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solvable SO(n) spin chains

Sreejith Chulliparambil ,1,2,* Hua-Chen Zhang ,3,1,*,† and Hong-Hao Tu 1

1Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany
2Max-Planck-Institut für Physik Komplexer Systeme, Nöthnitzer Straße 38, 01187 Dresden, Germany

3Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

(Received 5 May 2023; revised 28 July 2023; accepted 17 August 2023; published 7 September 2023)

We introduce a family of SO(n)-symmetric spin chains which generalize the transverse-field Ising chain for
n = 1. These spin chains are defined with gamma matrices and can be exactly solved by mapping to n species
of itinerant Majorana fermions coupled to a static Z2 gauge field. Their phase diagrams include a critical point
described by the Spin(n)1 conformal field theory as well as two distinct gapped phases. We show that one of
the gapped phases is a trivial phase and the other realizes a symmetry-protected topological phase when n � 2.
These two gapped phases are proved to be related to each other by a Kramers-Wannier duality. Furthermore,
other elegant structures in the transverse-field Ising chain, such as the infinite-dimensional Onsager algebra, also
carry over to our models.
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I. INTRODUCTION

Quantum spin chains have long been a fascinating area
of research in physics, with some exactly solvable exam-
ples offering invaluable insights into many-body physics. One
such model is the transverse-field Ising (TFI) chain, which is
widely studied as an exemplary model for investigating quan-
tum phase transitions and critical phenomena [1–3]. The TFI
chain exhibits several intriguing properties from a theoretical
perspective, such as the Kramers-Wannier (KW) duality [4]
that maps between ordered and disordered phases, and the
Onsager algebra [5], which has played a key role in Onsager’s
epoch-making solution of the two-dimensional classical Ising
model [6] (that is equivalent to the quantum TFI chain in a
certain limit [7,8]) and ensures the integrability [9].

While some of the TFI chain’s desirable properties are
retained in certain generalizations (such as Zn clock chains
[10]), duality and other beautiful structures are more often
only present in the low-energy limit rather than at the lattice
level. An example is the spin-1 bilinear-biquadratic chain
near the Takhtajan-Babujian (TB) point [11,12]. The TB point
is critical and its low-energy effective theory is the SU(2)2

Wess-Zumino-Witten (WZW) model [13] (up to marginally
irrelevant terms), which can be formulated in terms of three
massless Majorana fermions [14,15]. The adjacent Haldane
and dimerized phases are gapped, and the phase transition,
occurring at the TB point, can be understood as a sign change
of the Majorana fermion masses [where three masses are
locked to be the same by the SO(3) symmetry] [14–17]. At
the field-theory level, this is similar to the situation in the TFI
model where the transition between ordered and disordered
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phases is described by a sign change of a single Majorana
fermion mass. However, the duality between Haldane and
dimerized phases is no longer manifest on the lattice [18]. A
similar situation also arises in spin-1/2 ladders [19,20] and
the SO(n)-symmetric bilinear-biquadratic chain [21–25].

In this paper, we present a solution of the TFI chain us-
ing the Majorana fermion representation of spin-1/2 Pauli
operators [26] and generalize it to derive a class of exactly
solvable gamma-matrix chains. This is largely inspired by
a recent paper [27] generalizing Kitaev’s honeycomb model
to exactly solvable gamma-matrix models realizing Kitaev’s
sixteenfold way of anyon theories in two dimensions. The
gamma-matrix chains, which we shall introduce in this paper,
possess an exact SO(n) symmetry and can be represented
by n species of free itinerant Majorana fermions that are
simultaneously coupled to a static Z2 gauge field. The phase
diagram of these models includes a critical point described
by the Spin(n)1 conformal field theory (CFT), as well as two
distinct gapped phases. One of these two gapped phases is
a symmetry-protected topological (SPT) phase (for n � 2),
while the other is a trivial phase. The phase transition is indeed
described by the sign change of n Majorana fermion masses in
the low-energy, long-wavelength limit and, at the same time,
the appealing properties of the TFI chain, including the KW
duality and the Onsager algebra, are retained at the lattice
level.

The rest of this paper is structured as follows. In Sec. II, we
introduce the exactly solvable SO(n) spin chains and present
their solutions. In Sec. III, we show that the critical point of
these SO(n) spin chains is described by the Spin(n)1 CFT.
In Sec. IV, we turn to the two gapped phases separated by
the Spin(n)1 critical point. The emphasis will be given to
two limiting cases whose ground states are fixed-point wave
functions with zero correlation length. In Sec. V, we show
the presence of exact KW duality and the Onsager algebra in
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our models. Section VI summarizes this paper and gives some
outlooks. The Appendix provides explicit representations of
the gamma matrices forming the Clifford algebra Cl2n+1,0(R).

II. MODELS

A. Transverse-field Ising chain

We begin with the familiar spin-1/2 TFI chain, of which
the Hamiltonian reads

HTFI = −
N∑

j=1

(
Jσ z

j σ
z
j+1 − hσ x

j

)
, (1)

where σα (α = x, y, z) are Pauli matrices and J , h are real
parameters. In Eq. (1) and throughout this paper, we assume
that N is even and impose periodic boundary condition (e.g.,
σ z

N+1 ≡ σ z
1 for the TFI chain). It is well-known that this model

can be solved exactly by using the Jordan-Wigner transfor-
mation, under which Eq. (1) is mapped to a Hamiltonian of
free fermions [28]. While the Jordan-Wigner transformation
involves the introduction of nonlocal string operators, here
we follow a different approach that is purely local and easily
generalized to the so(n) case, as we shall see below.

Our approach takes inspiration from the solution of the
celebrated Kitaev’s honeycomb model [26], where the Pauli
matrices are represented by four Majorana operators bx, by,
bz, and c as follows:

σα = ibαc, α = x, y, z. (2)

Using the algebraic relations satisfied by the Majorana opera-
tors,

{bα, bβ} = 2δαβ, {bα, c} = 0, c2 = 1, (3)

where α, β = x, y, z, it is easy to verify that σ x, σ y, σ z defined
by Eqs. (2) indeed satisfy the algebra expected for Pauli ma-
trices. However, a constraint bxbybzc = 1 needs to be imposed
to remove unphysical states, since four Majorana operators
span a four-dimensional Hilbert space, whereas the (physical)
Hilbert space of a spin-1/2 is two-dimensional.

