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Checkerboard bubble lattice formed by octuple-period quadruple-Q spin density waves
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We investigate multiple-Q instability on a square lattice at particular ordering wave vectors. We find that
a superposition of quadruple-Q spin density waves, which are connected by fourfold rotational and mirror
symmetries, gives rise to a checkerboard bubble lattice with a collinear spin texture as a result of the geometry
among the constituent ordering wave vectors in the Brillouin zone. By performing the simulated annealing for a
fundamental spin model, we show that such a checkerboard bubble lattice is stabilized under an infinitesimally
small easy-axis two-spin anisotropic interaction and biquadratic interaction at zero field, while it is degenerate
with an anisotropic double-Q state in the absence of the biquadratic interaction. The obtained multiple-Q
structures have no intensities at high-harmonic wave vectors in contrast to other multiple-Q states, such as a
magnetic skyrmion lattice. We also show that the checkerboard bubble lattice accompanies the charge density
wave and exhibits a nearly flat-band dispersion in the electronic structure. Our results provide another route to
realize exotic multiple-Q spin textures by focusing on the geometry and symmetry in terms of the wave vectors
in momentum space.

DOI: 10.1103/PhysRevB.108.094415

I. INTRODUCTION

A multiple-Q state, which corresponds to a superposition
of multiple spin density waves, has drawn considerable in-
terest in condensed-matter physics, since it manifests itself
in unusual magnetism but also in unconventional transport
and cross-correlated response. One of the most familiar ex-
amples is a magnetic skyrmion lattice (SkL) [1–5], which
ubiquitously appears in various lattice structures as a different
multiple-Q superposition [6]: double-Q SkL in the tetragonal
lattice structure [7–10], triple-Q SkL in the hexagonal lattice
structure [2,3,11], and sextuple-Q SkL in the cubic lattice
structure [12]. Another example is a magnetic hedgehog con-
sisting of a periodic structure of monopole and antimonopole,
which has been found as a consequence of the triple-Q or
quadruple-Q spin density waves [13–18]. Moreover, vari-
ous multiple-Q spin structures have been suggested/proposed
from both theoretical and experimental studies, such as a
vortex lattice [19–29], a chiral stripe [10,30–33], and a ripple
state [34]. As a common feature in these multiple-Q states, the
constituent ordering wave vectors are connected to each other
by the rotational symmetry of the lattice structures.

We here investigate a different type of a multiple-Q state,
which is characterized by a superposition of collinear spin
textures, i.e., a bubble lattice [35–37]. Although such a bubble
lattice does not exhibit a topological Hall effect in contrast
to the SkL, it can be potentially applied to the growing field
of antiferromagnetic/ferrimagnetic spintronics [38,39], since
unconventional transport property is expected [40–42]. The
isolated bubble and bubble lattices have been so far observed
in easy-axis magnets [43], such as Fe/Rh atomic bilayers on
the Ir(111) surface [44] hosting the triangular bubble lattice
in Fig. 1(a) and CeAuSb2 [45–48] hosting the square bubble
lattice in Fig. 1(b); the former is described by the triple-Q
collinear state, while the latter is described by the double-Q

collinear state. Simultaneously, theoretical model calculations
clarified various mechanisms of the bubble lattices, such as
the competing exchange interaction with single-ion magnetic
anisotropy [49], biquadratic interaction [50], high-harmonic
wave-vector interaction [51], and thermal fluctuations [52].

In the present study, we propose a further intriguing bubble
lattice in tetragonal magnets, which is characterized by a dif-
ferent multiple-Q superposition from the conventional bubble
lattices. By focusing on the geometry and symmetry of the
constituent ordering wave vectors, we find that a checker-
board bubble lattice is engineered on a square lattice by
superposing quadruple-Q spin density waves with the octuple-
period ordering wave vector, where we call it the quadruple-Q
checkerboard bubble lattice (4Q CBL). We show that the 4Q
CBL state is stabilized by taking into account an infinites-
imally small easy-axis two-spin anisotropic interaction and
positive biquadratic interaction by performing analytical and
numerical analyses. In contrast to the conventional SkL and
bubble lattice, the 4Q CBL state does not have the intensity
at high-harmonic ordering wave vectors, which makes it dif-
ficult to distinguish it from a multidomain single-Q state by
small-angle neutron scattering experiments. Instead, the real-
space observation through spectroscopic-imaging scanning
tunneling microscopy measurements [53] is one of the probes
to identify the 4Q CBL state. Moreover, the 4Q CBL state
exhibits a nearly flat-band structure in the strong-coupling
regime. The present result indicates that multiple-Q superpo-
sitions can give rise to further exotic spin textures, which have
not been observed in both theory and experiment, depending
on the symmetry and geometry of the ordering wave vectors.

