
PHYSICAL REVIEW B 108, 094410 (2023)
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We investigate the ground state properties of quantum skyrmions in a ferromagnet using variational Monte
Carlo with the neural network quantum state as variational ansatz. We study the ground states of a two-
dimensional quantum Heisenberg model in the presence of the Dzyaloshinskii-Moriya interaction (DMI) and
show that the ground state accommodates a quantum skyrmion for a large range of parameters, especially
at large DMI. The spins in these quantum skyrmions are weakly entangled, and the entanglement increases
with decreasing DMI. We also find that the central spin is completely disentangled from the rest of the lattice,
establishing a non-destructive way of detecting this type of skyrmion by local magnetization measurements.
While neural networks are well suited to detect weakly entangled skyrmions with large DMI, they struggle to
describe skyrmions in the small DMI regime due to nearly degenerate ground states and strong entanglement.
In this paper, we propose a method to identify this regime and a technique to alleviate the problem. Finally,
we analyze the workings of the neural network and explore its limits by pruning. Our work shows that neural
network quantum states can be efficiently used to describe the quantum magnetism of large systems exceeding
the size manageable in exact diagonalization by far.
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I. INTRODUCTION

Classical magnetic skyrmions are magnetic structures
with vortex-like configurations characterized by a quantized
skyrmion number. After pioneering theoretical work [1,2],
skyrmions have been discovered in a variety of materials,
including MnSi, FeCoSi, FeGe, and others [3–7], with sizes
ranging from micrometers to nanometers. These quasiparti-
cles can be created by competition between the exchange
interaction and the anti-symmetric Dzyaloshinskii-Moriya in-
teraction (DMI) [7], or by frustration [8], or dynamically by an
electric current [9,10] or by boundary effects [11]. Magnetic
skyrmions have potential uses in magnetic storage devices
due to their topological protection and ease of motion under
electric currents [12–16]. The observation of skyrmions with
sizes a few times the atomic lattice spacing raises the question
about the importance of quantum effects in these systems,
meriting a purely quantum mechanical analysis to study them.

In the past few years, there have been some works address-
ing the quantum nature of magnetic skyrmions, with the focus
on quantum spin systems in the presence of DMI or frustration
[8,11,17–21], or very recently in systems with itinerant mag-
netism [22] and with f -electron systems [23]. Most studies
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have used exact diagonalization techniques to tackle the prob-
lem of quantum skyrmions in spin lattices, which inherently
puts a limit on the system size they can consider. Recently,
quantum skyrmions on a larger spin lattice were considered by
Haller et al. [19], using density matrix renormalization group
(DMRG) methods. This work discovered a skyrmion lattice
phase that would not be tractable using exact diagonaliza-
tion. Although having many successful applications, DMRG
becomes numerically challenging in two dimensions due to
increasing entanglement with the system sizes described by
the area law [24,25]. On the other hand, due to the presence
of DMI, quantum Monte Carlo methods suffer from the sign
problem, which slows down the optimization process.

In recent years, artificial neural network-based variational
methods have been introduced to approximate the quantum
many-body problem, achieving results comparable to state-
of-the-art methods [26–34]. In these variational methods, an
artificial neural network is used to represent the variational
wave function, known as a neural network quantum state
(NQS), which then learns the target state using a gradient-
based optimization scheme. NQS-based variational methods
offer a novel approach to studying a wide range of quantum
many-body systems, especially in two and three dimensions
where existing methods involve a high level of complexity.
NQSs with various structures have been successfully applied
to frustrated spin systems in two dimensions [26,30–32,35]
and have recently been shown to have the ability to capture
long-range quantum entanglement with an expressive capacity
greater than conventional methods [36]

In this paper, using NQSs we show that quantum skyrmions
(QSs) are the ground states for a wide range of parameters in
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the two-dimensional spin-1/2 Heisenberg Hamiltonian with
DMI in a ferromagnetic medium. To study quantum entan-
glement in this system, we calculate Renyi entropy of second
order and demonstrate that the entanglement in the QS ground
state decreases with increasing DMI. Previous work indicated
that the central spin of a quantum skyrmion can have vanish-
ing concurrence with its surrounding spins [19]. Interestingly,
we also find that the central spin in the QS ground state is
completely disentangled from the rest of the spins within the
error bars of our method. This opens up a way of detecting
quantum skyrmions experimentally without destroying their
quantum nature. While we find stable QSs at large DMI, the
variational method is insufficient to learn the ground state
wave function at small DMI. An analysis of small systems
reveals that the variational method finds a superposition of
the ground state and the first excited state due to a tiny ex-
citation gap. Motivated by this, we present a projection-based
method to improve the variational ground state in this region.
Finally, we analyze the internal structure of our NQS ansatz
by inspecting the trained network weights and pruning. While
the lowly entangled NQS does not change significantly upon
pruning, the performance degrades rapidly with pruning in
the highly entangled NQS. Our work shows that an NQS
variational ansatz can be used to efficiently approximate spin
systems with medium to high DMI at system sizes out of reach
for exact methods.

