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Understanding magnetic damping behavior at finite temperatures is crucial for magnetization reversal, espe-
cially in heat-assisted magnetic recording (HAMR) media. In this paper, we calculate the intrinsic magnetic
damping of L10-FePt, which is the prospective HAMR media, based on the Kamberský torque correlation
model and the modified frozen thermal lattice disorder approach. Using the temperature-dependent scattering
rate, the magnetic damping showed nonmonotonic behavior and slightly increased with increasing temperature,
indicating that the lattice vibration enhances the interband transition around the Fermi level. Comparison of
our results with the previous theoretical and experimental works clarified that, because the intrinsic damping of
L10-FePt was always enhanced at high temperature, the reduction of the damping around the Curie temperature
in the recent experiment emphasizes the importance of extrinsic contributions of damping for HAMR application.
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I. INTRODUCTION

Magnetic damping constant α, which represents the en-
ergy and spin-angular momentum dissipation rate of a local
spin moment in magnetic systems, is a crucial parameter for
magnetic storage and spintronics applications [1]. The critical
current density of the spin-transfer torque (STT) switching
in magnetic random-access memories is proportional to α.
Thus, low-damping material is required to enable magnetiza-
tion switching with low energy consumption [2]. Furthermore,
the voltage-controlled magnetic anisotropy switching also re-
quires low magnetic damping for the reduction of write error
rate during magnetization reversal [3]. Contrary to this, in
magnetic recording technology such as heat-assisted mag-
netic recording (HAMR), high magnetic damping is preferred
to improve the signal-to-noise ratio [4] and obtain a faster
writing time [5], not only at ambient temperature but also at
elevated temperatures characteristic to the writing process [6].

Here, L10-FePt nanogranular medium [7,8] was developed
in response to the increasing demand for high areal density
storage in the next generation of HAMR. It has large mag-
netocrystalline anisotropy (7×107 erg/cc) [9], which allows
us to shrink and thermally stabilize the grains. Relatively low
Curie temperature (750 K) [10] and large damping (α > 0.05)
[11–14] are also beneficial for the easier writing process
by heating the medium almost up to TC. Therefore, under-
standing the temperature dependence of magnetic damping
is essential to improve the switching properties of HAMR
media. Unfortunately, the damping behavior of L10-FePt at
finite temperature is still unclear, both from experimental and
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theoretical points of view. In this paper, hopefully, we clarify
this question in part.

Reported values of the experimentally measured mag-
netization damping coefficient vary significantly from one
publication to another, even for the same material studied at
room temperature. Mizukami et al. [11] reported the lowest
effective Gilbert damping constant of 0.055 in L10-FePt epi-
taxial thin films, while Becker et al. [12] obtained α = 0.1
for the granular structure, and much larger values were also
reported by Lee et al. [13] (0.2) and Kim et al. [14] (0.26).
Note that, aside from the intrinsic damping contribution,
measured damping also includes the equipment-dependent
extrinsic damping component, which complicates the physical
interpretation of the results [15].

On the other hand, the first-principles approach offers the
intrinsic damping constant originating from the spin-orbit
interaction (SOI) in magnetic systems [16–23]. Formulation
of the intrinsic damping constant was proposed by Kamber-
ský [16] based on the torque correlation model within the
linear response theory, where the damping torque acting in
the opposite direction to the STT comes from the magnetic
friction between local moments and conduction electrons due
to the SOI. By using the torque correlation model, Gilmore
et al. [24] evaluated the damping constant for simple tran-
sition metals such as Fe, Co, and Ni and its dependence
on the phenomenological parameter for the scattering rate δ.
Even with the semiempirical approach, their results agree well
with the temperature dependence of experimental magnetic
damping [25], demonstrating the indirect relation between the
scattering rate parameter and temperature.

