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Calculated iron L2,3 x-ray absorption and x-ray magnetic circular dichroism of spin-crossover
Fe(phen)2(NCS)2 molecules adsorbed on a Cu(001) surface
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The projector augmented wave method has been used to compute the iron L2,3 edges of x-ray absorption
spectra (XAS) and x-ray magnetic circular dichroism (XMCD) of the spin-crossover Fe(phen)2(NCS)2 molecule
when adsorbed on Cu(001) surface and in the gas phase, for both the high-spin (HS) and low-spin (LS) states.
The electronic structures of both HS and LS states have been calculated using the spin-polarized generalized
gradient approximation for the exchange-correlation potential, and the strongly localized iron 3d states are
described using Dudarev’s rotationally invariant formulation of the DFT+U method. It is shown that only the
iron all-electron partial waves are necessary to calculate the XAS transition matrix elements in the electric dipole
approximation, as the contribution of the pseudo partial waves is compensated by the plane-wave component
of the wave function. It is found that the calculated XAS and XMCD with the static core hole or the Slater
transition state half hole are in less good agreement with experiment than those using the so called initial state.
This disagreement is due to the reduction of the iron spin magnetic moment caused by the static screening of
the core hole by the photo-electron. The L2,3 XAS formula is found to be directly related to the unoccupied 3d
density of states (DOS), and hence the symmetry broken eg and the t2g iron DOS are used to explain the XAS
and XMCD results. It is demonstrated that the dependence of the HS XMCD on the direction of incident x-ray
circularly polarized light with respect to the magnetization direction can be used to determine the iron octahedron
deformation, while the XMCD for various magnetization directions is directly related to the anisotropy of the
orbital magnetic moment and the magnetocrystalline energy. The Thole-Carra-Van der Laan XMCD sum rules
have been applied to the XMCD L2,3 spectra to compute the spin and orbital magnetic moments. It is shown that
the magnetic dipole moment Tz is very large due to the strong distortion of the iron octahedron and is necessary
for an accurate determination of the sum rule computed spin magnetic moment.
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I. INTRODUCTION

Mastering the physics and chemistry of isolated bistable
molecules that are adsorbed on surfaces is necessary to fur-
ther advance information technology as they have potential
applications for display devices, data storage, and organic
transistors. For example, the spin state of spin-crossover
(SCO) molecules can be switched between the low-spin (LS)
and high-spin (HS) states by an external perturbation such
as a variation in the temperature, light, pressure, magnetic or
electric field [1–7]. This artificially triggered d − d electronic
transition originates from the redistribution of the transition
metal 3d electrons between the symmetry broken eg and t2g

orbitals due to the structural deformation of the octahedral
transition-metal complex.

X-ray absorption spectroscopy (XAS) and x-ray magnetic
circular dichroism (XMCD) techniques have been extensively
used to study SCO molecular systems. The absorption spectra
of the HS and LS states are quite distinct due to their different
magnetic ground-state properties [8–12]. These techniques
are therefore powerful characterization tools for studying the
spin state of SCO compounds in all magnetic phases. Nat-
urally, such spectra have been computed for the prototype
Fe(phen)2(NCS)2 (Fephen) spin-crossover molecule, where
phen is the 1,10-phenanthroline, and they are commonly used
as a reference by experimentalists working on these systems

[9]. Miyamachi et al., for example, studied the spin-crossover
phenomenon in a Fephen system both in the gas phase and
adsorbed on a Cu(001) surface along with its XAS and and
XMCD [12]. Among other things, a Fano resonance in the
conductance at zero-bias was observed only in the HS state.
The origin of this anomalous conductance has been arduous
to elucidate due to the subtle electronic coupling between the
surface and the complex, and it has led to an extensive body
of work [13].

From a fundamental perspective, the transition from the
HS to LS in Fe(II) complexes involves the spin transition
(t2g)3↑(eg)2↑(t2g)1↓ → (t2g)3↑(t2g)3↓(eg)0 (see Ref. [14]). This
spin transition stabilizes the low-spin state because of the full
occupation of the low-lying symmetry broken t2g energy lev-
els. It is therefore interesting to compute the LS and HS XAS
L2,3 edges from first principles and compare them directly to
experiment to validate this spin transition. To this end, we
have calculated the x-ray absorption spectra and XMCD of
the Fephen molecule both on the gas phase and adsorbed
on a Cu(001) surface in the electric dipole approximation
and have compared our findings to experiment [12]. We have
shown, in particular, that the XAS and XMCD calculations
including the static core hole are in a worse agreement with
experiment than the calculations using the ground state. This
fact remains true even when using the Slater transition rule,
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where only a half hole is used in the 2p core states [15,16].
This disagreement is explained below in terms of the re-
duction of spin moment caused by the additional screening
of the core hole by the photoelectron. In addition, we have
demonstrated that the dependance of the XMCD signal on
the direction of incident circularly polarized light can be used
to determine the deformation of the iron octahedron, and
the XMCD for various magnetization orientations gives the
anisotropy of the orbital magnetic moment, which is related
to the magnetocrystalline energy (MCA). Those findings were
not investigated in Ref. [12] but are very useful for the charac-
terization of SCO molecules adsorbed on a metallic substrate.

To understand the distinct characteristics associated with
absorption spectra of the HS and LS, we have first shown that
the XAS is related to the 3d density of states and the XAS
results can therefore be explained in terms of the density of
states of the 3d electrons. We have therefore compared the
symmetry broken parent eg and t2g density of states to the
calculated XAS results [17]. We have also tested the validity
of the so-called XMCD sum rules for molecular systems and
shown that it is necessary to take into account the contribution
of the magnetic dipole operator Tz to obtain spin magnetic
moments in agreement with those obtained from the electronic
structure calculation or experiment. Finally, we have derived
the plane-wave contribution to the x-ray electronic transition
matrix elements within the projected augmented plane wave
(PAW) method [18] and have shown that it has a negligible
effect on the XAS and XMCD.

This paper is organized as follows: In the second section,
we provide a brief description of our method of calculation
and implementation of the XAS and the XMCD in VASP and
show that the dependence of the XMCD on the direction of
the incident circularly polarized x-ray beam is directly related
to the distortion of the iron octahedron. In addition, using
the XMCD sum rules we show that the XMCD for differ-
ent magnetization directions can be used to determine the
anisotropy of the orbital magnetic moment. In a third section,
we present our results for the XAS and XMCD at the iron L2,3

edges for both the gas phase and the molecule adsorbed on
a Cu(001) surface and compare them to the available experi-
mental data and show that the calculation without static core
hole is in better agreement with experiment. We then give an
interpretation of the HS and LS XAS and XMCD in terms of
symmetry broken eg and t2g density of states. At the end of
this section, we demonstrate how to utilize the XMCD sum
rules to compute the spin and orbital magnetic moments as
well as the importance of the magnetic dipole moment for the
determination of the spin magnetic moment. The derivation
of the plane-wave contribution to the x-ray matrix elements,
the implementation of the magnetic dipole moment in the
VASP package, as well as the approximation of the XAS by
weighted partial density of states of the conduction electrons
are provided in the appendices.