The organization of this paper is as follows. In Sec. II, we
introduce a minimal spin model to induce the instability to-
ward the 4Q CBL state. We also outline the numerical method
based on the simulated annealing. Then, we show how to
construct the 4Q CBL state by the multiple-Q superposition of
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FIG. 1. Schematic pictures of (a) the triangular bubble lattice
modulated by the triple-Q spin density waves and (b) the square
bubble lattice modulated by the double-Q spin density waves. The
arrows and the color represent the spin moments and their z direction
component; the blue, red, and yellow stand for the up, down, and
zero moments.

the octuple-period spin density waves in Sec. III. Furthermore,
we discuss the stability region of the 4Q CBL state while
changing an external magnetic field and easy-axis two-spin
magnetic anisotropy. In Sec. IV, we discuss the charge density
waves and the electronic band structure in the presence of the
4Q CBL spin texture. Section V summarizes this paper.

II. MODEL AND METHOD

We consider an effective spin model on a two-dimensional
square lattice under the space group P4/mmm, which is ob-
tained by tracing out the itinerant electron degree of freedom
in the Kondo lattice model with the classical spin [54]. By
supposing a weak Kondo coupling compared to the bandwidth
of the itinerant electrons, one can obtain the following spin
model based on the perturbative expansion [55]:

H = −
∑

q

Jq

∑
η=x,y,z

(1 + Iη )Sη
q Sη

−q

+
∑

q

Kq

N

⎡
⎣ ∑

η=x,y,z

(1 + Iη )Sη
q Sη

−q

⎤
⎦

2

− H
∑

i

Sz
i , (1)

where Sq = (Sx
q, Sy

q, Sz
q) is the q component of the spin mo-

ment, and Sη
q is related to the classical spin Sη

i at site i via
the Fourier transformation. We fix the spin length at each site
as |Si| = 1 and take the lattice constant as unity. The first term
represents the bilinear exchange interaction, which is obtained
from the lowest-order contribution in the perturbative expan-
sion; the positive coupling constant Jq > 0 is proportional
to J2

K, where JK stands for the Kondo coupling between the
itinerant electron spin and the localized spin. This bilinear
term is referred to as the Ruderman-Kittel-Kasuya-Yosida
(RKKY) interaction [56–58]. We suppose the anisotropic
form factor for the xy and z components as Iz = −2Ix =
−2Iy, which originates from the relativistic spin-orbit cou-
pling; Iz > 0 (Iz < 0) represents the easy-axis (easy-plane)
anisotropy. Meanwhile, we ignore other magnetic anisotropy
allowed from the symmetry of the square lattice, such as the
bond-dependent magnetic anisotropy [59], since it does not af-
fect the stability of the 4Q CBL state. The second term denotes
the biquadratic interaction with the positive coupling con-
stant Kq > 0, which is derived from the second-lowest-order

contribution in the perturbative expansion, i.e., Kq ∝ J4
K; N

stands for the number of spins in the system. We neglect other
multiple-spin interactions in the form of (Sq1

· Sq2
)(Sq3

· Sq4
),

with q1 + q2 + q3 + q4 = 0 by supposing the strong nesting
of the Fermi surface in the band structure [55,60,61]. Since
Kq corresponds to a higher-order term than Jq in terms of the
Kondo coupling, we set Jq � Kq. The third term represents
the Zeeman coupling in the presence of an external magnetic
field along the out-of-plane direction.

We investigate the ground-state phase diagram of the
model in Eq. (1) by changing the model parameters Jq, Kq,
Iz, and H . Since we suppose Jq � Kq, the magnetic insta-
bility at zero temperature occurs at q∗, satisfying Jq∗ > Jq′

for q∗ �= q′; the circular (elliptical) spiral state with the spiral
pitch q∗ is expected for Iz = 0 (Iz > 0). It is noted that q′ is
determined by the electronic band structure and the chemical
potential. In this situation, almost all of the wave vectors
q′ do not contribute to the energy, which indicates that the
interactions in the q′ channel are not relevant to determine
the ground-state phase diagram. Similar attempts are done
for investigating the square SkL, where several mechanisms
have been clarified by analyzing minimal models, such as
the Dzyaloshinskii-Moriya interaction [7,62,63], positive bi-
quadratic interaction [64,65], magnetic anisotropy [66,67],
dipolar interaction [68], and high-harmonic wave-vector in-
teraction [65,69,70], and for modeling the materials hosting
the SkL [71,72].