The paper is organized as follows. In Sec. II, we describe
the Heisenberg Hamiltonian on a square lattice in the presence
of DMI. In Sec. III, we briefly discuss the variational method,
along with the neural network structure, with more details in
Appendix A. In Sec. IV, we study the different ground states
of this system. In Sec. V, we study the entanglement in the
ground state by calculating the Renyi entropies. In Sec. VI,
we obtain and present insights into the workings of the trained
NQS. Finally, we conclude the paper in Sec. VII.

II. MODEL

We study the ground state of the two-dimensional spin-1/2
Heisenberg Hamiltonian on a square lattice in the presence
of the Dzyaloshinskii-Moriya interaction (DMI) and a strong
external magnetic field at the boundaries that simulates a
ferromagnetic background,

H = − J
∑
〈i j〉

(
σ x

i σ x
j + σ

y
i σ

y
j

) − A
∑
〈i j〉

σ z
i σ z

j

− D
∑
〈i j〉

(ui j × ẑ) · (σi × σ j ) + Bz
∑

b

σ z
b . (1)

Here, J is the Heisenberg exchange interaction, A is the
Heisenberg anisotropy term, D is the DMI, and Bz is the exter-
nal magnetic field along the ẑ axis acting only on the boundary
spins indexed with b. The Pauli operator at the ith lattice site
is σi = (σ x

i , σ
y
i , σ z

i ) and ui j is the unit vector pointing from
site i to site j. We consider h̄ = 1. The sum in the first three
terms is over the nearest neighbor lattice sites, while the last
term only covers the boundary sites.

The Hamiltonian in Eq. (1) can be considered the quantum
analog of a classical spin model in which the competition be-
tween the noncolinear DMI and the ferromagnetic Heisenberg

ln( )

FIG. 1. Neural network structure used as NQS. The inputs are the
spin configurations in the σ z basis, and the output is the logarithm of
the wave function. There are two fully connected networks, with two
hidden layers in each, to learn the phase and the amplitude part of the
wave function separately. Each hidden layer consists of αN2 neurons.

exchange interaction gives rise to the formation of magnetic
skyrmions. In classical systems, these skyrmions are often
stabilized by an external magnetic field over the whole lattice.
However, we only apply the magnetic field (Bz = 10J) to
fix the spins at the boundaries. This is the main difference
between the Hamiltonian in our work and that in Ref. [19],
where the authors study a similar system but with a bulk
external magnetic field. Thus our model describes a single
quantum skyrmion embedded in a ferromagnetic medium. We
leave the study of a quantum skyrmion lattice with NQS and
the comparison with DMRG results [19] for future works.

III. METHOD

The idea behind neural network quantum states is to use the
output of an artificial neural network to represent the complex-
valued coefficients ψθ (σ ) in the variational wave function,

|ψθ 〉 =
∑

σ

ψθ (σ )|σ 〉. (2)

Here, |σ 〉 are local basis states, which in our case are the
eigenstates of the σ z operators, and θ are the variational pa-
rameters of the neural network. In this paper, we use two fully
connected feed-forward neural networks to each represent the
phase and modulus part of the wave function, see Fig. 1, and
take the logarithm of the wave function as the total output [30]

ln(ψθ (σ )) = ρ(σ ) + iφ(σ ). (3)

The network takes the configuration of the spins on the
two-dimensional lattice as the input. Both the phase and the
modulus part of the network consist of two fully connected
hidden layers with αN2 neurons in each layer, where N is
the length of one side of the lattice, and we use α = 2 in this
paper. We use the rectified linear unit (reLU) as the nonlinear
activation function. The optimization of the variational wave
function is achieved by minimizing the loss function Lθ ,
i.e., the variational energy, with respect to the variational
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(a) (b)