II. COMPUTATIONAL METHOD

A. Computational details

The electronic structure is computed using VASP (Vienna
Ab initio Simulation) package [19–23], which implements

the Kohn-Sham density functional theory (DFT) within the
PAW method [18]. The spin-polarized generalized gradi-
ent approximation (GGA) with the Perdew-Burke-Ernzerhof
(PBE) functional [24] is employed to describe the exchange-
correlation potential, whereas the van der Waals interaction,
which is relevant mostly between the surface and the
molecule, is taken into account using the semi-empirical
Grimme approximation at the DFT-D2 level [25]. Note that
we have attempted to use the more accurate DFT-D3 and DFT-
D4 methods, but we have encountered convergence issues.
The strongly localized iron 3d states are described using Du-
darev’s rotationally invariant formulation of Liechtenstein’s
DFT+U method [26,27]. The value of the effective Hubbard
parameter is U − J = 2.1 eV, which accurately reflects the
energy difference between the two spin states of Fe(II) [28].
The total energy is converged to 10−5 eV and the plane-wave
cutoff is set at 500 eV. The ionic force relaxation threshold
is set at 5 × 10−2 eV/Å in each direction. We have used a
supercell with dimensions 20.4 × 20.4 × 30 Å3. The surface
is simulated using a 8 × 8 × 3 stack of copper oriented along
the (001) direction and contains 192 atoms. The Fermi energy
has been calculated using a Gaussian smearing with a width
of 0.1 eV. This entropy has been removed from the computed
total energy. The calculations are carried at the � point only
given the large dimensions of the supercell.

B. X-ray absorption and XMCD

One can define the x-ray absorption cross section with
polarization μ in a general way using Fermi’s golden rule
[29],

σμ(ω) = 4παh̄

m2
eω

∑
i f

|〈 f |pμ|i〉|2δ(h̄ω − ε f + εi). (1)

Here, α is the fine-structure constant, me is the electron mass, i
and f stand respectively for the core states and the conduction
states, and their energies εi and ε f ). Here pμ = −ih̄∇μ is the
projection of the momentum operator on the {μ = −1, 0, 1}
polarization direction. These directions, along with the corre-
sponding cross section, are defined as

σμ=± : pμ=± = ∓1√
2

(px ± ipy),

σμ=0 : pμ=0 = pz. (2)

There are several ways to calculate the x-ray absorption
cross section, ranging from the analytical evaluation of tran-
sition matrix elements [30] to core-hole [31], or ligand field
DFT methods [32]. In this study, our approach is based on the
PAW method within the DFT calculations to compute these
matrix elements, and it has been already used to compute the
K and L2,3 edges in iron to achieve quantitative agreement
with experimental data [33]. Here, we extend our method
by including the plane-wave contribution and thus enabling
the computation of the XMCD spectra for any direction of
the magnetization and any direction of the incident circularly
polarized x ray. We have also determined the XAS in terms
of the partial density of states of the probed atom. This will
be used later to analyze the different features in the XAS in
terms of the symmetry broken eg and t2g density of states of
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the ideal octahedron. Note that in this formalism, its straight-
forward to include the effect of a static core hole or to use
the Slater transition rule [15,16], where only one half core
state is included. However, the static core hole usually only
slightly improves the K-edge spectrum, but it seldom leads to
improved L2,3 edges compared to calculations with the initial
state [34]. Indeed, we will show below that the initial state
calculation agrees better with experiment than calculations
using a static full core hole or Slater’s half hole.

Within PAW [18], the core states are considered frozen
and kept unchanged in the pseudopotential files, and they are
usually fully relativistic |J, M〉, i.e., solutions to the Dirac
equation [35]. This means that we need to work in a |JMLS〉
coupled basis set,

|i〉 = |J, M〉 =
∑
m′,s

〈	′, m′, 1/2, s|J, M〉|	′, m′, 1/2, s〉

=
∑
m′,s

CJ,M
	′,m′,1/2,s|	′, m′, 1/2, s〉, (3)

where 	, m, and s the usual angular momentum and spin quan-
tum numbers, the CJ,M

	′,m′,1/2,s are the usual Clebsch-Gordan
coefficients and 	′ = 1 for the L2,3 edges. It should be noted
that we disregard the contribution of the minor part of the
Dirac bispinor when computing the matrix elements because
the conduction states are scalar relativistic and the small
component contribution is negligible. The conduction states
are the computed Kohn-Sham orbitals |n, k, s〉, which can be
written in the PAW method as

| f 〉 = |n, k, s〉 = |˜n, k, s〉 +
∑
p,	,m

P̃n,k,s
p,	,m(|p, 	, m, s〉

− | ˜p, 	, m, s〉), (4)

where n is the band index, k the wave vector, and s the spin
index. P̃n,k,s

p,	,m is the projection value of the pseudo Kohn-Sham
wave functions on the PAW projector functions (for more
details see Ref. [18]). Here p is used for multiple projector
functions to improve the atomic basis set. Usually p is limited
to one or two projector functions per angular momentum 	.

It should be noted that our implementation can include
only the static core-hole effects using a supercell geometry,
unlike other PAW implementations, such as the Taillefumier
et al. method [36] where a continued fraction formulation was
used to compute the K-edge x-ray absorption near-edge struc-
tures in presence of a core hole. However, our calculations
do not include multiplet structures and dynamical core-hole
screening. Although this appears to be a drastic approxima-
tion, we will show that our implementation is sufficient to

obtain qualitative agreement with experiment. The |˜n, k, s〉
are the so-called pseudo wave functions associated with the

pseudo-partial waves | ˜p, 	, m, s〉, whereas the |p, 	, m, s〉 are
the all electron partial waves. The pseudo and plane-wave
contributions will be shown to be negligible as the 3d elec-
trons of iron are strongly localized within the augmentation
region, and these corrections are hence extremely small up to
several dozens of eV above the Fermi level. They are therefore
only relevant for EXAFS, which is not the subject of this
paper. This naturally leads us to limit the calculation to the

relevant photoelectron energy range when not including the
plane-wave contribution. These partial waves are indexed by
p the projector index, and 	, m, and s the usual angular mo-
mentum and spin quantum numbers, with Pn,k,s

p,	,m the associated
projection value of the Kohn-Sham pseudo wave functions,

Pn,k,s
p,	,m = 〈gp,	,m,s|˜n, k, s〉, (5)

where gp,	,m,s are the usual PAW projector functions. Note
that VASP uses cubic harmonics Ym

	 , whereas the formula
is computed for spherical harmonics Y m

	 . We should then
transform the projections back into the spherical harmonics
basis when doing the actual computation by using the usual
unitary transformation U from cubic to spherical harmonics.
We can show that it amounts in writing the projections as
Pn,k,s

p = U −1 ∗ P̃n,k,s
p , where P̃n,k,s

p represents the vector of the
cubic projections, as given by Eq. (4) that are computed by
VASP.

Using these formulas together with the golden rule, we can
find

σμ(ω) = 4παh̄

m2
eω

∑
M,n,k,s

∣∣∣∣∣
∑

p,	,m,m′
CJ,M

	′,m′,1/2,s〈p, 	, m|pμ|	′, m′〉

× P∗n,k,s
p,	,m

∣∣∣∣∣
2

δ(h̄ω − εnks + εJM ), (6)

where we have used the fact that the spin is conserved by
the momentum operator. The εnks and εJM are respectively
the Kohn-Sham eigenvalues and the relativistic core energies.
Note that VASP does not compute the spin-orbit splitting
between the (J − 1/2) and (J + 1/2) core states, and we have
therefore taken this splitting from the result of a relativistic all
electron atomic program calculation [37]. This also implies
that the spectra σμ(ω) are J dependent, although this will be
kept implicit in our notations.

