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Quantum fluctuation in rotation velocity of a levitated magnetic particle
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We consider a ferromagnetic particle levitated in air under microwave irradiation and theoretically study
the noise in its rigid-body rotation induced by the gyromagnetic effect. This rotational noise includes useful
information on angular momentum transfer from the magnetization to the rigid-body rotation, such as the unit of
angular momentum per one spin relaxation process. We formulate the rotational noise in terms of the Lindblad
equation, which describes the quantum stochastic process, and estimate it in the case of realistic experimental
parameters. We show that a bifurcation phenomenon observed in our setup amplifies the noise and, therefore,
can be exploited, making an accurate measurement of the rotational noise.
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I. INTRODUCTION

Gyromagnetic effects, i.e., conversion between spin and
mechanical rotation, have been intensively studied since their
first demonstrations by Barnett [1] and Einstein and de Haas
[2]. While gyromagnetic effects were initially studied in bulk
magnetic materials to determine their gyromagnetic ratios
[3], they have recently been observed in various condensed
matter systems and are now recognized as universal phenom-
ena [4–13] and particle physics [14–18]. These effects have
provided powerful tools for measuring and controlling both
mechanical and magnetic properties [19–27]. The Barnett
effect, which converts the mechanical rotation’s angular mo-
mentum into spin [1], has been used to generate spin current
from different sources [4–13] and identify the angular mo-
mentum compensation temperature of ferrimagnets [19,20].
Conversely, the Einstein–de Haas (EdH) effect, which gener-
ates mechanical torque from spin polarization [2], has been
utilized to measure faint torques caused by single-electron
spin flips [21], identify the gyromagnetic ratio of nanomag-
netic thin films [22], and analyze the demagnetization process
in ferromagnets on subpicosecond time scales [25].

Recently, the coexistence of Barnett and EdH effects has
been investigated [27]. Though there are many ways to in-
vestigate gyromagnetic effects, the usual methods target solid
systems that are not isolated, for which angular momen-
tum dissipation becomes a problem. Our previous paper [28]
focused on this issue and proposed to utilize an optical levi-
tation technique [29–39] [see Fig. 1(a)]. The optical levitation
technique enables us not only to make an isolated system
but also to reduce friction acting on the particle. Thanks
to these advantages, the angular momentum loss can be
controlled, and the system becomes suitable for surveying
gyromagnetic effects. We theoretically demonstrated that a

swift rotation, which is essential to the coexistence of the
above gyromagnetic effects, can be realized by combining the
optical levitation technique and a ferromagnetic resonance.
We showed that the coexisting gyromagnetic effects lead
to a bifurcation phenomenon and make possible a precise
measurement of the g factor of the spin-rotation coupling.
Moreover, our previous work indicated that the combination
of an optically levitated system and coexisting gyromagnetic
effects is a promising platform for researching the gyromag-
netic nature of solids.

In this paper, we focus on fluctuation of the rotation
frequency, as shown in Fig. 1(b), instead of steady-state so-
lutions, as discussed in our previous paper [28]. We show
that rotational noise, in particular shot noise, includes useful
information on the angular momentum transfer from the mag-
netization to the rigid-body rotation of the levitated particle,
reflecting that magnetization relaxation accompanies a quan-
tum stochastic “kick” exerted on the particle. We formulate
the dynamics of the magnetization in terms of the Lindblad
equation, which can describe quantum stochastic processes
and the back action due to quantum measurements in spin
systems, while we describe the particle’s dynamics by incor-
porating a “kick” term as well as air resistance terms into the
Euler equation. In the following, we derive and solve these
coupled equations around the steady state to compute the
fluctuation in the particle’s rotation frequency resulting from
the “kick.” We also point out that the bifurcation phenomenon
observed in our setup is useful for making an accurate mea-
surement of the rotational noise because it amplifies the noise.

The remainder of this paper is organized as follows. In
Sec. II, we summarize the results of our previous paper and
explain the bifurcation phenomenon. In Sec. III, we formulate
the fluctuation in the torque of a levitated particle induced
by spin relaxation. We introduce the Lindblad equation to
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FIG. 1. (a) Schematic diagram of magnetic particle levitated by
an optical levitation technique. Ferromagnetic resonance (FMR) is
induced by microwave irradiation under a static magnetic field H0.
The Gilbert damping of the magnetization of the particle causes the
particle to rotate through the spin-rotation coupling. (b) Schematic
diagram of the noise in the rotational frequency �z.

describe the stochastic quantum process involved in the spin
dynamics. In Sec. IV, we calculate the rotational noise by
solving the Langevin equation for rigid-body rotation of the
particle by using the results of Sec. III. We also estimate the
rotational noise and discuss the conditions under which the
torque fluctuation can be observed. In Sec. V, we summarize
our results. Two Appendixes provide detailed derivations of
the equations.

