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Chern insulating state with double-Q ordering wave vectors at the Brillouin zone boundary
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Magnetic multiple-Q states consisting of multiple spin density waves are a source of unconventional topo-
logical spin textures, such as skyrmion and hedgehog. We theoretically investigate a topologically nontrivial
double-Q state with a net spin scalar chirality on a two-dimensional square lattice. We find that a double-Q spiral
superposition of the ordering wave vectors located at the Brillouin zone boundary gives rise to unconventional
noncoplanar spin textures distinct from the skyrmion crystal, the latter of which is defined in the continuum limit.
We show that such a double-Q state is stabilized by the interplay among the easy-axis anisotropic interaction,
high-harmonic wave-vector interaction, and external magnetic field. Furthermore, the obtained double-Q state
becomes a Chern insulating state with a quantum Hall conductivity when the Fermi level is located in the band
gaps. Our present results provide another platform to realize topological magnetic states other than skyrmion
crystals by focusing on the symmetry of constituent ordering wave vectors in momentum space.
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I. INTRODUCTION

A Chern insulator is one of the insulators in two-
dimensional systems without time-reversal symmetry [1]. It is
characterized by a topological invariant that is termed a Chern
number, which is related to the Hall conductivity σxy; σxy is
quantized in the unit of e2/h when the system is insulating
(e is the elementary charge and h is the Planck constant)
[2,3]. The Chern number corresponds to the sum of the Berry
fluxes of all the two-dimensional plaquettes for the closed
torus surface in momentum space. When the Chern insulator
is driven by a magnetic order, the Berry fluxes affect the itin-
erant electron as an auxiliary magnetic field [4–6]. Especially,
noncoplanar spin textures with a spin scalar chirality, which is
defined by a triple scalar product of spins, Si · (S j × Sk ), can
be the origin of Berry fluxes even if neither a net magnetiza-
tion nor relativistic spin-orbit coupling is present [7–9].

In solids, noncoplanar spin textures are often described
by a superposition of multiple spin density waves referred
to as a multiple-Q state [10]. The Chern insulators have
been so far proposed in various noncoplanar spin textures
under different lattice structures. One of the typical examples
is a triple-Q tetrahedron state on a triangular lattice, which
is stabilized by the ring-exchange interaction [11], perfect
nesting [12–14], or partial nesting by (d − 2)-dimensional
connections of the Fermi surfaces [15–19]. Similar multiple-Q
states based on the nesting mechanism have been found in
other lattice structures, such as tetragonal [20], checkerboard
[21], honeycomb [22], and kagome structures [23,24]. In
these cases, the multiple-Q ordering wave vectors lie at the
high-symmetric points in the Brillouin zone boundary, which
indicates short modulation periods of noncoplanar magnetic
structures. Another example is a magnetic skyrmion crystal
(SkX) with a long-period swirling spin texture [25], which
is stabilized by the Dzyaloshinskii-Moriya (DM) interaction
[26–32], frustrated exchange interaction [33–39], dipolar ex-
change interaction [40,41], anisotropic exchange interaction

[42–47], (higher-order) Ruderman-Kittel-Kasuya-Yosida in-
teraction (RKKY) [48–59], orbital frustration [60], electric
dipolar interaction [61], circularly polarized microwave field
[62], and multiple-spin interaction [63,64]. The SkX can be-
come the Chern insulator when the Fermi level lies in the
band gap [65–67]. In contrast to the first example, constituent
ordering wave vectors of the SkXs are located inside the
Brillouin zone so that longer modulation periods occur. In
this way, multiple-Q superpositions describe various non-
coplanar spin textures depending on magnetic modulation
periods.

