic
forces are below 0.01 eV/Å.

The Heisenberg exchange interaction Ji j is a short-range
term, and we consider only the interactions up to the third-
nearest neighbor, as denoted in Fig. 1. A 2 × 2 supercell
of CrI3 within which the atomic magnetizations of different
Cr atoms are artificially flipped is employed, and the total
energies of 11 inequivalent spin configurations are calculated.
Linear regressions of these total energies are carried out to ex-
tract the J coefficients [57]. We determine for the original CrI3

lattice the Heisenberg exchange interaction coefficients as
J1 = −2.94 ± 0.04 meV, J2 = −0.62 ± 0.02 meV, and J3 =
0.16 ± 0.02 meV, with good agreement with reported values
in the literature [18,28,37,65,66].

Before the exchange interaction as a function of strain
is discussed, it is worth mentioning that the change in the
nonmagnetic energy E0, as shown in the inset of Fig. 2(a),
induced by strain is three orders of magnitude larger. By
checking the energy bands and atomic magnetizations with
respect to strain, we confirm that such large strain-induced
energy does not lead to insulator-metal phase transition, and
the atomic moments keep nearly unchanged. One is allowed to
study the magnetic properties in the 2D CrI3 for strain within
the range from −10% to 10%. To ensure that the lattice can
sustain such strain range is checked by comparing the values
of Young’s modulus of 2D materials, such as FeSe [28], MoS2

[58], and CrI3 [37] and experimentally realized strain on FeSe
(6%) [67,68] and MoS2 (11%) [58].

With biaxial lattice strain exerted on CrI3, the exchange
parameters vary with the strain, as shown in Fig. 2(a). J1

is the dominant exchange interaction in the 2D CrI3 lattice
and shows nonmonotonic behavior as the strain changes. It
is not very sensitive to tensile (positive) strain but rapidly
increases under compressive (negative) strain. At a strain of
approximately −6.2%, J1 changes sign. In contrast, J2 and
J3 monotonically decrease as the distance between Cr atoms
increases, and J2 < 0 and J3 > 0 hold for the whole strain
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FIG. 2. Calculated Heisenberg exchange interaction parameters
(a), total energies for different magnetic orders (b), and single-ion
anisotropy parameter A (c) as a function of biaxial strain. Inset:
calculated nonmagnetic energy E0 as a function of strain. The error
bars are smaller than the symbol size. The gray and blue shading
indicates corresponding ferromanetic and anti-ferromagnetic ground
states, respectively, determined by the total energies.

range under discussion. The results agree well with those
reported in Ref. [28]. The above calculations are carried out
without taking relativistic effects into account, which have
been proven to have negligible effects on isotropic exchange
interactions [28].

The sign change of the dominant exchange interaction re-
sults from competition between positive direct exchange that
favors AFM order and negative superexchange that favors the
FM configuration. The former remarkably increases as the
compressive strain increases, while the latter is less sensitive
to lattice compression. This suggests that the ground state can
change from FM to AFM as a larger compressive strain is
applied. We confirm this by calculating the total energies, in
this case with relativistic effects taken into account, of an FM
state and an AFM state at different strain values, as shown in
Fig. 2(b). With a compressive strain larger (in magnitude) than
−5.7%, the lower energy of the AFM state indicates that it is
the ground state rather than the FM state.

We further determine the single-ion magnetic anisotropy
parameter A by calculating the energy difference between
states with magnetizations in-plane and out-of-plane: E‖ −
E⊥ = AS2. Combining with the magnetic order in the ground
state determined from the total energy calculations, we obtain
A for FM and AFM states, respectively. The results are plotted
in Fig. 2(c). The value at zero strain corresponds to a mag-

netic anisotropy energy of 0.82 meV per Cr atom, which is
consistent with previous results, ranging from 0.65 to
0.98 meV [18,51,66,69]. Positive (negative) A indicates out-
of-plane (in-plane) magnetization at ground state. The empty
squares show continuous tendencies if magnetic order is un-
changed as being FM (green) and AFM (pink), respectively.
The discontinuity of the solid curve occurs at the compressive
strain −5.7% where the magnetic phase transition takes place.

III. NONLINEAR SPIN-WAVE THEORY

For a magnon system with isotropic Heisenberg exchange
interactions and single-ion magnetic anisotropy, the magnon
Hamiltonian is usually given as

H =
∑
〈i j〉

Ji jSi · S j − |A|
∑

i

(
Sξ

i

)2
, (2)

where 〈i j〉 represents the summation over neighbor pairs
with corresponding exchange coefficients Ji j and ξ is the
direction of the easy axis. The anisotropic exchange and the
Dzyloshinskii-Moriya interaction arising from spin-orbit in-
teraction are not taken into account, which may yield small
gaps in magnon spectra and/or topological properties of
magnons in CrI3 [70,71]. These variations are nevertheless in
a much smaller energy scale than the influence of magnon-
magnon interaction at finite temperature that we study in this
work.