II. SETUP AND STEADY-STATE ROTATION

We consider a spherical ferromagnetic particle of radius
r and mass mptc optically levitated in the air (Fig. 1). The
particle is treated as a rigid body with a moment of inertia,
I = 2mptcr2/5. We further consider ferromagnetic resonance
(FMR) induced by external microwaves [40]. An external
static magnetic field H0 is applied in the z direction, and the
magnetization of the particle, M, is initially aligned to the
z axis. In this setup, the angular momentum of the excited
spins is transferred to the rigid-body rotation of the particle
via the spin-rotation coupling. This means that the microwave
irradiation causes the particle to rotate around the z axis [41].
We denote its rotation frequency vector as � = (0, 0,�z ).

Our previous work [28] examined the steady-state ro-
tation, by combining the Landau-Lifshitz-Gilbert (LLG)

equation with the equation of motion for rigid-body rotation.
Its results are summarized as follows. The magnetization is
rewritten in terms of the total spin S as M = h̄γ 〈S〉/V , where
we have introduced the gyromagnetic ratio γ = gee/2me �
−1.76 × 1011 rad/(s T). Note that e, me, and ge are the charge,
mass, and g factor of the electron, and V = 4πr3/3 is the
volume of the particle. The Hamiltonian in the rotating frame
fixed to the particle is given by [42–44]

H = −(μ0γ H + gSR�) · h̄S, (1)

H =
⎛
⎝h cos(ω − �z )t

h sin(ω − �z )t
H0

⎞
⎠, (2)

where μ0 � 1.257 × 10−6 N/A2 is the vacuum permeability,
H is the magnetic field in the rotating frame, gSR is the g factor
for the spin-rotation coupling, and h (� H0) and ω are the
amplitude and frequency of the microwave, respectively. The
first and second terms of the Hamiltonian describe the Zeeman
energy and the spin-rotation coupling, respectively. The latter
term includes the gyromagnetic effects, i.e., the Barnett effect
[1] and the Einstein–de Haas effect [2].

The Landau-Lifshitz-Gilbert (LLG) equation for the above
Hamiltonian is

Ṁ = M × (μ0γ H + gSR�) + α

M0
M × Ṁ, (3)

where M0 = |M|, Ṁ = dM/dt , and α is the Gilbert damping
constant. The steady-state solution of the LLG equation can be
obtained by assuming Ṁz = 0 and (Mx, My) = M( cos[(ω −
�z )t + φ], sin[(ω − �z )t + φ]) and using M2

0 = M2 + M2
z .

For this steady state, Mz is determined as

Mz = 1√
2α(ω − �z )/M0

√
−A +

√
A2 + B, (4)

A = μ2
0γ

2h2 + (ω − ω0 + �g�z )2 − α2(ω − �z )2, (5)

B = 4α2(ω − �z )2(ω − ω0 + �g�z )2, (6)

where ω0 = −μ0γ H0 is the resonant frequency and �g ≡
gSR − 1. Note that gSR can deviate from unity due to the
spin-orbit coupling in the particle [28,44]. The z component
of the angular momentum transferred per unit time from the
spin system to the lattice system through Gilbert damping, 	g,
is given as

	g ≡ h̄α

S0
[〈S〉 × 〈Ṡ〉]z = − αV

M0γ
(ω − �z )

(
M2

0 − M2
z

)
. (7)

The total torque applied to the particle, f (�z ), is obtained as

f (�z ) = −β�z + 	g, (8)

where the first and second terms describe the angular mo-
mentum lost to air resistance and the angular momentum
gained from the spin system, respectively. The air resistance
coefficient β is given as

β = −8r4

3

√
πmair

2kBT
p, (9)

in the molecular flow region [45–48]. kB is the Boltzmann
constant, T is the temperature, mair is the average molecular
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(a) (b)

FIG. 2. Torque f (�z ) acting on a levitated particle as a func-
tion of the rotation frequency �z (a) away from the bifurcation
and (b) near the bifurcation. The restoring torque toward the stable
solutions (indicated by the arrows) becomes weak when the system
is near the bifurcation.

mass, and p is the pressure. The steady-state solution of �z is
obtained by solving f (�z ) = 0. This equation can be reduced
to a cubic equation in �z and has three solutions at most.
Figure 2(a) shows a schematic graph of f (�z ) and the three
steady-state solutions. Two solutions, �z,1 and �z,3, are stable
because an infinitesimal change in �z induces a restoring
torque. On the other hand, the other solution, �z,2, is unstable
because no restoring torque works there.

