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We study an exactly solvable model with bond-directional quadrupolar and octupolar interactions between
spin-orbital entangled jeff = 3

2 moments on the honeycomb lattice. We show that this model features a multipolar
spin liquid phase with gapless fermionic excitations. In the presence of perturbations that break time-reversal and
rotation symmetries, we find Abelian and non-Abelian topological phases in which the Chern number evaluates
to 0, ±1, and ±2. We also investigate quantum phase transitions out of the multipolar spin liquid using a parton
mean-field approach and orbital wave theory. In the regime of strong integrability-breaking interactions, the
multipolar spin liquid gives way to ferroquadrupolar-vortex and antiferro-octupolar ordered phases that harbor a
hidden spin- 1

2 Kitaev spin liquid. Our work unveils mechanisms for unusual multipolar orders and quantum spin
liquids in Mott insulators with strong spin-orbit coupling.

DOI: 10.1103/PhysRevB.108.094418

I. INTRODUCTION

Quantum spin liquids (QSLs) refer to disordered ground
states of interacting spin systems which are characterized by
the emergence of fractionalized excitations, topological order,
and long-range entanglement [1,2]. The quest for QSLs stands
as one of the most prolific topics of investigation in condensed
matter physics, as demonstrated by the growing list of QSL
candidates and by notable advances in our theoretical under-
standing of phases beyond the Landau paradigm [3–5].

A guiding principle in the search for new materials is
rooted in the engineering of bond-dependent interactions be-
tween jeff = 1

2 moments, as found in the exactly solvable
model proposed by Kitaev for the honeycomb lattice [6].
This model exhibits a genuine QSL ground state resulting
from the fractionalization of jeff = 1

2 moments into Majorana
fermions and a Z2 gauge field. Kitaev interactions appear as
the leading term in effective models for spin-orbit-assisted
Mott insulators with 4d5 and 5d5 electronic configurations
[7]. Over the last decade, several experiments have indicated
the proximity of Kitaev material candidates, such as the iri-
dates (Na1−xLix)2IrO3 [8–10] and H3LiIr2O6 [11], to a QSL
phase. Special attention has been devoted to the compound
α − RuCl3 [12–14], for which a half-quantized thermal Hall
conductance has been reported [13].

In recent years, the search for new systems with QSL
ground states has expanded to Mott insulators with effective
magnetic moments beyond the jeff = 1

2 picture [15,16]. In
that regard, higher-spin Kitaev models were microscopically
derived for the honeycomb Mott insulators NiI2 (d8 config-
uration and spin S = 1) [17] and CrI3 (d3 configuration and
S = 3

2 ) [18–20].
In contrast to the original spin- 1

2 Kitaev model, these gen-
eralizations are not integrable. Their properties have been
studied by semiclassical analysis [21], exact diagonalization

[17,22,23], the density matrix renormalization group method
[24–26], and parton mean-field theory [27]. Remarkably, all
these methods point to the existence of a QSL ground state for
both S = 1 and S = 3

2 . In addition, Mott insulators with 4d1

and 5d1 configurations have also attracted attention [15,16].
The effective spin Hamiltonians for these systems are written
in terms of jeff = 3

2 moments [28] and contain multipolar
interactions, which can give rise to exotic hidden multipolar
orders and even spin-orbital liquid phases [29–37].

In this work, we propose an exactly solvable model for
jeff = 3

2 moments located on the sites of a honeycomb lat-
tice which could potentially describe some properties of
4d1 and 5d1 materials. This model involves a combination
of nearest-neighbor bond-directional quadrupole-quadrupole
and octupole-octupole interactions. The representation of the
quadrupolar and octupolar operators in terms of Majorana
fermions maps the model to noninteracting fermions hopping
on the background of a static Z2 gauge field. Since this model
exhibits a gapless quantum disordered ground state and spin-
orbital correlations associated with the fractionalization of
higher magnetic multipoles, it epitomizes all the features of
a multipolar spin liquid (MSL) [16,38–40].

Our model should be viewed as an integrable point in the
parameter space for the most general model describing jeff =
3
2 spin-orbital systems. In this sense, the existence of the MSL
offers a different avenue of research in the quest for materials
with unusual QSL properties. Indeed, we show that, under
the action of rotational and time-reversal-symmetry-breaking
fields, our exactly solvable model realizes nontrivial Abelian
and non-Abelian topological phases with gapless chiral Majo-
rana modes on the edge. Furthermore, we study the robustness
of the MSL state against the formation of long-range mul-
tipolar orders driven by integrability-breaking interactions.
Interestingly, even in the strong-coupling regime the system
exhibits a hidden QSL state described by a spin- 1

2 Kitaev
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model on top of either a ferroquadrupolar-vortex (FQV) or
an antiferro-octupolar (AO) ordered state.

The remainder of our paper is structured as follows. In
Sec. II, we introduce and provide the motivation for the
jeff = 3

2 model with bond-directional quadrupolar and oc-
tupolar interactions. In Sec. III, we study the properties of
the MSL in the exactly solvable limit of the model. While
the fully symmetric MSL is gapless, we show that magnetic
and strain fields can give rise to Abelian and non-Abelian
topological phases. Section IV focuses on the stability of the
MSL and the quantum phase transitions out of this state,
analyzed using parton mean-field theory and orbital wave
theory. Finally, we present our concluding remarks in Sec. V.
We leave to Appendixes A and B some technical details on
the identification of the lower-energy gauge-flux sector of the
MSL and also on the parton mean-field approach employed
here.

II. MODEL

We consider interacting local moments with effective total
angular momentum jeff = 3

2 , which appear in Mott insula-
tors with 4d1 or 5d1 transition-metal ions [16,28,41]. The
single electron in the open shell occupies the triply degen-
erate t2g orbitals with effective orbital angular momentum
leff = 1, which in turn are split by the spin-orbit coupling into
a higher-energy jeff = 1

2 doublet and a lower-energy jeff =
3
2 quartet. The latter is formed by two Kramers doublets,
which may remain degenerate at low temperatures because
the strong spin-orbit coupling suppresses the Jahn-Teller
effect [42].