FIG. 2. Convergence of the NQS training procedure: The figure shows the convergence of variational energy per spin to the ground state
of a 5 × 5 lattice (a) and a 9 × 9 lattice (b) over the number of iterations at the bottom axis and time elapsed at the top axis (see A for hardware
specifications). The inset in (a) shows the relative error �E in the ground state energy [see Eq. (5)] with respect to the exact ground state
energy (black line). The inset in (b) shows the energy variance per spin in dependence on the number of iterations. Light blue and orange lines
show the values at each iteration while dark blue and red lines show the moving average over 30 iterations.

parameters

Lθ = 〈ψθ |H |ψθ 〉. (4)

The phase part of the network is trained first while keeping
the modulus part constant before optimizing the whole net-
work. This method of optimization results in better learning
of the sign structure of the ground state wave function, as
demonstrated in Ref. [30] and also found by our testing. We
use Adam as the optimizer [37]. The input samples are gen-
erated using the Markov chain Monte Carlo. We use NetKet
to implement the NQS and Monte Carlo algorithms [38–40].
Details of the optimization procedure and hyperparameters are
given in Appendix A.

IV. GROUND STATE

First, we discuss the ability of the NQS ansatz to rep-
resent the ground state of the Hamiltonian in Eq. (1). To
check that our method works correctly, we compare the NQS
ground state energy ENQS for 3 × 3 and 5 × 5 spin lattices
with the exact ground state energy Eexact, obtained using exact
diagonalization. We find that the NQS correctly describes all
parameter regimes besides the small DMI regime. While the
NQS ground state energies are in agreement with the exact
energies within the error margin in this regime, the NQS spin
expectation values do not match that of the exact ground state.
The reason for this problem lies in an almost degeneracy
of the ground state with the first excited state resulting in a
significant overlap of the NQS ground state with the excited
state found by exact diagonalization. Because of the above, we
first present our results for the parameter regime where NQS
is accurate and discuss the small DMI regime afterward.

The energy convergence plot for the 5 × 5 lattice at
D = 0.8J and A = 0.3J is shown in Fig. 2(a). Here, the NQS
correctly describes the quantum skyrmion ground state. The
inset shows the relative error �E in the ground state energy

over the number of iterations,

�E = |ENQS − Eexact|
|Eexact| . (5)

The energy convergence for a 9 × 9 lattice over the number of
iterations for the Hamiltonian parameters D = 0.5J and A =
0.2J is shown in Fig. 2(b).

The ground state diagram for this lattice is shown in
Fig. 3(a), depending on the DMI, D, and the anisotropy, A.
The quantum skyrmion (QS) is the ground state for a wide
range of parameters [triangles in Fig. 3(a)], especially at
stronger DMI, which favors a noncolinear alignment of the
neighboring spins. The spin expectation value at the ith site,
〈Si〉 = 〈σi/2〉, for the ground state at D = 0.5J and A = 0.2J
is shown in Fig. 3(c). A fundamental difference from the case
of classical magnetic skyrmions is that the expectation value
of the length of the spins, |〈Si〉|, is reduced in the QS state. For
the ground state in Fig. 3(c), |〈Si〉| ranges from 0.92 h̄

2 in the
ring around the center to 1.00 h̄

2 at the boundary and the center
of the quantum skyrmion. Among the QS ground states, the
minimum of |〈Si〉| = 0.90 h̄

2 is found at D = 0.6J and A = 0.
The spins are not merely rotated from the boundary to the
center, as is the case with classical spins, but are a superpo-
sition of the local eigenstates of spin operators in different
directions.

For large A and small DMI, the ground state is a fer-
romagnet (FM) as the spins align in the direction parallel
to the boundary fields [squares in Fig. 3(a)]. An example
is shown in Fig. 3(d) for D = 0.1J and A = J . Now, we
discuss the parameter regime where the NQS struggles to
find the correct ground state. As both DMI and A decrease,
the magnitude of the spin expectation values also decreases.
We find that in this regime, marked by circles in Fig. 3(a),
the quantum skyrmion only exists as a metastable state for
some parameters, observed in the form of a local minimum
during the optimization procedure where the NQS is stuck
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FIG. 3. Ground state diagram and spin expectation values of different ground states of Eq. (1) for a 9 × 9 square lattice. (a) Ground state
diagram. QS denotes the quantum skyrmion state, FM the ferromagnetic state aligned with the boundary fields, and MS the mixed state (see
the main text). The color map shows the maximum Renyi entropy. (b) Relative energy gap �Eg between the ground state and the first excited
state found by the neural network quantum state method over DMI at A = 0.2J and A = 0.4J . (c)–(e) Spin expectation values of different
ground states. (c) QS at D = 0.5J, A = 0.2J and (d) FM at D = 0.1J and A = J . (e) For periodic boundary conditions, we obtain a cycloidal
spin spiral instead of a quantum skyrmion at D = J and A = 0.5J .