However, at high temperatures, spin fluctuation and atomic
vibration effects become inevitably important in magnetic
systems [26]. Therefore, including these effects will deepen
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our understanding of the behavior of intrinsic damping
at finite temperatures. Recently, unpredicted reduction of
near-TC damping of FePt with temperature extracted from
ferromagnetic resonance (FMR) linewidth measurement was
reported by Richardson et al. [27]. This significant reduction
may be disadvantageous for HAMR applications, especially
leading to slower switching time and a smaller signal-to-
noise ratio [6]. Recent theoretical works only consider spin
fluctuation as the finite-temperature effect on the damping
of FePt [28,29]. To calculate the damping, Hiramatsu et al.
[29] treated the spin fluctuation in the framework of the dis-
ordered local moment (DLM) and included the small finite
value of the impurity scattering rate δ based on residual resis-
tance representing temperature-independent scattering rate. It
is found that the low-temperature damping value is signifi-
cantly affected by these parameters, although its temperature
dependence still qualitatively resembles the scattering rate
dependence of magnetic damping of Fe at the ground state
reported by Gilmore et al. [24]. This nonmonotonic behavior
predicted by the torque correlation model can be explained by
the fact that the scattering rate is somewhat enhanced by spin
fluctuation at finite temperatures.

In contrast, the lattice dynamics effect via atomic vi-
brations on the FePt damping constant remains unclear.
Previously, Liu et al. [30] introduced the so-called frozen
thermal lattice disorder to incorporate atomic vibration into
the damping calculation in the framework of the scattering
theory. Since experimental FMR and phonon frequency are
much smaller than the frequency corresponding to typical
electronic Fermi velocity, the motion timescale can be sep-
arated and the electrons responsible for transport properties
moved around the frozen phonons. The frozen phonon is ex-
pressed by shifting atomic position randomly and rigidly from
the equilibrium coordinate following the Gaussian distribution
of a particular value of the root-mean-square displacement,
which is indirectly related to temperature. They found that the
nonmonotonic behavior of damping in Fe, Co, and Ni can be
reproduced by this simple model. However, they did not ex-
plicitly determine the atomic displacements at a given temper-
ature, even though it could be done using phonon dispersion
information. Hence, in this paper, we investigated the lattice
dynamics effect on the damping constant of FePt at finite
temperatures with the Kamberský torque correlation model
and an improved frozen thermal lattice disorder approach.

II. COMPUTATIONAL PROCEDURE

We performed first-principles density functional calcula-
tions using VASP [31] to obtain electronic structures and
phonon dispersions of L10-FePt together with the projection
onto local atomic orbitals. The projector augmented-wave
potential was used to describe the behavior of core electrons
[32]. The generalized gradient approximation proposed by
Perdew, Burke, and Ernzerhof was adopted for the exchange
and correlation energies [33]. A 2×2×2 supercell containing
8 Fe and 8 Pt atoms was constructed using the tetragonal
unit cell with a = 5.4563 Å and c = 7.5579 Å for phonon and
damping calculations. We used the plane-wave cutoff energy
of 335 eV for the wave function expansion and 10×10×10
k-points mesh for wave vector integration in the first Brillouin

zone. Note that the relatively sparse k-points mesh for damp-
ing calculations was used since the purpose of this paper is to
offer insight into the temperature dependence of damping due
to the atomic vibrations. We confirm that the qualitative fea-
ture of the scattering rate dependence of the damping constant
has been converged by the present k-point density (see Fig. S1
in Supplemental Material S1 [34]).

The magnetic damping constant based on the torque corre-
lation model can be described by the correlation function of
the spin torque operator η−:

η− = [S−, H0] − �S−. (1)

Here, S− is the spin operator, � is the frequency of uniform
precession motions of local spin moments, and H0 is the
Hamiltonian, which includes the usual spin-independent term,
the ferromagnetic exchange potential, the SOI, and the poten-
tial deformation terms induced by finite-temperature effects
such as lattice vibrations. The picture of the torque correlation
model is closely related to the Brownian motion of particles
in water, where the random collision of water molecules with
particles leads to friction that affects the random motion of
the particles. Analog to this model, local spin moments and
conductive electrons in magnetic systems correspond to the
particles and water molecules in Brownian motion, respec-
tively. Thus, the generalized Langevin equation can be used
to describe the spin dynamics:

dS−(t )

dt
= − i�S−(t ) − iη−(t )