Then, we simplify the model by extracting the dominant q
component of the interaction, which is given by

H = − 2J
∑

ν

∑
η=x,y,z

(1 + Iη )Sη

Qν
Sη

−Qν

+ 2
K

N

∑
ν

⎡
⎣ ∑

η=x,y,z

(1 + Iη )Sη

Qν
Sη

−Qν

⎤
⎦

2

− H
∑

i

Sz
i . (2)

We regard the interactions at Qν for ν = 1–4 as the dom-
inant ones: Q1 = (π/4, 3π/4), Q2 = (3π/4,−π/4), Q3 =
(3π/4, π/4), and Q4 = (−π/4, 3π/4), as schematically
shown in Fig. 2. Q1–Q4 correspond to the octuple-period
wave vectors. It is noted that Qν are symmetry equivalent
to each other; for example, Q1 is connected to Q2 by the
fourfold rotational symmetry and Q1 is connected to Q3 by
the mirror symmetry around the [110] direction. This means
that the interaction constants Jq and Kq at Qν are the same;
we set J ≡ JQν

and K ≡ KQν
and choose J as the energy unit,

i.e., J = 1. In other words, we consider the situation where
the bare susceptibility of itinerant electrons shows maxima at
Q1–Q4 by adjusting the model parameters and/or the chemical
potential. As detailed in Sec. III A, the choice of octuple-
period Qν is important to induce the instability toward the
4Q CBL state. The prefactor 2 in the first and second terms
represents the contribution from −Qν .

In the end, the ground-state phase diagram is numerically
obtained by minimizing the energy of the model in Eq. (2)
on the square lattice under the periodic boundary condition,
where the system size is taken at N = 162; we confirmed that
the obtained phase diagram is unchanged for different larger
system sizes N = 322, 642, and 962. To unbiasedly determine
the phase diagram, we adopt simulated annealing based on
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FIG. 2. Ordering wave vectors Q1–Q4 in the Brillouin zone with
−π < kx � π and −π < ky � π . Q1 and Q2 (Q3 and Q4) are con-
nected by the fourfold rotational symmetry. Q1 and Q3 (Q2 and −Q4)
are connected by the mirror symmetry along the [110] ([1̄10]) axis.
Q1 and Q4 (Q2 and Q3) are connected by the mirror symmetry along
the ky (kx) axis.

the standard Metropolis local updates in real space in the
following manner. First, we start from a random spin configu-
ration at a high temperature T0 = 1.5. By gradually reducing
the temperature with a ratio of Tn+1 = 0.999 999Tn in each
Monte Carlo sweep (Tn is the nth-step temperature), we try
to avoid metastable spin configurations [73]. Once the tem-
perature reaches the final temperature taken at Tf = 0.0001,
we perform 105–106 Monte Carlo sweeps for measurements
at the final temperature after 105–106 steps for thermalization.
In order to determine the phase boundaries between different
magnetic states, we also start from the spin patterns obtained
at low temperatures by the above procedure; in this case, we
start the simulations from T0 = 0.01.

To distinguish the multiple-Q state from the single-Q state,
we calculate the spin structure factor, which is given by

Sηη
s (q) = 1

N

∑
i, j

Sη
i Sη

j eiq·(ri−r j ), (3)

for η = x, y, and z; ri is the position vector at site i. We also
compute the Qν component of the magnetic moments as

mη

Qν
=

√
Sηη

s (Qν )

N
. (4)

For the in-plane spin component, we use the notation

mxy
Qν

=
√

Sxx
s (Qν ) + Syy

s (Qν )

N
. (5)

In addition, the net magnetization along the z direction is
given by

Mz = 1

N

∑
i

Sz
i . (6)

III. RESULTS

In this section, we discuss the stability of the 4Q CBL state.
We show that the geometry and symmetry of the ordering
wave vectors Q1–Q4 play an important role in inducing the
multiple-Q superposition in Sec. III A; the energy for the he-
lical state becomes higher than that for the double-Q collinear
(2Q collinear) and 4Q CBL states for Iz > 0. Then, we show
that the 4Q CBL state is chosen as the ground state by ad-
ditionally considering the effect of the positive biquadratic
interaction in Sec. III B. Lastly, we construct the magnetic-
field phase diagram while changing the easy-axis two-spin
anisotropic interaction (Iz) in Sec. III C.