When considering further possible multiple-Q instability,
it is useful to classify the situation based on the symmetry in
terms of the constituent ordering wave vectors in momentum
space, since multiple-Q states often consist of symmetry-
related ordering wave vectors under lattice structures; the
double-Q states tend to be favored under the tetragonal lattice
structure with fourfold rotational symmetry and the triple-Q
states tend to be favored under the hexagonal lattice structure
with sixfold rotational symmetry. Specifically, we consider a
two-dimensional square-lattice system under the space group
P4/mmm, where the symmetry of the high-symmetric points
and lines for the two-dimensional wave vectors (kx, ky) in
the Brillouin zone is shown in Fig. 1(a); we set the lattice
constant of the square lattice as unity (a = 1). When the
ordering wave vectors lie at the � = (0, 0) or M = (π, π )
point belonging to the D4h symmetry, there is no multiple-Q
instability owing to no symmetry-related wave vectors in the
Brillouin zone. Meanwhile, when considering the X = (π, 0)
point so that the symmetry of the wave vector is lowered
to D2h, the (0, π ) point corresponds to the symmetry-related
wave vectors via the fourfold rotational operation invariant
under the square lattice. In this case, a coplanar double-Q
state with the ordering wave vectors (π, 0) and (0, π ) in
Fig. 1(b) can be realized depending on the electronic band
structure [17,68–72]. Moreover, further low-symmetric wave
vectors (u, 0) and (0, u) [(u, u) and (−u, u)] for 0 < u < π
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FIG. 1. (a) High-symmetric points and lines of the two-
dimensional square lattice in momentum (kx-ky) space under the
space group P4/mmm: � = (0, 0), X = (π, 0), M = (π, π ), � =
(u, u), � = (u, 0), and Y = (u, π ) for 0 < u < π . The point-group
symmetry in each point and line is also shown. (b) The double-Q
structure consisting of the ordering wave vectors at the X point.
[(c) and (d)] The square skyrmion crystal consisting of the double-Q
ordering wave vectors on the (c) � and (d) � lines. The red, blue, and
green arrows represent the positive, negative, and zero z components
of the spin moments. (e) The ordering wave vectors in the model in
Eq. (1). The circles drawn by the same color represent the equivalent
wave vector.

on the � (�) line belonging to the C2v symmetry also gives
rise to the double-Q SkX in both noncentrosymmetric and
centrosymmetric structures, as shown in Fig. 1(c) [Fig. 1(d)]:
The DM interaction plays an important role for the former
[73], while the frustrated exchange interaction [40,74,75],
multiple-spin (many-body) interaction [76–79], the staggered
DM interaction [80], and other effects [81] are important for
the latter. These studies provide a microscopic understanding
of the SkX-hosting materials, such as GdRu2Si2 [59,82–87]
and EuAl4 [88–95].

In the present study, we investigate further topologically
nontrivial multiple-Q instability by considering other sym-
metries of ordering wave vectors in momentum space. We
here focus on the multiple-Q states with the ordering wave
vectors on the Y = (π, u) and (u, π ) lines at the Brillouin
zone boundary in Fig. 1(a). Although the wave vectors on
the Y line have the same symmetry as those on the � and
� lines, we find that a double-Q magnetic chiral (2Q MC)
state with a different nontrivial topological spin texture from
the conventional square SkX appears in this case. Although
the obtained spin texture is totally distinct from the SkX, it
exhibits a uniform scalar chirality similar to the SkX. We show
that the synergy among the easy-axis anisotropic interaction,
high-harmonic wave-vector interaction, and external magnetic
field plays an important role in stabilizing the 2Q MC state.
Furthermore, this state becomes the Chern insulating state
when considering the itinerant electron degree of freedom;
the Hall conductivity is quantized as an integer. Our results
provide a possibility of exotic multiple-Q states by taking
into account the symmetry of the constituent ordering wave
vectors in momentum space.

The rest of this paper is organized as follows: In Sec. II, we
introduce the spin and itinerant electron models on the square
lattice and outline the numerical method based on the simu-
lated annealing. In Sec. III, we show the ground-state phase
diagram of the model and describe the details of the obtained
spin and scalar chirality textures. In Sec. IV, we show that
the 2Q MC state corresponds to the magnetic Chern insulator
with the quantized Hall conductance once the Fermi level lies
in the band gap. In Sec. V, we present a summary of this paper.
In the Appendix, we show the magnetic phase diagram in the
absence of the high-harmonic wave-vector interaction in order
to compare the phase diagram in Sec. III.