− 1

μs

∫ t

0
〈[η−(t ′), η+]〉0S−(t − t ′)dt ′, (2)

where the precession motion of local spin moments is de-
scribed by the first term (−i�S−), random spin-orbit torque
from conductive electrons due to SOI by the second term
(iη−), and damping motion by the last term. Here, μs is the
spin-magnetic moment, and 〈· · · 〉0 indicates the thermal av-
erage for H0. After implementing Laplace transform to solve
this equation, we obtain the microscopic magnetic suscepti-
bility as

χ+(ω) = μ0(gμB)2

h̄V

−μs

ω + i0 − � + � − μ−1
s F (ω + i0)

, (3)

where �, V, and g are the exchange splitting, unit-cell vol-
ume, and g factor of the present system, respectively. Here,
F (ω + i0) is the Green’s function of the torque operator and
represents the damping constant in its imaginary form:

F (ω + i0) = −i
∫ ∞

−∞
〈[η−(t ′), η+]〉0θ (t )exp[i(ω + i0)t]dt .

(4)
If we consider that the low-frequency limit of � and the

coupling between the spin moment and the potential deforma-
tion due to lattice vibrations are negligible as the first-order
approximation, the torque operator in Eq. (1) is equivalent to
the spin-orbit torque given by

η− = η−
0 = [S−, HSO], (5)

where HSO = ∑
I ξIL · S is the spin-orbit Hamiltonian with

ξI being the spin-orbit constant at the site I. Here, L =
(Lx, Ly, Lz ) and S = (Sx, Sy, Sz ) are the orbital and spin-
angular momentum operators, respectively.
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The macroscopic approach for computing damping contri-
bution can also be derived from the Landau-Lifshitz-Gilbert
equation:

dM
dt

= −γ M × Heff + α
M
Ms

× dM
dt

, (6)

where the first term of Eq. (6) describes magnetization pre-
cession around the direction of external effective magnetic
field Heff , and the second term represents the damping motion
of local moment M. Note that α, Ms, and γ correspond to
the damping coefficient, saturation magnetization, and gyro-
magnetic ratio, respectively. By considering the precession of
magnetization due to an external magnetic field Heff of the
right-hand circular polarization, the susceptibility is expressed
as

χ+(ω) = − γ Ms

ω − γ Heff + iαω
. (7)

Comparison between Eqs. (3) and (7) will give the expres-
sion of the damping constant as

α = − lim
ω→0

γ

h̄μ0V Ms
Im

[
1

ω
F (ω + i0)

]
. (8)

By evaluating the matrix elements of the spin-orbit torque
operator for the wave function with SOI, the damping constant
can be calculated via an ab initio method using the equation
below:

α = g

πMs

∑
k

Wk

∑
nn′

|
−
nn′ (k)|2

× δ

(EF − εnk)2 + δ2

δ

(EF − εn′k)2 + δ2
, (9)

where 
−
nn′ (k) = 〈n, k|[S−, HSO]|n′, k〉 is a matrix ele-

ment for wave vector k between bands n and n′ in-
duced by the spin-orbit torque operator η−

0 = [S−, HSO] =∑
I ξI (S−Lz − SzL−). These matrix elements are numerically

integrated over all wave vectors k with the weight of Wk and
band states together with electron spectral functions, which
are Lorentzian centered at the band energy εnk and broadened
by the electron-lattice scattering rate δ. Note that the band
states |n, k〉, Fermi energy EF, and εnk are easily obtained
from the output of the ab initio calculations. In addition, we
confirmed that using a larger supercell did not significantly
affect the qualitative trend of the Lorentzian function; hence,
the 2×2×2 supercell should be sufficient for the present cal-
culation (see Fig. S2 in Supplemental Material S2 [34]).