A. Octuple-period spin density waves

First, let us consider the situation where the effect of the
biquadratic interaction is negligible, i.e., K = 0; the model
reduces to the RKKY model with the bilinear exchange inter-
action. By further considering the zero-field case H = 0, the
magnetic instability at zero temperature is determined by the
ratio of Iz/J . When Iz = 0, i.e., the isotropic case, the ground
state is given by the single-Q spiral state with Qν , where the
spiral plane is arbitrary.

Next, we introduce the easy-axis magnetic anisotropy by
setting Iz > 0. By performing the simulated annealing in
Sec. II, we find that two states with different spin configura-
tions appear against Iz, as shown in Fig. 3(a): the 2Q collinear
state and the 4Q CBL state. It is noted that these two states
are energetically degenerate irrespective of the value of Iz,
although their energy is lower than that in the single-Q spiral
state. Thus, the multiple-Q instability occurs even without the
biquadratic (multiple-spin) interaction or the magnetic field in
the presence of an infinitesimally small Iz.

The real-space spin configurations and spin structure fac-
tors in the two states are shown in Figs. 3(b)–3(e). Both
states are characterized by collinear spin textures, as shown
in Fig. 3(b) for the 2Q collinear state and Fig. 3(c) for the
4Q CBL state. In other words, there are no xy-spin compo-
nents in these two states. In the 2Q collinear state, the spin
configuration is characterized by a double-Q superposition
with different intensities at Q1 and Q3, as shown in the spin
structure factor in Fig. 3(d). It is noteworthy that the con-
stituent wave vectors in the 2Q collinear state are connected
by the mirror symmetry rather than the rotational symmetry in
contrast to conventional multiple-Q states including the SkL.
Since these superpositions are not distinguishable from each
other if the wave vectors are located at high-symmetric lines
in the Brillouin zone like Qν ‖ [100] or Qν ‖ [110] [59], this
result indicates that the low-symmetric ordering wave vectors
can give rise to further intriguing multiple-Q states. A similar
multiple-Q superposition also happens in the 4Q CBL state. In
this case, a quadruple-Q superposition with equal intensities
at Q1–Q4 appears in the spin structure factor so as to keep
fourfold rotational symmetry, as shown in Fig. 3(e). Reflecting
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FIG. 3. (a) Ground-state phase diagram with changing Iz at K =
H = 0. The 1Q spiral state only appears at Iz = 0; it degenerates with
the 2Q collinear and 4Q CBL states. For Iz > 0, the 2Q collinear and
4Q CBL states become the ground state. Real-space spin configu-
ration of (b) the 2Q collinear state and (c) the 4Q CBL state. The
red and blue circles represent Sz

i = +1 and Sz
i = −1, respectively. In

panel (c), the dashed square denotes the unit of the bubble. The z
component of the spin structure factor of (d) the 2Q collinear state
and (e) the 4Q CBL state.

the fourfold-symmetric spin structure factor, the real-space
spin configuration is also fourfold-symmetric, as shown in
Fig. 3(c). By closely looking at the real-space spin configu-
ration, one finds that the unit of the bubble denoted by the
dashed square aligns in a checkerboard way; the “antibubble”
with the opposite Sz

i to the bubble appears next to the bubble
so that the total magnetization in the whole system vanishes.
This is why we call this state the 4Q CBL state.

We find the analytical expressions of the spin configuration
in these two states. In the 2Q collinear state, it is given by

Sz
i = 1√

2

[
− sin

(
Q1 · ri − π

4

)
− sin(Q1 · ri )

+ sin

(
Q3 · ri + π

4

)
− sin(Q3 · ri )

]
, (7)

with Sx
i = Sy

i = 0. Meanwhile, the spin pattern in the 4Q CBL
state is given by

Sz
i = 1√

2

[
sin

(
Q1 · ri + π

4

)
+ sin(Q2 · ri )

− sin

(
Q3 · ri − π

4

)
− sin(Q4 · ri )

]
, (8)

with Sx
i = Sy

i = 0. It is noted that both spin configurations
in Eqs. (7) and (8) satisfy |Si| = 1 at any site without the
normalization factor.

From the expressions in Eqs. (7) and (8), one obtains the
Qν component of the magnetic moments. In the 2Q collinear
state, nonzero (mz

Qν
)2 are given by

(
mz

Q1

)2 = 2 + √
2

8
,

(
mz

Q3

)2 = 2 − √
2

8
, (9)

and, in the 4Q CBL state, they are given by(
mz

Q1

)2 = (
mz

Q2

)2 = (
mz

Q3

)2 = (
mz

Q4

)2 = 1
8 . (10)

From the relation (m−Qν
)2 = (mQν

)2, both states satisfy∑
ν[(mz

Qν
)2 + (mz

−Qν
)2] = 1, which indicates that there are

no contributions from the magnetic moments with the high-
harmonic wave vectors.