for some iterations before converging to the ground state. The
ground state is characterized by almost vanishing spin expec-
tation values aligned along the x or y direction. As mentioned
earlier, for small DMI values, the NQS is not able to resolve
the nearly degenerate ground state from the first excited state
even in smaller lattices. Hence, we label this regime where our
method does not find either a QS or an FM ground state as a
“mixed state” (MS) [circles in Fig. 3(a)].

A conclusion that must be drawn from this result is that
energy convergence cannot be taken as the sole measure of ac-
curacy for the variational ground state. To have an additional
metric for quantifying the accuracy of our approach, we calcu-
late the gap between the ground state and the first excited state.
This is achieved in the variational Monte Carlo scheme by op-
timizing a second NQS, |ψ1

θ 〉, orthogonal to the ground state
NQS, |ψ0

θ 〉, by adding an additional term in the loss function

Lθ = 〈
ψ1

θ

∣∣H ∣∣ψ1
θ

〉 + J
∣∣〈ψ0

θ

∣∣ψ1
θ

〉∣∣2
. (6)

We calculate the relative energy gap as �Eg = (E0 − E1)/E0,
where E0 and E1 are the energies corresponding to |ψ0

θ 〉 and
|ψ1

θ 〉 respectively, and plot it over the DMI in Fig. 3(b). For
�Eg < 2 × 10−4, we do not obtain a QS or FM ground state.
This corresponds to the MS region in the parameter space,
where quantum skyrmions with very low spin expectation
values might exist for some parameters that our method is

not able to resolve, as found for small systems by exact
diagonalization [8,11,20]. This suggests that the NQS-based
variational methods generally struggle with almost degenerate
states. This scenario observed here for quantum spin systems,
is well known from finite size electronic topological systems,
which only reach exact degeneracy in the thermodynamic
limit.

Projection Monte Carlo techniques exist to improve the
variational ground state. However, the presence of complex
off-diagonal terms in the Hamiltonian makes it difficult to
use them stochastically [41]. We use an alternative projection
method to remove the excited state contributions in the varia-
tional ground state (see Appendix B). After this improvement
of the wave function, we obtain the correct ground state for the
3 × 3 lattice but not for the 5 × 5 lattice. Thus, while the NQS
is able to represent the correct ground state for all parameters
in the case of a 3 × 3 lattice, it is not able to learn it in the
small DMI region in our variational Monte Carlo scheme.

In addition to the spin expectation values, we calculate the
skyrmion number C using the normalized spin expectation
values, ni = 〈Si〉/|〈Si〉|, to define quantum skyrmions [11]

C = 1

2π

∑
�

tan−1

(
ni · (n j × nk )

1 + ni · n j + n j · nk + nk · ni

)
, (7)
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where the sum runs over all elementary triangles � of the tri-
angular tessellation of the quadratic lattice, having the sites i,
j, and k as corners. C gives the number of times the spins wind
around a unit sphere and is an integer for quantum skyrmions.
In our model, we find C = 1 for the quantum skyrmion ground
state and C = 0 otherwise. Furthermore, using unnormalized
spin expectation values in Eq. (7), ni = 〈2Si〉, results in a
non-integer number Q that indicates the ‘quantum’ nature of
skyrmions [11], similar to other quantum measures [20]. Q
decreases as the entanglement increases and the spin expecta-
tion values decrease. For the QS ground states, we find a lower
threshold of Q = 0.9.

Lastly, we note that using periodic boundary conditions
without ferromagnetic boundaries (Bz = 0), we do not find a
QS ground state. Instead, we obtain a cycloidal spin spiral
[Fig. 3(e)], which is consistent with DMRG findings [19]
and the fact that unfrustrated classical skyrmions require a
magnetic field for stabilization. Here, a QS state minimizes
the energy of a finite region of the lattice if the boundary
of this region is ferromagnetically ordered. Furthermore, the
quantum skyrmion ground state is stable in the presence of an
additional bulk magnetic field Bz

ext

∑
j σ

z
j with Bz

ext up to the
order of 2J (not shown here), above which the ground state is
a ferromagnet aligned along the applied field.