An effective spin-orbital Hamiltonian for jeff = 3
2 mo-

ments was derived in Refs. [32,33] considering the dominant
exchange process on the honeycomb lattice. The starting point
is a multiorbital Hubbard-Kanamori model that combines the
effects of the crystal electric field, spin-orbit coupling, and
electronic correlations, assuming a single hopping path for
90◦ bonds formed by edge-sharing octahedra. The resulting
Hamiltonian contains quadrupole-quadrupole and octupole-
octupole interactions with coupling constants of the same
order as the coupling between dipole moments. More gener-
ally, one should take into account subleading hopping paths
known to be important in the generic model for Kitaev mate-
rials [43]. Furthermore, the electrostatic interaction between
orbitals with different charge distributions and the virtual
exchange of optical phonons in the cooperative Jahn-Teller
effect can also renormalize the quadrupole-quadrupole inter-
actions [44,45].

Out of the most general Hamiltonian for jeff = 3
2 moments,

here we shall focus on the regime of parameter space where
the leading interactions involve quadrupole and octupole mo-
ments. Such a hierarchy of interactions could, in principle, be
realized in layered materials where the relative strength of the
couplings can be tuned by strain [46,47].

We can label the multipolar operators acting on jeff = 3
2

states by irreducible representations of the octahedral group
[48]. As shown in Table I, the quadrupole moment has three
components, Oγ , with γ ∈ {1, 2, 3} ≡ {x, y, z}, which forms
a �5 representation, and two components, O2 and O3, which
transform in the �3 representation. From the latter, we define

TABLE I. Quadrupolar and octupolar operators acting on jeff =
3
2 states. The overlines in JαJβ and JαJβJγ stand for a symmetriza-
tion with respect to the indices of the dipolar operators Jα , e.g.,
Jx (Jy )2 ≡ Jx (Jy )2 + JyJxJy + (Jy )2Jx . Here we omit the octupolar
operators that transform in the �4 representation (see, e.g., Ref. [48]).

Moment Symmetry Operators

Quadrupole �3 O3 ≡ O3z2−r2 = 1
3 [3(Jz )2 − J2]

O2 ≡ Ox2−y2 = 1√
3
[(Jx )2 − (Jy )2]

�5 Ox ≡ Oyz = 1√
3
JyJz

Oy ≡ Ozx = 1√
3
JxJz

Oz ≡ Oxy = 1√
3
JxJy

Octupole �2 T xyz = 2
3
√

3
JxJyJz

�5 T x ≡ T x
β = 2

3
√

3
[Jx (Jy )2 − (Jz )2Jx]

T y ≡ T y
β = 2

3
√

3
[Jy(Jz )2 − (Jx )2Jy]

T z ≡ T z
β = 2

3
√

3
[Jz(Jx )2 − (Jy )2Jz]

the linear combinations

Õγ = cos

(
2πγ

3

)
O3 + sin

(
2πγ

3

)
O2, (1)

so that a C3 rotation about the (111) axis perpendicular to the
lattice plane acts as γ �→ γ + 1 for both Oγ and Õγ . We then
consider bond-dependent quadrupole-quadrupole interactions
of the form

Hq =
∑

γ=x,y,z

∑
〈 jl〉γ

(
KqOγ

j Oγ

l + K ′
qÕγ

j Õγ

l

)
, (2)

where 〈 jl〉γ refers to nearest-neighbor sites along a γ bond
of the honeycomb lattice, as in the standard notation for the
Kitaev model [5]. The first term in Hq can be generated
by integrating out vibronic couplings to trigonal distortions,
which are significant in some cubic d1 systems [41,49]. This
term was considered in the model for a quadrupolar spin liquid
defined in Ref. [35]. The model with the pure Kq interaction
has a macroscopically degenerate ground-state manifold [35].
Adding perturbations to this special point in the phase dia-
gram, we can access different phases with exotic multipolar
orders or spin-orbital liquid behavior. On the other hand,
the second term in Eq. (2) can be generated by coupling to
tetragonal distortions or by electrostatic interactions [28]. This
term is known to favor quadrupolar order with a vortex pattern
[50,51].

We now add octupole-octupole interactions to our model.
To reduce the number of parameters, we focus on interactions
that involve the components transforming in the �2 and �5

representations shown in Table I. This means that we neglect
the octupolar operators, which, like the dipole moment J,
transform in the �4 representation [48]. As we shall see in
Sec. III, this choice is convenient for the purpose of identi-
fying exactly solvable limits of the general model. We then
consider

Ho =
∑

γ=x,y,z

∑
〈 jl〉γ

(
KoT γ

j T γ

l + K ′
oT xyz

j T xyz
l

)
. (3)

Note that the octupolar operators are odd under time re-
versal, but the interactions are time reversal invariant. A
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bond-dependent octupolar interaction similar to the first term
in Eq. (3) appears in phenomenological models for the hidden
multipolar order in the heavy-fermion compound CexLa1−xB6

[52,53]. The second term in Eq. (3) favors an octupolar or-
der without lattice distortions analogous to the one proposed
for double perovskites with jeff = 2 local moments [54,55].
Altogether, the Hamiltonian H = Hq + Ho captures the com-
petition between different types of multipolar order.

To analyze the multipolar interactions, it is useful to
express the jeff = 3

2 states in terms of pseudospin and pseudo-
orbital degrees of freedom [29,30,35,56]. The local Hilbert
space is spanned by the eigenstates |mJ〉 of Jz, which
obey Jz|mJ〉 = mJ |mJ〉, with mJ ∈ {± 1

2 ,± 3
2 }. We define the

mapping ∣∣mJ = 3
2

〉 = ∣∣sz = − 1
2 , τ z = 1

2

〉
, (4)∣∣mJ = 1

2

〉 = −∣∣sz = 1
2 , τ z = − 1

2

〉
, (5)∣∣mJ = − 1

2

〉 = ∣∣sz = − 1
2 , τ z = − 1

2

〉
, (6)∣∣mJ = − 3

2

〉 = −∣∣sz = 1
2 , τ z = 1

2

〉
, (7)

where s j and τ j are, respectively, pseudospin and pseudo-
orbital operators, which obey the SU(2) algebra [sα

j , sβ

k ] =
iεαβγ δ jksγ

j and [τα
j , τ

β

k ] = iεαβγ δ jkτ
γ

j and the relation

[sα
j , τ

β

k ] = 0. In the {|sz, τ z〉} basis, the quadrupolar and oc-
tupolar operators given in Table I become

Oγ = −4sγ τ y, O3 = 2τ z, O2 = 2τ x,
(8)

T γ = −4sγ vγ · τ, T xyz = 2τ y,

where vγ = cos(2πγ /3)x̂ − sin(2πγ /3)ẑ are unit vectors in
the xz plane of pseudo-orbital space.