II. MODEL AND METHOD

A. Localized spin model

We calculate the ground-state spin configuration by con-
sidering an effective spin model with the momentum-resolved
interaction [10], which is given by

H = − 2J
∑
ν=1,2

[(
1− IA

2

) ∑
η=x,y

Sη

Qν
Sη

−Qν
+ (1+IA)Sz

Qν
Sz

−Qν

]

−2J ′ ∑
ν=3,4

SQν
· S−Qν

− H
∑

i

Sz
i , (1)

where SQν
is the Qν component of the spin moment; Qν is the

ordering wave vectors for ν = 1–4 and SQν
is derived from

the Fourier transform of the classical localized spin Si with
fixed length |Si| = 1. The first term represents the bilinear
exchange interaction at the dominant wave-vector channels Q1
and Q2; we set Q1 = (π/4, π ) and Q2 = (π,−π/4) so that
they are located on the Y line at the Brillouin zone boundary
in Fig. 1(a) by implicitly considering competing exchange
interactions in real space or Fermi surface nesting by Q1 and
Q2. It is noted that Q1 and Q2 are connected by the fourfold ro-
tational symmetry of the square lattice, as shown in Fig. 1(e).
We introduce the easy-axis anisotropic exchange interaction
IA > 0 in order to enhance the multiple-Q instability [34–36].
We set J = 1 as the energy unit of the model.
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The second term represents the bilinear exchange in-
teraction in the different wave-vector channels at Q3 =
(3π/4, 3π/4) and Q4 = (−3π/4, 3π/4). The choice of Q3
and Q4 is owing to the relation satisfying Q3 = −Q1 + Q2
and Q4 = Q1 + Q2 except for the difference by reciprocal
lattice vector; see Fig. 1(e). Thus, Q3 and Q4 are regarded as
the high-harmonic wave vectors of Q1 and Q2, whose mag-
nitude is determined by the competing exchange interactions
in real space or Fermi surface structure so as to satisfy the
relation J ′ < J . It was shown that the interaction at such high-
harmonic wave vectors plays an important role in stabilizing
the multiple-Q states including the square SkX [75,78,96,97].
We set J ′ = 0.6J in the following analysis. We show the result
for J ′ = 0 in the Appendix, where no multiple-Q instability
occurs in the phase diagram. The third term represents the
Zeeman coupling in the presence of an external magnetic field
along the z direction.

The optimal spin configurations of the model in Eq. (1)
with changing IA and H are obtained by the numerically
simulated annealing. For a system size with N = 162 under
the periodic boundary condition, we perform Monte Carlo
simulations while decreasing the temperature in the following
manner. We start from a random spin configuration at a high
temperature T0 = 1.5 and reduce the temperature at the rate of
α = 0.999 999 to the final temperature T = 0.0001. At each
temperature, we update all the spins one by one in real space
based on the standard single-spin-flip Metropolis algorithm.
Finally, we perform 105–106 Monte Carlo sweeps for thermal-
ization and measurements. We also start the simulations from
the spin patterns obtained at low temperatures to determine
the phase boundaries between different magnetic states.

In order to identify each magnetic phase, we compute spin
and chirality quantities. In the spin sector, we calculate the
spin structure factor, which is given by

Sηη
s (q) = 1

N

∑
i, j

Sη
i Sη

j eiq·(ri−r j ), (2)

where η = x, y, z; ri is the position vector at site i; and q is
the wave vector. For the in-plane spin component, we use
S⊥

s (q) = Sxx
s (q) + Syy

s (q). We also compute the Qν component
of magnetic moments as

mη

Qν
=

√
Sηη

s (Qν )

N
. (3)

The net magnetization is given by

Mη = 1

N

∑
i

Sη
i . (4)

In the chiral sector, the scalar chirality is given by

χ sc = 1

2N

∑
i

∑
δ,δ′=±1

δδ′Si · (Si+δx̂ × Si+δ′ ŷ), (5)

where x̂ (ŷ) represents a shift by lattice constant in the x (y)
direction.

In the following, we distinguish the obtained states in
terms of the Q1 and Q2 components of the magnetic moments
without referring to the Q3 and Q4 components, since the
energy contribution from the Q1 and Q2 channels is much

fully-polarized state

1Q S
1Q VS

1Q C
2Q MC

2Q C

2Q CS
2Q NC

FIG. 2. Ground-state phase diagram of the model in Eq. (1) on
the square lattice, which is obtained by the simulated annealing at
J ′ = 0.6. The horizontal axis represents the easy-axis anisotropic
interaction IA, while the vertical axis represents the external magnetic
field along the z direction. 1Q and 2Q denote the single-Q and
double-Q states, respectively. VS, S, C, CS, NC, and MC denote
the vertical spiral, sinusoidal, conical, chiral stripe, nonchiral, and
magnetic chiral states, respectively.

larger than that from the Q3 and Q4 channels; we term a
state with nonzero (mη

Q1
)2 or (mη

Q2
)2 as a single-Q state and

that with both nonzero (mη

Q1
)2 and (mη

Q2
)2 as a double-Q state

irrespective of the presence/absence of (mη

Q3
)2 and (mη

Q4
)2.