Using Wigner-Eckart’s theorem [38,39], one can then show
that

〈p, 	, m|pμ|	′, m′〉 = C	,m
	′,m′,1,μ

C	,0
	′,0,1,0

〈p, 	, 0|p0|	′, 0〉. (7)

We therefore recover the so-called dipolar selection rules: 	 =
	′ ± 1 and m = μ + m′. Using angular momentum algebra
[39], we have the following closed formula that will be used
to compute the reduced matrix element for each projector p:

〈p, 	, 0|∇0|	′, 0〉 = δ	,	′+1
	√

(2	 − 1)(2	 + 1)

[(
φp,	|∂r |φc

	′
)

− (	 − 1)
(
φp,	|r−1|φc

	′
)]

+ δ	,	′−1
	 + 1√

(2	 + 1)(2	 + 3)

[(
φp,	|∂r |φc

	′
)

+ (	 + 2)
(
φp,	|r−1|φc

	′
)]

, (8)

where we introduced the radial functions associated with the
core φc or the conduction states φ, along with the radial in-
tegration (φp,	|rα|φc

	′ ) = ∫
drφp,	(r)rα+2φc

	′ (r). Note that for
most weakly relativistic systems such that α2Z2 � 1 (includ-
ing iron, where α2Z2 ≈ 0.03), the fine structure corrections to
the radial eigenfunctions are very small [40] and consequently
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FIG. 1. Fephen molecule on top of the Cu(001) surface. The
direction of the incident circularly polarized light is along the z di-
rection (A) and along ϑ = ϕ = π/4 (B). The spin magnetic moment
direction is set along the z direction, perpendicular to the Cu(001)
surface, when the spin-orbit coupling is included.

one can safely use nonrelativistic radial wave functions for
the core states. However, VASP allows us to compute the
relativistic radial wave functions by solving Dirac’s align, so
we will use them.

To conclude, in the momentum representation, the follow-
ing expression for the absorption spectrum can be shown,

σμ(ω) = 4παh̄3

m2
eω

∑
M,n,k,s

∣∣∣∣∣
∑

p,	,m,m′
CJ,M

	′,m′,1/2,s

C	,m
	′,m′,1,μ

C	,0
	′,0,1,0

× 〈p, 	, 0|∇0|	′, 0〉P∗n,k,s
p,	,m

∣∣∣∣∣
2

δ(h̄ω − εnks + εJM ).

(9)

The polarization is defined as in Eq. (2), and the XAS
and XMCD corresponding respectively to the σXAS = 1

3 (σ 0 +
σ− + σ+) and σXMCD = σ+ − σ− spectra are computed
using Eq. (9). The matrix elements 〈p, 	, 0|∇0|	′, 0〉 are com-
puted using Eq. (8), and the radial integrations are cut at the
augmentation radius for consistency. However, given the low
symmetry of the molecule under study, it is important to note
that the dependence of the XMCD signal on the direction
of the incident circularly polarized light is a signature of the
distortion of the iron octahedron. Here we have used a global
coordinates system (O, x, y, z) and have assumed that the
direction of incident light is given by the two spherical angles
(ϑ , ϕ). We can therefore write the cross section σXMCD for any
incident light direction specified by ϑ , ϕ as shown in Fig. 1.
The figure shows also that the spin quantization direction is
fixed along a given direction, as it would be done experimen-
tally with a magnetic field. Here we take the (001) direction
as a reference. It will be shown later that this direction corre-
sponds to the lowest total energy when the spin-orbit coupling
is included. We need therefore to rotate the matrix elements
from the local frame of reference (O, x′, y′, z′), where the z′
direction is along the incident light, to the global frame. This

FIG. 2. Comparison between the all electron partial wave (green)
and the full PAW wave function (red) calculated iron L2,3 XAS spec-
tra for the LS state. The negligible difference (blue) of the spectra as
well as the plane-wave contribution to the XAS (black) are shown on
the right scale.

transformation is provided by the direction cosine rotation
matrix,

R(u, v,w) = Rz′ (ϕ) · Ry′ (ϑ )

=

⎛
⎜⎜⎝

uw√
1−w2 − v√

1−w2 u
vw√
1−w2

u√
1−w2 v

−√
1 − w2 0 w

⎞
⎟⎟⎠, (10)

where the direction cosines are defined as u = x/r, v = y/r,
and w = z/r, where r =

√
x2 + y2 + z2. We can show that the

XMCD signal for any direction (ϑ , ϕ) is given by

σXMCD(ω) = uσ yz(ω) + vσ zx(ω) + wσ xy(ω), (11)

and where σμν is given by

σμν (ω) = 4παh̄

m2
eω

∑
i f

�(〈 f |pμ|i〉〈i|pν | f 〉)δ(h̄ω − ε f + εi ).

(12)

Here � is the imaginary part, and μ, ν = x, y, or z.
We have demonstrated that the plane-wave contribution

to the x-ray absorption matrix elements compensates almost
perfectly the pseudo partial wave contribution. The derivation
of the matrix element is shown in Appendix B. As shown
in Fig. 2, the effects of the plane-wave contribution to the
L2,3 XAS and XMCD are extremely small. This was to be
expected as we are only interested in a limited energy range
above the Fermi energy for the L2,3 edges, that are primarily
associated with the 3d part of the eigenfunctions localized
within the augmentation region. To utilize the so called
XMCD sum rules [41–43] to compute the spin and orbital
moments, we need to know to evaluate carefully the number
of electrons in the valence states ne. In principle as we are
truncating the plane-wave component of the wave function,
and we are therefore restricting ourselves to the augmentation
region contribution to the density of states, which will not
integrate to the theoretical values of ne = 6 below the Fermi
energy or ne = 10 over the entire energy range. In practice,
doing so yields less accurate values for the sum rules than the
theoretical value of nh = 4 that we will therefore use. We will
also show in the results that we need to evaluate the magnetic
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FIG. 3. Comparison of the high-spin isosurface of the magneti-
zation density of undistorted (a) and distorted (b) FeN6 cluster with
that of the Fephen in (c) gas phase and (d) adsorbed on the Cu(001)
surface. The red color represents the positive magnetization (majority
spin up), and blue the negative magnetization (minority spin down).
For all cases, the isosurface is taken to be ±0.025μB per unit cell.

dipole contribution 〈Tz〉 to obtain accurate values of the spin
and orbital magnetic moments. The 〈Tz〉 contribution will be
directly evaluated in DFT using the formula derived in the
Appendix.

III. RESULTS AND DISCUSSION

To illustrate the effect of various atoms of the molecule
on the electronic structure of the iron atom, and therefore on
its high-spin state XAS absorption and XMCD, we depict in
Fig. 3 the magnetization isosurface at ±0.025μB per unit cell
for the undistorted (top left) and distorted (top right) (as in the
molecule on the copper surface) FeN6 cluster together with
that of the molecule in the gas phase (bottom left) and that on
the substrate (bottom right). Due to the direct hybridization
of the p orbitals of nitrogen with those of the iron site, the
magnetic moments of all the N atoms are oriented opposite to
that of the iron site. This does not apply to the case of the free
FeN6 octahedron (for more details see Supplemental Material
Figs. S1 and S2 and the effect on the iron density of states
Figs. S3 and S4 [44]). This is because the nitrogen atoms are
chemically bonded to the carbon atoms of the phenanthroline.
Table I shows the iron number of electrons and magnetic
moment in FeN6 cluster and in the molecule. It is clear from
the table that the distortions have only a slight impact on the
electronic distribution of the iron atom, but as shown later,
the XMCD is considerably modified. As a result, new σ xz and
σ zy signals appear. This is also true for the free molecule as
compared to the molecule on the Cu(001) substrate, as the
Fe − N bond lengths of the free molecule deviate differently
from the average bond length than for the adsorbed molecule.
We have found that the relative root mean-square deviation
(RMSD) percentage, which is defined as the RMSD divided
by the average bond length,for the HS free molecule is 5.1%

TABLE I. Iron site number of electrons and spin magnetic mo-
ments in units of μB per s, p, and d orbitals for ideal and distorted
FeN6 cluster together with the Fephen molecule in the gas phase and
the one adsorbed on Cu(001) surface.