V. QUANTUM ENTANGLEMENT

Entanglement is an important property of quantum systems
that is absent in classical systems. In this section, we investi-
gate whether the spins in the ground state are entangled by
calculating the Renyi entropy as a measure of entanglement.
The Renyi entropy of the order α, where α � 0 and α �= 1, is
defined as

Sα (ρA) = 1

1 − α
ln

(
Tr

(
ρα

A

))
. (8)

Here, ρA is the reduced density matrix obtained after split-
ting the system into two regions A and B and tracing out
the degrees of freedom in region B. The Renyi entropy is a
non-negative quantity that is zero for a pure state and takes the
maximum value log(min(d1, d2)), where d1 and d2 are the di-
mensions of the Hilbert space in region A and B, respectively.
We take region A as a single spin and region B as the rest
of the lattice to obtain the entanglement of each spin with its
environment. We calculate the α = 2 Renyi entropy, S2(ρA),
using the expectation value of the “Swap” operator [31,42]
(see Appendix C).

The maximum Renyi entropy associated with the param-
eters is shown as a heatmap in the ground state diagram in
Fig. 3(a). In the QS state for large values of DMI, we find
S2(ρA) ≈ 0 irrespective of which spin A we consider, which
means that these quantum skyrmions can be approximated as
product states. However, as we reduce the DMI, we find that
the entanglement among the spins increases, with the maxi-
mum reaching maxAS2(ρA) = 0.09 at D = 0.6J and A = 0.0
for the most entangled spin. Here, the quantum skyrmion
cannot be described as a product state. We plot the Renyi
entropy S2(ρA) as a heat map over the QS ground state in
Fig. 4 for the parameters D = 0.5J and A = 0.2J . As the
boundary spins are fixed with a large magnetic field, they

FIG. 4. Renyi entropy of each spin with its environment for the
QS at D = 0.5J and A = 0.2J .

are not entangled with the rest of the spins. The entropy
first increases and then decreases from the boundary to the
center, reaching its maximum between the two. One unex-
pected feature of this QS state is that the central spin is also
disentangled from the surrounding spins, even though there
is no external magnetic field acting on this site. We find that
the Renyi entropy of the central spin is numerically zero for
all quantum skyrmions that we obtain in our analysis; there
are no accepted spin configurations during the Monte Carlo
integration where the central spin points in the opposite di-
rection than the ferromagnetic environment. This means that
the QS is a product state of the central spin and a superpo-
sition of the rest of the spins. The disentangled central spin
can be used to detect quantum skyrmions using the central
spin magnetization as an observable in measurements without
destroying the quantum nature of the skyrmionic state. We
note that our results of the entropy for the QS ground state
match with those in [19], in which the authors considered
a bulk magnetic field instead of a ferromagnetic boundary.
There, the DMRG calculations indicate a vanishing entangle-
ment of the central spin in a quantum skyrmion with the rest
of the system for a certain parameter regime. Thus a disen-
tangled central spin might be a general feature of quantum
skyrmions.

In the FM parameter region, the entropy is S2(ρA) = 0, and
these states can be represented as product states of the spins
aligned with the boundary fields. Decreasing A for small DMI,
we approach the MS, and the entropy reaches its maximum.
Thus the difficulties in obtaining a correct solution in this pa-
rameter region might also be due to the highly entangled spins
that have almost vanishing spin expectation values, along with
the small energy gap between the eigenstates.

VI. NETWORK INTERPRETATION

In this final results section, we shift our focus towards
interpreting the working and training of the neural network.
Understanding how the network learns the target problem is
integral to machine learning research and provides insights
that cannot be obtained only through the final prediction.
However, the interpretation of neural networks is a nontrivial
problem, and a large number of neurons in multiple layers, as
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FIG. 5. Weight distribution in the hidden layers of the quantum
skyrmion ground state in a 5 × 5 lattice at D = J and A = 0.5J .
Phase1 (phase2) and modulus1 (modulus2) denote the phase and
modulus parts in the first (second) hidden layer, respectively. Each
block shows the weights inside one hidden neuron. While the first
hidden layer learns the essential features of the ground state, most of
the neurons in the second hidden layer show a similar pattern.

in the present network shown in Fig. 1, makes it even more
challenging.