We observe these bifurcation phenomena [28] when the
Gilbert damping constant is large compared with the ratio of
the microwave amplitude and the static magnetic field [49],

h

H0
<

α

2
, (10)

and the pressure is taken near

p1 = 4|γ |μ2
0M0h2

rαω2
0

√
πkBT

2mair
. (11)

Near the bifurcation, the restoring torque is reduced, as
schematically shown in Fig. 2(b). This remarkable feature can
be used to increase the fluctuation in the rotation frequency
around the steady-state solution.

Below, we theoretically consider the fluctuation in the
rotation frequency and clarify that it provides important infor-
mation related to angular momentum transfer from the spin
systems to the rigid-body rotation. In particular, we study the
nonequilibrium noise of the torque, which reflects quantum
effects such as quantization of the angular momentum transfer
and back action due to the spin relaxation process. For this
purpose, we will formulate the quantum dynamics of the spin
in the particle by using the Lindblad equation.

III. QUANTUM DESCRIPTION OF SPIN DYNAMICS

Although the LLG equation is a basic equation for de-
scribing ferromagnetic resonance, it can only treat average
values or thermal noise of the magnetization. To consider
the quantum nature of the nonequilibrium fluctuation in the
magnetization, we need to introduce a quantum stochastic
equation. For this purpose, we will use the Lindblad equation,
which is one of the fundamental equations describing stochas-
tic processes in open quantum systems. We will formulate
spin dynamics in terms of stochastic spin relaxation, which

accompanies angular momentum transfer into the rigid-body
rotation.

The quantum mechanical interpretation of the LLG equa-
tion and its thermal noise has been the subject of several
articles [50–53]. Here, we further advance these discussions
by using the Fokker-Planck equation, which enables us to
determine the stochastic dynamics of the magnetization under
the Gilbert damping. This formulation provides a framework
to evaluate the noise induced by the Gilbert damping.

A. Lindblad equation

The Lindblad equation for the density operator of the total
spin ρS is given by

d

dt
ρS = − i

h̄
[H, ρS] + 	LρSL† − 	

2
L†LρS − 	

2
ρSL†L,

(12)

H = − h̄μ0γ

[
H ′

0Sz + h

2
(S+e−iω′t + H.c.)

]
, (13)

where S± ≡ Sx ± iSy, and we have defined the spin relaxation
rate 	, the effective magnetic field H ′

0 = H0 − gSR�z, and the
frequency measured in the rotating frame ω′ = ω − �z. The
jump process is taken as L = S− to describe energy relaxation
from the spin system into the bath [54]. Hereinafter, we will
set the g factor of the spin-rotation coupling as gSR = 1.

Now, let us describe the steady state of the total spin under
microwave irradiation. When the microwave is irradiated for
a sufficiently long time, the total spin precesses around the z
axis at a constant frequency. The steady-state dynamics are
described by the spin coherent state, defined as

|τeiω′t 〉 =
2S0∑
n=0

√
2S0Cn(τeiω′t )n

(1 + |τ |2)S0
|2S0 − n〉, (14)

where τ is a complex number and S0 is the amplitude of
the total spin S. Using the spin coherent state, the density
operator can be expressed in terms of the distribution function
W (τ, τ ′, t ),

ρS =
∫

d2τW (τ, τ ∗, t )|τeiω′t 〉〈τeiω′t |, (15)

where τ ∗ is the complex conjugate of τ . After a lengthy
but straightforward calculation [55], Eq. (12) reduces to the
Fokker-Planck equation,

∂W

∂t
=

{
∂

∂τ

[
i(ω − ω0)τ − i�(τ 2 − 1) − 	(S0 + 1)τ

]