System ns np nd ms (μB) mp (μB) md (μB)

Ideal FeN6 0.370 0.422 5.838 0.039 –0.029 3.237
Distorted FeN6 0.386 0.460 5.877 0.030 –0.004 2.996
Fe in Fephen 0.327 0.451 5.982 0.017 0.026 3.696
Fe in
Fephen/Cu(001) 0.304 0.407 6.007 0.017 0.022 3.635

whereas it is only 3.6% for the HS adsorbed molecule, and
where the average bond length are respectively 2.15 Å and
2.17 Å. Note that for the low spin the respective relative
RMSDs are about the same, 1.3% and 1.6%, with an almost
equal average bond length of 1.96 Å.

The XAS and XMCD L2,3 spectra were computed for
the Fephen molecule up to 6.5 eV above the Fermi energy.
The calculations are done using the relaxed atomic positions
of the molecule. The root mean square deviation from the
experimental atomic positions for the free molecule is about
0.2 Å for the HS and 0.1 Å for the LS. The difference between
the XAS spectra calculated with the experimental positions
and the calculated ones is negligible. The L2 and L3 edges are
split by the relativistic p1/2 − p3/2 spin-orbit energy, which
we have found to be 12.45 eV using an atomic all-electron
relativistic program [37]. The program also produced a p3/2

energy shift of 0.66 eV towards higher energies for the spin-
polarized state compared to the non-spin-polarized one. The
L2,3 edges are broadened by a Gaussian function of full width
of 0.25 eV and a Lorentzian function of 0.5 eV, leading
to a Voigt profile with a broadening ≈0.6 eV, in agreement
with experimental results [45]. To determine the effect of the
static core hole on the XAS, we have performed a calculation
including a static core hole in the core 2p states, and also
a half hole according to the Slater transition rule. We have
compared in Fig. 4 the calculation of XAS and XMCD using
the so-called initial state, where no core hole is included, with
the calculation using a full core hole and that using a Slater
half hole. We observe that the structures in the LS XAS are
shifted linearly towards lower energies by 2 eV for the full
core hole and 1 eV for the half hole. This shift corresponds to
the screening of the core hole by the additional photo-electron
that remains on the iron site. The linear reduction of the
peak intensity also corresponds to the overall reduction in the
number of unoccupied states in the 3d density of states of
iron. The situation is similar for the HS XAS, but it is less
pronounced than for the LS case, and we observe also a clear
reduction of the peak intensities.

The reduction of the peak intensity of the first structure is
clearly in disagreement with experiment as it will be shown
in Fig. 5. The calculated spin magnetic moment is also dras-
tically reduced from 3.696μB without core hole to 3.06μB

with a half core hole and 2.452μB for a full self-consistent
core hole. This shows the limitation of XAS calculations
using a static core hole. Unfortunately, calculations beyond a
static core hole, such as using the Bethe-Salpeter equation to
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FIG. 4. L2,3 XAS for the Fephen molecule without core hole
(green), with the Slater transition rule half hole (red) and the full hole
(black), both for the HS (top) and LS (middle) and the corresponding
HS XMCD spectra (bottom).

compute the electron-hole interaction, are not feasible for
such a large system because of the prohibitive computer cost
[46,47] and it is the reason that the formalism have been used
only for materials with only few atoms per unit cell.

Since calculations including a static core hole deviate more
from the experimental XAS spectra of Miyamachi et al. [12],
we have shown in Fig. 5 only the calculated x-ray XAS and
XMCD using the initial state and have compared our results
to the experimental spectra. We have adjusted the energy
reference by shifting the theoretical LS spectrum relative to
the HS one by our computed value of 0.66 eV. We have
then plotted the experimental LS spectrum for the gas phase
by adjusting the well-defined L3 peak as a reference point,
and the HS spectrum being then automatically obtained and

FIG. 5. L2,3 XAS for the Fephen molecule in the LS state (top),
HS state (second), and HS XMCD for the free molecule (third)
compared with the experimental results of Ref. [12] for the gas phase.
The XMCD is calculated for the magnetic moment aligned along
the (001) direction (green), the (111) (dot-dashed blue), and (010)
(dashed red).

compared to the experimental one. We can see that the cal-
culation reproduces the L2,3 edges in the LS state, but as
expected the multiplets, which are not taken into account
in the calculation, are not reproduced. It is interesting to
note that the spectrum for the molecule on the surface is
similar to that of the gas phase, apart from the structure at
about 5 eV, which is strongly reduced. The two spectra for
the gas phase and for the adsorbed molecule are shifted by
the difference of their respective Fermi levels. In the case
of the HS state, we note a less accurate agreement between
the theoretical and experimental results as the experimental
peaks are slightly shifted and have different intensities for the
L2 and L3 edges. These differences might be dependent on
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the dynamics of the core hole [48], although we still have a
qualitative agreement.

For the XMCD, we have made calculations for three align-
ments of the magnetic moment. The first for the moment
along the (001) easy axis, and the second and the third for
the moment along the (111) and (010) directions. Note that
the magnetic moment direction has a negligible effect on
the total XAS. These XMCD results for various magneti-
zation directions will be used later to determine the orbital
magnetic moment anisotropy by means of the XMCD sum
rules. As it can be seen from Fig. 5 the agreement with the
experimental data is only qualitative. This is expected, as
the XMCD simulation is notoriously complex. It relies on
the difference between two relatively close spectra for left
and right circular polarizations, and it is therefore extremely
sensitive to numerical errors and approximations. Indeed, one
can easily observe that the XMCD spectrum vanishes exactly
if spin-orbit coupling is not taken into account as both spin
channels will then couple identically with the photon helicity,
and therefore both left and right polarizations give the same
results. As such, the value of the orbital moment is strongly
dependent on the accuracy of the spin-orbit treatment, which,
therefore, constitutes an important source of error as it is
numerically very difficult to compute accurately for such a
large molecule.

So far we have only compared our calculation to the exper-
imental results of the gas phase Fephen molecule. However,
Miyamachi et al. [12] have also measured the XAS of two
layers of Fephen molecules adsorbed on the Cu(001) surface
and found that the L2,3 XAS corresponds to a mixture of
46% of HS and 54% of LS signals. The LS and HS mixture
is found by fitting the XAS of the two layers of Fephen
molecules adsorbed on Cu(001) using a linear combination of
the powder XAS spectra of the LS and HS. It is surprising
to notice that the XAS for powder provided a good fit to
the XAS of the molecule adsorbed on the Cu(001) surface.
To shed some light on the experimental data, we have also
made a fit of the experimental XAS by combining our LS
and HS XAS of the molecule adsorbed on the surface. We
have proceeded as in the experiment by linearly combining
our spectra: rσ LS(ω + �) + (1 − r)σ HS(ω + �), where � =
0.7 eV is the energy difference between the corresponding
peak positions of the LS XAS of the gas phase and that of
the molecule adsorbed on the Cu(001) surface, and r is the
amount of LS proportion.

As shown in Fig. 6 (top) the amount r of the LS is found to
be 37% for the best agreement with experiment, whereas ex-
perimentalists have found a value of 54%. We have also shown
the spectrum corresponding to the experimental LS amount of
54%, which was not very different from that of the optimal
r amount. As stated above the agreement of the experimental
XAS spectra of the gas phase molecule with the one where the
molecule is adsorbed on the surface is surprising. As shown by
our calculation, the Fermi level of the molecule adsorbed on
the surface is shifted by 1.2 eV towards higher energy with
respect to the gas phase. It is therefore unlikely that the XAS
experimental peak positions of the free molecule and the one
adsorbed on the surface are not shifted with respect to one
another, but it is also possible that a significant amount of the
molecules is not adsorbed on the surface as the Fephen had a

FIG. 6. Linear combination of LS (37% black, 54% blue) and
HS (63% black, 46% blue) L2,3 XAS for the Fephen molecule on
Cu(001) compared with the experimental results of Ref. [12]. The
bottom figure shows the XMCD at the L2,3 of iron for the molecule
adsorbed on Cu(001) compared to the experimental results of [12].
The XMCD is calculated for the magnetic moment aligned along
the (001) direction (green), the (111) (dot-dashed blue), and (010)
(dashed red).