It is surprising that no intensities at high-harmonic wave
vectors appear in both the 2Q collinear and 4Q CBL states
in spite of their multiple-Q structures. Although similar sit-
uations have been found when the multiple-Q wave vectors
lie at the high-symmetric points at the Brillouin zone bound-
ary [61,74,75], the case under the low-symmetric ordering
wave vectors is rare [76]; for example, the double-Q SkL
consisting of the wave vectors q1 and q2 with q1 ⊥ q2 exhibits
the intensity at q1 + q2 [77].

The absence of high-harmonic wave-vector contributions
is understood from the geometry and symmetry of the con-
stituent ordering wave vectors Q1–Q4. When considering the
sinusoidal spiral modulation at the Q1 component, the high-
harmonic wave vectors contributing to the spin configuration
are attributed to 3Q1, 5Q1, 7Q1, . . . owing to the local con-
straint of the spin length (|Si| = 1). In the present choice
of Q1 = (π/4, 3π/4), these high-harmonic wave vectors are
reduced to the symmetry-equivalent ones to Q1 except for the
translation by the reciprocal lattice vectors G1 = (2π, 0) and
G2 = (0, 2π ) as follows:

3Q1 =
(

3π

4
,

9π

4

)
= Q3δG2,0,

5Q1 =
(

5π

4
,

15π

4

)
= −Q3δG1,0δG2,0,

7Q1 =
(

7π

4
,

21π

4

)
= −Q1δG1,0δG2,0,

9Q1 =
(

9π

4
,

27π

4

)
= Q1δG1,0δG2,0, (11)

where δ is the Kronecker delta; see also Fig. 4. This result
indicates that the relation of the octuple-period wave vec-
tors connected by the mirror symmetry is essential, which
is characteristic of the low-symmetric wave vectors. Sim-
ilarly, 3Q2, 5Q2, 7Q2, . . . are described by ±Q2 and ±Q4.
This is why these multiple-Q states have the intensities only
at Q1, Q2, Q3, and Q4. Such a situation does not hold for
high-symmetric wave vectors along the [100] and [110] di-
rections and other low-symmetric wave vectors except for
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FIG. 4. Ordering wave vectors at Q1, 3Q1, 5Q1, 7Q1, and 9Q1

in the extended Brillouin zone. G1 and G2 represent the reciprocal
lattice vectors.

octuple-period ones, such as q = (3π/4, 3π/8); the single-Q
spiral state is favored instead of multiple-Q states irrespec-
tive of the presence or absence of Iz. In other words, the
octuple-period ordering wave vectors play an important role.
We discuss the results for the different ordering wave vectors
from Q1–Q4 in Appendix A.

The expressions in Eqs. (7) and (8) also mean degenerate
energies between the 2Q collinear and 4Q CBL states. By cal-
culating the energy from the Hamiltonian in Eq. (2), it is given
by J (1 + Iz ) for both states. Thus, these states have the same
energy within the bilinear RKKY interaction, which indicates
that other interactions, such as higher-order interactions, are

-1.2

-1.1

 0.0  0.1  0.2

E
n
er

g
y

K

2Q collinear

4Q CBL

FIG. 5. K dependence of the energy in the 2Q collinear and 4Q
CBL states at Iz = 0.2 and H = 0.

required to lift their degeneracy, as is discussed in the next
section.

B. Instability toward checkerboard bubble lattice

To lift the degeneracy within the RKKY interaction, let us
consider the effect of the biquadratic interaction K . We show
the K dependence of the energy for the 2Q collinear and 4Q
CBL states at Iz = 0.2 and H = 0 in Fig. 5. The data clearly
show that their degeneracy is lifted for an infinitesimal small
K ; the energy in the 4Q CBL state becomes lower (higher)
than that in the 2Q collinear state for K > 0 (K < 0). This
is also understood from the expressions in Eqs. (7) and (8):
the energy cost by K in the 2Q collinear state is evaluated as
3K (1 + Iz )2/8, while that in the 4Q CBL state is evaluated
as K (1 + Iz )2/8. Thus, nonzero positive (negative) K leads to
instability toward the 4Q CBL (2Q collinear) state.