For the case of NQS and many-body physics, inspecting
the weights of the neural network may offer clues towards
understanding the inner workings of the network [26,30].
To achieve this and to avoid dealing with an unmanageable
amount of variational parameters, we study the QS ground
state of the 5 × 5 lattice. We also use a smaller, fully con-
nected feed-forward neural network as our variational ansatz,
with two hidden layers and each layer consisting of 25 neu-
rons for the phase and modulus parts, corresponding to α = 1
in Fig. 1. We then transfer the results of our analysis to the
calculation in the 9 × 9 lattice.

We plot the weights of all neurons of our NQS after train-
ing, in a 5 × 5 grid for each layer, in Fig. 5. We consider
the QS solution at D = J and A = 0.5J for our analysis.
Inspecting the weights of the first hidden layer, we see that
in the phase part, which is trained first to improve the learning
of the sign structure of the wave function, each neuron learns
a specific part of the wave function. In the modulus part of
the first hidden layer, we find that most of the neurons have a
skyrmion-like distribution of the weights. This is because the
first hidden layer directly takes the spins as inputs; it learns
the most important features of the ground state. However, in
the second hidden layer, we find that most of the weights in
both the phase and the modulus neurons are distributed in a
similar pattern and, visually, do not offer a physical interpre-
tation. This raises two questions: First, whether the second
hidden layer is essential in the network, and second, whether
the neurons with a similar distribution of weights are redun-
dant and can be removed without loss in the accuracy of the
network.

In machine learning, pruning is often used to reduce
the number of parameters in a neural network to increase
computational efficiency without any loss in the accuracy
of the network [43–45]. In most cases, pruning is done
post-training by removing the weights with the smallest
magnitude and adjusting the remaining weights. After all the
pruning steps, only the most important weights are left in
the neural network, which can shed some light on the most
significant underlying features of the target problem. Pruning
could also be important for NQS as a variational ansatz
since, with increasing system sizes, the size of the network
increases [46].

We analyze the effects of pruning to answer the questions
we raised above. Again, we consider the 5 × 5 lattice with
two types of ground states - the low entanglement QS state at
D = J, A = 0.5J and the high entanglement MS state at D =
0.1J, A = 0.1J in Figs. 6(a) and 6(b). Starting from the second
hidden layer, at each pruning step, 10% of the neurons from
both phase and modulus parts are randomly deleted until only
one neuron is left in each of them. Then the same procedure
is applied to the first hidden layer. After deleting the neurons,
the pruned network is trained to adjust the remaining weights
(pr). Furthermore, a network with the same structure as the
pruned network is also trained from scratch (prsc) to compare
with the pr networks.

As metrics for the performance, we use the relative error
�Ep and the fidelity F between the original network and the
pr or prsc networks [47],

�Ep = |Efull − Ep|
|Efull| , (9)

F = |〈ψfull|ψp〉|2, (10)

where p = pr, prsc (see details in Appendix A). In Figs. 6(a)
and 6(b), we plot �Ep and F over the pruning for the 5 × 5
solution, with the maximum Renyi entropies in the insets.
For the low entanglement QS solution, the degradation in
performance is small even after removing 97% of the weights,
and the fidelity stays over 97% for both pr and prsc networks.
However, for the high entanglement MS solution, the pr and
prsc networks show different behavior. The fidelity gradually
decreases in the prsc network as the weights are removed. The
performance of the pruned network in the high entanglement
MS state is worse than in the low entanglement solution.
This is expected as it becomes considerably more difficult for
fewer neurons to describe the highly entangled state correctly.
Moreover, the performance degradation in the pr network is
much more severe than in the prsc network. This could be due
to the difficulty in leaving the local minimum by the optimizer
for the already trained pr network, while prsc networks have
the advantage of starting from random weights and thus more
flexibility. The maximum Renyi entropy in both Figs. 6(a)
and 6(b) decreases as the weights are removed. Interestingly,
it only becomes zero when only one neuron is left in both
hidden layers, showing that NQS can represent entanglement
even with a minimal number of neurons. Lastly, we note that
on reducing the number of neurons, the optimization process
becomes unstable and requires much fine-tuning to converge
near the ground state.
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FIG. 6. Performance metrics after pruning the neural network. �Ep denotes the relative error in energy and F denotes the fidelity. pr
denotes a pruned NQS trained after removing the weights from the full NQS and prsc denotes an identical network to the pr one but trained
from scratch. (a) 5 × 5 lattice QS ground state at D = J and A = 0.5J , (b) 5 × 5 lattice MS ground state at D = 0.1J and A = 0.1J , (c) 9 × 9
lattice QS ground state at D = 0.5J and A = 0.2J , and (d) 9 × 9 lattice MS ground state at D = 0.1J and A = 0.1J . The inset shows the
maximum values of the Renyi entropies.