2 ML thickness. This claim could be experimentally verified
and explored, e.g., by measuring the spectra of one Fephen
monolayer or less on the surface. Figure 6 (bottom) shows
also the calculated and measured XMCD. The agreement with
experiment is similar to that for the molecule on the gas phase.

As explained in the method of calculation, we have found
that the dependance of the XMCD on the direction of the
incident light can be used to provide the deformation of the
iron octahedron, whereas the dependance on the magnetiza-
tion direction produces the anisotropy of the orbital magnetic
moment. To support our idea, we have depicted in Fig. 7
the σμν components as given by Eq. (12) for the L2,3 iron
atom in the molecule on Cu(001) and for the iron atom in
the distorted and undistorted FeN6 octahedra. For the undis-
torted tetrahedron, the σ yz and σ zx are exactly zero due to
symmetry and the code also produces zero, whereas these two
components of the σ tensor do not vanish for the distorted
octahedron, as shown in Fig. 7 (bottom). It is clear that if we
set the direction of the circularly polarized light along (010)
or (100) direction, while keeping the magnetization along the
(001) direction, we will observe only σ yz or σ zx as shown by
Eq. (12). It is therefore interesting to emphasize that this kind
of experiment will directly give the effect of the octahedron
distortion on the XMCD signal. One can set a database of
XMCD spectra for a direction where the the XMCD should
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FIG. 7. Calculated σμν [see Eq. (12)] for the HS Fephen
molecule (top) when the magnetic moment is aligned along the (001)
axis and for perfect and deformed FeN6 octahedron (bottom). σ yz and
σ zx are strictly zero by symmetry for the undistorted octahedron (not
shown). The scale of σ yz and σ zx is on the right. The inset shows
the the deformation of the octahedron (nitrogen atoms in green) as
in the molecule case compared to the nondeformed one (Nitrogen in
orange).

be zero for a perfect octahedron and machine learning can be
used to predict the octahedron distortion of SCO molecules
adsorbed on metallic surfaces. These theoretical predictions
are interesting and need future experimental confirmation,
as most available results yet deal with the crystalline phase,
which is clearly isotropic.

To describe further the distortion from the octahedral
symmetry on the x-ray absorption we have first analyzed
the deformation of the octahedron for both the gas phase
molecule and the one on the surface. The method used to
compute the deformation is well described in Appendix A.
We have calculated the distortion of the octahedron from an
ideal one and found that in the HS the octahedron of the
free molecule is more deformed than that of the adsorbed
one (see Supplemental Material Fig. S5 for further details
on the effect of the octahedron distortion on the iron L2,3

[44]). Indeed the cost function L defined in Appendix A
has a value of 0.016 in the gas phase but only 0.011 in for
adsorbed molecule as shown in Table IV of Appendix A.
This is also compatible with the relative RMSD of the bond
length discussed previously. We have therefore analyzed the
anisotropy of the x-ray absorption by computing �σ/σ 0,
where �σ = (σ+ + σ−)/2 − σ 0, as shown in Fig. 8. Note
that this anisotropy should be zero for a perfect octahedron
and a nonzero value gives us the degree of deformation of
the octahedron. As is expected, the figure shows that this
anisotropy is strong, and it is much larger for the free molecule

FIG. 8. Calculated XAS anisotropy �σ/σ 0, where �σ = (σ+ +
σ−)/2 − σ 0 for the molecule in the gas phase (black) and adsorbed
on Cu(001) surface (blue).

compared to the adsorbed molecule. This is unexpected as
we might assume that the surface will deform further the
octahedron. In fact the opposite happens when the molecule
is adsorbed on the surface because the octahedral angle be-
tween the NCS groups is reduced from 102.4 to 96.3 degrees.
This reduction is certainly due to the lattice spacing between
the surface copper atoms, which constrains the sulfur-sulfur
distance (see Fig. 1 as the sulfur of the NCS group is known
to establish strong bonds with transition metals.

To understand the structures in the XAS, we have com-
pared them in Fig. 9 with the spin-polarized symmetry broken
eg and t2g representations of the iron site density of states
(for more details see Supplemental Material Figs. S3 and S4
[44]). As expected from the d6 electronic configuration of the
ground state, the density of states shows that the primary states
contributing to the LS XAS signal are from the unoccupied
parent eg states. As for the HS XAS, the main contribution are
from the minority spin parent splitted t2g and eg states. These
splittings of the eg and t2g states are due to both the strong
crystal-field effect and the distorted iron octahedron [14]. This
interpretation is compatible with the structural and electronic
structure transition from the HS to LS, which involves the spin
transition (t2g)3↑(eg)2↑(t2g)1↓ → (t2g)3↑(t2g)3↓(eg)0 as shown
in Ref. [14]. The figure also shows that the states contributing
to the HS XMCD spectrum are naturally the same as those
for the HS XAS. It is evident that the sum rules should
be vanishing in the LS state and the numerical calculation
concurs with this analytical result. However, this is not the
case in the HS state, for which we get the results shown in
Table II. These results are obtained from the XMCD spectra
presented in Fig. 5 when the polarization is along the (001),
(111), and (010) directions. We did not evaluate the sum
rules for the experimental spectrum because we encountered
normalization issues, which lead to nonphysical values (e.g.,
m	 has a computed value of several μB). Table II also shows
that the magnetocrystalline energy �E is lowest when the
magnetic moment is oriented along the (001) direction and
the hard axis is aligned with the (010) direction. This en-
ergy �E is equivalent to a blocking temperature of 22 K,
which is very low considering the superparamagnetic aspect
of the molecular crystal. We can make several interesting
observations:
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TABLE II. Magnetocrystalline anisotropy energy �E in meV,
direct calculation of magnetic dipole (Tz), spin moment (ms), and
orbital moment (m	) compared to those obtained using the XMCD
sum rules (in units of Bohr magneton μB) for the iron site of the SCO
Fephen in the HS state for various directions of the iron magnetic
moment. The hard axis total energy is –1045.48985 eV.

m	 (μB) ms (μB)

Magnetization Sum Sum
direction �E (meV) Tz (μB) Direct rule Direct rule

(001) –1.9 –0.101 0.180 0.154 3.635 3.731
(111) –0.98 –0.092 0.106 0.092 3.637 3.735
(010) 0 –0.092 0.006 0.006 3.635 3.734

(i) The magnetic dipole tensor is nonvanishing, and its
value is non-negligible as it makes up for roughly 10% of the
magnetic moment contribution. One could have expected this,
as it was shown that this operator takes a finite value for ideal
Fe+2 octahedral complexes in the HS state when spin-orbit
coupling is taken into account [49]. However, as we show in
the Appendices, relativistic corrections are not the dominant
contribution to the value of this tensor in our case as they are
almost negligible. Instead, it appears that the likely origin of
this behavior is imperfect octahedral geometry of the high-
spin complexes, which significantly lifts the degeneracy of the
parent t2g and eg states, and as such removes the symmetries
that nullify the value of Tz.

(ii) The orbital momentum sum rule yields a slightly
underestimated value of 0.154μB compared to the directly
calculated value of 0.180μB when the magnetization is ori-
ented along the easy axis (001). As the accuracy of this
value depends directly on the integral of the XMCD signal,
such an agreement is quite surprising as one would expect a
worse accordance especially given the relatively poor agree-
ment between the theoretical and experimental spectra that
demonstrated the limitation of the model. We also note that
the sum rules are an approximate theoretical results, and as
such the range of their validity has been debated [48,50].
Nevertheless, according to Schwitalla and Ebert [48], they
should be decently accurate for Fe2+ compounds. It should
also be emphasized that the integrated spectra over the rele-
vant energy range, used for the sum rules, are in general less
sensitive to the details of their structures and shapes [50].