+ H.c. + 	

2

∂2

∂τ 2
τ 2 + 	

2

∂2

∂τ ∗2
τ ∗2 + 	

∂2

∂τ 2
τ ∗

}
W,

(16)

where � = −μ0γ h/2. Hereinafter, we will consider only the
leading term of order of S0, assuming that the ferromagnetic
particle includes a sufficient number of magnetic atoms. That
is, the last three terms on the right-hand side of Eq. (16), which
are O(S−1

0 ), can be dropped, and the distribution function for
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the steady spin precession state can be written as [56]

Wst (τ, τ
∗, t ) = δ2(τ − τ1), (17)

τ1 = ω − ω0 + i	S0 ± eiθ/2�1/4

2�
, (18)

� = [(ω − ω0)2 + 4�2 − (	S0)2]2 + 4(	S0)2(ω − ω0)2,

(19)

eiθ = [(ω − ω0) + i	S0]2 + 4�2

�1/2
. (20)

The density operator for this distribution is written as

ρS = |τ1eiω′t 〉〈τ1eiω′t |. (21)

Next, let us discuss how the relaxation rate 	 in the Lind-
blad equation is determined by comparison with the LLG
equation. Multiplying both sides of Eq. (12) by Sz and S± and
taking the trace (see Appendix B for a detailed derivation),
we obtain the equations of motion for the expectation values
of the spin operators as

〈Ṡz〉 = −i�[〈S+〉e−iω′t − 〈S−〉eiω′t ] − 	〈S+〉〈S−〉 + O(	S0),
(22)

〈Ṡ+〉 = iω0〈S+〉 − 2i�〈Sz〉eiω′t + 	〈Sz〉〈S+〉 + O(	S0),
(23)

〈Ṡ−〉 = − iω0〈S−〉 + 2i�〈Sz〉e−iω′t + 	〈Sz〉〈S−〉 + O(	S0).
(24)

On the other hand, the LLG equation (3) is rewritten with the
expectation values of the spin operators as

〈Sz〉 = i
μ0γ h

2
[〈S+〉e−iω′t − 〈S−〉eiω′t ] − α

S0
ω′〈S−〉〈S+〉,

(25)

〈Ṡ+〉 = − iμ0γ H0〈S+〉 + iμ0γ h〈Sz〉eiω′t + α

S0
ω′〈Sz〉〈S+〉,

(26)

〈Ṡ−〉 = iμ0γ H0〈S−〉 − iμ0γ h〈Sz〉e−iω′t + α

S0
ω′〈Sz〉〈S−〉.

(27)

By comparison, we can show that the Lindblad equation re-
stores the LLG equation in the leading order of S0 when we
take

	 = αω′

S0
. (28)

We can also check that the steady spin precession derived
from the LLG equation is consistent with the spin coherent
state given in Eq. (21), noting that the expectation value of the
spin operator for the coherent state |ξ 〉 is given as

〈ξ |Sz|ξ 〉 = S0
1 − |ξ |2
1 + |ξ |2 , (29)

〈ξ |S+|ξ 〉 = S0
2ξ

1 + |ξ |2 , (30)

〈ξ |S−|ξ 〉 = S0
2ξ ∗

1 + |ξ |2 . (31)

In the following discussion, we will use the Lindblad equa-
tion (12) with the condition (28) in order to discuss the
nonequilibrium nature of the Gilbert damping.

B. Correlation function of a torque

In order to calculate a correlation function of the torque act-
ing on the particle from the Lindblad equation, we formulate
the Poissonian measurement between time t and time t + dt .
We define a random variable, dN (t ), which takes 1 if the
spin relaxation described by the jump operator L = S− occurs
and takes zero otherwise. This variable satisfies the following
equations:

dN (t )dN (t ) = dN (t ), 〈dN (t )〉 = dt〈L†L〉. (32)

Since the angular momentum transferred per spin relaxation
process is h̄, the torque on the particle, 	g, is described as

	g(t ) = h̄
dN (t )

dt
. (33)

By using Eq. (32), we can show that the expectation value
of the torque, 〈	g〉, agrees with Eq. (7) for the steady spin
precession state.