III. EXACTLY SOLVABLE MODEL

In this section, we analyze the Hamiltonian H = Hq + Ho

in the special limit K ′
q = K ′

o = 0, in which we obtain

Hs =
∑

γ=x,y,z

∑
〈 jl〉γ

(
KqOγ

j Oγ

l + KoT γ
j T γ

l

)
. (9)

We show that this model can be solved exactly using a Majo-
rana fermion representation for the multipolar operators and
exhibits a MSL ground state.

We can write the pseudospin and pseudo-orbital operators
in terms of six Majorana fermions as [29,35]

sγ

j = − i

4
εαβγ ηα

j η
β
j , (10)

τ
γ
j = − i

4
εαβγ θα

j θ
β
j , (11)

where εαβγ is the Levi-Civita tensor and ηα and θα are Ma-
jorana fermion operators which obey the algebra {ηα

j , η
β

k } =
2δ jkδ

αβ , {θα
j , θ

β

k } = 2δ jkδ
αβ , and {ηα

j , θ
β

k } = 0. This Majo-
rana representation enlarges the Hilbert space, introducing
unphysical states. To avoid that, we impose the local
constraint

Dj ≡ iηx
jη

y
jη

z
jθ

x
j θ

y
j θ

z
j = 1 (12)

FIG. 1. Schematic representation of fractionalized jeff = 3
2 mo-

ments on the honeycomb lattice. Here x, y, and z bonds are
represented by red, green, and blue solid lines, respectively. The
two sublattices, A and B, are represented by up-pointing and down-
pointing triangles. The inset in the top right corner shows the matter
(θγ ) and gauge (ηγ ) Majorana fermions. Each plaquette is associated
with the conserved quantity Ŵp = −eiπ (Jx

1 +Jy
2 +Jz

3+Jx
4 +Jy

5 +Jz
6 ).

for every site j. This is equivalent to obtaining a physical state
|�〉phys from the Majorana wave function |�0〉 by implement-
ing the projection |�〉phys = 
 j[ 1

2 (1 + Dj )]|�0〉. Using the
local constraint and the expressions in Eq. (8), we can write
the multipolar operators as Majorana bilinears:

Oγ = iηγ θ y, O3 = −iθ xθ y, O2 = −iθ yθ z,

T γ = −iηγ (vγ · θ), T xyz = −iθ zθ x. (13)

Note that vγ · θ = cos(2πγ /3)θ x − sin(2πγ /3)θ z involves
only θ x and θ z.

Using the Majorana representation, we cast the Hamilto-
nian in the form

Hs = i
∑

γ

∑
〈 jl〉γ

û〈 jl〉γ
[
Kqθ

y
j θ

y
l + Ko(vγ · θ j )(vγ · θl )

]
, (14)

where û〈 jl〉γ ≡ −iηγ
j η

γ

l are antisymmetric bond operators
obeying û〈 jl〉γ = −û〈l j〉γ . These operators commute with each
other and define Z2 gauge fields since Hs is invariant with
respect to the local transformations θ

γ
j �→ � jθ

γ
j and û〈 jl〉γ �→

� j û〈 jl〉γ �l , with � j = ±1. Like what happens for the dipolar
Kitaev models [6,21], the Hamiltonian in Eq. (9) possesses
a conserved operator Ŵp ≡ −eiπ (Jx

1 +Jy
2 +Jz

3+Jx
4 +Jy

5 +Jz
6 ) for each

hexagonal plaquette p. In the Majorana representation, the
plaquette operators read Ŵp = ∏

〈 j,l〉γ ∈p û〈 j,l〉γ [27,35]. Due to
the form of the Hamiltonian in Eq. (14), we refer to ηγ as
the gauge fermions and to θγ as the matter fermions. The
fractionalization of the multipolar operators into Majorana
fermions is illustrated in Fig. 1.

We verified numerically that the ground state of Hs lies in
the sector where the eigenvalues of all conserved plaquette op-
erators are set to Wp = +1 (see Appendix A). Fixing a gauge
configuration with u〈 jl〉γ = 1 for sites j in sublattice A and l
in sublattice B, we obtain from Eq. (14) a translation-invariant
quadratic Hamiltonian for the matter fermions moving in the
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(a) (b)

FIG. 2. Dispersion relation for Majorana fermion excitations in the exactly solvable MSL model. Here we set Ko = 0.4Kq. (a) For the
unperturbed model in Eq. (9), the system exhibits a gapless spectrum with Dirac nodes at the K point. (b) In the presence of strain fields ε2

and ε3 and time-reversal-symmetry-breaking field h [see Eq. (17)], the excitation spectrum becomes gapped. Here we set ε2 = ε3 = 0.4Kq and
h = 0.1Kq.

background of the static Z2 gauge field. Note that the θ y

fermion decouples from θ x and θ z. The dynamics of θ y is
governed by the quadrupolar coupling Kq, whereas the dy-
namics of θ x and θ z depends on the octupolar coupling Ko.
We diagonalize the Hamiltonian using the Fourier transform

θ
γ

b (R) =
√

2

N

∑
k∈ 1

2 (BZ)

[
e−ik·Rθ

γ

b (k) + eik·Rθ
γ †
b (k)

]
, (15)

where R is the position of the unit cell, b ∈ {A, B} refers to the
sublattice index, N is the number of sites, and the momentum
sum runs over half of the Brillouin zone (BZ). The bands
associated with the θ y fermions have the dispersion relation
Es(k) = ±|Kqgy(k)|, where gy(k) = 1 + eik·n1 + eik·n2 , with

lattice vectors n1 =
√

3
2 (1,

√
3) and n2 =

√
3

2 (−1,
√

3). For
the bands associated with θ x and θ z, we obtain

Es(k) = ±|Ko|√
2

√
|gz(k)|2 + |gx(k)|2 + 2|gxz(k)|2 ±

√
[|gz(k)|2 − |gx(k)|2]2 + 4|gx(k)g∗

xz(k) + g∗
z (k)gxz(k)|2, (16)

where we define the functions gz(k) = 3
4 (eik·n1 + eik·n2 ),

gx(k) = 1 + 1
4 (eik·n1 + eik·n2 ), and gxz(k) =√

3
4 (eik·n1 − eik·n2 ).