A. Honeycomb ferromagnets

For FM single-layer CrI3, there are two magnetic sublat-
tices, CrA and CrB, as shown in Fig. 1, with spins parallel
and out-of-plane. Using the Holstein-Primakoff transforma-
tion [72], one extends LSWT to NLSWT by including quartic
terms and truncating higher-order terms:

S+
A = (

√
2S − a+a)a ≈

√
2S

(
a − a†aa

4S

)
,

S−
A = a†(

√
2S − a+a) ≈

√
2S

(
a† − a†aa

4S

)
,

Sz
A = S − a+a,

(3)

where a† and a are the creation and annihilation operators of
magnons, respectively, for sublattice CrA, and S = 3/2 is the
magnitude of the atomic spin. Substituting a†(a) with b†(b) in
the above equations, we obtain the expressions for sublattice
CrB. With S± = Sx ± iSy and ξ = z in Eq. (2) and standard
Fourier transforms

d†
i = 1√

N

∑
k

e−ik·Ri d†
k, di = 1√

N

∑
k

eik·Ri dk, (4)

where d = a, b, we deduce the magnon Hamiltonian using
operators ak (a†

k) and bk (b†
k) in k space. The four-operator

terms are treated within the mean-field approximation and
reduced to two-operator terms (the detailed derivation can
be found in Appendix A), and the magnon Hamiltonian is
obtained as

HFM =
∑

k

(a†
k b†

k )

(
A(k) B(k)

B∗(k) A(k)

)(
ak

bk

)
, (5)
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where A(k) and B(k) contain contributions from both
magnon noninteracting and interacting terms:

A(k) = −
3∑

ρ=1

JρZρ[M + Re( fρ )] + J2Z2γ2(k)(M + f2)

− (2S + 1 − 4M )A,

B(k) =
∑

ρ=1,3

JρZρ (M + fρ )γρ (k). (6)

Here Zρ is the number of neighbor pairs (Z1 = 3 for the
nearest, Z2 = 6 for the second-nearest, and Z3 = 3 for the
third-nearest neighbors), γρ (k) is the structural factor deter-
mined by the lattice,

γ1(k) = 1

3

[
cos

(
a0√

3
ky

)
+ 2 cos(

a0

2
kx ) cos

(
a0

2
√

3
ky

)

+ i

(
sin

(
a0√

3
ky

)
− 2 cos

(
a0

2
kx

)
sin

(
a0

2
√

3
ky

))]
,

γ2(k) = 1

3

(
cos(a0kx ) + 2 cos

(
a0

2
kx

)
cos

(√
3a0

2
ky

))
,

γ3(k) = 1

3

[
cos

(
2a0√

3
ky

)
+ 2 cos(a0kx ) cos

(
a0√

3
ky

)

+ i

(
− sin

(
2a0√

3
ky

)
+ 2 cos(a0kx ) sin

(
a0√

3
ky

))]
, (7)

and we have the following:

M = S − 1

N

∑
k

〈a†
kak〉, (8)

fρ = 1

N

∑
k

γρ (−k)〈b†
kak〉 (ρ = 1, 3), (9)

f2 = 1

N

∑
k

γ2(k)〈a†
kak〉. (10)

In the above three expressions, 〈. . . 〉 means the mean-field
treatment. We also have S = 3/2 for the atomic spin, a0 for
the lattice constant, and N for the number of k points, which
is checked to be well converged. The magnetization M given
in Eq. (8) is the same for both sublattices. The short-range
bosonic correlations within one sublattice and between dif-
ferent sublattices are characterized by f2 in Eq. (10) and f1

and f3 in Eq. (9), respectively. The latter correlations result
in coherent superimposition of magnon modes from different
sublattices. Through canonical transformation, the diagonal-
ized Hamiltonian is obtained as

Hk =
∑

k

E+α
†
kαk + E−β

†
kβk, (11)

where the eigenvalues read

E±(k) = A(k) ± |B(k)|, (12)

and the noninteracting bosonic quasiparticle operators αk and
βk are determined by interacting bosons ak and bk as(

αk
βk

)
= 1√

2

(
1 eiφk

−e−iφk 1

)(
ak
bk

)
, (13)

with the phase being φk = arg[B(k)]. With the above expres-
sions, we rewrite Eqs. (8)–(10) as

M = S − 1

2N

∑
k,σ=±

nσ (k), (14)

fρ = 1

2N

∑
k,σ=±

σγρ (−k)eiφk nσ (k) (ρ = 1, 3), (15)

f2 = 1

2N

∑
k,σ=±

γ2(k)nσ (k), (16)

where n±(k) = 1/(eβE±(k) − 1), and β = 1/kBT introduces
thermal effects into the magnon system through the Bose-
Einstein distribution. By self-consistently solving Eqs. (6)–
(7), (12), and (14)–(16), we obtain (1) the magnon spectrum
E±(k) for the acoustic and optical branches at zero tempera-
ture and (2) the magnetic thermodynamic properties at a finite
temperature, which will be further detailed in Sec. IV B.