For t < t ′, we can write the correlation of the torques as

〈	g(t ′)	g(t )〉 = h̄2

dt2

∑
dN={0,1}

dN (t ′)dN (t )P[dN (t ), dN (t ′)]

= h̄2

dt2
〈dN (t )〉 × P[dN (t ′) = 1|dN (t ) = 1],

(34)

where P[a(t ), b(t ′)] is the joint probability of getting the value
a at time t and b at time t ′ and P[b(t ′)|a(t )] is the conditional
probability of getting b at t ′ under the condition that the
result of a measurement at t is a. The conditional probability
P[dN (t ′) = 1|dN (t ) = 1] is calculated as follows [57–60].
If the spin relaxation occurs at time t , i.e., dN (t ) = 1, the
postmeasurement state is described in terms of the density
operator as

ρ ′
S (t ) = LρS (t )L†

〈L†L〉 . (35)

By defining a superoperator L as

LρS = − i

h̄
[H, ρS] + 	LρSL† − 	

2
{L†L, ρS}, (36)

the density operator at time t ′ (> t) becomes ρS (t ′) =
eL(t ′−t )ρ ′

S (t ). Therefore the conditional probability becomes

P[dN (t ′) = 1|dN (t ) = 1] = dt Tr{L†LeL(t ′−t )ρ ′
S (t )}. (37)

In addition, if t ′ = t , the correlation function becomes

〈	g(t ′)	g(t )〉 = h̄2

dt2
〈dN (t )2〉 = h̄2

dt
〈L†L〉, (38)

by using Eq. (32). This equal-time divergence indicates that
the torque correlation function includes a delta function of
time as

〈	g(t ′)	g(t )〉 � h̄2〈L†L〉δ(t ′ − t ). (39)

In summary, the correlation function of the torque is given as

〈	g(t ′)	g(t )〉 = h̄2[Tr{L†LeL(t ′−t )LρsL
†} + 〈L†L〉δ(t ′ − t )].

(40)
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From the Lindblad equation, we can calculate the first term in
the brackets on the right-hand side as

h̄2 Tr{L†LeL(t ′−t )LρSL†} = 〈	g(t )〉2 + F1(t ′ − t ) + O(S0
0 ),
(41)

where

F1(t ′ − t ) = 16	2 S3
0 |τ1|2(1 − |τ1|2)

(1 + |τ1|2)4
e−(t ′−t )(2� Im(τ1 )−	S0 )

× cos[( − (ω − ω0) + 2� Re(τ1))(t ′ − t )].
(42)

See Appendix A for a detailed derivation. Note that the equa-
tion

2� Im(τ1) − 	S0 = −	〈Sz〉 (43)

holds from Eq. (18). Combining these results, we finally ob-
tain

〈	g(t ′)	g(t )〉 − 〈	g(t )〉2 = F1(t ′ − t ) + F2δ(t ′ − t ),

F2 = h̄2	
4S2

0 |τ1|2
(1 + |τ1|2)2

. (44)

Here, F1(t ) describes spin dynamics from the postmeasure-
ment state, while F2 describes “shot noise” that originates
from the fact that the angular momentum is transferred in units
of h̄.

IV. FLUCTUATION IN ROTATION FREQUENCY

A. Formulation

The dynamics of the spherical particle rotation is deter-
mined from the Euler equation with Langevin noise, described
as

I�̇z = 〈	air (�z )〉 + 〈	g(�z )〉 + ξair (t ) + ξg(t ), (45)

where 〈	air〉 ≡ −β�z is the torque from air resistance and
ξair (t ) and ξg(t ) are the Langevin noises of the torques due to
the air resistance and the Gilbert damping, respectively. These
Langevin noises are characterized by

〈ξair (t
′)ξair (t )〉 = 2Dδ(t ′ − t ), (46)

〈ξg(t ′)ξg(t )〉 = 〈	g(t ′)	g(t )〉 − 〈	g〉2

= F1(t ′ − t ) + F2δ(t ′ − t ), (47)

where D = βkBT is Einstein’s coefficient for thermal noise.
Let us focus on the vicinity of the stable solutions and

consider the Euler equation linearized with respect to ��z =
�z − 〈�z〉,

I
d

dt
��z = −ε��z + ξair (t ) + ξg(t ), (48)

ε ≡ β − ∂〈	g〉
∂�z

∣∣∣∣
��z=0

. (49)

The parameter ε, which is positive for stable steady-state
solutions, indicates the distance from the bifurcation point.