The band structure of the Majorana fermion excitations
is shown in Fig. 2(a). The spectrum exhibits gapless modes
with Dirac cones at the K point in both sectors associated
with θ y fermions and mixed θ x and θ z fermions. The latter
sector also displays a completely flat gapped band. This pecu-
liar feature holds for only the model with spatially isotropic
couplings; the gapped band becomes dispersive as soon as
we introduce different octupolar couplings K (γ )

o for each bond
direction γ . Importantly, by generating a dispersion for θ x and
θ z fermions, the octupolar interaction lifts the macroscopic de-
generacy of the pure quadrupolar model [35]. Consequently,
our exactly solvable model stabilizes a unique MSL ground
state.

In addition to gapless Majorana fermions, the spectrum of
Hs contains vortex excitations (visons) associated with chang-
ing the eigenvalues of the plaquette operators to Wp = −1.
These gapped excitations are created in pairs by the action of
local operators which anticommute with the bond operators
û〈 jl〉γ . Remarkably, the quadrupole operators O2 and O3 and
the octupolar operator T xyz do not excite visons since they
commute with the gauge fermions [see Eq. (13)]. As a result,
O2, O3, and T xyz are the only on-site operators featuring a gap-
less spectrum in the corresponding dynamical structure factors
probed by resonant inelastic x-ray scattering [30]. By contrast,

the dynamical spin structure factor for the pure Kitaev model
exhibits a flux gap [57].

In analogy with the Kitaev model, we can drive the MSL
to topological phases by adding perturbations that break sym-
metries and gap out the fermionic spectrum. We can break
the Z3 symmetry (rotation in real and spin-orbital space) and
time-reversal symmetry while still preserving the integrability
of the model if we consider the perturbations

δHs = −
∑

j

(
ε2O2, j + ε3O3, j + hT xyz

j

)
. (17)

Here ε2 and ε3 describe tetragonal strain fields and h induces
an octupole moment, allowed by symmetry in the presence
of an external magnetic field. According to Eq. (13), the total
Hamiltonian remains quadratic in the matter fermions, but the
strain fields couple θ y to θ x and θ z. As shown in Fig. 2(b),
we find a fully gapped spectrum for generic values of ε2, ε3,
and h. However, there exist critical values of these parameters
for which the Majorana gap closes and then reopens, which is
suggestive of topological phase transitions.

To investigate the topological nature of the gapped phases,
we evaluate the Chern number

NCh ≡ 1

2π

∑
n

∫
BZ

d2kBn(k), (18)

where Bn(k) = [∇×An(k)]z is the Berry curvature associated
with the nth energy band; An(k) = i〈un(k)|∇k|un(k)〉 is the
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FIG. 3. Topological phase diagram of the MSL as a function of
the symmetry-breaking fields ε2 and h. Here we set Ko = 0.2Kq and
ε2 = ε3. The purple, yellow, and blue regions correspond to Chern
numbers 0, 1, and 2, respectively.

Berry connection, with |un(k)〉 being the eigenvectors of the
Hamiltonian; and the sum on the right-hand side runs over
the occupied bands. We determine NCh numerically follow-
ing the approach devised in Ref. [58]. The dependence of
NCh on the symmetry-breaking fields is shown in Fig. 3.
Remarkably, the interplay between strain and magnetic fields
realizes five of Kitaev’s 16-fold-way phases [6,59,60]: a triv-
ial phase with NCh = 0, two non-Abelian topological phases
with NCh = ±1, and two Abelian topological phases with
NCh = ±2. For 0 < |ε2|, |ε3| and |h| � |Kq|, the system is
in an Abelian phase with NCh = ±2, depending on the sign
of h. We can reach the non-Abelian phase by increasing the
strength of the symmetry-breaking fields, whereas the trivial
phase appears only for strong strain fields. Varying the ratio
Ko/Kq, we observe that enhancing the octupolar interaction
favors the Abelian phase. We have verified that the Majorana
gap closes at topological phase transitions where the Chern
number changes. The momentum at which the gap closes
depends on the interactions and is not attached to the K point.
A direct transition from NCh = ±2 to NCh = 0 is possible
by fine tuning so that the gap closes simultaneously at two
different points in the Brillouin zone.

As a signature of the topological phases, we look for chiral
edge states in a cylinder geometry with zigzag edges. The
result matches the Chern number, in accordance with the
bulk-boundary correspondence. Figure 4 shows the spectrum
with two chiral edge states in the regime where NCh = ±2.
The chiral edge states can be probed by the thermal Hall
conductance κxy, which for low enough temperatures behaves

as κxy = NCh
2

πk2
B

6h̄ T .

IV. MULTIPOLAR ORDERS FROM
INTEGRABILITY-BREAKING INTERACTIONS

In this section, we address the effect of the interactions K ′
q

and K ′
o in Eqs. (2) and (3) on the ground state and elementary

FIG. 4. Edge states of the MSL for a honeycomb lattice with
zigzag edges. Here we use a cylinder with L = 50 unit cells along the
open direction. We fix the parameters as Ko = h = ε2 = ε3 = 0.2Kq

in the regime of NCh = ±2 (see Fig. 3).

excitations of the spin-orbital system. We define

HI =
∑

γ

∑
〈 jl〉γ

(
K ′

qÕγ

j Õγ

l + K ′
oT xyz

j T xyz
l

)
, (19)

so that H = Hq + Ho = Hs + HI . Hereafter, we assume that
all coupling constants are positive. In the Majorana rep-
resentation in Eq. (13), HI gives rise to interaction terms
which spoil the integrability of the model. For this reason,
we resort to two complementary analytical approximations
which provide a qualitative picture of the excitation spec-
trum, namely, parton mean-field theory and orbital wave
theory.

A. PARTON MEAN-FIELD THEORY

For small K ′
q and K ′

o, we can start from the solution in
Sec. III to investigate quantum phase transitions out of the
MSL state. We first notice that the quartic terms contained in
HI involve only the matter fermions θγ . Thus, at least at weak
coupling they do not alter the gauge-flux configuration in the
ground state, and we can work in the sector with fixed Wp = 1
for all plaquettes.