In the physical subspace defined by bxbybzc = 1, one can
also represent the Pauli operators as σ z = −ibxby and σ x =
−ibybz. For the TFI Hamiltonian Eq. (1), we use σ x = −ibybz

(σ z = ibzc) in the transverse-field (Ising coupling) term and
obtain

HTFI = i
N∑

j=1

(
Ju j, j+1by

jb
z
j+1 + hbz

jb
y
j

)
, (4)

with u j, j+1 ≡ ibx
jc j+1, as depicted in Fig. 1(a). Obvi-

ously, the operators u j, j+1 commute among themselves and
[HTFI, u j, j+1] = 0, and the eigenvalues of u j, j+1 are ±1. Thus,
u j, j+1 can be interpreted as a static Z2 gauge field; the
signs of u j−1, j and u j, j+1 are flipped by the action of gauge
transformation Dj ≡ bx

jb
y
jb

z
jc j , and the unphysical states are

removed by the projector
∏

j[(1 + Dj )/2]. The Z2 flux w ≡
u1,2u2,3 · · · uN−1,N uN,1, which is well-defined for a periodic
chain, is gauge invariant and has eigenvalues ±1 since w2 =
1. In fact, w can be expressed in terms of the spin operators
as w = −∏N

j=1 σ x
j and is hence the global Z2 symmetry of

the TFI chain. All configurations of the gauge field with

ℎ

(a) (b)

= 1 = 2

ℎ

FIG. 1. Schematics of (a) the TFI chain (n = 1) and (b) the n = 2
model in the Majorana representation. The blue links represent the
Majorana fermions from two neighboring sites which form the static
Z2 gauge field. The green and red links represent the couplings of
itinerant Majorana fermions at two neighboring sites and the same
site, respectively.

the corresponding w = +1 (or −1) form an equivalent class
modulo gauge transformations. Without loss of generality,
we choose u j, j+1 = uN,1 = 1 with j = 1, . . . , (N − 1) as the
representative of the class with w = +1, and uj, j+1 = 1 for
j = 1, . . . , (N − 1) and uN,1 = −1 as that with w = −1.
In both cases, the Hamiltonian Eq. (4) can be collectively
written as

HTFI = i
N∑

j=1

(
Jby

jb
z
j+1 + hbz

jb
y
j

)
, (5)

with the definition cN+1 ≡ wc1. Because of the periodic
boundary condition of spins (σ z

N+1 ≡ σ z
1 ), the itinerant and

gauge Majorana fermions (bz and c, respectively) must have
the same boundary condition, which is periodic when w = +1
and antiperiodic when w = −1. We have seen that after this
gauge-fixing procedure, Eq. (1) reduces to a Hamiltonian of
free Majorana fermions (also known as the Kitaev chain [29]),
which can readily be diagonalized by usual techniques of
Fourier transformation.

B. SO(n)-symmetric spin chains

Inspired by the Majorana representation Eqs. (2) of Pauli
matrices, it is natural to define for a generic positive integer
n the following Majorana representation of (2n + 1) gamma
matrices [27,30–37],

�α = ibαc, α = 1, 2, . . . , (2n + 1), (6)

where b1, . . . , b2n+1 and c are Majorana operators. These
gamma matrices generate the Clifford algebra Cl2n+1,0(R)
with the anticommutation relation {�α, �β} = 2δαβ . The
(generalized) spin operators are represented in terms of
the gamma matrices as well as their commutators �αβ ≡
i
2 [�α, �β] = ibαbβ , and the spin-chain Hamiltonian is defined
as [38]

H =
N∑

j=1

n∑
α=1

(
J�2α−1,2n+1

j �2α
j+1 − h�2α,2α−1

j

)
. (7)
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For the sake of definiteness, we make the assumption that J >

0, h > 0 throughout this paper. Similar to the case of the TFI
chain, the dimension of the local Hilbert space spanned by the
Majorana operators (2n+1) has to be reduced by half to obtain
that of the physical subspace (2n); this can be achieved by
restricting the local fermion parity

Qj = (
ib1

jb
2
j

) · · · (ib2n−1
j b2n

j

)(
ib2n+1

j c j
)

= in�1
j �

2
j · · · �2n+1

j (8)

to be Qj = +1 or Qj = −1 (note that Q2
j = 1).

In the Majorana representation, the Hamiltonian Eq. (7) is
rewritten as

H = −i
N∑

j=1

n∑
α=1

(
Ju j, j+1b2α−1

j b2α
j+1 + hb2α

j b2α−1
j

)
, (9)

where the example with n = 2 is shown in Fig. 1(b). Here,
u j, j+1 ≡ ib2n+1

j c j+1 is again a static Z2 gauge field whose
eigenvalues u j, j+1 = ±1 label subspaces of the (extended)
Hilbert space; the gauge-invariant loop operator

w ≡
⎛⎝N−1∏

j=1

u j, j+1

⎞⎠uN,1 = −
N∏

j=1

�2n+1
j (10)

is a Z2 symmetry of the Hamiltonian Eq. (7). In fact, from
the Majorana representation Eq. (9), it is clear that when
n > 1 the Hamiltonian also exhibits a global SO(n) symme-
try, which is associated with the rotation among Majorana
operators b1

j, b3
j, . . . , b2n−1

j as well as b2
j, b4

j, . . . , b2n
j . This

symmetry transformation is generated by the operators Mαβ ≡∑N
j=1(�2α−1,2β−1

j + �
2α,2β
j ), 1 � α < β � n, which form the

so(n) Lie algebra (up to a normalization constant) and com-
mute with w in Eq. (10). In the Appendix, it is shown
that, by suitably choosing the gamma matrices generating
Cl2n+1,0(R), the model defined by Eq. (7) is equivalent to
the TFI chain Eq. (1) when n = 1 and reduces to a spin-1/2
bond-alternating XY chain when n = 2.

The total fermion parity of the whole chain is given by

Qtotal =
N∏

j=1

Qj = QitinerantQgauge, (11)

where

Qgauge =
N∏

j=1

(
ib2n+1

j c j
) = −w (12)

is the total parity of gauge fermions and

Qitinerant =
N∏

j=1

[(
ib1

jb
2
j

) · · · (ib2n−1
j b2n

j

)]
(13)

is that of itinerant fermions. For either choice (Qj = +1 or
Qj = −1) of the local fermion parity, we have Qtotal = 1
since N is even. Thus, the parities of the itinerant and gauge
fermions are bounded to be the same, Qgauge = Qitinerant =
−w, which intimately relate to the boundary condition of
Majorana fermions. Following the terminology used in CFT,
we call the subspaces with w = +1 and w = −1 the Ramond

(R) sector and Neveu-Schwarz (NS) sector, respectively. As
we shall see in Sec. III, projecting into sectors with definite
eigenvalues of Qitinerant is crucial for revealing the nature of
the quantum criticality.