B. Honeycomb antiferromagnets

In AFM single-layer CrI3, spins on different sublattices are
antiparallelly aligned in the x-y plane. Assuming that the spins
are along the x direction, we have for sublattice CrA the same
as Eq. (3) (substituting Sz

A with Sx
A), but for sublattice CrB,

S+
B = b†(

√
2S − b+b) ≈

√
2S

(
b† − b†bb

4S

)
,

S−
B = (

√
2S − b+b)b ≈

√
2S

(
b − b†bb

4S

)
,

Sx
B = b+b − S.

(17)

Here, with S± = Sy ± iSz and ξ = x in Eq. (2) and the same
Fourier transforms as in Eq. (4), we obtain the AFM magnon
Hamiltonian as (derivation details are given in Appendix A)

HAFM =
∑

k

(a†
k b−k )

(
Ã(k) B̃(k)
B̃∗(k) Ã(k)

)(
ak

b†
−k

)
, (18)

where

Ã(k) =
∑

ρ=1,3

JρZρ (M − Re[ fρ]) + J2Z2(γ2(k) − 1)

× ( f2 + M ) − (2S − 4M + 1)A,

B̃(k) =
∑

ρ=1,3

JρZργρ (k)(M − fρ ), (19)

with Zρ and γρ given previously in Sec. III A and

M = S − 1

N

∑
k

〈a†
kak〉, (20)

fρ = 1

N

∑
k

γρ (−k)〈akb−k〉 (ρ = 1, 3), (21)

f2 = 1

N

∑
k

γ2(k)〈a†
kak〉. (22)

We diagonalize the Hamiltonian by applying the Bogoliubov-
Valatin canonical transformation [73] as U †HAFMU = Hk ,
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where the transformation matrix reads

U = 1√
2Ek[Ã(k) − Ek]

(
B̃(k) Ek − Ã(k)

Ek − Ã(k) B̃∗(k)

)
.

(23)

It also satisfies U †σzU = σz, with σz = diag(1,−1). The di-
agonal eigenvalue matrix is

Hk =
∑

k

Ek (α†
kαk + β

†
kβk ), (24)

where the new annihilation (creation) operators αk (β†
−k ) are

introduced as (
αk

β
†
−k

)
= U −1

(
ak

b†
−k

)
, (25)

and the excitation spectrum is

Ek =
√

[Ã(k)]2 − |B̃(k)|2. (26)

Without an external magnetic field, the excitation spectrum is
degenerate. The Bose distribution satisfies nk = 1/(eβEk − 1).
We further rewrite Eqs. (20)–(22) as

M = S − 1

N

∑
k

(2nk + 1)Ã(k) − Ek

2Ek
, (27)

fρ = − 1

N

∑
k

γρ (−k)
(2nk + 1)B̃(k)

2Ek
(ρ = 1, 3), (28)

f2 = 1

N

∑
k

γ2(k)
(2nk + 1)Ã(k) − Ek

2Ek
. (29)

By self-consistently solving Eqs. (7), (19), and (26)–(29), we
obtain the AFM magnon spectrum and the related properties.

IV. RESULTS AND DISCUSSION

Iteratively solving the above NLSWT formalism with the
numerical values of the exchange interactions J1, J2, and J3

and the single-ion anisotropy A calculated from first principles
in Fig. 2, we obtain magnetic properties for the FM and
AFM states. At zero temperature, the results from the NL-
SWT formalism are the same as those from LSWT [74]. With
increasing the temperature, lattice vibration is excited, which
thermalizes the spin system via the magnon-phonon interac-
tion [74]. In this section, we focus on the magnon-magnon
interaction and study its influence on finite-temperature mag-
netism using the NLSWT.