Applying a Fourier transformation,

��z(t ) =
∫

dλ

2π
��z,λeiλt , (50)

the correlation function in the frequency domain can be cal-
culated as

〈��z,λ′��∗
z,λ〉 = 1

iλ′I + ε

1

−iλI + ε

×
∫

dt
∫

dt ′[〈ξair (t
′)ξair (t )〉

+ 〈ξg(t ′)ξg(t )〉]eiλt−iλ′t ′
. (51)

Thus we obtain the noise power of the rotation frequency:

S( f ) ≡ 2
∫ ∞

−∞
dte−i f t 〈��z(t )��z(0)〉

= 2

f 2I2 + ε2
(S1 + S2 + S3+( f ) + S3−( f )), (52)

S1 = 2D = 2βkBT, (53)

S2 = h̄2	
4S2

0 |τ1|2
(1 + |τ1|2)2

, (54)

S3±( f ) = −16h̄2 S4
0 |τ1|2(1 − |τ1|2)2

(1 + |τ1|2)5

× 	3

( f ± (ω − ω0) − 2� Re(τ1))2 + (	〈Sz〉)2
.

(55)

In the next section, we will focus on the zero-frequency
component of the noise power,

S ≡ lim
f →0

S( f ) = 2

ε2
(S1 + S2 + S3), (56)

S3 = −32h̄2	3 S4
0 |τ1|2(1 − |τ1|2)2

(1 + |τ1|2)5

× 1

(ω − ω0 − 2� Re(τ1))2 + (	〈Sz〉)2
. (57)

We find that as the system approaches the bifurcation point
(ε → +0), the noise power of the rotation frequency is
enhanced due to the prefactor 2/ε2. This means that bring-
ing the system close to the bifurcation point enables more
accurate measurements of the rotational fluctuation. The zero-
frequency noise is composed of three contributions: thermal
noise S1 induced by the surrounding air, shot noise S2 due
to the quantized angular momentum transfer, and back-action
noise S3 caused by the quantum measurement of the spin state.
Using Eq. (28), we find that S2 ∝ αS0 and S3 ∝ α3S0. If the
Gilbert damping coefficient is sufficiently small (α � 1), S2

becomes larger than S3. Let us further focus on the shot noise
term S2. Since the average rotation frequency is

〈�z〉 = 〈	g〉
β

= h̄	

β

4S2
0 |τ1|2

(1 + |τ1|2)2
, (58)

the ratio between the S2 and 〈�z〉 becomes

F = S2

〈�z〉 = β

ε2
h̄. (59)

This ratio is an analog of the Fano factor defined for electronic
transport and includes information on the unit of the angular
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(a) (b)

FIG. 3. (a) Rotation frequency and (b) zero-frequency noise
power of the stable steady-state solutions as a function of microwave
frequency. The parameters are set as h = 10 A/m and p = p1. Note
that (b) is a semilog plot. The vertical dashed lines indicate the
bifurcation points, at which ε becomes zero.

momentum transfer, h̄. In order to measure this shot noise con-
tribution, we need to sufficiently suppress the thermal noise
from the air, i.e., to realize a situation in which S1 � S2.

B. Numerical estimate

Let first us discuss the conditions under which to measure
the contribution of the shot noise to the fluctuation in the
rotation frequency. Consider the ratio between the thermal
noise S1 and the shot noise S2:

S2

S1
= h̄〈�z〉

2kBT
. (60)

To increase this ratio, a high rotation frequency or low tem-
perature is required. In our estimate, we set the temperature
as T = 3 K and the magnetic field as H0 = 2.6 × 106 A/m
to obtain a high-speed rotation. Moreover, we set the Gilbert
damping constant as α = 6.7 × 10−5 and the magnitude of
the magnetization as M0 = 1.557 × 105 A/m [61]. The am-
plitude of the microwave and the air pressure are h = 10 A/m
and p = p1 � 3.4 × 10−5 Pa, respectively [see Eq. (11)].

Figures 3(a) and 3(b) show the average and zero-frequency
noise power of the rotation frequency. The red and green
curves correspond to the two stable solutions with high and
low rotation frequencies. In Fig. 3(a), the endpoints of the red
curve and the central cusp of the green curve correspond to
the bifurcation point (ε → +0). Correspondingly, the zero-
frequency noise S diverges there as shown in Fig. 3(b),
because of the factor 2/ε2 in Eq. (56). This result indicates
that the noise of the rotation frequency is amplified near the
bifurcation.

Figures 4(a), 4(b), and 4(c) show the three contributions
(S1, S2, and S3) to the noise power as a function of the
microwave frequency ω. Note that there appears no diver-
gent behavior for these noises as the factor 2/ε2 has been
eliminated [see Eq. (56)]. We find that the thermal noise S1

is independent of the microwave frequency while S2 and S3

significantly depend on it. This feature will be useful for
subtracting the thermal noise from the measured noise power.
For the present parameters, the shot noise term S2 is a little
smaller than S1, but is large enough to be measured. On the
other hand, the back-action term S3 is negative and an order
of magnitude smaller than S1 and S2.