C. Phase diagram under external magnetic field

We construct the magnetic phase diagram under the ex-
ternal magnetic field at K = 0.05 in Fig. 6. As shown in the
phase diagram, the 4Q CBL state is stabilized in the low-field
region irrespective of Iz, as discussed in Sec. III B. As H is
increased, the 4Q CBL state turns into another quadruple-Q
(4Q) state, whose real-space spin configuration and spin struc-
ture factor are shown in Fig. 7. We also plot the H dependence
of Mz, (mxy

Qν
)2, and (mz

Qν
)2 at several Iz in Fig. 8.

As shown in the real-space spin configuration in Fig. 7(a)
for H = 1 and Fig. 7(b) for H = 1.5, the 4Q state exhibits
a complicated non-coplanar spin texture. Similarly to the 4Q
CBL state, the 4Q state is characterized by the quadruple-Q
peaks with the same intensity in the spin structure factor, al-
though such a peak structure appears in the xy-spin component
rather than the z-spin one, as shown in Figs. 7(c) and 7(d).
Thus, this phase transition is regarded as a spin-flop transi-
tion, where the spin modulation changes from the z direction
parallel to H to the xy plane perpendicular to H . It is noted that
all the intensities in the spin structure factor are located at Qν

so that the contributions from other wave vectors are absent,
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FIG. 6. Magnetic ground-state phase diagram in the plane of Iz

and H at K = 0.05, which is obtained by the simulated annealing for
the model in Eq. (2).

which might be attributed to the fact that the high-harmonic
wave vectors, like 3Q1, 5Q1, 7Q1, and so on, correspond to
the symmetry-equivalent ones, as discussed in Sec. III A. It is
also noted that there is no net scalar spin chirality in this state.

From the result in Fig. 8, the transition between the 4Q
CBL and 4Q states is of first order with jumps of Mz, (mxy

Qν
)2,

and (mz
Qν

)2 in Figs. 8(a) and 8(b). Especially, one finds the

 0

 4

 8

)b()a(

 0

 2

 4

0

0

)d()c(

0

0

0

1

-1

FIG. 7. Real-space spin configuration of the 4Q state in the high-
field region for (a) H = 1 and (b) H = 1.5 at Iz = 0.1. The arrows
and color denote the xy- and z-spin components, respectively. Square
root of the spin structure factor in (c) the xy and (d) z components at
H = 1 and Iz = 0.1.

magnetic plateau in the zero-field region, indicating a finite
spin gap owing to the collinear spin configuration along
the easy-axis direction. By further increasing H in the 4Q
state, (mxy

Qν
)2 is gradually reduced and this state continuously

changes into the fully polarized state with Sz
i = 1.

When Iz is increased, the region of the 4Q state is shrunk
and vanishes at Iz = 0.5; the direct transition from the 4Q
CBL state to the fully polarized state occurs by a drastic jump
of the magnetization from Mz = 0 to Mz = 1, as shown in
Fig. 8(c). The critical value of H between this direct transition
is given by | − J (1 + Iz ) + K (1 + Iz )2/8|.

IV. DISCUSSION

A. Charge density wave

Since the 4Q CBL state exhibits no intensity at high-
harmonic wave vectors, such as Q1 + Q2, it is difficult to
distinguish the 4Q CBL state from the multidomain single-
Q state or the multidomain 2Q collinear state in diffraction
experiments, such as the small-angle neutron scattering, in
contrast to the conventional multiple-Q states like the SkL.
We here propose how to identify the 4Q CBL state by other
measurements. One of the powerful measurements is the
spectroscopic-imaging scanning tunneling microscopy mea-
surement, which has been recently used to detect multiple-Q
states in GdRu2Si2 [53]. This method enables us to derive the
charge density modulations in real and momentum spaces,
which are brought about by the formation of magnetic tex-
tures [78].

As an example, we show the charge-density distributions
in the 2Q collinear state and the 4Q CBL state in both real and
momentum spaces in Figs. 9(a) and 9(b), respectively. Here,
we calculate these quantities for the original Kondo lattice
model, which is given by

H = −t
∑
i, j,σ

c†
iσ c jσ + JK

∑
i

si · Si, (12)

where c†
iσ and ciσ are creation and annihilation operators of

an itinerant electron at site i and spin σ . For simplicity, we
consider the nearest-neighbor hopping t = 1 in the first term
and we set JK = 0.2; si is the itinerant electron spin and Si

is the localized spins. For Si, we substitute the expressions
in Eqs. (7) or (8). The local charge density measured from the
average density is given by ni = ∑

σ 〈c†
iσ ciσ 〉 − nave (nave is the

average density) and the charge structure factor is given by

n(q) = 1

N

∑
i j

nin je
iq·(ri−r j ). (13)

We set the chemical potential μ = 0.5 without loss of
generality.