Although we neglected the spin-phonon coupling in the
correlation function of the spin torque, we incorporate the
atomic vibration effect via phonon dispersion as modified
frozen thermal lattice disorder, where the atomic displace-
ment is explicitly determined from the phonon dispersion
information. First, we confirmed that there is no negative
phonon mode for the FePt structure calculated by PHONOPY

[35], which implies the ground state is dynamically stable.
The atomic displacements uβ

κ� in the supercell can be obtained
from the normal mode coordinates (Qqν) in the reciprocal
space as

uβ

κ� = 1√
MκNq

∑
qν

Qqνeβ (κ; qν)exp[iq · r(�)], (10)

where β is the Cartesian coordinate index, Mκ is the mass of
the κth atom in the unit cell, � is the unit cell index in the
supercell, and Nq is the number of q points commensurate with
the supercell. The polarization vector eβ (κ; qν) gives the di-
rection in which each atom moves with the wave vector q and
the mode index ν. To generate structural snapshots relevant at
each temperature, we randomly sample Qqν from the Gaussian
(normal) distribution with the deviation σqν , which is given as
[36]

σ 2
qν = 〈QqνQ∗

qν〉 = h̄

2ωqν

(2nqν + 1), (11)

where ωqν is the harmonic phonon frequency, and
nqν (ω, T ) = [exp(h̄ω/kBT ) − 1]−1 being the Bose-Einstein
occupation function. Therefore, we calculate the damping
value of each snapshot using the Kamberský model and
do averaging to obtain the damping value over hundreds
of snapshots at each temperature. We confirmed that the
averaging over 100 snapshots is enough to obtain the
converged magnetic damping at finite temperatures up to
900 K.

The scattering rate δ in Eq. (9) was estimated from the
imaginary part of the Fan-Migdal (FM) self-energy defined
as [37]


nk = Im�FM
nk (εnk ) = π

Nq

∑
mqν

|gnmν (k, q)|2

× [(1 − fmk+q + nqν )δ(εnk − h̄ωqν − εmk+q)

+ ( fmk+q + nqν )δ(εnk + h̄ωqν − εmk+q)], (12)

where gnmν (k, q) is the electron-phonon coupling constant and
fnk = {exp[(εnk − μ)/kBT ] + 1}−1 is the Fermi-Dirac distri-
bution function. We used dense 100×100×100 k- and q-point
grids for the summation of Eq. (12). To that end, the electron-
phonon coupling constants were first computed based on
density functional perturbation theory (DFPT) for the 2×2×2
q points along with the 12×12×12 k points and subsequently
interpolated to the dense grids using the Wannier interpola-
tion. The DFT and DFPT calculations were performed under
a collinear magnetic state using the QUANTUM ESPRESSO pack-
age [38], where the Garrity-Bennett-Rabe-Vanderbilt (GBRV)
ultrasoft pseudopotentials [39] were used with the kinetic
energy cutoffs of 90 and 1080 Ry, respectively, for the wave
function and charge density. The maximally localized Wan-
nier functions were constructed using the WANNIER90 code
[40], where the outer energy window of [−10:8] eV relative
to the Fermi level was used. The calculation of 
nk was per-
formed using the PERTURBO code [41].

III. RESULTS AND DISCUSSION

Before we include the finite-temperature effect in the
damping calculation, we need to validate our calculation in the
ground-state condition. It is known that the spectral shape of
damping has a pattern like the density of states (DOS) around
the Fermi level [16,24]. In Fig. 1, it is shown that our calcu-
lation for FePt maintains this similarity, suggesting that the
main contribution to magnetization damping processes comes
from electron states located near the Fermi level [Eq. (9)].
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FIG. 1. The total damping and density of states (DOS; total,
majority-spin, minority-spin) for L10-FePt at 0 K as a function of
energy measured from the Fermi level. The left axis is the damping,
and the right axis is the DOS.