III. SPIN(n)1 CRITICALITY

As in the case of the TFI chain, the Hamiltonian Eq. (9) is
bilinear in the fermion operators after the gauge fixing,

H = −i
N∑

j=1

n∑
α=1

(
Jb2α−1

j b2α
j+1 + hb2α

j b2α−1
j

)
, (14)

for both the R sector (with w = +1) and the NS sector (with
w = −1). To diagonalize this Hamiltonian and obtain the full
energy spectrum, let us first perform an unfolding transforma-
tion by relabeling the Majorana operators as

dα
l =

{
b2α

j ,

b2α−1
j ,

l = 2 j − 1
l = 2 j

, (15)

in which α = 1, . . . , n and l = 1, 2, . . . , 2N ; note that the
length of the chain is doubled. We then proceed by transform-
ing into Fourier space,

dα
l = 1√

N

∑
k

d̃α
k eikl , (16)

where the momenta are quantized according to the boundary
condition dα

2N+1 ≡ wdα
1 as

k =
{

± π
2N ,± 3π

2N , . . . ,± (2N−1)π
2N , NS sector

0,± 2π
2N ,± 4π

2N , . . . ,± (2N−2)π
2N , π, R sector.

(17)

With the inverse transformation

d̃α
k = 1

2
√

N

2N∑
l=1

dα
l e−ikl , (18)

it is straightforward to verify {d̃α
k , (d̃β

k′ )†} = δαβδkk′ and
(d̃α

k )† = d̃α
−k (note that modes with k = π and k = −π are

identified). In particular, d̃α
0 and d̃α

π are Hermitian and satisfy
(d̃α

0 )2 = (d̃α
π )2 = 1/2.

In terms of the Fourier modes Eq. (18), the Hamiltonian
Eq. (14) is diagonalized via a unitary rotation in the space
spanned by these modes. Let us postpone the discussion of
the physics at generic J and h to Sec. IV and focus in this sec-
tion on the case J = h, for which the Hamiltonian is already
diagonalized without further rotation. Indeed, the Hamiltonian
for both sectors now reads

H (NS/R) =
n∑

α=1

∑
k∈K (NS/R)

ε(k)
(
d̃α

k

)†
d̃α

k + E (NS/R)
0 , (19)

where K (NS) ≡ { π
2N , 3π

2N , . . . , (2N−1)π
2N }, K (R) ≡ { 2π

2N , 4π
2N , . . . ,

(2N−2)π
2N }, the dispersion ε(k) = 4J sin k, and the vacuum en-

ergies in both sectors are

E (NS)
0 = − 2nJ

sin π
2N

, E (R)
0 = −2nJ cot

π

2N
. (20)
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It is worth emphasizing that the modes d̃α
0 and d̃α

π in the R
sector do not appear in Eq. (19); one could combine them as
f α
0 ≡ (d̃α

0 − id̃α
π )/

√
2 to obtain n fermionic zero modes.

The complete thermodynamic properties of these models
at temperature T are encoded in the partition function, which
is defined as Z (T ) = Tr(e−H/T ) (the Boltzmann constant is
set to unity). In the path integral picture, this amounts to
considering a periodic evolution of the quantum Hamiltonian
with imaginary time 1/T , resulting in a torus in the space-
time. According to the discussions above, the full partition
function is the sum of contributions in the NS and R sectors,
Z = ZNS + ZR. In the definition of ZNS, the trace is taken over
all energy eigenstates in the NS sector. However, as discussed
in Sec. II, the parity of the itinerant fermions must be restricted
to Qitinerant = +1 (respectively, −1) in the NS (respectively,
R) sector. Thus, each of the energy eigenstates in the NS
sector is labeled by a configuration {Fα

k }k∈K (NS) , where Fα
k =

0, 1 is the occupation number of the mode (d̃α
k )†; the parity

constraint for the itinerant fermions requires that F (NS) ≡∑n
α=1

∑
k∈K (NS) Fα

k is even. As the energy of this configu-
ration is E (NS)({Fα

k }) = E (NS)
0 + ∑n

α=1

∑
k∈K (NS) Fα

k ε(k), the
partition function from the NS sector reads

ZNS =
∑
{Fα

k }

1 + (−1)F (NS)

2
e−E (NS)({Fα

k })/T

= 1

2
e−E (NS)

0 /T

[ ∏
k∈K (NS)

(1 + e−ε(k)/T )n

+
∏

k∈K (NS)

(1 − e−ε(k)/T )n

]
. (21a)

The partition function from the R sector can be computed
similarly, except that one needs to take the zero modes into
account. Denoting the occupation number of the zero mode
( f α

0 )† as Fα
0 = 0, 1, the parity constraint for the itinerant

fermions now requires that F (R) ≡ ∑n
α=1(Fα

0 + ∑
k∈K (R) Fα

k )
is odd. The energy of a generic configuration in the R sector is
E (R)({Fα

k }) = E (R)
0 + ∑n

α=1

∑
k∈K (R) Fα

k ε(k) and the partition
function reads

ZR =
∑
{Fα

k }

1 − (−1)F (R)

2
e−E (R) ({Fα

k })/T

= 2n−1e−E (R)
0 /T

∏
k∈K (R)

(1 + e−ε(k)/T )n. (21b)

From the expression of dispersion relation obtained above,
it is clear that all the n branches of fermionic modes are
gapless at point J = h, which is therefore a quantum criti-
cal point of the model Eq. (7). To characterize the effective
field theory governing the low-temperature regime above this
critical point, let us consider the continuum limit, which
is defined as the limit N → ∞ and a → 0 while keeping
L = Na constant; here, a denotes the lattice spacing (before
unfolding) and L the length of the chain. Apparently, the low-
energy modes are those adjacent to the Fermi points k = 0
and k = π , at which the dispersion is linearized as ε(k) ∼ 4Jk
and ε(k) ∼ 4J (π − k), respectively. Linear dispersions near
the Fermi points indicate that the low-energy physics of the

critical system is described by a CFT; the latter, as we shall
see next, can be identified by studying the partition function
contributed by these linearized modes in the continuum limit.
Furthermore, the vacuum energies Eq. (20) can be expanded
as

E (NS)
0 = −2nJ

(
2N

π
+ π

12N
+ O(N−3)

)
, (22a)

E (R)
0 = −2nJ

(
2N

π
− π

6N
+ O(N−3)

)
, (22b)

where the leading terms in N are divergent in the continuum
limit. These terms can be dropped, however, as they are the
same for both sectors and can be absorbed by an overall shift
in energy. Keeping only the subleading terms in Eqs. (22) and
substituting into Eq. (21), one finds that the partition functions
in the continuum limit can be succinctly represented in terms
of certain special functions,