A. Zero temperature

At T = 0 K, the magnon spectra for FM and AFM states
are obtained as in Eqs. (12) and (26), respectively. The results
are shown in Fig. 3, with the high-symmetry path of the
honeycomb lattice marked in Fig. 1(d). In the case of the FM
state, increasing tensile strain leads to softening of the magnon
excitation energy, as shown in Fig. 3(a), consistent with
the decreasing exchange coupling and single-ion anisotropy
shown in Fig. 2. With increasing compressive strain, the
magnon spectra in Fig. 3(b) significantly decrease, originating
mainly from the decreasing exchange interaction J1 between
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FIG. 3. Spin-wave excitation spectra for ferromagnetic and an-
tiferromagnetic single-layer CrI3 at zero temperature, calculated
based on the DFT results of the exchange interaction and single-ion
anisotropy with respect to different lattice strain values. Positive
strain stands for tension (a), and negative strain stands for compres-
sion [(b),(c)].

nearest neighbors. At a strain of −5.7%, the ground state
changes from FM to AFM, and the optical branch becomes
very close to the acoustic branch, approaching a degenerate
AFM spectrum, as shown in Fig. 3(c). With an even larger
compressive strain, the AFM spectra substantially increase,
determined by the rapidly increasing J1, as shown in Fig. 2(a).

A closer inspection of the spectra at the 	 point shows the
energy of the acoustic branch at k = 0, usually called the en-
ergy gap and denoted 
. It determines the stability of the 2D
magnetism, decreases with increasing tensile strain, as shown
in Fig. 3(a), and increases with increasing compressive strain,
as shown in Fig. 3(b), consistent with the monotonic variation
of the single-ion magnetic anisotropy A with the lattice strain
in the FM state, as shown in Fig. 2(b). According to the
NLSWT formalism, we have 
 = A(0) + |B(0)|, as given in
Eq. (12). Plugging the structural factors γ = 1 for the 	 point
given in Eq. (7) into Eq. (6), we have 
 = A(4M − 2S − 1).
At T = 0 K, the atomic magnetization given in Eq. (14) is
M = S. We thus have the energy gap A(2S − 1) determined
only by the single-ion magnetic anisotropy.

For the AFM state, we first determine the magnon spectra
for various lattice strain values, as shown in Fig. 3(c). 
 =
Ek=0 remarkably increases with compressive strain. Although
our NLSWT formalism does not give an analytical expression
for it, one finds its positive correlation with the single-ion
magnetic anisotropy, as intuitively expected.

B. Finite temperatures

With the temperature introduced through the Bose distribu-
tion, we calculate the magnetic properties with a temperature
dependence for FM and AFM single-layer CrI3 by self-
consistently solving the corresponding equations listed above.
The critical Curie temperature, TC, for the FM state and Néel
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FIG. 4. Calculated magnon spectra for ferromagnetic single-
layer CrI3 at a tensile strain of 5.7% (a) and a compressive strain of
−5.7% (b) at different temperatures below their Curie temperatures.

temperature, TN, for the AFM state are determined at vanish-
ing magnetization [75].

1. Ferromagnetic

In the FM case, we calculate the magnon spectra at differ-
ent temperatures for various lattice strains. Taking the tensile
strain of 5.7% and compressive strain of −5.7% as examples,
we show magnon spectra softening with increasing tempera-
ture, as plotted in Fig. 4. With a tensile strain of 5.7%, both the
acoustic and optical branches become lower in energy, with
the latter change appearing more remarkable. At a compres-
sive strain of −5.7%, the two branches are close to each other
at relatively low energies (compared to those at a tensile strain
of 5.7%), and both soften by only a couple of meV.

We can further determine the energy gap 
 at the 	 point
for different temperature and strain values. The results are
plotted in Fig. 5. A monotonic decrease with temperature
applies to all FM states with various lattice strains as shown
in Fig. 5(a). This means that the stability of the 2D ferromag-
netism decreases as the temperature increases, as intuitively
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FIG. 5. Calculated energy gap of the acoustic branch of the
magnon spectra at the 	 point for FM single-layer CrI3 as a function
of temperature (a) and lattice strain (b). Inset: Calculated energy gap
as a function of the single-ion magnetic anisotropy.
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FIG. 6. Calculated static susceptibility [(a),(b)] and reduced
spontaneous magnetization [(c),(d)] as a function of temperature at
various lattice strains.

expected. This is thus equivalent to determining the critical
temperature at 
 = 0 [75]. Close to the FM-AFM transition,
the compressive strain of −5.7% leads to an extraordinarily
small TC. By replotting the energy gap as a function of lattice
strain, as shown in Fig. 5(b), we obtain a monotonic decrease.
As discussed in Sec. IV A, 
 is mainly determined by the
single-ion magnetic anisotropy A. Plotting 
 as a function
of A, as shown in the inset in Fig. 5(b), we find a linear
dependence at low temperatures and a deviation from lin-
ear becoming noticeable with increasing temperature. This
confirms that the energy gap, which supports the long-range
magnetic order surviving thermal fluctuations, is determined
by the magnetic anisotropy.