The total intrinsic damping is the sum of the intraband and
interband contributions. While the intraband contribution de-
creases with increasing the scattering rate (conductivitylike),
the interband contribution is proportional to the scattering
rate (resistivitylike) and dominates the total damping in the
strongly scattered region. The difference in the scattering rate
parameter δ dependence between the intraband and interband
contribution implicitly shows the nonmonotonic behavior of
the temperature dependence of damping. Figure 2 demon-
strates this behavior, where we confirm the good agreement
in the qualitative trend previous calculation reported by Qu
et al. [42].

In Fig. 3(a), we show the total damping computed with
various scattering rates after averaging over 100 snapshots
according to Eqs. (10) and (11) to include the effect of atomic
vibrations for each temperature. It is found that the intraband
and interband damping are dominantly contributed in the low
and high scattering regions, respectively. However, the nearly

FIG. 2. The total, intraband, and interband damping dependence
on the scattering rate parameter computed for L10-FePt at 0 K.

overlapped curve shown at elevated temperature (300–900 K)
may imply that the effect of atomic vibrations on the magnetic
damping is not significant, especially at high temperatures.
Figure 3(b) contains the same information as Fig. 3(a) but
shows the temperature dependence of damping using a con-
stant scattering rate δ. The range of the scattering rate δ was
chosen based on the values considered in the previous reports
(0.0272–0.10 eV) [29,42]. When a relatively low scattering
rate δ = 0.03−0.04 eV is used, the temperature dependence
of the damping value shows an approximately monotonic
decrease followed by saturation of damping at high tempera-
tures. However, the use of scattering rates δ = 0.05−0.10 eV
increases damping at high temperatures; hence, a nonmono-
tonic behavior is clearly demonstrated.

Since the results in Fig. 3 show that scattering rate plays an
important role in the quantitative evaluation of the magnetic
damping over the temperature range, we are motivated to
evaluate the magnetic damping using calculated temperature-
dependent scattering rates. To begin with, it is intuitive that
the scattering rate increases at higher temperatures due to
enhanced electron-phonon scatterings. Since the electron-
phonon scattering gives the dominant contribution to the
temperature dependence of the total scattering rate, we es-
timate δ from the imaginary part of the FM self-energy
[Eq. (12)]. In Fig. 4, we plot the calculated δ values as a
function of temperature T. Here, the calculated imaginary
parts were averaged over the Kohn-Sham states in the range
of EF ± 0.3 eV because the bands around the Fermi level
dominantly contribute to the damping. We confirmed that the
averaged δ value was not sensitive to the window energy when
it is reasonably small, i.e., ∼0.05–0.5 eV. It is seen from
Fig. 4 that the scattering rate δ increases as the temperature
rises, in accord with the aforementioned intuitive picture. The
extrapolation of the δ values gives a nonzero value at 0 K
(∼0.007 eV). Interestingly, this value is within the magnitude
range of temperature-independent impurity scattering rate δ

estimated from residual resistivity by Hiramatsu et al. [29]
(0.0027–0.027 eV).

Using the obtained imaginary part of the FM self-energy as
the temperature-dependent scattering rate, we calculated the
temperature dependence of damping. Since the spin fluctua-
tion effect is excluded, there is no Curie temperature in this
paper; hence, magnetization value is constant, and damping
value up to 900 K can be obtained. However, it is important
to note that the actual HAMR writing operation is carried out
∼670–685 K (10–25 K below experimental Curie tempera-
ture), and our results show that the phonon excitation hardly
affects the magnetic damping in this temperature range. In
Fig. 5, the temperature dependence of damping due to the
atomic vibration is shown by the red line-point together with
the previous study of the temperature dependence of damping
due to spin fluctuation reported by Hiramatsu et al. [29] (the
black line-point). Our calculation shows a weak nonmono-
tonic behavior, which confirms that atomic vibration slightly
enhances the high-temperature damping. However, this mag-
nitude of the change in the damping due to atomic vibrations
is not as large as the effect of spin fluctuation reported by
Hiramatsu et al. [29]. This could be explained because the
damping constant is inversely proportional to the magnetic
moment, as shown in Eq. (9). Since the magnetization rapidly
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FIG. 3. (a) The scattering rate dependence of total damping with varying temperature. (b) The temperature dependence of total damping
with varying scattering rate of L10-FePt.

decreases near the Curie temperature, the calculated damping
due to the spin fluctuation will be drastically enhanced. On
the other hand, we confirmed that the atomic vibration hardly
affects the magnetization value even at high temperatures.