As shown by the real-space charge distributions in the
left panels of Figs. 9(a) and 9(b), both 2Q collinear and
4Q CBL states accompany charge modulations but their spa-
tial alignments are different from each other; the modulated
pattern breaks the fourfold rotational symmetry for the 2Q
collinear state, while it keeps the fourfold rotational symme-
try for the 4Q CBL state. Such a feature is clearly seen in
momentum space, as shown in the right panels of Figs. 9(a)
and 9(b). The 2Q collinear state exhibits the intensity at
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FIG. 8. H dependence of the magnetization Mz (top panels), (mxy
Qν

)2 (middle panels), and (mz
Qν

)2 (bottom panels) for (a) Iz = 0.1,
(b) Iz = 0.3, and (c) Iz = 0.5 at K = 0.05. The vertical lines represent the phase boundaries between different magnetic states.

QCDW
2Q = (−π/2, π/2), while the 4Q CBL state exhibits the

intensities at QCDW
4Q = (−π/2, π/2), Q′CDW

4Q = (π/2, π/2),
Q′′CDW

4Q = (π/2, 0), and Q′′′CDW
4Q = (0, π/2).

The emergent peak positions in the charge structure factor
are analytically derived from the expression as [78]

nq ∝
∑
q1,q2

(Sq1
· Sq2

)δq1+q2,q+l1G1+l2G2 , (14)

where nq is the Fourier transform of ni and l1,2 are inte-
gers. By substituting the expression in Eq. (7) into (Sq1

· Sq2
)

in Eq. (14), one finds that nQ1+Q3
= 0 but nQ1−Q3

�= 0 and
n2Q3

�= 0 in the 2Q collinear state by using the relation
(−π/2, π/2) = Q1 − Q3 = 2Q3 − G1. When the spin pattern

of the 2Q collinear state is characterized by a superposition of
the Q2 and Q4 components instead of the Q1 and Q3 ones, the
charge modulation occurs at the Q2 + Q4 = (π/2, π/2) com-
ponent. Thus, the multidomain structure in the 2Q collinear
state exhibits the charge modulations at q = (−π/2, π/2) and
(π/2, π/2).

In a similar manner, the finite intensities at QCDW
4Q , Q′CDW

4Q ,
Q′′CDW

4Q , and Q′′′CDW
4Q are explained by nonzero (Sq1

· Sq2
)

for q1, q2 = Q1, Q2, Q3, Q4. It is noteworthy that the 4Q
CBL state accompanies the charge density waves at Q′′CDW

4Q

and Q′′′CDW
4Q , which do not appear in the 2Q collinear

state. The appearance of Q′′CDW
4Q and Q′′′CDW

4Q is attributed to
nonzero contributions from a superposition of ±Q1 and ±Q4
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FIG. 9. (Left panels) Real-space distributions of the local charge
density measured from the average density in (a) the 2Q collinear
state and (b) the 4Q CBL state at JK = 0.2 and μ = 0.5. (Right
panels) The square root of the charge structure factor except for the
q = 0 component.

(±Q3 and ±Q2), such as Q1 − Q4 = (π/2, 0). Thus, the 2Q
collinear and 4Q CBL states are distinguishable by detecting
the charge density wave even in the presence of the multido-
main structure.

B. Electronic band structure

Finally, let us discuss a characteristic electronic structure
under the 4Q CBL state. By closely looking at the real-space
spin configuration in Fig. 3(c), the down spins are surrounded
by the up spins in the bubble denoted by the dashed square in
the 4Q CBL state. This indicates the possibility of real-space
localization when the itinerant electron spins are strongly cou-
pled to localized spins, i.e., the double-exchange limit [79,80].
Indeed, one finds the nearly flat-band dispersion in the 4Q
CBL state, while it does not appear in the 2Q collinear state, as
shown in Figs. 10(b) and 10(a), in the strong-coupling regime;
we set the lattice constant a = 8 in this section. We also show
the electronic band structure far from the strong-coupling
regime in the 4Q CBL state in Appendix B for reference.
Thus, intriguing transport phenomena can be expected under
the 4Q CBL state when the exchange coupling between itin-
erant electron spins and localized spins is strong.