B. Itinerant electron model

We analyze the band structure by considering the spin-
charge coupled Hamiltonian, which is given by

H = −t
∑
i, j,σ

c†
iσ c jσ + JK

∑
i

si · Si, (6)

where c†
iσ (ciσ ) is a creation (annihilation) operator of an

itinerant electron at site i and spin σ . The first term denotes the
hopping of itinerant electrons between the nearest-neighbor
sites on the square lattice and the second term denotes the
onsite exchange coupling between itinerant electron spins
si = (1/2)

∑
σ,σ ′ c†

iσ σσσ ′ciσ ′ and localized spins Si with cou-
pling constant JK , where σ = (σ x, σ y, σ z ) is the vector of
Pauli matrices. We substitute the spin configuration obtained
by the simulated annealing to the spin model in Eq. (1) into
Si. We set t = 1 as the energy unit of the model in Eq. (6) and
consider the strong-coupling regime by taking JK = 100.

III. MAGNETIC PHASE DIAGRAM

Figure 2 shows the ground-state spin configuration of the
spin model in Eq. (1) in the plane of IA and H . The phase
diagram includes seven phases in addition to the fully polar-
ized state with Sz

i = (0, 0, 1), which appears in the high-field
region. A phase sequence for IA = 0 or H = 0 is simple; the
single-Q conical spiral (1Q C) state, whose spiral plane lies
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on the xy plane, is stabilized for H � 2 when IA = 0, whereas
the single-Q vertical spiral (1Q VS) and single-Q sinusoidal
(1Q S) states appear depending on IA. The spiral plane of the
1Q VS state includes the z direction, where the in-plane direc-
tion is arbitrary owing to the absence of the in-plane magnetic
anisotropy like the bond-dependent anisotropy. The 1Q S state
is represented by the single-Q sinusoidal modulation along
the z direction. When taking into account both IA and H , one
finds that various double-Q states are stabilized in the phase
diagram.

Among the double-Q states, the 2Q MC state is the only
state to have a nonzero net spin scalar chirality, which indi-
cates that this 2Q MC state corresponds to a topologically
nontrivial state. Thus, we mainly describe the details of the
2Q MC state in the following.

Figures 3(a)–3(c) show the H dependence of the uniform
magnetization Mη and the scalar chirality χ sc, Q1 and Q2
components of squared magnetic moments (mη

Q1,2
)2, and Q3

and Q4 components of squared magnetic moments (mη

Q3,4
)2

for η =⊥, z at IA = 0.2, respectively. We here show the data
in each ordered state by appropriately sorting (mη

Qν
) for better

readability. In the low-field region, the 1Q VS state is sta-
bilized, whose spin configuration in real space and the spin
structure factor in momentum space are shown in Figs. 4(a)
and 5(a), respectively. Since the dominant interaction in the
model is the Q1,2 channel, the 1Q VS state exhibits a single-Q
structure at Q1 or Q2. In Fig. 4(a), the staggered alignment of
the spins is found along the x direction in real space owing to
the ordering wave vector Q2 = (π,−π/4), which is consis-
tent with the peak structure in momentum space in Fig. 5(a).
It is noted that Q2 = (π,−π/4) is identical to (π, π/4),
(−π, π/4), and (−π,−π/4) via the translation by the recip-
rocal lattice vector. The small intensity at 3Q2 = (π,±3π/4)
is owing to the elliptical modulation of the spiral plane that
arises from the easy-axis anisotropic interaction IA and/or the
magnetic field H .