Based on the temperature-dependent magnon spectra, we
calculate the static susceptibility, which is defined as [76]

χ = 1

2NT

∑
k,σ=±

exp [Ekσ (T )/kBT ]

{exp [Ekσ (T )/kBT ] − 1}2 (30)

and plot the results in Figs. 6(a) and 6(b). The susceptibil-
ity increases with increasing temperature and diverges at the
Curie temperature. Larger tensile strains give rise to faster
divergence, as shown in Fig. 6(a), while compressive strains,
as shown in Fig. 6(b), except for the critical strain of −5.7%
where the system is close to the FM-AFM phase transition,
show little effect on the diverging tendency.

Similar behaviors are found in the reduced spontaneous
magnetization, which is plotted as a function of temperature
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at various lattice strains in Figs. 6(c) and 6(d). At zero tem-
perature, the reduced magnetization is unity, and spins are
fully out-of-plane in the FM ground state. With increasing
temperature, the excitation of magnons, n(k) given in Eq. (14),
increases, resulting in a decreasing M. With tensile strains, as
shown in Fig. 6(c), larger strain values lead to a faster decrease
in M(T ). In contrast, compressive strains show a weak influ-
ence on the reduction of M(T ), as shown in Fig. 6(d), except
for the strain of −5.7%. By further fitting the magnetization
using the expression [77] M(T )/S = 1 − (T/TC)α in the low-
temperature region, we find that the index α is systematically
larger than 3/2. Specifically, it is approximately 2 for all
the tensile and compressive strains (except for the strain of
−5.7%, where it is approximately 2.6) and increases as the
lattice becomes smaller. We therefore demonstrate that the
Bloch T 3/2 law does not hold for the 2D CrI3 system.

2. Antiferromagnetic

With a compressive strain larger than −5.7%, single-layer
CrI3 is in the ground state of an in-plane antiferromagnet. The
temperature-dependent magnon spectra are self-consistently
calculated, as discussed in Sec. III B. Taking the compressive
strain of −8.6% as an example, we plot the results in Fig. 7(a).
The magnon excitation energy decreases as the temperature
increases, similar to the case of the FM state (shown in Fig. 4).
However, this softening of the magnon spectra is much less
remarkable in Fig. 7(a) than in Fig. 4. Quantitatively, the
softening of the AFM magnon at the K point is approxi-
mately several percent when approaching the critical Néel
temperature, while the softening of the FM optical branch at
the 	 point in Fig. 4 is close to half around TC.

The corresponding energy gap 
 as a function of temper-
ature is shown in Fig. 7(b). Again, a monotonic decrease is
found, which indicates that the stability of the AFM state also
weakens with increasing temperature, as intuitively expected.
Nevertheless, with a much larger 
 at 0 K, the AFM long-
range order holds until a much higher temperature compared
to the FM case. Meanwhile, the (quasi-)linear dispersion of
the magnon spectra in the AFM state results in a relatively
small density of states (DOS) of excited magnon modes. The
population of magnons with increasing temperature is thus
restricted by such a low DOS. In contrast, the FM state with
a (quasi-)quadratic dispersion in the low-energy region leads
to a larger DOS and, in turn, a larger magnon population
with increasing temperature. The magnon-magnon interac-
tion, which is accounted for in NLSWT, is therefore stronger
in the FM case than in the AFM state.

We can obtain deeper insight into the magnon-magnon in-
teraction by examining the atomic magnetization as a function
of temperature in the AFM state, as shown in Fig. 7(c). The
magnitudes of the reduced magnetization of the two sublat-
tices in the AFM single-layer CrI3 are the same, and they
both decay with increasing temperature, similar to the case of
the FM state shown in Figs. 6(c) and 6(d). With increasing
compressive strain, the dominant exchange interaction and
single-ion anisotropy both increase (Fig. 2). The stability
of the AFM state is thus enhanced, which manifests as an
increasing critical Néel temperature. Meanwhile, there are
two aspects attractively distinct from the FM case: (1) M(T )
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FIG. 7. (a) Calculated magnon spectra for antiferromagnetic
single-layer CrI3 at a compressive strain of −8.6% at different tem-
peratures below the critical Néel temperature. Calculated energy
gap of the magnon spectra (b) and atomic magnetization of two
sublattices in antiferromagnetic CrI3 (c) as a function of temperature
at various lattice strain values.

decays much faster than in the FM case and (2) the reduced
magnetization at 0 K is less than unity.

Provided that the relation 1 − (T/TC)α also holds for the
AFM case, we fit the atomic magnetization here and obtain
α values close to 3 for these three compressive strains, which
are much larger than the α values in the FM case. This again
confirms the weak excitation of AFM magnons and therefore
the weak magnon-magnon interaction leading to negligible
softening of the magnon spectra.