Z̃NS = θn
3 (τ ) + θn

4 (τ )

2ηn(τ )
, Z̃R = θn

2 (τ )

2ηn(τ )
, (23)

where τ ≡ iv/LT with v ≡ 2Ja being the velocity of the
gapless modes. Here, the special functions (q ≡ e2π iτ )

θ2(τ ) ≡ 2q1/8
∞∏

r=1

(1 − qr )(1 + qr )2, (24a)

θ3(τ ) ≡
∞∏

r=1

(1 − qr )(1 + qr−1/2)2, (24b)

θ4(τ ) ≡
∞∏

r=1

(1 − qr )(1 − qr−1/2)2 (24c)

are known as (standard) Jacobi’s theta functions [39] and

η(τ ) ≡ q1/24
∞∏

r=1

(1 − qr ) (25)

is the Dedekind eta function.
In the context of rational CFTs [40,41], the torus partition

function is given by certain modular-invariant combination
of a finite number of holomorphic and antiholomorphic
characters associated with irreducible highest-weight repre-
sentations of the underlying chiral algebra (e.g., the Virasoro
algebra for minimal models [42,43] or affine Lie algebras
for WZW models [44]), which are in one-to-one correspon-
dence with the primary fields {a} of the theory. It turns out
that the above-computed partition function, Z̃ = Z̃NS + Z̃R =∑

ν=2,3,4
θn
ν (τ )

2ηn (τ ) , is nothing but the modular-invariant partition
function of the Spin(n)1 rational CFT [45]. To make the con-
nection clear, let us briefly recall some basic facts pertinent to
this theory [46,47]. For the Spin(n)1 CFT with odd n, there
are three primary fields, a = 1, v, s; for the case of even n, the
theory has four primary fields, a = 1, v, s+, s−. Here, 1 is the
identity field and v belongs to the vector representation of the
Lie algebra so(n), to which the corresponding characters read

χ1(q) = θ
n
2

3 (τ ) + θ
n
2

4 (τ )

2η
n
2 (τ )

, χv (q) = θ
n
2

3 (τ ) − θ
n
2

4 (τ )

2η
n
2 (τ )

; (26a)
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the primary field(s) s (or, s+ and s−), on the other hand,
belongs to the spinor representation(s) of so(n):

χs(q) = θ
n
2

2 (τ )√
2η

n
2 (τ )

(for odd n)

or χs+ (q) = χs− (q) = θ
n
2

2 (τ )

2η
n
2 (τ )

(for even n). (26b)

We note that by choosing n = 1, the above results reduce
to those of the Ising CFT. With Eqs. (26), one can easily
verify that Z̃ = ∑

a |χa(q)|2 for both cases. In particular, the
representations associated with 1 and v (respectively, s or s+
and s−) reside in the NS (respectively, R) sector of the whole
Hilbert space. Remarkably, the degeneracy of the vacuum
in the R sector resulting from the zero modes agrees with
the prediction by representation theory. In the case of odd
n, the dimension of the spinor representation is given by the
coefficient of the leading term (that is, the term qn/24) in the
expansion of χs(q) in powers of q, which is equal to 2(n−1)/2.
Likewise, the dimension of each of the two spinor represen-
tations, s±, of so(n) with even n is 2(n−2)/2. In both cases, the
corresponding coefficient in |χs(q)|2 or |χs+ (q)|2 + |χs− (q)|2
is 2n−1, in agreement with the number of different ways to fill
an odd number of zero modes out of n ones. The degeneracies
at higher energy levels can similarly be checked against the
representation theory.

To summarize, we have exactly computed the partition
function of the spin chain Eq. (7) at the point J = h, thus
identifying the latter as a conformal critical point described by
the Spin(n)1 CFT. We conclude this section by noting that sev-
eral different approaches to realizing lattice models with the
Spin(n)1 CFT being the low-energy effective theory were pro-
posed in the literature. In Refs. [48–50], a series of solvable
spin-1/2 chains with Spin(n)1 critical points were constructed
by using the anyon condensation mechanism. It would be
interesting to see whether a particular gamma-matrix choice
in our Hamiltonian Eq. (7) can reproduce their models. Other
examples include the Reshetikhin model [51,52] (a criti-
cal point in the SO(n) bilinear-biquadratic chain [21–23])
and the SO(n) generalization [53] of the Haldane-Shastry
model [54,55].

IV. GAPPED PHASES

In this section, we analyze the ground-state phase diagram
of our model Eq. (7). We have seen in Sec. II that the TFI
chain is mapped to Kitaev’s Majorana chain after gauge fixing
(see also Ref. [56] for the equivalence through Jordan-Wigner
transformation), in which one finds a topological phase as
well as a trivial one that corresponds to the ordered and
disordered phases of the TFI chain, respectively. In fact, the
form Eq. (14) makes it manifest that our models are general-
izations of Kitaev’s Majorana chain for n = 1, where J and
h are, respectively, the inter- and intrasite couplings between
the Majorana fermions. As the only quantum phase transi-
tion occurs at the critical point with h/J = 1 considered in
Sec. III, the nature of the gapped phases on both sides of this
transition can be revealed by considering two limiting cases
h/J → 0+ and h/J → ∞. In what follows, we first conduct a

simple semiquantitative analysis of these limiting cases using
the Majorana representation. Subsequently, we focus on the
model with h = 0 and derive the ground state(s) as certain
fixed-point matrix product states (MPSs) with zero correlation
length. We then proceed to construct SO(n + 1)-symmetric
parent Hamiltonians for these states and briefly comment on
the connection with the existing classification scheme of SPT
phases.

A. Phase diagram

Let us first look at the case h/J → ∞. In this limit, the
intrasite couplings dominate over the intersite ones and the
sites become independent of each other. One could recombine
b2α−1

j and b2α
j to obtain a fermionic operator f α

j = (b2α
j −

ib2α−1
j )/2 for α = 1, . . . , n, and the unique ground state is

simply given by the fully empty state annihilated by all f α
j

(note that we have chosen h > 0), which is also a product state
in the spin basis. As the gap does not close for h/J > 1, we
come to the conclusion that the system is in a trivial phase
when h/J > 1.