Next, we treat the interactions within a parton mean-field
approach [3,27]. To search for multipolar orders, we use the
mean-field decoupling

Õγ

j Õγ

l �→ 〈
Õγ

j

〉
Õγ

l + 〈
Õγ

l

〉
Õγ

j − 〈
Õγ

j

〉〈
Õγ

l

〉
, (20)

T xyz
j T xyz

l �→ 〈
T xyz

j

〉
T xyz

l + T xyz
j

〈
T xyz

l

〉 − 〈
T xyz

j

〉〈
T xyz

l

〉
. (21)

The quadrupolar interaction K ′
q is equivalent to an orbital

compass model on the honeycomb lattice [50,51] and fa-
vors a six-sublattice FQV state that breaks rotational and
translational symmetries (see Fig. 5). We parametrize the
quadrupolar order parameter as

〈
Õγ

j

〉 = ρ

2∑
μ=1

f γ
μ (ϕ) cos(Qμ · R j ). (22)

Here ρ and ϕ are variational parameters, the functions
f γ
μ (ϕ) are given by f γ

1 (ϕ) = sin(2πγ /3 − ϕ) and f γ

2 (ϕ)
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FIG. 5. Schematic representation of the ferroquadrupolar-vortex
state on the honeycomb lattice. The arrows represent the di-
rection of the vector defined by (〈O2〉, 〈O3〉) = 2(〈τ x〉, 〈τ z〉) ∝
(cos φn, − sin φn), where φn = (n − 1)π/3, with n = 1, . . . , 6 being
the sublattice index.

= cos(2πγ /3 − ϕ), and the wave vectors Q1 = π√
3
(
√

3, 1)

and Q2 = π√
3
(−√

3, 1) connect high-symmetry points of
the reciprocal lattice [61]. On the other hand, for K ′

o > 0
the octupolar order parameter 〈T xyz

j 〉 is constrained to having
the familiar form for antiferromagnetic order on a bipartite
lattice, i.e.,

〈
T xyz

j

〉 =
{+χ if j ∈ A,

−χ if j ∈ B.
(23)

A nonzero value of χ implies a phase with AO order.
The precise form of the mean-field Hamiltonian can be

found in Appendix B. From this Hamiltonian, we obtain the
free energy

FMF = −T
18∑

�=1

∫
1
6 (BZ)

d2k
ABZ

ln[1 + e−βE�(k)]

+ K ′
q[A0 − B0 sin(2ϕ)]ρ2 + 3K ′

oχ
2, (24)

where β = 1/T is the inverse temperature and

A0 ≡
∣∣∣∣2 cos

(
π√

3

)
+ cos

(
2π√

3

)∣∣∣∣ ≈ 1.365, (25)

B0 ≡
√

3 sin

(
π

2
√

3

)
sin

(√
3π

2

)
≈ 0.557. (26)

In addition, ABZ = 8π2/(3
√

3) refers to the area of the BZ,
and E�(k) are the dispersion relations obtained by numerical
diagonalization of the mean-field Hamiltonian.

To determine the mean-field parameters ρ, ϕ, and χ , we
numerically minimize the free energy in the zero-temperature
limit by means of a random-search algorithm which finds the
lowest value of FMF from a set of randomly chosen initial
conditions. The ground-state phase diagram as a function of
the integrability-breaking perturbations for fixed Ko = 0.2Kq

is shown in Fig. 6. First, we note that the MSL phase is stable
as long as Kq and Ko are both nonzero and there are no zero-
energy flat bands in the spectrum of the unperturbed model.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 6. Ground-state phase diagram obtained from the parton
mean-field theory setting Ko = 0.2Kq. Here AO and FQV refer to the
antiferro-octupolar and ferroquadrupolar-vortex phases, respectively.
In addition, the system exhibits a phase with coexisting AO and FQV
orders.

As we increase K ′
o, the MSL undergoes a quantum phase tran-

sition to a state with AO order, χ �= 0, which spontaneously
breaks time-reversal symmetry. On the other hand, if we start
from the solvable model and increase K ′

q, the system develops
FQV order with ρ �= 0, breaking lattice rotation and transla-
tion symmetries. In this regime, we find that the parameter ϕ

evaluates to either ϕ = π/4 or ϕ = 5π/4. This degeneracy
is associated with the invariance of the Hamiltonian under
inversion of all quadrupole moments, which follows from
f γ
μ (ϕ + π ) = − f γ

μ (ϕ). Finally, when K ′
q and K ′

o are compara-
ble, the phase diagram exhibits a coexistence region between
the FQV and AO phases. Within our mean-field approach, all
phase transitions are of first order.

We now analyze the dispersion relation of the Majorana
fermions in the ordered phases. Representative results for the
AO, FQV, and coexistence phases are shown in Fig. 7. In the
AO phase, the mean-field decoupling with χ �= 0 introduces a
staggered on-site term that couples θ x and θ z without affecting
θ y. As a result, the spectrum remains gapless with a Dirac
node at the K point [see Fig. 7(a)]. By contrast, in the FQV
phase the mean-field Hamiltonian with ρ �= 0 couples all three
flavors of Majorana fermions. In this case, we obtain a fully
gapped spectrum [see Fig. 7(b)]. In the coexistence region,
we find that the gap closes as one of the bands crosses zero
energy, forming a Majorana Fermi surface [see Fig. 7(c)].
Note that the spectrum is not particle-hole symmetric because
the on-site terms break the chiral symmetry in the mean-field
Hamiltonian.

B. ORBITAL WAVE THEORY

In the regime K ′
q, K ′

o � Kq, Ko, the mean-field approxima-
tion used in the previous section is no longer reliable because
the strong integrability-breaking interactions are able to create
vison excitations. However, we can go the other way and
consider the MSL Hamiltonian Hs to be a small perturbation
to HI . It is instructive to rewrite the Hamiltonian in terms of
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(a) (b) (c)

FIG. 7. Energy dispersion of the mean-field Hamiltonian for Ko = 0.2Kq, K ′
q = 1.3Kq, and three different values of K ′

o in the broken-
symmetry phases: (a) K ′

o = 0.65Kq in the AO phase, (b) K ′
o = 0.10Kq in the FQV phase, and (c) K ′

o = 0.40Kq in the coexistence region. Here
the Brillouin zone is defined with respect to the unit cell shown in Fig. 1.

the pseudospin and pseudo-orbital operators using Eq. (8):

HI = 4K ′
q

∑
γ

∑
〈 jl〉γ

(uγ · τ j )(uγ · τ l ) + 4K ′
o

∑
〈 jl〉

τ
y
j τ

y
l ,

Hs = 16Kq

∑
γ

∑
〈 jl〉γ

(
sγ

j τ
y
j

)(
sγ

l τ
y
l

)

+ 16Ko

∑
γ

∑
〈 jl〉γ

(
sγ

j vγ · τ j
)(

sγ

l vγ · τ l
)
, (27)

where uγ = vγ × ŷ = sin(2πγ /3)x̂ + cos(2πγ /3)ẑ. Clearly,
HI describes interactions within the pseudo-orbital sector. For
K ′

q, K ′
o � Kq, Ko, we expect τ j to develop long-range order

first, and the resulting ordered state determines the effective
interactions in the pseudospin sector at a lower energy scale.