When H is increased, the 1Q VS state continously changes
into the double-Q chiral stripe (2Q CS) state. Similarly to
the 1Q VS state, the 2Q CS state is mainly characterized by
the vertical spiral structure with Q2, as shown in Fig. 3(b).
Meanwhile, in contrast to the 1Q VS state, the Q1 compo-
nent of the magnetic moments, m⊥

Q1
, is slightly induced, as

shown in Fig. 5(b); it is noted that the state with the dominant
Q1 and subdominant Q2 modulations has the same energy
[Fig. 3(b)]. This anisotropic double-Q superposition leads to
the noncoplanar spin structure, as shown by the real-space
spin configuration in Fig. 4(b), although the scalar chiral-
ity shows a finite-q component rather than the uniform one.
This is why this state is called the chiral stripe state, whose
similar spin textures have been found in itinerant magnets
and anisotropic magnets [98–100]. It is noted that the 2Q
CS state has the amplitude of (m⊥

Q3
)2 = (m⊥

Q4
)2 in Figs. 3(c)

and 5(b), which indicates that the high-harmonic wave-vector
interaction contributes to their stabilization. Indeed, the 2Q
CS state vanishes for J ′ = 0, as discussed in the Appendix.

Further increment of H in the 2Q CS state drives the phase
transition to the 2Q MC state with jumps of Mz and χ sc, as
shown in Fig. 3(a). The 2Q MC state is characterized by the
double-Q structure with the same intensity at Q1 and Q2 in

 0.0
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FIG. 3. H dependence of (a) the magnetization Mη and the scalar
chirality χ sc, (b) Q1 and Q2 components of squared magnetic mo-
ments (mη

Q1,2
)2, and (c) Q3 and Q4 components of squared magnetic

moments (mη

Q3,4
)2 for η =⊥, z at IA = 0.2. The vertical dashed lines

represent the phase boundaries between different spin states.

each spin component, as shown in Figs. 3(b) and 5(c), i.e.,
(m⊥

Q1
)2 = (m⊥

Q2
)2 and (mz

Q1
)2 = (mz

Q2
)2. In addition, this state

has the same intensity at Q3 and Q4, i.e., (m⊥
Q3

)2 = (m⊥
Q4

)2 and
(mz

Q3
)2 = (mz

Q4
)2, as shown in Fig. 3(c). These features are the

same as those in the square SkX [96]. On the other hand, the
real-space spin configuration is totally different from the SkX,
as shown in Fig. 4(c); there are no skyrmion cores with Sz

i =
−1 and the spin variations between the adjacent sites seem
to be discrete rather than continuous, which makes it difficult
to calculate the skyrmion number defined in the continuum
limit. Nevertheless, this state exhibits uniform scalar chirality,
as shown by the real-space scalar chirality configuration in
Fig. 6(a), where the negative net component is found. It is
noted that the state with the positive scalar chirality has the
same energy as that with the negative one owing to the absence
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(a) 1Q VS (b) 2Q CS

(c) 2Q MC (d) 2Q C

(e) 1Q C (f) 2Q NC

1- 10

FIG. 4. Real-space spin configurations in (a) the 1Q VS state at
IA = 0.2 and H = 0, (b) the 2Q CS state at IA = 0.2 and H = 0.8,
(c) the 2Q MC state at IA = 0.2 and H = 1, (d) the 2Q C state at IA =
0.2 and H = 1.2, (e) the 1Q C state at IA = 0.2 and H = 1.4, and (f)
the 2Q NC state at IA = 0.1 and H = 0.7. The arrows represent the
direction of the in-plane spin and the color shows its z component.

of the in-plane magnetic anisotropy, which leads to a degen-
eracy of the spiral helicity; such a degeneracy can be lifted
by considering the in-plane bond-dependent anisotropy for
the Q1–Q4 components, which is allowed under the tetragonal
symmetry [101,102]. Reflecting a nonzero net scalar chirality,
the 2Q MC state shows nonzero Berry curvature in the band
structure; it becomes the Chern insulator when the Fermi level
is located in the band gap, as discussed in Sec. IV.