(iii) The spin-moment sum rule appears to yield a quite
accurate value of 3.731μB compared to direct calculated value
of 3.635μB. We can appreciate here the importance of the
magnetic dipole correction as shown in Table III, as without
it the sum rule would only yield a moment of 3.377μB, which

TABLE III. Value of Tz in the molecular systems in the HS and
LS state (in μB).

Molecule NSOC SOC

LS (surface/gas) 0 0
HS (surface) –0.091 –0.101
HS (gas phase) –0.150 –0.161

FIG. 9. The iron site spin-polarized symmetry broken eg and t2g

decomposed unoccupied density of states compared to the calcu-
lated XAS L3 spectrum for both LS (top) and HS (middle) and to
HS XMCD (bottom). Note the XMCD sign is flipped for an easy
comparison.

is still within an acceptable range from the expected value. It
appears, therefore, that this spin sum rule is less sensitive to
inaccuracies in the XMCD spectrum than the orbital moment
sum rule. This is not surprising, as the orbital moment is
much smaller compared to the spin magnetic moment and is
consequently much more prone to errors.

IV. CONCLUSIONS

Our implementation of the XAS and XMCD spectra within
VASP has been used to compute the L2,3 edges for both
the low-spin and high-spin iron site within a SCO Fephen
molecule in the gas phase and adsorbed on a copper surface.
We have found that the plane-wave contribution to the x-ray
matrix elements within the electric dipole approximation are
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small and fully compensated by the pseudopartial contribution
to the PAW wave function within the XAS energy range.

The calculated XAS and XMCD results are in qualitative
agreement with the available experimental results, although
with relative intensity issues in the HS state that underscore
the importance of multiplet and dynamics of the core-hole
effects for a comprehensive understanding of the spectrum.
We have found that the simple static core hole or the Slater
transition rule half hole did not improve the agreement with
experiment due to reduction of the iron magnetic moment
caused by the additional screening of the core hole by the
photo-electron. The calculation using the initial state pro-
duced therefore the best agreement with experiment and the
overall features in both the HS and LS spectra are understood
in terms of the parent symmetry broken eg and t2g iron 3d
DOS. The measured XAS of Fephen on the surface is found
indeed to be a mixture of HS and LS in agreement with exper-
iment. We have also found that the dependence of the XMCD
signal on the direction of incident x-ray circularly polarized
light can be used to directly measure the deformation in the
iron octahedron. As discussed above, one could attempt to
establish a database for the σ yz and σ zx XMCD directions,
which are zeros for a perfect octahedron, and use machine
learning to determine directly the octahedron distortion of the
SCO molecules.

We have also shown that the XMCD for different mag-
netization directions is related to the anisotropy of the iron
orbital magnetic moment. As a result, the sum rules yield
the correct orbital and spin magnetic moments as compared
to direct calculations for different orientations of the spin
magnetic moment, as long as one takes into account the con-
tribution of the magnetic dipole moment originating from the
geometrical deformation of the iron site octahedron in the HS
state. These theoretical predictions await future experimental
confirmation.
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APPENDIX A: THE MAGNETIC DIPOLE OPERATOR

The magnetic dipole tensor can be defined as

T̂ = Ŝ − 3r̂(r̂ · Ŝ)/|r|2, (A1)

where Ŝ is the vector spin operator, and r̂ is the position
operator. With a spin quantization axis along z, the magnetic
dipole operator can then be written as

T̂ = Ŝz − 3r̂(r̂zŜz )/|r|2. (A2)

As stated earlier, one can show that the sum rules normally
include a 〈T̂z〉 contribution in the valence shell of angular

momentum 	. We will now explicitly compute the value of
this tensor using DFT in order to justify our approximation.
We start by writing the T̂z tensor as

T̂z = Ŝz
(
1 − 3r̂2

z /|r|2
) = Ŝz

(
1 − 4π

(
Ŷ 0

1

)2)
, (A3)

where Y 0
1 is the spherical tensor operator associated to the

spherical harmonic Y 0
1 . Then, its mean value in some shell

of electrons with angular momentum 	 can be evaluated in the
PAW method as

〈T̂z〉 =
∑
n,k,s

fn,k,s〈n, k, s|T̂z|n, k, s〉

=
∑
n,k,s

fn,k,s

∑
p,m

p′,m′

P∗n,k,s
p′,	,m′P

n,k,s
p,	,m〈p′, 	, m′, s|T̂z|p, 	, m, s〉,

(A4)

where we once again disregard the plane-wave contribution
as we are only interested in the augmentation region in this
calculation, and we have introduced the Fermi occupations
fn,k,s so that the sum naturally only runs over the occupied
states. Using its definition, the matrix elements of T̂z in the
partial wave basis can be written as

〈p′, 	, m′, s|T̂z|p, 	, m, s〉
= 〈p′, 	, m′, s|Ŝz

(
1 − 3r̂2

z /|r|2
)|p, 	, m, s〉

= 〈p′, 	, m′, s|Ŝz
(
1 − 4π

(
Ŷ 0

1

)2)|p, 	, m, s〉
= ms

(〈p′, 	, m, s|p, 	, m, s〉δm,m′

− 4π〈p′, 	, m′, s|(Ŷ 0
1

)2|p, 	, m, s〉), (A5)

where ms is the magnetic moment. Using the definition of the
spherical harmonics [39], one can show that

(
Ŷ 0

1

)2 =
√

1

4π
Ŷ 0

0 +
√

1

5π
Ŷ 0

2 . (A6)

This leads to the following:

〈p′, 	, m′, s|T̂z|p, 	, m, s〉

= −4

√
π

5
ms〈p′, 	, m′, s|(Ŷ 0

2

)|p, 	, m, s〉. (A7)

The matrix element involves an integral over three spherical
harmonics Y 0

2 , Y m
l , and Y m′

l . This is known in the literature asa
Gaunt coefficient [39], and can be shown to be equal to

〈p′, 	, m′, s|(Ŷ 0
2

)|p, 	, m, s〉

=
√

5

4π
C	,m′

2,0,	,mC	,0
2,0,	,0(p′, 	|p, 	), (A8)

where the (p′, 	|p, 	) are the radial integration as defined in
Eq. (8). By angular selection rules, we directly have that m′ =
m. Therefore, we obtain that

〈T̂z〉 = − 2
∑
n,k,s

fn,k,s

∑
p,m
p′

P∗n,k,s
p′,	,m Pn,k,s

p,	,mmsC
	,m
2,0,	,mC	,0

2,0,	,0

× (p′, 	|p, 	), (A9)

which we implemented directly in VASP.
Note that this contribution always vanishes for a perfect Oh

symmetry complex of a 3d transition metal without spin-orbit
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coupling. In order to demonstrate this, we first note that in that
case the magnetic dipole moment can be rewritten as

〈T̂z〉 = −4

√
π

5

∑
i

ms,i〈i|
(
Ŷ 0

2

)|i〉 (A10)

= −2

√
π

5

∑
u,d

(〈u|(Ŷ 0
2

)|u〉 − 〈d|(Ŷ 0
2

)|d〉), (A11)

where the index i runs over all the electrons of the ground
state, and u, d runs over the up and down populations respec-
tively. For a d6 Fe2+ complex, we now need to consider the
ground-state configuration in both spin states:

(a) In the LS state, the ground state corresponds to a closed
t2g subshell. In that case, the magnetic dipole operator is triv-
ially vanishing as the two spin contributions that are summed
over are the same up to the spin sign.