Let us consider the classical ground states of HI , with
pseudo-orbitals treated as vectors with length τ . The FQV
phase corresponds to a vortex state with τ vectors in the xz
plane, as illustrated in Fig. 5. In the AO phase, the τ vectors
point along the y axis. If we consider a state that interpolates
between FQV and AO configurations, with orbital vectors
forming an angle θ with the ±ŷ direction (alternating between
A and B sublattices), the corresponding energy per site is

Ecl(θ ) = −3τ 2(K ′
q sin2 θ + 2K ′

o cos2 θ ). (28)

Minimizing this energy, we obtain a direct transition between
AO order (θ = 0) and FQV order (θ = π/2) at K ′

o = K ′
q/2. In

contrast to the mean-field theory in Sec. IV A, this classical
analysis in the strong-coupling limit does not support the
presence of a coexistence region in the phase diagram.

We can go beyond the classical analysis and compute quan-
tum corrections using linear orbital wave theory [50,62,63].
The first step is to rotate the pseudo-orbital operators to
the local polarization axis in either FQV or AO states. We
write τ j = RT

j τ̃ j , where Rj is a 3 × 3 orthogonal matrix
that implements the appropriate position-dependent rotation.
In the rotated frame, we employ the Holstein-Primakoff
transformation

τ̃ z
j = τ − a†

j a j , (29)

τ̃−
j = a†

j (2τ − a†
j a j )

1/2, (30)

where a†
j and a j are bosonic creation and annihilation opera-

tors. The effective Hamiltonian to order τ is quadratic in the
bosonic operators and can be diagonalized by a Bogoliubov

transformation. We then obtain

HI ≈
∑
ν,k

ων (k)α†
ν (k)αν (k) + E0, (31)

where ων (k) is the dispersion relation of the quantized
pseudo-orbital waves in the FQV or AO states, with ν being
the band index and αν (k) being the corresponding boson
annihilation operator, and

E0 = −3Nτ (τ + 1)E + 1

2

∑
ν,k

ων (k) (32)

is the ground-state energy including the quantum correction,
with E = K ′

q in the FQV state and E = 2K ′
o in the AO state.

Perturbative stability of the ordered states against quantum
fluctuations requires ων (k) to be real and positive for all
bands. Using this criterion, we find that the FQV state remains
locally stable for K ′

o < 0.746K ′
q, beyond the point K ′

o = K ′
q/2

where its classical energy becomes higher than that of the AO
state. Consistently, the quantum correction to the ground-state
energy of the AO state is real for K ′

o > K ′
q/2 (see Fig. 8). In the

AO phase, the pseudo-orbital wave spectrum is gapped, as ex-
pected since the ground state breaks only discrete symmetries.
In the FQV phase, the spectrum contains a zero-energy flat
band. As emphasized in Ref. [50], the classical FQV state has
an SO(2) degeneracy which is lifted by quantum fluctuations,

FIG. 8. Quantum correction to the ground-state energy of FQV
and AO states [see Eqs. (28) and (32)]. The dispersion relation of
pseudo-orbital waves in the FQV state becomes complex for K ′

o >

0.746K ′
q, signaling an instability. Similarly, the AO state becomes

unstable for K ′
o < 0.5K ′

q.
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and the quantum corrections select states that maximize the
number of zero-energy modes. The gap in the low-energy
band in the FQV phase appears only beyond the linear orbital
wave theory [51]. Since the excitation spectrum indicates a
perturbative stability of the ordered states in the corresponding
regimes, with an energy level crossing around K ′

o = K ′
q/2, we

conclude that the orbital wave theory points to a first-order
transition between FQV and AO phases.

We can now derive an effective Hamiltonian for the pseu-
dospins using a mean-field decoupling of Hs in which the
pseudo-orbital degrees of freedom are frozen in the ground
state of HI . This is a standard approach to analyze the low-
energy excitations of spin-orbital models [64]. We obtain from
Eq. (27)

H eff
s =

∑
γ=x,y,z

∑
〈 jl〉γ

Kγ

jl s
γ

j sγ

l , (33)

where

Kγ

jl = −16Ko
〈
τ

y
j τ

y
l

〉 − 16Kq〈(vγ · τ j )(vγ · τ l )〉. (34)

The effective Hamiltonian in Eq. (33) has the precise form of a
Kitaev model for pseudospin- 1

2 moments. As a consequence,
the fate of the system in the regime K ′

q, K ′
o � Kq, Ko is to

exhibit a hidden Kitaev spin liquid on top of classical AO
or FQV phases. This feature bears some resemblance to the
behavior of the spin- 3

2 Kitaev model studied in Ref. [27], in
which a spin- 1

2 Kitaev model emerges in the presence of a
single-ion anisotropy that induces a uniform spin quadrupole
moment. In our case, the Kitaev spin liquid arises either from
octupolar order for K ′

o � K ′
q or from translation-symmetry-

breaking quadrupolar order for K ′
q � K ′

o.
The pseudospin excitation spectrum depends on the ef-

fective Kitaev couplings in Eq. (34). We determine these
couplings by computing the pseudo-orbital correlations within
the linear orbital wave theory. In the AO phase, which
preserves the Z3 symmetry, we obtain homogeneous antiferro-
magnetic coupling Kγ

jl = K > 0. As a consequence, in the AO
phase the Kitaev spin liquid harbors gapless Majorana fermion
excitations with linear dispersion about the K point. This
conclusion agrees with the result from the parton mean-field
approach in Sec. IV A. Remarkably, the Kitaev spin liquid
remains gapless despite the spontaneous breakdown of time-
reversal symmetry. In contrast to the effect of a magnetic field
in the original Kitaev model [6], here the AO order parameter
preserves the symmetry combining time reversal with a C2

rotation that exchanges A and B sublattices. This symmetry
rules out the three-spin interaction that would drive a nonzero
spin chirality in the Kitaev spin liquid and generate a mass
term for the Majorana fermions [6].