In Fig. 5, we also plot the reported experimental results
of FePt damping taken from Refs. [27,43] by the blue and
green line-points. In the experiment, they measure the FMR
linewidth, which is directly proportional to the damping
under the assumption of a negligible contribution of inho-
mogeneity line broadening. Thus, the damping value can be
extracted from the FMR linewidth and plotted together with
the calculated temperature dependence of damping. Previ-
ously, Richardson et al. [27] reported the reduction of the
FMR linewidth in a L10-FePt granular sample, which corre-
spond to the strong reduction of damping (blue dashed line).
Since we and Hiramatsu et al. [29] separately reported that the
intrinsic damping of FePt will increase at high temperatures
due to the atomic vibration and spin fluctuation, respectively,
we can rule out the intrinsic damping as an origin of the
experimental reduction of the FMR linewidth (damping) ob-
served by Richardson et al. [27]. Although the contributions
from phonon excitation and spin fluctuation at finite temper-
atures are not additive in a quantitative manner, as shown
by Ebert et al. [26], our results emphasize that the phonon

FIG. 4. Temperature dependence of δ calculated from the imagi-
nary part of the Fan-Migdal (FM) self-energy.

excitation effect is not detrimental for intrinsic damping at
high temperatures, like with the spin-fluctuation effect in a
qualitative manner [29]. In addition, in recently published
work, Liu et al. [43] reported that the FMR linewidth of
continuous thin films of cubic A1-FePt significantly increases
near the Curie temperature (green dashed line). This qualita-
tive behavior in cubic A1-FePt shows good agreement with
the spin-fluctuation effect on damping of tetragonal L10-FePt
reported by Hiramatsu et al. [29] due to the small extrinsic
contribution. Note that the rapid increase of damping of A1-
FePt reported by Liu et al. [43] happens at a lower temperature
than that predicted by Hiramatsu et al. [29] for L10-FePt due
to lower experimental TC of A1-FePt (575 K) compared with
the calculated TC of L10-FePt using the DLM method (820 K)
[29]. In addition, it is important to note that the DLM method

FIG. 5. Atomic vibration effect on the temperature dependence
of the damping of L10-FePt calculated using the imaginary part of
Fan-Migdal (FM) self-energy as temperature-dependent scattering
rate. For comparison, the spin-fluctuation effect on the temperature
dependence of damping constant of L10-FePt calculated by Hira-
matsu et al. [29], experimental damping constant extracted from
ferromagnetic resonance (FMR) linewidth of L10-FePt granular me-
dia by Richardson et al. [27], and A1-FePt continuous thin films
by Liu et al. [43] are plotted together. Dashed line corresponds to
the trend of the temperature dependence of experimental damping
constant near the Curie temperature.
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FIG. 6. Temperature dependence of the spin-conserving and
spin-flip contribution to damping calculated using the imaginary part
of Fan-Migdal (FM) self-energy as temperature-dependent scattering
rate.

usually overestimates the Curie temperature, where the exper-
imental TC of L10-FePt is 695 K, as reported by Richardson
et al. [27]. While the continuous A1-FePt thin films have
fewer defects and smaller extrinsic contribution, the granular
structure of L10-FePt media investigated by Richardson et al.
[27] has more defects due to the grain boundary, resulting in
the stronger extrinsic contribution to the damping [43]. Hence,
the comparison of these results leads to two major findings:
(1) the temperature dependence of intrinsic damping due to
the atomic vibration and spin fluctuation is nonmonotonic,
and the damping always increases with increasing the tem-
perature near the Curie temperature; and (2) the extrinsic
contribution will play an important role in the possible reduc-
tion of FePt damping in the experiment.