More interesting is the case 0 � h/J < 1. According to
the representation Eq. (9) of the Hamiltonian in terms of
Majorana fermions coupled to a static Z2 gauge field, the
candidates for the ground state(s) admit the following form:

|� (±)〉 = P|�F({u±
0 })〉 ⊗ |{u±

0 }〉. (27)

Here, {u±
0 } denotes an arbitrary configuration of the Z2 gauge

field such that w = ±1 and |�F({u±
0 })〉 is the ground state of

the Hamiltonian after gauge fixing, which is quadratic in the
itinerant Majorana fermions; P is the projector enforcing the
local parity constraint at each site, after the action of which
the states become gauge invariant. To survive projection, the
total fermion parity of the unprojected state in Eq. (27) must
be even:

|�F({u±
0 })〉 ⊗ |{u±

0 }〉
= Qtotal|�F({u±

0 })〉 ⊗ |{u±
0 }〉

= Qitinerant|�F({u±
0 })〉 ⊗ Qgauge|{u±

0 }〉
= −wQitinerant|�F({u±

0 })〉 ⊗ |{u±
0 }〉. (28)

After the gauge fixing, n decoupled Kitaev chains of itiner-
ant fermions admit the same dispersion, which, in particular,
implies that they have the same fermion parity in |�F({u±

0 })〉.
For even n, it follows immediately from Eq. (28) that w must
be −1 (due to Qitinerant = +1 in the ground state), i.e., the
unique ground state resides in the NS sector. For odd n, on
the contrary, both w = +1 and w = −1 are allowed by the
parity constraint, which indicates a spontaneous breaking of
the global Z2 symmetry Eq. (10). In the latter case, a more
detailed analysis shows that the lowest-energy states in both
sectors are quasidegenerate with an energy splitting that is
exponentially small in the system size. Instead of carrying out
this analysis explicitly, we briefly summarize the above results
in Fig. 2 and focus in the remainder of this section on the
model with h = 0, for which the degeneracy becomes exact.

094411-5



CHULLIPARAMBIL, ZHANG, AND TU PHYSICAL REVIEW B 108, 094411 (2023)

FIG. 2. Schematic ground-state phase diagrams of the Hamilto-
nian Eq. (7). The model with n = 1 reduces to (a) the TFI chain,
where an ordered phase (0 � h/J < 1) and a disordered phase
(h/J > 1) are separated by a critical point described by the Ising
CFT. For models with n > 1, the ordered and disordered phases are
replaced by a SPT phase and a trivial one, respectively; the ground
state in the SPT phase is unique for (b) the even n case, whereas for
(c) the odd n case, there are twofold degenerate ground states arising
from the spontaneous breaking of a Z2 symmetry. The critical point
at h/J = 1 is described by the Spin(n)1 CFT for n > 1.

B. Fixed-point MPS and SO(n + 1)-symmetric
parent Hamiltonian

We shall see that for all n � 2, the ground states at h = 0
can be neatly expressed as fixed-point MPSs by splitting each
physical site into two auxiliary ones (cf. Fig. 3 below). This is
achieved using the fact that the representation of the Clifford
algebra Cl2n+1,0(R) with n = 2k or n = 2k − 1 can be con-
structed utilizing two copies of that of Cl2k+1,0(R) (see the
Appendix), which is generated by �α, α = 1, 2, . . . , (2k +
1). An explicit representation is given in Eq. (A1), where
the �α are 2k-dimensional matrices. It can be readily

FIG. 3. Structure of the fixed-point MPSs. Each auxiliary site
carries a Hilbert space that is given by an irreducible spinor rep-
resentation of the Lie algebra so(n + 1). The SPT phase has a
unique ground state for (a) the n = 2k case and twofold degenerate
ground states for the n = 2k − 1 case with (b) even k and (c) odd k,
respectively.

verified that their commutators �αβ ≡ i
2 [�α,�β ] with 1 �

α < β � (n + 1) generate the Lie algebra so(n + 1); the rep-
resentation of the latter induced by Eq. (A1) is nothing but
the spinor representation that we mentioned in Sec. III. For
n = 2k, this representation is irreducible and denoted as Dk;
for n = 2k − 1, however, it is reducible due to the existence
of �2k+1 that commutes with all the �αβ (1 � α < β � 2k)
and hence decomposes into two irreducible ones, which are
denoted as Dk,+ and Dk,− [57]. In both cases, the Hamiltonian
after this splitting reads

Hh=0 = J
N∑

j=1

n∑
α=1

�α,n+1
2 j �α,n+1

2 j+1

= J

2

N∑
j=1

n∑
α=1

[(
�α,n+1

2 j + �α,n+1
2 j+1

)2 − 2
]
, (29)

which is a sum of mutually commuting local terms. As
the bond between auxiliary sites 2 j and 2 j + 1 is just the
physical bond between sites j and j + 1 in the original
model, the ground state(s) is given by the tensor prod-
uct of the bond singlets that are annihilated by (�α,n+1

2 j +
�α,n+1

2 j+1 ). In fact, it is straightforward to verify that the 2k × 2k

matrix R ≡ σ
y
1 ⊗ σ x

2 ⊗ σ
y
3 ⊗ σ x

4 ⊗ · · · satisfies the relation
R−1�α,n+1R = −(�α,n+1)T [58]; thus, the singlet between
physical sites j and j + 1 is represented in an orthonormal
basis {|x〉}2k

x=1 of the spinor representation as

|(0)〉 j, j+1 =
2k∑

x,y=1

Rxy|x〉2 j |y〉2 j+1. (30)

For n = 2k, the (unique) ground state is therefore given
by |�h=0〉 = ∏N

j=1 |(0)〉 j, j+1 [Fig. 3(a)]. Complications ap-
pear in the case n = 2k − 1 due to the reducibility of the
corresponding spinor representation; here, the irreducible rep-
resentation Dk,± at auxiliary site l is obtained by acting
with the projector P±

l ≡ (1 ± �2k+1
l )/2. As one can easily

show, these projectors are related to the local fermion par-
ity by P+

2 j−1P+
2 j + P−

2 j−1P−
2 j = [1 + (−1)kQj]/2, P+

2 j−1P−
2 j +

P−
2 j−1P+

2 j = [1 − (−1)kQj]/2. By choosing the eigenvalue of
Qj to be +1 at each physical site j without loss of generality,
this decomposition results in two degenerate ground states
[Fig. 3(b)] ∣∣� (I)

h=0

〉 =
N∏

j=1

[P+
2 jP

+
2 j+1|(0)〉 j, j+1], (31a)

∣∣� (II)
h=0

〉 =
N∏

j=1

[P−
2 jP

−
2 j+1|(0)〉 j, j+1] (31b)

for even k, or [Fig. 3(c)]∣∣� (I)
h=0

〉 =
N∏

j=1

[P−
2 jP

+
2 j+1|(0)〉 j, j+1], (32a)

∣∣� (II)
h=0

〉 =
N∏

j=1

[P+
2 jP

−
2 j+1|(0)〉 j, j+1] (32b)
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for odd k, in agreement with our semiquantitative analysis
using the Majorana representation.