(b) In the HS state, the ground state can be constructed by
half-filling all five d orbitals with the same spin direction, then
filling with an equal probability one of the three t2g orbitals
with an electron of opposite spin. Sum rules over the Clebsch-
Gordan coefficients can be used to show that∑

m

C2,m
2,0,2,m = 0

× 2C2,−1
2,0,2,−1 + 2C2,1

2,0,2,1 + C2,2
2,0,2,2 + C2,−2

2,0,2,−2 = 0.

(A12)

Using the definition of the d orbitals and Eq. (A8), it can easily
be seen that the majority spin contribution to the magnetic
dipole operator is proportional to the first line, whereas the
minority spin is proportional to the second line. As such, the
magnetic dipole tensor vanishes exactly in this case.

When the spin-orbit interaction is taken into account, the
moment still vanishes in the LS state as the two spinor di-
rections are effectively degenerate in that case and we can
therefore use a very similar reasoning than in the nonrelativis-
tic case. The case of the HS state is much more complex, and
it can be shown that the magnetic dipole tensor takes a non-
vanishing value for certain ground-state geometries, including
the d6 geometry of Fe2+ [49]. With this in mind, we computed
the value of the magnetic dipole moment in our molecules
with (SOC) and without (NSOC) the spin orbit (see Table
III). As expected, the magnetic dipole operator vanishes in
the low-spin state. For the high-spin state, we immediately
note that the moment is superior in the gas phase than on
the surface, but most importantly that the operator does not
vanish even without spin orbit, and the spin orbit contribution
is minimal. To rationalize this apparent contradiction, we need
to recall that our previous reasoning was only valid for a
perfect octahedral geometry, and that the deformation of a
real complex is often non-negligible especially in the HS state.
Distortion is known to play a noticeable effect on the features
of x-ray absorption spectra (see for example Ref. [51]), and
therefore it is of no surprise that it should influence the value
of Tz (this was already noted, but not shown explicitly, in [30]).
Informally, the distortion breaks the ideal symmetry between
the d states that is observed in Eq. (A10), and as consequence
the sum rules of Eq. (A12) are no longer applicable. Instead,
each state is now a mixture weighted by the PAW projections
such as in Eq. (A9), and there is no a priori reason for the said

sum to vanish when both spin directions are not degenerate
such as in the HS state, even in the absence of SOC. In order to
give a better illustration of this phenomenon, we will quantify
the “amount” of deformation of these systems away from their
ideal geometry. We need first to optimally rotate and rescale
our system before comparing it to a reference geometry. This
is the essence of the so-called extended orthogonal Procrustes
algorithm [52]. As a short summary, assume a set of points
u and a reference set of points v (the molecular octahedral
coordinates and an ideal octahedron coordinates respectively
in our case). An obvious way of defining a “distance” to
quantitatively compare these structures is to carry a root me-
dian square displacement calculation (RMSD) between these
two structures, taking into account the fact that both systems
need to be properly rescaled together to have an accurate
comparison. Then, we can recast the associated least-square
deviation problem as a search for the ideal rotation R and scale
factor c between u and v, so that we can write the cost function
associated to this RMSD calculation as

L(θ,�) = 1
2 ||v − cR(θ,�)u||2,

that needs to be minimized over the set of angular variables
(θ,�) and c. For the rotation part, the solution can be found
([52]) by computing the singular value decomposition of the
covariance matrix H = uTv,

H = U�VT → R = V�′UT,

where �′ is a 3x3 diagonal matrix with diagonal elements
d1 = 1, d2 = 1, and d3 = sign(det(VUT)), which is used to
enforce the positive definiteness of the determinant of the ro-
tation matrix, so that we always have a proper transformation.
For the scale factor, using the definition of the matrix norm
||A|| = Tr(AT A) in the previous formula for the RMSD cost
function, one can show ([52]) that the minimization yields the
following result:

c = Tr(uTRTv)

Tr(uTu)
. (A13)

Applying these to our case, we can obtain a quantitative
estimate of the deviation of the molecular geometries from
the ideal octahedral geometry. We also add a deviation to an
ideal tetrahedral geometry by comparing it to an imperfect
tetrahedron using the four shortest ligand bonds in our molec-
ular octahedron (as the average bond length in a tetrahedral
complex is shorter than for an octahedral complex).

We can see that the octahedral RMSD is an order of mag-
nitude higher in the high-spin state than the low-spin state,
and the same applies to the ratio between the octahedral and
tetrahedral RMSD as shown in Table IV. As such, not only
is the geometry more strongly deformed in the high-spin
state than in the low-spin states, the non-negligible ratio be-
tween the octahedral and tetrahedral RMSD in the HS state
shows that the absolute deformation away from the ideal case
is sizeable. Besides, the deformation in the HS state is clearly
larger in the gas phase than when the molecule is adsorbed
on the surface. It is therefore of no surprise that the magnetic
dipole operator does not vanish in this case, even without sev-
eral other spin transition compounds, and the same behavior is
observed each time. Also, early results show that the moment
is a very approximately increasing function of the RMSD.
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TABLE IV. Value of the loss function in the molecular systems
(in Å2) with respect to an ideal octahedral and tetrahedral geometry,
and ratio between the two values

HS HS LS LS
(gas phase) (surface) (gas phase) (surface)

Octahedral loss 0.016 0.011 0.002 0.002
Tetrahedral loss 0.044 0.048 0.082 0.147
Ratio Oct/Tet 0.363 0.229 0.024 0.014

However, this approach is quite rough as it “averages” over all
the angular and length distortions and therefore it will not be
able to discriminate between the finer details that characterize
distortion, and as a consequence the exact dependence of the
magnetic dipole moment with the value of the RMSD is highly
nontrivial.

APPENDIX B: PLANE-WAVE CONTRIBUTION TO XAS
MATRIX ELEMENTS

The total plane-wave contribution can be split into two

parts: the pseudo partial wave contribution | ˜p, 	, m〉 and the

actual plane-wave part |˜n, k, s〉, so the Golden Rule could be
written as

σμ(ω) = 4παh̄

m2
eω

∑
M,n,k,s

∣∣∣∣∣
∑

p,	,m,m′
CJ,M

	′,m′,1/2,s

× (〈p, 	, m| − 〈 ˜p, 	, m|)pμ|	′, m′〉P∗n,k,s
p,	,m

+
∑

m′
CJ,M

	′,m′,1/2,s〈˜n, k, s|pμ|	′, m′〉
∣∣∣∣∣
2

× δ(h̄ω − εnks + εJM ). (B1)

Obviously, the calculation of the pseudo partial wave contri-
bution is identical to that of the previously calculated partial
wave part. On the other hand, the plane-wave contribution is

more involved. One starts by the plane-wave expansion,

〈r|˜n, k, s〉 = 1√
�

∑
G

cn,k,s
G 〈r|k + G〉

= 1√
�

∑
G

cn,k,s
G ei(k+G)(r′+τα ). (B2)

where r = r′ + τα is the global electron position, split into
the nucleus position τα and the local position (with respect to
the nucleus) r′. Note that the |k + G〉 are the eigenfunctions
of the momentum operator pμ: pμ|k + G〉 = (kμ + Gμ)|k +
G〉. The plane-wave expansion is normalized by the system
volume �. In this local frame, one can then carry a partial
wave expansion of the plane wave,

ei(k+G)·r′ = 4π
∑
	,m

i	 j	(|(k + G)||r′|)Y m ∗
	 (̂k + G)Y m

	 (r̂′),

(B3)
where the j	 are the usual spherical Bessel functions. There-
fore, we can write the following:

〈˜n, k, s|pμ|	′, m′〉

= 4π√
�

∑
G,	,m

i−	
(
cn,k,s

G (kμ + Gμ)
)�

Y m
	 (̂k + G)e−i(k+G)·τα

×
∫

drr2 j	(|(k + G)|r)φ	′ (r)
∫

d r̂Y m′
	′ (̂r)Y m ∗

	 (̂r).