We split the spin-orbit torque operator η−
0 = [S−, HSO] =∑

I ξI (S−Lz − SzL−) into two parts: One is the spin-
conserving term SzL−, and the other is the spin-flip term S−Lz.
In Fig. 6, we show separately the contributions of damping
into spin-conserving transitions and spin-flip transitions us-
ing the calculated temperature-dependent δ values. We found
that the spin-conserving (SzL−) contribution is much larger
than the spin-flip (S−Lz) contribution. This can be attributed
to two possible reasons. First, the small majority-spin DOS
compared with the minority-spin DOS at the Fermi level due
to the exchange splitting of FePt (see Fig. 1) will lead to the
small contribution of the spin-flip transition from the occupied
majority-spin states to the unoccupied minority-spin states.
Second, the matrix elements of the spin flip 〈n, k|S−Lz|n′, k〉
only allow the nonzero value for the six combinations of
atomic orbitals with the same magnetic quantum numbers,
where the spin conserving 〈n, k|SzL− |n′, k〉 give a nonzero
value for the 16 combinations of atomic orbitals with different
magnetic quantum numbers [44]. Note that different prerequi-
sites for the nonzero values in spin-flip and spin-conserving
matrix elements also provide justification to separately an-
alyze the spin-flip and spin-conserving contributions to the
total damping (see Fig. S3 in Supplemental Material S3 [34]).
The temperature dependence of the two contributions is also
different. The spin-conserving part of the damping shows a

FIG. 7. Temperature dependence of damping by varied constant
impurity scattering rate �imp.

rather monotonic decrease. On the other hand, the spin-flip
part shows more pronounced nonmonotonic behavior, which
is like the total damping in Fig. 5. Previously, it was under-
stood that nonmonotonic behavior of damping is attributed
to the competition between the intraband (conductivitylike)
and interband (resistivitylike) contribution. While the spin-flip
term in the intraband contribution is almost negligible due
to the assumption of a pure spin state, the strong spin-flip
contribution from the interband transition may be the origin
of the enhancement of damping at high temperatures.

It is difficult to obtain perfect samples experimentally due
to introduction of impurities, formation of dislocations, etc.
It is expected that low concentration of impurities does not
affect the electronic structure and magnetic properties signif-
icantly. Therefore, we assumed that impurity concentration is
proportional to the constant scattering rate due to impurities
�imp. In Fig. 7, we show the spin-conserving and spin-flip
damping as a function of temperature for different impurity
scattering rates �imp. We found that the enhancement of the
spin-flip damping at high temperatures is more pronounced
with increasing �imp. On the other hand, the spin-conserving
damping hardly increases at high temperatures with increas-
ing �imp. This result implies that the presence of impurities
in FePt may be beneficial by preventing undesirable damp-
ing coefficient reduction at high temperatures. Based on this
simplified picture, impurities will act as local scattering cen-
ters which enhance the spin-flip transition process. However,
this contribution can be less significant than spin fluctuation
because the damping is explicitly dependent on the mag-
netization. Since the magnetic impurities having d orbitals
may change the electronic structures of FePt and negatively
impact the other important properties of HAMR such Curie
temperature and anisotropy, nonmagnetic impurities without
d orbitals such as carbon and boron can be considered possible
candidates.