At h = 0, the bond-singlet form of the ground state(s)
indicates that the latter admits parent Hamiltonian with
symmetry enhanced to SO(n + 1). Indeed, as the SO(n +
1)-singlet given in Eq. (30) satisfies �

αβ

2 j �
αβ

2 j+1|(0)〉 j, j+1 =
−|(0)〉 j, j+1, 1 � α < β � (n + 1), |(0)〉 j, j+1 minimizes the
eigenvalue of an SO(n + 1)-symmetric Heisenberg inter-
action K2 j,2 j+1 ≡ ∑

1�α<β�(n+1) �
αβ

2 j �
αβ

2 j+1. Thus, a parent

Hamiltonian of the ground state |�h=0〉 = ∏N
j=1 |(0)〉 j, j+1 for

n = 2k is given by

H̃ =
N∑

j=1

K2 j,2 j+1 =
N∑

j=1

∑
1�α<β�(n+1)

�
2α−1,2β−1
j �

2α,2β

j+1 ,

(33)
where we have grouped two auxiliary sites back to get a
physical one and used the convention �2α,2n+2 ≡ �2α . For
n = 2k − 1, as discussed above, one can project into the sub-
space with Qj = +1, j = 1, . . . , N , and conclude that |� (I)

h=0〉
and |� (II)

h=0〉 are degenerate ground states of H̃ .
Finally, let us remark on how the above results fit into

the general framework for the classification of SPT phases.
For one-dimensional bosonic systems such as the spin chains
we are considering, the classification is done by using the
group cohomology theory [59–62]. More precisely, for
Hamiltonians that commute with the action of a simple Lie
algebra g, the SPT phases that the ground states belong
to are in one-to-one correspondence with the elements of
the cohomology group H2(G/G′, U(1)) ∼= G′. Here, G is
the simply connected Lie group associated with g, and
G′ is the largest central subgroup of G that acts trivially
on the local Hilbert spaces. Evidently, G′ depends on the
specific representation of g at each site. According to the
discussions in the last paragraph, the relevant Lie algebra
in our case is g = so(n + 1) with the associated simply
connected Lie group given by G = Spin(n + 1). For our
models, we shall show that G′ is just the very largest central
subgroup of G, that is, the center Z (G) itself. To this end,
let us invoke the mathematical fact that each element of
H2(G/Z (G), U(1)), which is the projective class of a linear
representation of G (hence also a representation of g) with
highest weight λ, is labeled by the congruence class [λ] of
λ. For the case n = 2k, it turns out that Z (G) is represented
by ρλ = (−1)[λ]I with [λ] an element of Z2 [63]. As the
local Hilbert space at each physical site consists of the tensor
product Dk ⊗ Dk [cf. Fig. 3(a)], one can see that Z (G) acts
trivially on it since ρDk ⊗ ρDk = I. The situation is slightly
more complicated for n = 2k − 1, where [λ] = [[λ]1, [λ]2]
with [λ]1 ∈ Z2 and [λ]2 ∈ Z4; for the two irreducible spinor
representations Dk,+ and Dk,−, the congruence classes are
given by [1, k − 2 (mod 4)] and [1, k (mod 4)], respectively
[64]. If k is even, it is easily seen that these congruence classes
form group Z2 × Z2: [1, 0] + [1, 0] = [1, 2] + [1, 2] =
[0, 0], [1, 0] + [1, 2] = [1, 2] + [1, 0] = [0, 2]. In fact, it
is known that the elements in Z (G) corresponding to the
two Z2 subgroups are represented by ρ

(1)
λ = (−1)[λ]1I and

ρ
(2)
λ = e

iπ
2 [λ]2I, respectively [63]; in particular, both of them

act trivially on Dk,+ ⊗ Dk,+ or Dk,− ⊗ Dk,− [cf. Fig. 3(b)].

If k is odd, on the other hand, the congruence classes
form group Z4 [63], [1, 1] + [1, 1] = [1, 3] + [1, 3] =
[0, 2], [1, 1] + [1, 3] = [1, 3] + [1, 1] = [0, 0], and the
center is represented by ρλ = e

iπ
2 [λ]2I that acts trivially on

Dk,+ ⊗ Dk,− or Dk,− ⊗ Dk,+ [cf. Fig. 3(c)]. Summarizing
all the cases above, one comes to the conclusion that the
center of Spin(n + 1) always acts trivially on the local
Hilbert spaces; for n = 2k there are two distinct topological
phases classified by Z2, whereas for n = 2k − 1 there are
four phases which are classified by Z2 × Z2 (respectively,
Z4) if k is even (respectively, odd). These results can be
understood physically in terms of the edge modes, as the
latter transform in a projective representation of G that
belongs to a congruence class. This information is made
manifest by the structure of the fixed-point MPSs (cf. Fig. 3)
since an arbitrary entanglement cut gives rise to a pair of
virtual edge modes carrying the representation at an auxiliary
site and the representation conjugate to it. These fixed-point
MPSs are the representative states for the corresponding SPT
phases, and those for all the other phases can be obtained
by stacking these states (which amounts to taking tensor
products of the representations).

V. KRAMERS-WANNIER DUALITY
AND ONSAGER ALGEBRA

The renowned KW duality relates the physics of the same
model at different couplings. The power of KW duality has
been demonstrated in the context of two-dimensional Ising
model (or TFI chain), where the transition temperature be-
tween ordered and disordered phases was identified as the
self-dual point [4]. It is remarkable that this is an exact result
which predates Onsager’s exact solution [6]; the latter, in
its original form, was based on an infinite-dimensional Lie
algebra which now bears the name of Onsager and turns out
to be closely related to the KW duality [9]. The aim of this
section is to show that our models given by Eq. (7), as natural
generalizations of the TFI chain, also enjoy these elegant
structures.

To this end, the Hamiltonian Eq. (7) is rewritten as

H =
N∑

j=1

n∑
α=1

√
2
(
hE(α)

2 j−1 + JE(α)
2 j

)
(34)

up to a constant, with

E(α)
2 j−1 = 1√

2

(
1 − �2α,2α−1

j

)
, j = 1, . . . , N (35)

and

E(α)
2 j =

{
1√
2

(
1 + �2α−1,2n+1

j �2α
j+1

)
,

1√
2

(
1 + �2α−1,2n+1

N �2α
1

)
,

1 � j � N − 1
j = N.