(B4)

Then, using the orthogonality of the spherical harmonics, we
get that

〈˜n, k, s|pμ|	′, m′〉 = 4π√
�

∑
G

i−	′(
cn,k,s

G (kμ + Gμ)
)∗

Y m′
	′

× (̂k + G)e−i(k+G)·τα

×
∫

drr2 j	′ (|(k + G)|r)φ	′ (r). (B5)

This contribution can then be added to the absorption cross
section using formula (B1).

APPENDIX C: RELATION BETWEEN XAS AND LOCAL DOS

It is interesting to note that the XAS can be shown to be directly related to the iron 3d DOS, as noted for example in [53].
In our formulation, the relation takes a very simple form. First, we will need to use the position representation of the transition
operator. Using the Schröedinger equation, one can easily show that the Hamiltonian H and the position operator rμ follow the
commutation relation [rμ, H] = ih̄pμ/me. This allows us to rewrite the cross section as

σμ(ω) = 4παh̄ω
∑

M,n,k,s

∣∣∣∣∣
∑

m′
CJ,M

	′,m′,1/2,s〈n, k, s|rμ|	′, m′〉
∣∣∣∣∣
2

δ(h̄ω − εnks + εJ ).

Note that we used here the fine-structure degeneracy of the εJM = εJ over the set of M that was not relevant thus far for this
study. We can then expand the squared norm as

σμ(ω) = 4παh̄ω
∑

M,m′,m′′
n,k,s

CJ,M
	′,m′,1/2,sC

J,M
	′,m′′,1/2,s〈n, k, s|rμ|	′, m′〉〈	′, m′′|rμ|n, k, s〉

δ(h̄ω − εnks + εJ ) = 4πα
∑

M,m′,m′′
n,k,s

(εnks − εJ )CJ,M
	′,m′,1/2,sC

J,M
	′,m′′,1/2,s〈n, k, s|rμ|	′, m′〉〈	′, m′′|rμ|n, k, s〉δ(h̄ω − εnks + εJ ), (C1)
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where we rewrote h̄ω as εnks − εJ thanks to the delta function as we will need it for a following approximation. We will sum
over the 	 + 1/2 edge σ

μ

	+1/2(ω) and 	 − 1/2 edge σ
μ

	−1/2(ω). To do so, we first need to shift them together as both spectra
have different core energy references. We arbitrarily take the 	 + 1/2 edge, and shift it by �ωJ = (ε	−1/2 − ε	+1/2)/h̄. Doing so
yields

∑
J

σ
μ
J (ω) ≈ 4πα

∑
J,M,m′,m′′

n,k,s

(εnks − ε	−1/2)CJ,M
	′,m′,1/2,sC

J,M
	′,m′′,1/2,s〈n, k, s|rμ|	′, m′〉〈	′, m′′rμ|n, k, s|〉δ(h̄ω − εnks + ε	−1/2), (C2)

where we have neglected the variation of εJ with respect to εnks, because the core energies are located at several thousands of eV
below the Fermi energy compared to our EXAFS range of a few hundreds of eV at the highest, and as such we will now write
ε	−1/2 = εC . Now, we can use the orthogonality property of the Clebsch-Gordan coefficients.

∑
J,M

CJ,M
	′,m′,1/2,sC

J,M
	′,m′′,1/2,s = δm′,m′′ ,

(C3)∑
m1,m2

CJ,,M
	1,m1,	2,m2

CJ ′,M ′
	1,m1,	2,m2

= δJ,J ′δM,M ′ ,

and write

∑
J

σ
μ
J (ω) = 4πα

∑
m′,n,k,s

(εnks − εC )〈n, k, s|rμ|	′, m′〉〈	′, m′|rμ|n, k, s〉δ(h̄ω − εnks + εC )

= 4παh̄ω
∑

m′,n,k,s

〈n, k, s|rμ|	′, m′〉〈	′, m′|rμ|n, k, s〉δ(h̄ω − εnks + εC ). (C4)

Now, we can rewrite the Kohn-Sham eigenfunctions using the PAW method. For our purposes, we can remain at the partial wave
contribution. We therefore have

∑
J

σ
μ
J (ω) = 4παh̄ω

∑
m′,n,k,s

p1,	1,p2,	2,m1,m2

〈p1, 	1, m1|rμ|	′, m′〉〈	′, m′|rμ|p2, 	2, m2〉P∗n,k,s
p1,	1,m1

Pn,k,s
p2,	2,m2

δ(h̄ω − εnks + εC ). (C5)

Writing rμ = r
√

4π
3 Y μ

1 , one can show that

〈p1, 	1, m1|rμ|	′, m′〉 = −(p1, 	1|r|	′)C	′,0
	1,0,1,0C

	1,m1
1,μ,	′,m′ , (C6)

where the (p1, 	1|r|	′) are the radial integrations introduced in Eq. (8). This leads to

∑
J

σ
μ
J (ω) = 4παh̄ω

∑
m′,n,k,s

p1,p2,	1,	2,m1,m2

(p1, 	1|r|	′)(	′|r|p2, 	2)C	′,0
	1,0,1,0C	′,0

	2,0,1,0C	1,m1
1,μ,	′,m′C

	2,m2
1,μ,	′,m′P∗n,k,s

p1,	1,m1
Pn,k,s

p2,	2,m2
δ(h̄ω − εnks + εC ).

(C7)

We will now sum over all the polarization directions μ and use the orthogonality relations from Eq. (C3),

σ (ω) =
∑

μ

∑
J

σ
μ
J (ω) = 4παh̄ω

∑
μ,m′,n,k,s

p1,	1,p2,	2,m1,m2

(p1, 	1|r|	′)(	′|r|p2, 	2)C	′,0
	1,0,1,0C	′,0

	2,0,1,0C	1,m1
1,μ,	′,m′C

	2,m2
1,μ,	′,m′

× P∗n,k,s
p1,	1,m1

Pn,k,s
p2,	2,m2

δ(h̄ω − εnks + εC )

= 4παh̄ω
∑
n,k,s

p1,p2,	1,m1

(p1, 	1|r|	′)(	′|r|p2, 	2)
(
C	1,0

	′,0,1,0

)2
P∗n,k,s

p1,	1,m1
Pn,k,s

p2,	1,m1
δ(h̄ω − εnks + εC ). (C8)
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Splitting the two allowed dipole transitions 	1 = 	′ ± 1, and neglecting the overlap between different projectors, we can
rewrite this as

σ (ω) ≈ 4παh̄ω
[∣∣(	′ + 1|r|	′)C	′,0

	′+1,0,1,0

∣∣2
ρ	′+1(ω + εC/h̄) + ∣∣(	′ − 1|r|	′)C	′−1,0

	′,0,1,0

∣∣2
ρ	′−1(ω + εC/h̄)

]
= 4παh̄(ω′ − εC/h̄)

[
	′ + 1

2	′ + 3
|(	′ + 1|r|l ′)|2ρ	′+1(ω′) + 	′

2	′ − 1
|(	′ − 1|r|	′)|2ρ	′−1(ω′)

]
= A	′ (ω′)ρ	′+1(ω′) + B	′ (ω′)ρ	′−1(ω′), (C9)

where we introduced the 	 partial densities of states ρ	 and the shifted frequencies ω′ = ω + εC/h̄. Therefore, the normalized
edge σ (ω) can be written as a weighted sum of the partial densities of states corresponding to the dipole allowed 	 values.
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