(b)

(a)

(c)

FIG. 4. (a) Thermal noise S1 due to air resistance, (b) shot noise
S2 due to quantized angular momentum transfer, and (c) back-action
noise S3 induced by quantum measurement of the spin state as func-
tions of microwave frequency. Note that the factor 2/ε2 has been
eliminated [see Eq. (56)].

Finally, we should comment on the magnitude of the
standard deviation of the rotation frequency. When the mea-
surement interval is given as τm, the measurement data of the
rotation frequency are �′

z � 1
τm

∫ t+τm/2
t−τm/2 dt ′ �z(t ′). The zero-

frequency noise S can be related to the standard deviation of
�′

z as

S � 2
∫ τm/2

−τm/2
dt ′〈��z(t ′)��z(0)〉 � 2τm〈(��′

z )2〉, (61)

when τ−1
m is sufficiently small compared with the character-

istic frequency in the noise power spectrum [see Eq. (55)].
Considering that S ≈ 1010 Hz and 〈�′

z〉 ≈ 1011 Hz in a typical
setup, when we set the measurement interval as τm = 1 µs, the
rotation frequency fluctuates as

〈�′
z〉 ±

√
〈(��′

z )2〉 ≈ 1011 ± 108 Hz. (62)

This estimate indicates that the rotational fluctuation is suffi-
ciently detectable [62,63].

In summary, our estimate indicates that the shot noise con-
tribution S2 is sufficiently large compared with the thermal
noise S1 due to the air resistance and can be measured at
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low temperatures for a rapidly rotating particle. In our esti-
mate, the back-action term S3 becomes an order of magnitude
smaller than S1 and S2. The observation of the back-action
noise will be more difficult than that of the shot noise, because
it requires nearly two digits of precision for the noise power
measurement, which is almost the best accuracy at present
[63]. We expect that a highly accurate noise measurement will
clarify the properties of the back-action noise.

V. SUMMARY

We considered the ferromagnetic resonance in a levitated
magnetic particle and calculated the fluctuation in the rota-
tion frequency �z. The fluctuation comes from air resistance
noise and Gilbert damping noise. The latter cannot be treated
with the classical LLG equation. To resolve this difficulty,
we derived the Lindblad equation which reproduces the LLG
equation in the limit of S0 → ∞, where S0 is the total ampli-
tude of all the spins in the ferromagnetic particle. We reduced
the Lindblad equation to the Fokker-Planck equation by using
the method of the spin coherent state, and obtained the steady-
state solutions. Next, we interpreted the Gilbert damping as
a Poissonian process and obtained the noise of the Gilbert
damping. Finally, we derived the rotation frequency noise
from the Langevin equation.

We showed that the rotation frequency noise is enhanced
near the bifurcation. In this sense, the bifurcation is useful
for making an accurate measurement of the spin transfer
noise. The rotational frequency noise is composed of three
contributions: thermal noise induced by surrounding air, shot
noise, and back-action noise. The latter two noises are induced
by the fluctuation in the torque on the particle due to spin
relaxation and include detailed information on the angular
momentum transferred from the magnetization. In particu-
lar, the shot noise contribution offers information regarding
a fundamental unit of angular momentum transfer, h̄. We
showed that the shot noise can be observed by lowering the
temperature or increasing the static magnetic field. Our work
provides a powerful method to obtain detailed information on
angular momentum transfer from magnetization to rigid-body
rotation, which has not been measured so far. The back-action

noise, which is induced by quantum measurement on the
spin, was shown to be small in the present setup. A detailed
discussion on this type of noise will be given elsewhere. In
this paper, we only studied spin relaxation by considering the
jump operator L = S− in Eq. (12). In order to describe thermal
fluctuations and the dephasing effect, we need to introduce
other jump operators, S+ and Sz. Such extended analysis will
also be given elsewhere.
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APPENDIX A: SPIN DYNAMICS

In this Appendix, we derive the expression for
Tr{L†LeL(t ′−t )LρSL†} given in Eqs. (41) and (42). We first
rewrite the Fokker-Planck equation (16) as ∂W/∂t = GW ,
where

G = ∂

∂τ ′
[
i�

(
1+ τ 2

1

)+ (i(ω − ω0) − 2i�τ1 − 	S0)τ ′]+ H.c.