(36)

These operators generate n independent copies of the (peri-
odic) Temperley-Lieb algebra [65,66],(

E(α)
j

)2 =
√

2E(α)
j , E(α)

j E(α)
j±1 (mod 2N )E

(α)
j = E(α)

j ,

E(α)
j E(α)

j′ = E(α)
j′ E(α)

j , | j − j′ (mod 2N )| � 2, (37)

where α = 1, . . . , n and j = 1, 2, . . . , 2N . For the case of
the TFI chain [67], the Temperley-Lieb generators are given
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by E2 j−1 = (1 + σ x
j )/

√
2 and E2 j = (1 − σ z

j σ
z
j+1)/

√
2; the

KW duality simply amounts to the map σ x
j �→ −σ z

j σ
z
j+1,

σ z
j σ

z
j+1 �→ −σ x

j+1 or E j �→ E j+1, with possible subtleties aris-
ing from the boundary condition. In fact, one can verify using
Eqs. (37) that the unitary operator defined as

U =
n∏

α=1

2N−1∏
j=1

exp

(
iπ

2
√

2
E(α)

j

)
(38)

acts on the Temperley-Lieb generators as

UE(α)
j U † =

{
E(α)

j+1, 1 � j � 2N − 1
1√
2

(
1 + w�2α,2α−1

1

)
, j = 2N.

(39)
Thus, the unitary operator U implements the duality trans-
formation (h ↔ J), revealing directly on the lattice level the
structure of exact KW duality in our models; the self-dual
point at J = h is precisely the Spin(n)1 quantum critical point.
The only subtlety arises at the boundary; in particular, one
finds that the form of the Hamiltonian is preserved by the
duality transformation only in the sector with Z2 flux w = −1
(i.e., the NS sector). This is not surprising, as the KW duality
is by no means symmetry in the conventional sense. Nev-
ertheless, it is worth noting that [U, Mαβ ] = 0 with Mαβ =∑N

j=1(�2α−1,2β−1
j + �

2α,2β
j ), 1 � α < β � n, so the KW du-

ality keeps the global SO(n) symmetry of our model intact.
The Onsager algebra was originally formulated in terms of

an infinite number of generators satisfying certain commuta-
tion relations [6]. Equivalently, the Onsager algebra can be
characterized by a pair of operators, Q and Q̃, subjecting to
the so-called Dolan-Grady relations [9,68–70]:

[Q, [Q, [Q, Q̃]]] = 16[Q, Q̃], [Q̃, [Q̃, [Q̃, Q]]] = 16[Q̃, Q].

(40)

By defining Q = ∑N
j=1

∑n
α=1 �2α−1,2n+1

j �2α
j+1 and Q̃ =

−∑N
j=1

∑n
α=1 �2α,2α−1

j , the Hamiltonian Eq. (7) simply reads

H = JQ + hQ̃ and it can be verified that Q and Q̃ fulfill
the Dolan-Grady relations Eq. (40). Note that Q and Q̃ are
related by the KW duality, under which Eq. (40) is preserved.
As a consequence of the Onsager algebra, an infinite set of
conserved charges can be derived, providing insight into the
integrability of our models.

VI. SUMMARY AND OUTLOOK

In summary, we have constructed a family of SO(n)-
symmetric spin chains which generalize the TFI chain for
n = 1. These models can be mapped to n itinerant Majorana
fermions coupled to a static Z2 gauge field and are hence
exactly solvable. The phase diagram includes two distinct
gapped phases as well as a critical point which is described
by the Spin(n)1 CFT. One of the two gapped phases is trivial,
while the other is an SPT phase. These two gapped phases
are found to be related to each other via a Kramers-Wannier
duality, while the Spin(n)1 critical point lies at the self-dual
point. Closely related to the duality is the infinite-dimensional
Onsager algebra; in fact, the interconnection among the On-
sager algebra, the (generalized) Clifford algebra and the

Temperley-Lieb algebra was exploited in Ref. [71]. This re-
veals a rich algebraic structure of our models.

The nature of the quantum critical point was characterized
by rigorously computing the partition function, of which the
continuum limit agrees with the Spin(n)1 CFT. The latter
is formulated in terms of n free massless Majorana fermion
fields. In the vicinity of this critical point, the Majorana
fermions acquire a nonzero but small mass; as the correla-
tion length is relatively large, the continuous description still
applies, for which the effective Hamiltonian density reads

Heff = −i
n∑

α=1

[v

2

(
ξR
α ∂xξ

R
α − ξL

α ∂xξ
L
α

) + mξR
α ξL

α

]
, (41)

where ξR(L)
α (x) is the right (left)-moving Majorana fermion

field with color α (= 1, . . . , n), v is the velocity, and m is the
Majorana mass. The masses of all Majorana fermion fields
being the same implies SO(n) symmetry. The phase transition
is indicated by the sign change of the Majorana mass. The
models we proposed in this paper furnish a perfect lattice
realization of the effective field theory Eq. (41).

There are several interesting directions for future investiga-
tions. First, the SO(7) symmetry of the model with n = 7 can
be explicitly broken down to G2 by adding local interaction
terms (see Ref. [72] for related discussions on a different
model). It would be worth exploring how to use our model
as the basic building block for constructing the Fibonacci
topological superconductor proposed by Hu and Kane [73].
Second, we expect that the method for constructing exactly
solvable models with Majorana fermions coupled to Z2 gauge
fields can also be used for proposing symmetry-protected
quantum critical models [74–78]. It would be interesting to
explore, for instance, duality [79,80] and conformal boundary
conditions [81] in such models. Third, one may consider mul-
tiple species of Zn parafermions coupled to a static Zn gauge
field, which would be a natural generalization of the models
in the present paper. It is expected that exotic critical points
and different types of gapped phases would emerge. Finally,
the beautiful formalism of topological defects [82–84] may
also be exploited to shed light on the Kramers-Wannier duality
or, more generally, categorical symmetries in our models; this
aspect will be considered in future works.

Note added. Recently, we were reminded by the authors of
Ref. [85] that they also considered one-dimensional gamma
matrix models including our Hamiltonian Eq. (7) and solved
them using the Jordan-Wigner transformation. This calls for
a comparison between our present paper and Ref. [85]. The
analysis of the conformal criticalities and the nature of the
gapped phases, which constitutes an essential part of our
present paper, was not included in Ref. [85]. Moreover, both
paper complement each other as the method being used in our
paper to solve the models is Kitaev-type Majorana represen-
tation, in contrast to the Jordan-Wigner transformation. We
thank the authors of Ref. [85] for bringing their paper to our
attention.
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APPENDIX: REPRESENTATION OF THE CLIFFORD
ALGEBRA Cl2n+1,0(R)

To construct a representation of the Clifford algebra
Cl2n+1,0(R), we distinguish between the cases n = 2k and
n = 2k − 1. To make the connection with spinor representa-
tions of the so(n + 1) algebra clear (as exploited in Sec. IV),
in the following we utilize two copies of representation of the
Clifford algebra Cl2k+1,0(R) to construct that of Cl2n+1,0(R).