In the FQV phase, the effective Kitaev couplings Kγ

jl be-
come bond dependent. While the FQV order breaks the Z3

symmetry, it preserves a Z6 symmetry corresponding to a
rotation in real and internal space around the center of the
hexagon that defines the enlarged unit cell in Fig. 5. This
symmetry implies that there are only two types of Kitaev cou-
plings: Kγ

jl = Kin for bonds inside the unit cell, represented
by solid lines in Fig. 5, and Kγ

jl = Kout for bonds connecting
neighboring unit cells, represented by dashed lines. Using the
linear orbital wave theory, we find Kin > 0 and Kout > 0 with

Kout � Kin regardless of the ratio between Ko and Kq. In
this regime, the Majorana spectrum is gapped with weakly
dispersive bands. This gapped FQV phase is consistent with
the result from the parton mean-field approach. We note that
the effect of FQV order on the Majorana fermions in the
hidden Kitaev spin liquid is analogous to a Kekulé distortion
in graphene, which also triples the size of the unit cell and
opens a gap in the spectrum [65,66].

V. CONCLUSIONS

In summary, we investigated the properties of a model for
jeff = 3

2 local moments on a honeycomb lattice with bond-
directional quadrupolar and octupolar interactions. For special
values of the parameters, we obtained an exact solution by
representing the jeff = 3

2 multipolar operators in terms of two
sets of Majorana fermions. This representation allowed us to
map the model onto noninteracting fermions hopping in the
background of a static Z2 gauge field. This model provides a
prime example of an interacting system with a nondegenerate
ground state, gapless fermionic excitations, and QSL correla-
tions due to the fractionalization of higher-order multipoles.

We demonstrated the emergence of nontrivial topologi-
cal phases by explicitly breaking rotational and time-reversal
symmetries in the MSL. Applying both strain and magnetic
fields, we found Abelian and non-Abelian phases with Chern
numbers of 0, ±1, and ±2. The Abelian topological phase
with NCh = ±2 appears for arbitrarily weak perturbations.
While Abelian and non-Abelian phases were reported in
recent studies of the antiferromagnetic Kitaev model in a mag-
netic field [67,68], our model highlights the role of strain as
an additional control parameter for driving topological phase
transitions between chiral spin-orbital liquid phases.

The stability of the MSL was probed by considering
integrability-breaking quadrupolar and octupolar interactions.
In the weak-coupling regime, the application of parton mean-
field theory showed that the MSL remains stable over a
wide range of interaction strengths. This stability can be
understood from a renormalization-group point of view by
noting that in the fermionic representation the interactions
are clearly irrelevant due to the vanishing density of states
of the Dirac nodes in the MSL. When a phase transition
out of the MSL finally takes place, the system develops ei-
ther ferroquadrupolar-vortex or antiferro-octupolar order. The
parton mean-field theory leads to a coexistence region at in-
termediate couplings, but the orbital wave theory at strong
coupling indicates a direct first-order transition between the
two ordered phases. Despite the spontaneous symmetry break-
ing, the low-energy spectrum in the strong-coupling regime
can be interpreted in terms of a hidden Kitaev spin liquid with
effective couplings between pseudospin degrees of freedom.
Of course, an important open question is whether the regime
of dominant quadrupolar and octupolar interactions consid-
ered in this work can be reached in layered materials with 4d
and 5d transition-metal ions [16].
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refer to the bond variables u〈 jl〉γ = +1 and u〈 jl〉γ = −1, respectively. In terms of this configuration, the physical unit cell contains four sublat-
tices, which are indicated by numbers and also by different regular polygons. (b) Behavior of the MSL GS energies E+

GS ≡ EGS({Wp = +1})
and E−

GS ≡ EGS({Wp = −1}) for the zero- and π -gauge flux configurations, respectively. Note that E+
GS is always lower than E−

GS, which is
consistent with Lieb’s theorem [69].
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APPENDIX A: COMPARISON BETWEEN THE ENERGIES
OF THE ZERO- AND π-GAUGE FLUX GROUND STATES

In the main text, we stated that the ground state (GS) of
the MSL lies in the zero-gauge flux sector Wp = +1, which

is obtained by setting u〈 jl〉γ = 1 for sites j in sublattice A and
l in sublattice B. To confirm that result, we will compare the
GS energy of the MSL for both Wp = +1 and Wp = −1, in
which the latter defines the so-called π -gauge flux sector for
this model.

As exemplified in Fig. 9(a), a translationally invariant hon-
eycomb lattice with Wp = −1 is obtained with a unit cell
containing four sublattice sites. Since the gauge variables for
this unit cell evaluate to

u〈3,2〉x = +1, u〈3,2〉y = +1, u〈1,2〉z = +1, (A1)

u〈1,4〉x = +1, u〈1,4〉y = −1, u〈3,4〉z = +1, (A2)

we find that the MSL Hamiltonian in Eq. (14) turns out to be

Hs =
∑
k∈BZ

�̄
†
(k)

⎛
⎜⎜⎜⎜⎝

0 i�z(k) 0 i[�x(k) − �y(k)]

−i�z†(k) 0 −i[�x†(k) + �y†(k)] 0

0 i[�x(k) + �y(k)] 0 i�z(k)

−i[�x†(k) − �y†(k)] 0 −i�z†(k) 0

⎞
⎟⎟⎟⎟⎠�̄(k), (A3)

where �̄(k) ≡ (θ1(k), θ2(k), θ3(k), θ4(k))T ; BZ refers to the Brillouin zone associated with the four-sublattice unit cell; and
the functions �γ (k), with γ ∈ {x, y, z}, represent the following momentum-dependent matrices:

�x(k) =

⎡
⎢⎣Kq

⎛
⎜⎝

0 0 0

0 1 0

0 0 0

⎞
⎟⎠ + Ko

4

⎛
⎜⎝ 1 0

√
3

0 0 0√
3 0 3

⎞
⎟⎠

⎤
⎥⎦e−ik·δ1 , (A4)

�y(k) =
⎡
⎣Kq

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ + Ko

4

⎛
⎝ 1 0 −√

3
0 0 0

−√
3 0 3

⎞
⎠

⎤
⎦e−ik·δ2 , (A5)

�z(k) =
⎡
⎣Kq

⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ + Ko

⎛
⎝1 0 0

0 0 0
0 0 0

⎞
⎠

⎤
⎦e−ik·δ3 . (A6)

Here δ1, δ2, and δ3 are nearest-neighbor vectors pointing from
an even- to an odd-sublattice site in the direction of the x, y,
and z bonds, respectively.