The emergence of the 2Q MC state is attributed to the
interplay between the easy-axis magnetic anisotropy IA and
the high-harmonic wave-vector interaction J ′ in the external
magnetic field, which is common to the SkX [96]; the stabil-
ity region of the 2Q MC state extends for larger IA and J ′.
Their difference is only found in the real-space spin texture
that originates from the different positions of the constituent
ordering wave vectors in the Brillouin zone; the 2Q MC state
is constructed by the double-Q superposition of the ordering
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(e) 1Q C
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(f) 2Q NC
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FIG. 5. The square root of the (left panel) xy and (right panel) z
components of the spin structure factor in the first Brillouin zone in
each phase in Fig. 4. The model parameters are the same as those in
Fig. 4.

wave vectors on the Y line in the Brillouin zone in Fig. 1,
while the SkX is constructed by the superposition of the wave
vectors on the � or � line. From these results, one finds that
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(a) 2Q MC (b) 2Q NC

1- 10

FIG. 6. Real-space scalar chirality configurations in (a) the 2Q
MC state at IA = 0.2 and H = 1 and (b) the 2Q NC state at IA = 0.1
and H = 0.7.

there is a chance of realizing the 2Q MC state by similar
microscopic interactions so as to stabilize the SkX, such as
the frustrated exchange interaction [40,74,75] and multiple-
spin (many-body) interaction [76–78], once the ordering wave
vectors lie on the Y line.

The 2Q MC state turns into the double-Q conical (2Q C)
state with jumps of Mz and χ sc. The 2Q C state is character-
ized by the conical spiral modulation with the Q1 component
and the z-directional sinusoidal modulation with the Q2 com-
ponent, as shown in Figs. 3(b) and 5(d). Similarly to the other
double-Q states, there is an intensity of magnetic moments
at Q3 and Q4 in order to gain the energy by J ′, as shown in
Fig. 3(c). This state also accompanies the chirality density
wave with the Q2 component owing to the noncoplanar spin
structure arising from the double-Q superposition [Fig. 4(d)].
(mη

Q2,3,4
)2 becomes smaller as H increases and vanishes when

the phase transition to the 1Q C state occurs. The spin config-
uration and spin structure factor of the 1Q C state are shown
in Figs. 4(e) and 5(e), respectively. Finally, the 1Q C state
continuously changes into the fully polarized state.

For small IA, the double-Q nonchiral (2Q NC) state appears
in the intermediate-field region instead of the 2Q MC state.
Figures 7(a)–7(c) show the H dependence of magnetization
and Qν components of the magnetic moments at IA = 0.1,
where the 2Q NC state appears between the 2Q CS and 2Q C
states. This state is characterized by an anisotropic double-
Q state including the high-harmonic wave-vector modulation
similar to the 2Q CS and 2Q C states, as shown in Figs. 5(f),
7(b), and 7(c). The real-space spin texture in Fig. 4(f) seems to
be a complicated noncoplanar spin texture, but there is no net
scalar chirality in the magnetic unit cell, as shown in Fig. 6(b).

IV. TOPOLOGICALLY NONTRIVIAL
ELECTRONIC STATE

We discuss the electronic structure of the 2Q MC state with
nonzero scalar chirality by adopting the tight-binding model
in Eq. (6) in Sec. II B. First, we discuss the band structure for
bulk in the 2Q MC state in Sec. IV A. Then, we present the
edge state arising from the nontrivial topological spin texture
in Sec. IV B.
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FIG. 7. H dependence of (a) Mη and χ sc, (b) (mη

Q1,2
)2, and

(c) (mη

Q3,4
)2 for η =⊥, z at IA = 0.1. The vertical dashed lines rep-

resent the phase boundaries between different spin states.

A. Band structure

We investigate the electronic band dispersion of the tight-
binding model in Eq. (6) in the presence of the 2Q MC spin
texture. We use the spin configuration of the 2Q MC state,
which is obtained at IA = 0.2 and H = 0.85 by the simulated
annealing in Sec. III; the real-space spin configuration in the
8×8 magnetic unit cell is shown in Fig. 8(a).

We plot the band structure of the 2Q MC state in Fig. 8(c)
for the high-symmetric lines in the magnetic Brillouin zone
in Fig. 8(b). Here, we only show 64 of total 128 bands; the
other 64 bands are located around E ∼ 50 (E is the energy).
Although almost all of the bands are entangled with each
other, some bands are disentangled from the others. In order
to focus on the topological property of the 2Q MC state, we
examine the 1/8- and 3/8-filling cases, where the 16th and
48th bands from the lowest energy level are drawn in red and
blue in Fig. 8(c), respectively. The magnitude of the band gap
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FIG. 8. (a) The spin configuration of the 2Q MC state at IA = 0.2,
H = 0.85, and J ′ = 0.6. The dashed square denotes the 8×8 mag-
netic unit cell. The red and blue spheres represent the spin moments
with Sz

i = +1 and Sz
i = −1, respectively. (b) The first Brillouin zone

of the square lattice. (c) The electronic band structure of the spin-
charge coupled Hamiltonian in Eq. (6) in the 2Q MC state at t = −1
and JK = 100 along the high-symmetric lines in (b). The bands in
red and blue denote the 16th and 48th bands from the lowest energy
band, respectively. (d) JK dependence of the band gap at 3/8 filling.