(A1)

Note that the diffusion terms [the last three terms in the
brackets of Eq. (16)] are neglected and we have assumed
that τ is sufficiently close to the steady-state τ1. If the initial
distribution function is given as W0(τ ′, τ ′∗) = δ2(τ ′ − τ ), its
time evolution is obtained as

W (τ ′, τ ′∗, t ) ≡ eGtW0 = δ2(τ ′ − τ1 − (τ − τ1)

× e−[i(ω−ω0 )−2i�τ1−	S0]t ). (A2)

Using Eq. (15) and the equation [55]

S−|τei(ω−�z )t 〉〈τei(ω−�z )t |S+ �
(

4S2
0 |τ |2

(1 + |τ |2)2
+ 2S0τ

1 + |τ |2
∂

∂τ
+ 2S0τ

∗

1 + |τ |2
∂

∂τ ∗ + ∂2

∂τ ∗∂τ

)
|τei(ω−�z )t 〉〈τei(ω−�z )t |, (A3)

we can derive the following equation:

S−ρS (t )S+ �
∫

d2τ

{[
4S2

0 |τ |2
(1 + |τ |2)2

− ∂

∂τ

2S0τ

1 + |τ |2 − ∂

∂τ ∗
2S0τ

∗

1 + |τ |2 + ∂2

∂τ ∗∂τ

]
W (τ, τ ∗, t )

}
|τei(ω−�z )t 〉〈τei(ω−�z )t |. (A4)

Using L = S−, Tr{L†LeL(t ′−t )LρSL†} can be calculated as

Tr{L†LeL(t ′−t )LρSL†} � 	2Tr

{∫
d2τ

[(
4S2

0 |τ |2
(1 + |τ |2)2

− ∂

∂τ

2S0τ

1 + |τ |2 − ∂

∂τ ∗
2S0τ

∗

1 + |τ |2 + ∂2

∂τ ∗∂τ

)
Wst (τ, τ

∗, t )

]

×S+S−
∫

d2τ ′δ2(τ ′ − τ )eL(t ′−t )|τ ′eiω′t 〉〈τ ′eiω′t |
}
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= 	2
∫

d2τ

[(
4S2

0 |τ |2
(1 + |τ |2)2

− ∂

∂τ

2S0τ

1 + |τ |2 − ∂

∂τ ∗
2S0τ

∗

1 + |τ |2 + ∂2

∂τ ∗∂τ

)
Wst (τ, τ

∗, t )

]

×
∫

d2τ ′〈τ ′eiω′(t+(t ′−t ))|S+S−|τ ′eiω′(t+(t ′−t ))〉eG(t ′−t )δ2(τ ′ − τ )

� 	2
∫

d2τ

[(
4S2

0 |τ |2
(1 + |τ |2)2

− ∂

∂τ

2S0τ

1 + |τ |2 − ∂

∂τ ∗
2S0τ

∗

1 + |τ |2 + ∂2

∂τ ∗∂τ

)
δ2(τ − τ1)

]

×
∫

d2τ ′ 4S2
0 |τ ′|2

(1 + |τ ′|2)2
eG(t ′−t )δ2(τ ′ − τ ), (A5)

up to the leading order of S0. Finally, we can use Eq. (A2) to derive Eqs. (41) and (42) in the main text.

APPENDIX B: DERIVATION OF EQS. (22)–(24)

In this Appendix, we supplement the derivation of Eq. (22). Equations (23) and (24) can be derived in the same manner. By
multiplying Eq. (12) with the spin operator Sz and taking the trace, we obtain

〈Ṡz〉 = −i�[〈S+〉e−iω′t − 〈S−〉eiω′t ] − 	〈S+S−〉. (B1)

Here, we have used the commutation relation of the spin operator, [Si, S j] = iεi jkSk , with the Levi-Civita symbol εi jk . Using
Eq. (21), the last term of Eq. (B1) is calculated as

〈S+S−〉 = 〈S+〉〈S−〉 + 2S0

(1 + |τ1|2)2
. (B2)

The first term on the right-hand side is O(S2
0 ), while the second term is O(S0). Thus 〈S+S−〉 of Eq. (B1) can be replaced with

〈S+〉〈S−〉 in the leading order of S0, to arrive at Eq. (22).
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