We replot the reduced magnetization at 0 K in Fig. 8 using
solid symbols and find a mild decrease with increasing com-
pressive strength, but the values are systematically smaller
than 1. The latter means that the atomic spins are not fully
parallel within one sublattice, and this is well known in AFM
system, as fluctuations of spins lower the total energy [56].
However, by artificially resetting the value of the single-ion
anisotropy A, as shown by the dashed lines, we show a unity
reduced magnetization, as in the FM case, if A is infinitely
large and a further diminished (but only by a couple of per-
cent) magnetization if A = 0. This means that large anisotropy
suppresses spin fluctuations and favors parallel alignment of
spins within one sublattice. The dependence of the reduced
magnetization at 0 K on the strain values is introduced through
exchange interactions.

3. Critical temperature

The critical Curie and Néel temperatures of 2D single-
layer CrI3 are determined at vanishing magnetization of each
sublattice (or equivalently at vanishing energy gap, 
 = 0)
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FIG. 8. Calculated atomic magnetization of two sublattices at
zero temperature as a function of compressive strain in the AFM
state.

[75] for the FM and AFM states, respectively. We plot the
results in Fig. 9 using solid symbols. In the FM state, the Curie
temperature shows a nonmonotonic dependence on the strain,
similar to the behavior of the dominant exchange interaction
between nearest neighbors, J1, shown in Fig. 2. Combined
with the monotonic J2, J3, and A, the maximum value of
TC = 57 K appears at a compressive strain of −2.1%. A much
larger decay occurs when further compressing the lattice than
when stretching it. For the original lattice size, 0% strain,
we obtain TC = 55.5 K, which is larger than the measured
value 45 K [2], as marked by the star in Fig. 9. The same
situation was found for Cr2Ge2Te6 [1], where the calculated
exchange interaction J and single-ion magnetic anisotropy
A were plugged into NLSWT and an overestimated TC was
obtained.

Nevertheless, there are also theoretical studies of single-
layer CrI3 that reported TC in better agreement with experi-
ments [18,45,75,78], as marked in Fig. 9. We find that in most
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FIG. 9. Néel temperature (left) and Curie temperature (right) as
a function of lattice strain. The experimental value [2] is marked
using a solid star. The open symbols mark theoretical results
[18,41,45,51,75,78] from the literature.

of these studies [18,45,75], as well as other studies that gave
even smaller TC [41,51], only the nearest-neighbor exchange
interaction was considered in the simulations. We carry out
a similar treatment (details can be found in Appendix B),
in which we also ignore the next-nearest-neighbor exchange
interaction J2 and the third-nearest-neighbor exchange inter-
action J3 and attribute their contributions to J1. This effective
J1 leads to a systematically smaller TC, as plotted by the dotted
curve in Fig. 9. Better agreement with experiments is thus
found here. We further include J2 and ignore only J3. The
effective J1 and J2 give an obviously overestimated TC, as
plotted by the dashed curve. This indicates that J2, although
small, plays an important role in determining the stability
of the magnetism in single-layer CrI3. Ignoring it leads to
substantial underestimation of TC. The AFM exchange, J3 >

0, slightly reduces TC, as intuitively expected. Previous MC
studies presented similar findings [37].

We therefore demonstrate that by changing the exchange
interaction and single-ion magnetic anisotropy via lattice
strain, one changes the TC of single-layer CrI3. There have
been various approaches based on experimental measure-
ments and theoretical calculations aiming at raising the
Curie temperature of 2D magnetic materials, such as ap-
plying ionic gates [4], electrostatic doping [79], external
magnetic fields [1,47,52], lattice strain [18,21,38], stacking
[1,47,52], substitution of certain atoms with others [38], va-
cancies and interstitial atoms [80], and molecular absorption
[81–83]. Effectively, they modify the exchange interaction
and single-ion magnetic anisotropy by changing the electronic
structure. NLSWT provides a straightforward method to
estimate and/or predict the resulting effects on the Curie tem-
perature once these parameters are determined during various
investigations.

For the AFM configuration, the Néel temperature varies
monotonically with strain, as shown by the blue solid line in
Fig. 9. We also plot the results of calculations where fewer
exchange interaction terms are taken into account, as shown
by the dotted line (only J1) and the dashed line (only J1 and
J2). In the AFM ground state, spins are antiparallel among
the nearest pairs and parallel among the next-nearest pairs.
Considering the signs of the exchange coefficients, we have
lower energy when including more exchange interaction terms
and more stable AFM order. The Néel temperature therefore
increases when more J terms are taken into account. This
again confirms that only the nearest-neighbor exchange term
is not sufficient to describe the magnetic state and related
properties.