is related to the exchange coupling JK , since the gap opening is
brought about by the onset of magnetic ordering. For example,
we show the JK dependence of the band gap at 3/8 filling in
Fig. 8(d), where the magnitude of the band gap becomes larger
with increasing JK for smaller JK . When JK reaches around 10,
the band gap is almost constant.

To investigate the topological property, we calculate the
Chern number Cn for the nth band by using the formula in
Ref. [103]. For both 1/8 and 3/8 fillings, the Chern numbers
are given by −1. Meanwhile, almost all the bands except for
the 1/8 and 3/8 fillings are not well separated from each other.
From this result, a different feature from the SkX is found.
In the SkX, the nonzero Chern numbers appear from the
lowest-energy band [65–67], while no definite Chern number
appears in the 2Q MC state, since the lowest-energy band
is not separated from the second-lowest-energy band. This
difference might arise from the difference in their real-space
spin textures, where the continuum limit can be taken for the

(a)

-53

-51

-49

-47

En
er

gy

(b)

-53

-51

-49

-47

En
er

gy

0.0

0.1

-0.1

0.0

0.1

-0.1

FIG. 9. Band structure projected onto the (a) x and (b) y compo-
nents of the momentum-resolved spin, sx,y

k .

spin texture of the SkX, while it cannot be for that of the 2Q
MC state. In this context, the 2Q MC state might also exhibit
different behavior of the topological Hall effect in the metallic
case [104–112]. Such an analysis will be left as an intriguing
issue for future study.

The summation of the Chern number up to the Fermi level
corresponds to the quantized Hall conductivity in the unit of
e2/h. The Hall conductance is calculated by using the Kubo
formula as

σxy = − ie2

h

2π

N

∑
nk

f (εnk)

×
∑

m( �=n)

〈nk| J̃x |mk〉 〈mk| J̃y |nk〉 − (n ↔ m)

(εnk − εmk)2
, (7)

where n, m are the band indices, εnk and |nk〉 are the eigen-
values and eigenstates of the Hamiltonian in Eq. (6), f (εnk) is
the Fermi distribution function, and J̃η = ∂H/∂kη for η = x, y
is the current operator. When the system is insulating and the
Fermi energy is located between the nth and n + 1th bands,
σxy at zero temperature is also represented by the Chern num-
ber as

σxy = e2

h
Ctotal

n . (8)

We expect σxy = 2e2/h for the 1/8 filling and σxy = −2e2/h
for the 3/8 filling; we indeed obtain these values by directly
performing the numerical evaluation of Eq. (7).

Moreover, the 2Q MC state exhibits the antisymmetric
spin splitting in the band structure. We show the x and y
components of the momentum-resolved spin polarization, sx,y

k ,
in Figs. 9(a) and 9(b), respectively. As shown in Fig. 9, the
antisymmetric spin polarization mainly appears in the X1-�-
X2 line for the x-spin component and in the M1-�-M2 line
for both x- and y-spin components. Since the functional form
is approximately expressed as k × sk in the limit of k → 0,
this antisymmetric spin splitting is categorized into the polar
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FIG. 10. Energy dispersions with the (100) edges close to the
region of (a) the 1/8 and (b) 3/8 fillings. The model parameters are
the same as those in Fig. 8(c). The thick blue lines represent chiral
edge states traversing the gaps, which arise from the nonzero Chern
number in the 2Q MC state. L and R represent the localized modes
on the left and right edges, respectively.

type like the Rashba metal [113,114]. This indicates that the
spin structure of the 2Q MC state in Fig. 8(a) is approximately
represented by the double-Q superposition of out-of-plane
cycloidal spiral structure, whose spiral plane lies on the par-
allel to Qν and z direction [115]. Indeed, such a tendency
of the spiral plane was confirmed by looking into the spin
structure factor (not shown). It is noted that this antisymmet-
ric spin splitting is caused by the noncollinear spin textures
rather than the relativistic spin-orbit coupling in contrast to
the Rashba metal, since the model Hamiltonian just includes
the spin-independent hopping term [116,117]. In addition, the
2Q MC state exhibits the ferroaxial nature, since the spiral
plane is usually represented by the linear combination of the
out-of-plane cycloidal and proper-screw spirals owing to their
degeneracy in the present model, which results in breaking the
mirror symmetry along the z direction [118].