The diagonalization of Hs in Eq. (A3) yields 3N̄s =
12 energy dispersions Ēs,n(k), but only four of them can

094418-9



DE CARVALHO, FREIRE, AND PEREIRA PHYSICAL REVIEW B 108, 094418 (2023)

be computed in closed form. Since the latter also have a
complicated dependence, they will not be displayed here.
Regardless, the GS energy E−

GS ≡ EGS({Wp = −1}) associated
with this Hamiltonian can be computed numerically. In fact,
its formula is given by

E−
GS

N
= 1

N̄s

3N̄s∑
n=1

∫
BZ

d2k

ĀBZ

Ēn(k)�[−Ēs,n(k)], (A7)

where N refers to the number of sites of the honeycomb
lattice, ĀBZ = 4π2/(3

√
3a2) is the area of the BZ, and �(x)

denotes the Heaviside step function. This formula should be
contrasted with the equation

E+
GS

N
= 1

Ns

3Ns∑
n=1

∫
BZ

d2k
ABZ

En(k)�[−Es,n(k)], (A8)

which yields the GS energy E+
GS ≡ EGS({Wp = +1}) of the

MSL in the zero-gauge flux configuration. In this case, the unit
cell has Ns = 2 sublattices, and ABZ = 8π2/(3

√
3a2) gives

the area of the corresponding BZ. In addition, Es,n(k) refers to
3Ns = 6 energy dispersions whose expressions can be found
in the main text [see Eq. (16) and the paragraph above it].

In Fig. 9(b), we show the behavior of both E−
GS and E+

GS as a
function of the ratio |Ko/Kq|. Clearly, the zero-gauge flux con-
figuration Wp = +1 has the lowest GS energy. Moreover, we
also investigate the behavior of the GS energy gap per lattice

site (E−
GS − E+

GS)/N . In fact, our numerical results reveal that
(E−

GS − E+
GS)/N depends linearly on |Ko/Kq|. Consequently,

we obtain

E−
GS − E+

GS

N
= b0(|Ko| + 2|Kq|), (A9)

where b0 ≈ 0.012867. Remarkably, this means that the
quadrupolar and octupolar degrees of freedom of the MSL
contribute differently to E−

GS − E+
GS. In other words, the im-

pact of the former is twice that of the latter.
Note that, according to Lieb’s theorem [69], the zero-gauge

flux configuration yields the lowest-energy GS for mirror-
symmetric models with nearest-neighbor interactions defined
on a honeycomb lattice. In light of this result, consider the
MSL Hamiltonian Hs in Eq. (14). The first term in Hs in-
volving the θ y fermions is clearly invariant under a reflection
exchanging the x and y bonds since θ y transforms as the
matter Majorana fermions in the Kitaev model for isotropic
exchange interactions. However, the mirror symmetry of the
term that involves θ x and θ z requires the additional transfor-
mation θ z → −θ z, which can be traced back to the symmetry
properties of the quadrupole components (τ x, τ z ). We can
view θ z → −θ z as a gauge transformation which does not
affect the gauge-invariant fluxes or the spectrum of Hs. For
this reason, we expected the result of Lieb’s theorem to apply
also to our model, which was confirmed by our numerical
results.

APPENDIX B: MEAN-FIELD HAMILTONIAN FOR MAJORANA FERMIONS IN THE ZERO-GAUGE FLUX SECTOR

After we fix the uniform gauge configuration for u〈 jl〉, which is equivalent to setting Wp = +1 for all plaquettes, the exactly
solvable Hamiltonian can be written as

Hs + δHs =
∑

k

�†(k)Hs(k)�(k), (B1)

where �(k) ≡ (θ x
A(k), θ x

B(k), θ y
A(k), θ y

B(k), θ z
A(k), θ z

B(k))T and we define the matrix

Hs(k) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 iKogx(k) iε3 0 −ih iKogxz(k)
−Kog∗

x(k) 0 0 iε3 −iKog∗
xz(k) −ih

−iε3 0 0 iKqgy(k) iε2 0
0 −iε3 −iKqg∗

y(k) 0 0 iε2

ih iKogxz(k) −iε2 0 0 iKogz(k)
−iKog∗

xz(k) ih 0 −iε2 −iKogz(k) 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B2)

with the functions given below Eq. (16). Here we have included the perturbations that determine the phase diagram in Fig. 3. In
the parton mean-field theory in Sec. IV A, we set ε2 = ε3 = h = 0.

According to Eqs. (22) and (23), the mean-field decoupling of the Hamiltonian H = Hs + HI leads to

HMF =
∑

k∈ 1
6 (BZ)

⎛
⎝ �(k)

�(k + Q1)
�(k + Q2)

⎞
⎠

†
⎛
⎜⎝Hs(k) + V VQ1 VQ2

V†
Q1

Hs(k + Q1) + V 0
V†

Q2
0 Hs(k + Q2) + V

⎞
⎟⎠

⎛
⎝ �(k)

�(k + Q1)
�(k + Q2)

⎞
⎠

− K ′
q

2
Nρ2

2∑
μ=1

3∑
γ=1

[
f γ
μ (ϕ)

]2
cos(Qμ · δγ ) + 3K ′

o

2
Nχ2, (B3)
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where we have set

VQμ
= 3K ′

q

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 0 iρxy∗
μ,A 0 0 0

0 0 0 iρxy
μ,B 0 0

−iρxy∗
μ,A 0 0 0 −iρyz∗

μ,A 0
0 −iρxy

μ,B 0 0 0 −iρyz
μ,B

0 0 iρyz∗
μ,A 0 0 0

0 0 0 iρyz
μ,B 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B4)

V = 6K ′
o

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 −iχ 0
0 0 0 0 0 iχ
0 0 0 0 0 0
0 0 0 0 0 0
iχ 0 0 0 0 0
0 −iχ 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B5)

The matrices VQμ
are defined in terms of the functions

ρ
xy
μ,A = ρ

2

[
f 1
μ(ϕ)eiQμ·δ1 + f 2

μ(ϕ)eiQμ·δ2

2
− f 3

μ(ϕ)eiQμ·δ3

]
, (B6)

ρ
yz
μ,A =

√
3ρ

4

[− f 1
μ(ϕ)eiQμ·δ1 + f 2

μ(ϕ)eiQμ·δ2
]
, (B7)

ρ
xy
μ,B = ρ

2

[
f 1
μ(ϕ)eiQμ·n1 + f 2

μ(ϕ)eiQμ·n2

2
− f 3

μ(ϕ)

]
, (B8)

ρ
yz
μ,B =

√
3ρ

4

[− f 1
μ(ϕ)eiQμ·n1 + f 2

μ(ϕ)eiQμ·n2
]
. (B9)
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