It is straightforward to verify that the 2k-dimensional ma-
trices �α, α = 1, 2, . . . , (2k + 1), defined as [58]

�1 = σ
y
1 ⊗ σ z

2 ⊗ · · · ⊗ σ z
k ,

�2 = −σ x
1 ⊗ σ z

2 ⊗ · · · ⊗ σ z
k ,

�3 = σ 0
1 ⊗ σ

y
2 ⊗ · · · ⊗ σ z

k ,

�4 = −σ 0
1 ⊗ σ x

2 ⊗ · · · ⊗ σ z
k ,

· · · · · ·
�2k−1 = σ 0

1 ⊗ σ 0
2 ⊗ · · · ⊗ σ

y
k ,

�2k = −σ 0
1 ⊗ σ 0

2 ⊗ · · · ⊗ σ x
k ,

�2k+1 = σ z
1 ⊗ σ z

2 ⊗ · · · ⊗ σ z
k , (A1)

satisfy {�α,�β} = 2δαβ and generate Cl2k+1,0(R). Here σ 0 is
the 2 × 2 identity matrix and the subscripts label the Hilbert
subspaces in which these matrices act. It is also convenient
to define the commutators �αβ ≡ i

2 [�α,�β ] among these
matrices. As we will be using two copies of this representation
of Cl2k+1,0(R), let us denote the matrices defined in Eq. (A1)
as �α

1→k , and �α
k+1→2k are similarly defined.

1. n = 2k

For the case n = 2k, the (2n + 1) gamma matrices given
by

�2α−1 = �2k+1
1→k ⊗ �α

k+1→2k, α = 1, 2, . . . , (2k + 1),

�2α = �α,2k+1
1→k ⊗ 1k+1→2k, α = 1, 2, . . . , 2k (A2)

generate Cl2n+1,0(R), where 1k+1→2k ≡ σ 0
k+1 ⊗ · · · ⊗ σ 0

2k .
These gamma matrices are 22k-dimensional; according to
the definition Eqs. (A2), their product can be computed as
follows:

�1�2 · · · �2n+1 = (−1)k

(
2k∏

α=1

�2α−1

)(
2k∏

α=1

�2α

)
�4k+1

= (−1)k

(
2k+1∏
α=1

�α
1→k

)
⊗

(
2k+1∏
α=1

�α
k+1→2k

)
= 11→2k, (A3)

where we have made use of the identity �1�2 · · · �2k+1 = ik

in the last step. Thus, the local fermion parity (8) is Qloc. =
(−1)k within this representation. Using Eq. (A2), the repre-
sentation for other operators that appear in the Hamiltonian
Eq. (7) can also be derived,

�2α−1,2n+1 = i�2α−1�2n+1 = 11→k ⊗ �α,2k+1
k+1→2k, (A4)

�2α,2α−1 = i�2α�2α−1 = −�α
1→k ⊗ �α

k+1→2k, (A5)

where α = 1, 2, . . . , 2k.
To illustrate the above representation more concretely, let

us consider the simplest example with k = 1 and n = 2. In this
case, the gamma matrices are expressed in terms of the Pauli
operators as follows:

�1 = σ z ⊗ σ y,

�2 = −σ x ⊗ σ 0,

�3 = −σ z ⊗ σ x,

�4 = −σ y ⊗ σ 0,

�5 = σ z ⊗ σ z. (A6)

To simplify the Hamiltonian Eq. (7) with n = 2, it is useful to
regard each site in the chain as composed of two “constituent”
ones; the four-dimensional local Hilbert space at each original
site is accordingly decomposed into the tensor product of two
two-dimensional ones. After this splitting transformation, the
Hamiltonian reads

Hn=2 =
N∑

j=1

[
J
(
σ x

2 jσ
x
2 j+1 + σ

y
2 jσ

y
2 j+1

)
+ h

(
σ x

2 j−1σ
x
2 j + σ

y
2 j−1σ

y
2 j

)]
, (A7)

which is that of a spin-1/2 bond-alternating isotropic XY
chain, which further reduces to the homogeneous one at the
critical point J = h.

2. n = 2k − 1

In this case, the gamma matrices are represented in parallel
with the case n = 2k:

�2α−1 = �2k
1→k ⊗ �α

k+1→2k, α = 1, 2, . . . , 2k,

�2α = �α,2k
1→k ⊗ 1k+1→2k, α = 1, 2, . . . , (2k − 1).

(A8)

The product of these gamma matrices are now

�1�2 · · · �2n+1 = iσ z
1 ⊗ σ z

2 ⊗ · · · ⊗ σ z
2k . (A9)

Apparently, Qloc. = i2k−1�1�2 · · · �2n+1 is diagonal and
Q2

loc. = 1. The representation for other operators is similarly
derived:

�2α−1,2n+1 = 11→k ⊗ �α,2k
k+1→2k, (A10)

�2α,2α−1 = −�α
1→k ⊗ �α

k+1→2k, (A11)

where α = 1, 2, . . . , (2k − 1).
Note that the dimension of the above gamma matrices is

22k , which is the same as that in the case n = 2k. However,
as Qloc. commutes with the set {�1, �2, . . . , �2n+1}, each
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of the gamma matrices breaks up into two blocks of size
22k−1 × 22k−1 (= 2n × 2n) that are associated with the local
fermion parity eigenvalues Qloc. = ±1, respectively. Let us
now illustrate this point by considering the simplest example
with k = 1 and n = 1. In this case, one has (zero entries are
left empty)

�1 = −σ x ⊗ σ y =

⎛⎜⎜⎝
i

−i
i

−i

⎞⎟⎟⎠,

�2 = −σ z ⊗ σ 0 = diag(−1,−1, 1, 1),

�3 = σ x ⊗ σ x =

⎛⎜⎜⎝
1

1
1

1

⎞⎟⎟⎠, (A12)

and Qloc. = −σ z ⊗ σ z = diag(−1, 1, 1,−1). By projecting
into the subspace with Qloc. = +1 [which amounts to ap-
plying with the projector (1 + Qloc. )/2], one finds that
�1 �→ σ y, �2 �→ −σ z, �3 �→ σ x, and other operators that
appear in the Hamiltonian Eq. (7) with n = 1 become
�1,3 �→ σ z, �2,1 �→ −σ x. Thus, we conclude that Hn=1

is nothing but the Hamiltonian of the TFI chain given
in Eq. (1).
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