V. CONCLUSIONS

The magnetic properties of single-layer CrI3 have been
theoretically investigated with first-principles calculations and
NLSWT combined. We confirmed the magnetic phase tran-
sition, from out-of-plane FM order to in-plane AFM order,
at compressive lattice −5.7% found in previous studies as a
benchmark. We further determined the exchange interactions
between the nearest, next-nearest, and third-nearest neighbors,
as well as the single-ion anisotropy, which protects the long-
range magnetic order in this 2D system. Substituting these
parameters into the NLSWT formalism for FM and AFM
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states, we obtained, through self-consistent calculations, the
magnon spectra both at zero and finite temperatures. The
lowest excitation energy of the spectra, or the energy gap,
protects the magnetism from breakdown according to the
Mermin-Wagner theorem. It is found to decrease with increas-
ing temperature, similar to the temperature-dependent atomic
magnetization, both of which vanish at the critical Curie and
Néel temperatures for FM and AFM magnetism, respectively.
We showed that the magnetization of a given sublattice in
the system decays from 1 to 0 with temperature in the FM
state, while with finite anisotropy, it decays starting from less
than 1 in the AFM state. We further demonstrated that the
critical temperatures would be significantly underestimated
if only the nearest-neighbor exchange interaction was taken
into account. With three exchange interaction coefficients,
we obtained the Curie temperature of the intact single-layer
CrI3 lattice, although it was larger than the experimental
value (this overestimation was also found in other 2D sys-
tems), and we suggest that this treatment is more physically
reasonable.
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APPENDIX A: DETAILS OF DERIVATIONS

The magnon Hamiltonian, as in Eq. (2), is written in real
space with a summation over atomic spins. With the spins

expressed in terms of the creation and annihilation operators
of magnons, as given in Eqs. (3) and (17), as well as their
Fourier transforms given in Eq. (4), the magnon Hamiltonian
can be further deduced as a summation over k space with
two-operator terms and four-operator terms. Below we give
details about these terms and the mean-field treatment, which
reduces the four-operator terms to two-operator terms for the
FM and AFM order.

For FM single-layer CrI3, Eqs. (2)–(4) lead to a Hamilto-
nian containing two parts: HFM = HFM

2 + HFM
4 . HFM

2 corre-
sponds to the two-operator terms, or the quadratic terms, and
HFM

4 corresponds to the four-operator terms, or the quartic
terms [47]. The former is the noninteracting term, and the
latter involves magnon-magnon interaction:

HFM
2 =

∑
k

(a†
k b†

k )

(
A0(k) B0(k)
B∗

0 (k) A0(k)

)(
ak
bk

)
, (A1)

where

A0(k) = −
∑

ρ

JρZρS + J2Z2Sγ2(k) + (2S − 1)A,

B0(k) =
∑

ρ=1,3

JρZρSγρ (k), (A2)

and

HFM
4 =

∑
kiρ=1,3

JρZρ

4N
[4γρ (k4 − k2)a†

k1
b†

k2
ak3 bk4 − γρ (−k4)b†

k1
b†

k2
bk3 ak4 − γρ (−k1)b†

k1
a†

k2
ak3 ak4 − γρ (k1)a†

k1
b†

k2
bk3 bk4

− γρ (k4)a†
k1

a†
k2

ak3 bk4 ]δk1+k2,k3+k4 + J2Z2

8N

∑
ki

[4γ2(k4 − k2)a†
k1

a†
k2

ak3 ak4 − γ2(−k4)a†
k1

a†
k2

ak3 ak4

− γ2(−k1)a†
k1

a†
k2

ak3 ak4 − γ2(k1)a†
k1

a†
k2

ak3 ak4 − γ2(k4)a†
k1

a†
k2

ak3 ak4 + a ↔ b]δk1+k2,k3+k4

− A

N

∑
ki

(
a†

k1
a†

k2
ak3 ak4 + b†

k1
b†

k2
bk3 bk4

)
δk1+k2,k3+k4 . (A3)

Properties such as Jρ , Zρ , and γρ (ρ = 1, 2, 3) are defined
the same as in Sec. III A. The Hartree-Fock-like decoupling
is further applied to the four-boson terms [47]:

a†
k1

b†
k2

ak3 bk4 ≈ 〈
a†

k1
ak3

〉
b†

k2
bk4 + 〈

b†
k2

bk4

〉
a†

k1
ak3

+ 〈
a†

k1
bk4

〉
b†

k2
ak3 + 〈b†

k2
ak3

〉
a†

k1
bk4 ,

a†
k1

a†
k2

ak3 ak4 ≈ 〈
a†

k1
ak3

〉
a†

k2
ak4 + 〈

a†
k2

ak4

〉
a†

k1
ak3

+ 〈
a†

k1
ak4

〉
a†

k2
ak3 + 〈

a†
k2

ak3

〉
a†

k1
ak4 , (A4)

where 〈a†
kak′ 〉 = δkk′ 〈a†

kak〉 and 〈a†
kbk′ 〉 = δkk′ 〈a†

kbk〉. On the
right-hand side of the above equations, scalar terms that do not
affect the spin-wave dynamics are neglected [47]. Within this
mean-field approximation, the four-boson terms are reduced
to two-boson terms. Incorporating them with those in H2, we

arrive at the final expression for the FM magnon Hamiltonian
given in Eq. (5).