V. SUMMARY

To summarize, we have investigated multiple-Q bubble-
lattice instability consisting of sinusoidal spin density waves
on the square lattice. By focusing on the geometry and sym-
metry of the ordering wave vectors in momentum space, we
find that octuple-period spin density waves naturally give rise
to two types of collinear multiple-Q superpositions, the 2Q
collinear and 4Q CBL states, for an infinitesimal easy-axis

-53

-51

-49

-47

E
n
er

g
y

-53

-51

-49

-47

E
n

er
g

y

(a)

(b)

FIG. 10. Electronic band dispersion along the high-symmetric
lines under (a) the 2Q collinear state and (b) the 4Q CBL state at
JK = 100.

magnetic anisotropy within the RKKY level. In contrast to
conventional multiple-Q states consisting of spiral waves like
the SkL, no intensities at high-harmonic wave vectors among
the constituent ordering wave vectors appear in these states.
We show that the 4Q CBL state becomes the ground state in

O

a

b

c

d

ef
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h

FIG. 11. The ordering vectors different from Q1.
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FIG. 12. (Left panels) Real-space spin configurations at Iz = 0.2, K = 0.05, and H = 0 for the ordering wave vectors (a) Qa, (b) Qb,
(c) Qc, and (d) Qd . The arrows and color denote the xy- and z-spin components, respectively. (Middle and right panels) Square root of the spin
structure factor in the xy and z components.

the presence of the positive biquadratic interaction by per-
forming numerical and analytical calculations. In addition,
we show that the 4Q CBL state exhibits the magnetization
plateau in the zero-field region owing to the large spin gap.
Moreover, we demonstrate that the 4Q CBL state accompanies
the characteristic charge density waves, which are detected

by the spectroscopic-imaging scanning tunneling microscopy
measurements. We also discuss the nearly flat-band struc-
ture under the 4Q CBL state in the strong-coupling regime.
Our results indicate a further possibility of realizing exotic
multiple-Q states by controlling the positions of the ordering
wave vectors.
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FIG. 13. The same plot as Fig. 12 for the different ordering wave vectors: (a) Qe, (b) Q f , (c) Qg, and (d) Qh.
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APPENDIX A: SPIN CONFIGURATIONS FOR DIFFERENT
ORDERING WAVE VECTORS

In this section, we investigate the instability toward
multiple-Q states at the ordering wave vectors distinct from
Q1 in the main text. We consider eight sets of the ordering
wave vectors different from Q1, which are defined as

Qa = Q1 +
(

−π

8
,
π

8

)
, (A1)
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FIG. 14. Electronic band dispersion along the high-symmetric
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Qb = Q1 +
(π

8
,−π

8

)
, (A2)

Qc = Q1 +
(π

8
,
π

8

)
, (A3)

Qd = Q1 +
(
−π

8
,−π

8

)
, (A4)

Qe = Q1 +
(π

8
, 0

)
, (A5)

Q f = Q1 +
(
−π

8
, 0

)
, (A6)

Qg = Q1 +
(

0,
π

8

)
, (A7)

Qh = Q1 +
(

0,−π

8

)
, (A8)

where we also change the positions of Q2–Q4 so that the
fourfold rotational symmetry is satisfied. Figure 11 shows the
positions of Qa − Qh.

By performing the simulated annealing for the model with
the interactions at one out of eight ordering wave vectors in
Eq. (A1)–(A8), we find that a similar multiple-Q instability
appears for the cases with Qa and Qb, while it does not for
the cases with Qc–Qh. We show the data for the real-space
spin configurations and spin structure factors at Iz = 0.2,
K = 0.05, and H = 0 in each case in Figs. 12(a)–12(d) and
Figs. 13(a)–13(d); the quadruple-Q states with different spin
configurations are realized in Figs. 12(a) and 12(b). From
this observation, one finds that the ordering wave vectors
lying on the line Qx + Qy = π are important to induce the
multiple-Q instability. Meanwhile, it is noted that the obtained
quadruple-Q states have both xy- and z-spin components,
which is different from the 4Q CBL state with the collinear
spin texture in the main text. This difference is presumably
owing to the different positions of the ordering wave vectors,
which leads to the different superpositions of the spin density
waves. Indeed, there are no intensities at wave vectors except
for Q1–Q4 in the 4Q CBL state, while there are intensities
at wave vectors distinct from Qa (Qb) in the quadruple-Q
state, as shown in the middle and right panels of Fig. 12(a)
[Fig. 12(b)].

APPENDIX B: ELECTRONIC BAND STRUCTURES
FAR FROM THE STRONG-COUPLING REGIME

We show the electronic band structure under the 4Q CBL
spin texture for different values of JK in Fig. 14. As shown in
Fig. 14, the bands become more dispersive with decreasing
JK, since the electrons can hop between the sites with an-
tiparallel spins far from the double-exchange limit. Thus, the
strong coupling is required to realize the flat-band structure,
as discussed in Sec. IV B.
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