Finally, to understand how each phonon mode affects the
damping behavior, we created modulated structures by dis-
placing the atoms along the specified normal modes with
different amplitudes at the commensurate q points. The κth
atom displacements in the defined supercell with total N
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FIG. 8. (a)–(c) The mode-decomposed normalized damping αmod/αunmod of L10-FePt with amplitudes 1, 2, and 3 u1/2 Å at constant
scattering rate 0.05 eV, respectively.

atoms are defined as
A√

NMκ

Re[exp(iφ)eβ (κ; qυ ) exp(iq · rκ�)], (14)

where A is the amplitude in the unit of u1/2Å, and φ is the
phase. We created supercells with displacements due to the
phonon mode for each commensurate q point. In the primitive
L10-FePt unit cell, there are two atoms yielding six phonon
modes at each q point. Since the 2×2×2 supercell is used,
there are eight different commensurate q points labeled as
follows: 
 (0,0,0), Z (0, 0, 1

2 ), X (0, 1
2 ,0), R (0, 1

2 , 1
2 ), X′ ( 1

2 ,0,0),

R′ ( 1
2 ,0, 1

2 ), M ( 1
2 , 1

2 ,0), and A ( 1
2 , 1

2 , 1
2 ). Note that X(X′) and R(R′)

are equivalent points in the phonon dispersion calculation.
In Figs. 8(a)–8(c), we show how each phonon mode affects

the ratio of the damping in the modulated structure αmod to
the damping in the unmodulated (perfect supercell) structure
αunmod (αmod/αunmod) with changing the amplitude of atomic
displacements. The constant scattering rate of 0.05 eV was
used. Red (blue) points correspond to the phonon mode that
enhances (weakens) the damping value compared with the
unmodulated structure. The presence of both red and blue
phonon modes indicates two competing contributions to the

FIG. 9. (a)–(f) The amplitude dependence of normalized damping αmod/αunmod of L10-FePt due to phonon mode at q point: 
 (0,0,0), X
(0, 1

2 ,0), M ( 1
2 , 1

2 ,0), Z (0,0, 1
2 ), R (0, 1

2 , 1
2 ), and A ( 1

2 , 1
2 , 1

2 ), respectively. Every plot contained the contribution of each phonon mode indexed from
lowest to highest frequency.
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temperature dependence of damping, which may explain its
nonmonotonic behavior.

At higher temperatures, a larger amplitude of displace-
ments is expected, and higher-frequency phonon modes will
be more occupied. We show in Figs. 9(a)–9(f) the ampli-
tude dependence of the normalized damping αmod/αunmod

of L10-FePt due to phonon modes at various commensu-
rate q points. Larger amplitude and higher-frequency phonon
mode generally result in a larger change in the magnitude
of αmod/αunmod. The high-frequency phonon mode at the 


point has always enhanced the damping, which may be a
dominant contribution to the slight increase of damping at
high temperatures due to the atomic vibration effect in Fig. 5.

IV. CONCLUSIONS

We carried out a theoretical study of the lattice dynamics
effects on the damping constants of L10-FePt at finite temper-
atures based on the Kamberský torque correlation model and
the improved frozen thermal lattice disorder approach. Using
the imaginary part of the FM self-energy as the temperature-
dependent scattering rate, we showed the weak nonmonotonic
behavior of the temperature dependence of the damping. As
a result, the damping slightly increases at high tempera-
tures because of atomic vibrations, although the magnitude
is not as large as that of the spin-fluctuation effect. Thus, our
results rule out lattice dynamics as the exclusive origin of the
observed temperature-induced decrease in the damping con-
stant. The comparison with the reported experimental results
emphasizes the importance of the extrinsic contribution to the

possible reduction of damping in L10-FePt granular media for
HAMR application. Furthermore, we found that the increase
of the damping at high temperatures is due to the spin-flip
(S−Lz) contribution, which can be enhanced by the larger
impurity scattering rate. These results suggest that, in practical
applications, the inclusion of impurities such as carbon and
boron may suppress the observed reduction in damping due
to the extrinsic contribution at high temperature. Although the
effect of lattice dynamics on the magnetic damping around the
Curie temperature was not significant compared with the spin
fluctuation, its effects will be more important for understand-
ing the temperature dependence of the magnetic damping, if
we include the spin-phonon coupling in the torque correlation
model. In the future, we would like to consider spin-phonon
coupling directly in the correlation function of the torque
correlation model for intrinsic damping calculations.
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