B. Edge state

Finally, let us present the edge state around the 1/8- and
3/8-filling regions, where the band gap opens, as shown in
Fig. 8(c). Figures 10(a) and 10(b) show the energy dispersion
with the (100) edges close to the 1/8 and 3/8 fillings, respec-
tively; the band localized with the (100) edges are drawn in
blue. Both dispersions exhibit the chiral edge states traversing
the gaps, whose number equals the summation of the Chern
number, i.e., the bulk-edge correspondence. In the end, the
2Q MC state corresponds to the Chern insulating state at 1/8
and 3/8 fillings like the square SkX.

fully-polarized state

1Q S1Q VS

1Q C

FIG. 11. Ground-state phase diagram of the model in Eq. (1) on
the square lattice at J ′ = 0.

V. SUMMARY

To summarize, we have investigated the topologically
nontrivial multiple-Q state with a particular focus on the sym-
metry of the constituent ordering wave vectors in momentum
space. We found that the unconventional double-Q magnetic
chiral (2Q MC) state appears when the ordering wave vectors
lie on the Brillouin zone boundary. By performing the sim-
ulated annealing for the spin model in momentum space, we
have shown that the 2Q MC state is stabilized by the interplay
between the easy-axis anisotropic interaction and the high-
harmonic wave-vector interaction under the external magnetic
field. The obtained noncoplanar spin texture in the 2Q MC
state exhibits nonzero uniform scalar chirality, while it is not
connected to that in the SkX owing to the different symmetry
lines in the Brillouin zone for the ordering wave vectors. In
spite of the difference in the spin texture from the SkX, the
2Q MC state becomes the Chern insulating state when the
coupling to an itinerant electron is considered. We have shown
the bulk-edge correspondence in the 2Q MC state. Our results
provide a possibility of further exotic multiple-Q states with a
nontrivial topological spin texture by considering the degree
of freedom in terms of the position of the constituent ordering
wave vectors in momentum space.

Although we show that the 2Q MC state is stabilized by
introducing the high-harmonic wave-vector interaction, it can
be realized by taking into account other magnetic anisotropy
and interactions instead of the high-harmonic wave-vector
interaction, such as the bond-dependent anisotropy [74,96]
and higher-order multiple spin interaction [77], as clarified in
the double-Q SkX. The analysis for the stabilization of the 2Q
MC state under these interactions is left for future study.

Last, we discuss potential situations to realize the 2Q MC
state. Since the constituent ordering wave vectors in the 2Q
MC state are close to q = (π, 0) and (0, π ), the instability
toward the 2Q MC state might occur in the materials with
the double-Q structure at q = (π, 0) and (0, π ). One of the
candidate materials is the iron-based magnet [69–72,76,119],
where the above double-Q structure is realized. By applying
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external pressure and/or chemical doping, one might realize
the 2Q MC state in these compounds. In a similar context,
LaFeAsO is a candidate material to exhibit the 2Q MC state,
since a recent study suggests the incommensurate spiral state,
whose ordering wave vectors are located at the Brillouin zone
boundary [76].
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APPENDIX: PHASE DIAGRAM WITHOUT
HIGH-HARMONIC WAVE-VECTOR INTERACTIONS

In this Appendix, we show the phase diagram of the model
in Eq. (1) in the absence of the high-harmonic wave-vector
interaction, i.e., J ′ = 0. Figure 11 shows the ground-state
phase diagram as functions of IA and H . Comparing the phase
diagram with J ′ = 0.6 in Fig. 2, no double-Q states appear in
the phase diagram; 1Q VS state is stabilized for small H , 1Q C
state is stabilized for large H and small IA, and the 1Q S state
is stabilized for small H and large IA. Thus, the high-harmonic
wave-vector interaction plays an important role in inducing
the double-Q states including the 2Q MC state.
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