Similarly, applying Eqs. (2)–(4) to AFM single-layer CrI3

gives the AFM magnon Hamiltonian HAFM = HAFM
2 + HAFM

4 ,
and the quadratic HAFM

2 and quartic HAFM
4 in momentum

space are written as

HAFM
2 =

∑
k

(a†
k b−k )

(
Ã0(k) B̃0(k)

B̃∗
0 (k) Ã0(k)

)(
ak

b†
−k

)
, (A5)

where

Ã0(k) =
∑

ρ=1,3

JρZρS − J2Z2S(1 − γ2(k)) + 2AS,

B̃0(k) =
∑

ρ=1,3

JρZρSγρ (k), (A6)
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FIG. 10. Calculated Heisenberg exchange interaction parameters as a function of biaxial strain when only the nearest-neighbor interaction
(a) and the next-nearest-neighbor interaction (b) are taken into account.

and

HAFM
4 = −

∑
ki,ρ=1,3

JρZρ

4N

[
4γρ (k4 − k2)a†

k1
b†

k2
ak3 bk4δk1+k2,k3+k4 + γρ (−k4)b†

k1
bk2 bk3 ak4δk1,k2+k3+k4 + γρ (k4)a†

k1
ak2 ak3 bk4δk1,k2+k3+k4

+ γρ (k1)a†
k1

b†
k2

b†
k3

bk4δk1+k2+k3,k4 + γρ (−k1)b†
k1

a†
k2

a†
k3

ak4δk1+k2+k3,k4

] + J2Z2

4N

∑
ki

[
2γ2(k4 − k2)a†

k1
a†

k2
ak3 ak4 − (γ2(k1)

+ γ2(k4))a†
k1

a†
k2

ak3 ak4 + a ↔ b
]
δk1+k2,k3+k4 − A

N

∑
ki

(
a†

k1
a†

k2
ak3 ak4 + b†

k1
b†

k2
bk3 bk4

)
δk1+k2,k3+k4 . (A7)

A similar mean-field treatment is applied to the above
HAFM

4 :

a†
k1

b†
k2

ak3 bk4 ≈ 〈
a†

k1
ak3

〉
b†

k2
bk4 + 〈

b†
k2

bk4

〉
a†

k1
ak3

+ 〈
a†

k1
b†

k2

〉
bk3 ak4 + 〈

bk3 ak4

〉
a†

k1
b†

k2
,

a†
k1

a†
k2

ak3 ak4 ≈ 〈
a†

k1
ak3

〉
a†

k2
ak4 + 〈

a†
k2

ak4

〉
a†

k1
ak3

+ 〈
a†

k1
ak4

〉
a†

k2
ak3 + 〈

a†
k2

ak3

〉
a†

k1
ak4 , (A8)

where 〈a†
kak′ 〉 = δkk′ 〈a†

kak〉 and 〈akbk′ 〉 = δk,−k′ 〈akb−k〉. Incor-
porating HAFM

2 and HAFM
4 gives the expression of the AFM

magnon Hamiltonian given in Eq. (18).

APPENDIX B: EFFECTS OF J2 AND J3

When mapping the total energies of the single-layer CrI3

of 11 different collinear spin configurations, one can take
into account various exchange interactions. As usually seen

in the literature, it is common to attribute the energy to only
the nearest-neighbor exchange term [18,41,45,51,75]. This
means that only J1 is considered in Eq. (1). In this manner,
we carry out linear regression of the calculated total energies
and determine J1. Plotting the results in Fig. 10(a), we find
similar behavior as the J1 in Fig. 2, but with significantly large
error bars. Analogously, we further include the next-nearest-
neighbor exchange interaction, and we have J1 and J2 in
Eq. (1). The same regression of these total energies yields both
of these parameters. We plot them in Fig. 10(b) and find larger
values and larger error bars at large compressive strains. Com-
pared to the results in Fig. 2, where J1, J2, and J3 are all taken
into account, we show that the presence of J3, although with
very small values, plays an important role in reducing the error
bars of the calculated results. At a large tensile strain, the error
bars in Fig. 10(b) are as small as those in Fig. 2, and the van-
ishing J3 in this region again confirms its importance. Physi-
cally, this means that the more exchange interaction terms are
included, the more reasonable the description of the system is.
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