In Figs. 6(c) and 6(d), we show the same results for the
9 × 9 lattice, calculating only prsc networks as they have
better performance than the pr. The degradation in energy and
fidelity, while qualitatively similar to the 5 × 5 case, is more
severe. In all four cases, we find that removing neurons from
the first hidden layer affects the network’s performance more
than removing them from the second hidden layer, signifying
the importance of the former over the latter. This is seen in the
very low error in energy until about half of the total weights
are removed, after which the error rises drastically. Does this
mean we can remove the second hidden layer entirely without
strongly deteriorating the performance? We find that this is not
the case because the performance drastically drops, and the
optimization, especially in the high entanglement region, be-
comes unstable with only one hidden layer. We find that (not
shown here) having even a single neuron in the second hidden
layer results in greater accuracy than having only one hidden
layer with as much as four times the number of neurons. Thus
increasing the width of the network is not the optimal strategy
here. On the other hand, having three or more hidden layers
makes the optimization process more challenging, and the net-
work is prone to get stuck in a local minimum. Hence, we con-
clude that the optimal network for our problem should have

two hidden layers, with a large number of neurons in the first
hidden layer and fewer neurons in the second hidden layer.

VII. SUMMARY

In this work, we have studied the ground states of the
spin-1/2 Heisenberg model in the presence of Dzyaloshinskii-
Moriya interaction and Heisenberg anisotropy on a square
lattice with ferromagnetic boundaries using variational Monte
Carlo. We use a neural network as the variational wave func-
tion, with different parts to learn the phase and amplitude of
the wave function. We show that a weakly entangled quantum
skyrmion ground state, with the skyrmion number C = 1,
exists for a wide range of Hamiltonian parameters. The en-
tanglement increases with decreasing DMI. For large DMI
values, a product state can describe the QS ground state. Re-
markably, the central spin in the QS state is disentangled from
the rest of the spins. Furthermore, we analyze the weights of
our NQS ansatz and find that while the first hidden layer learns
the most important features of the ground state, the second
hidden layer is essential to achieve high accuracy. We then
test the limits of the NQS by pruning and find that the higher
the entanglement, the more deterioration in the performance.
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Finally, we emphasize two of our results: First, our finding
that the central spin decouples from the rest of the system
and points into the opposite direction than the surrounding
ferromagnet can be potentially used as a nondestructive
detection scheme for quantum skyrmions by local spin
measurements, e.g., by a magnetic scanning tunneling mi-
croscope. Second, we obtain a region in the parameter space
where our method cannot resolve the correct ground state.
Instead, we find a superposition between the ground state
and the first excited state. This can be traced back to a tiny
excitation gap between the ground state and the first excited
state and reveals that the NQS ansatz has problems with al-
most degenerate states, which typically appear in finite size
topological systems. While we could devise a scheme to im-
prove the variational state further and separate the ground state
from the first excited state in small systems, we could not do
this in large spin systems. Thus, while NQS-based variational
methods offer an effective tool to study the quantum skyrmion
systems at medium to large DMI, they struggle in the small
DMI regime. It is an open question whether other methods like
DMRG also struggle in this regime. Improvement of the learn-
ing algorithm for NQS-based methods and its comparison
with established methods will be our focus for future works.
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APPENDIX A: OPTIMIZATION PROCEDURE

Given a variational wave function |ψθ 〉, the expectation
value of an operator O can be calculated as [26,48],

〈O〉 = 〈ψθ |O|ψθ 〉
〈ψθ |ψθ 〉

=
∑

σ,σ ′ 〈ψθ |σ 〉〈σ |O|σ ′〉〈σ ′|ψθ 〉∑
σ |ψθ (σ )|2

=
∑

σ |ψθ (σ )|2 ∑
σ ′ 〈σ |O|σ ′〉ψθ (σ ′ )

ψθ (σ )∑
σ |ψθ (σ )|2

=
∑

σ

pθ (σ )Oloc
θ (σ ), (A1)

where ψθ (σ ) = 〈σ |ψθ 〉 and

pθ (σ ) = |ψθ (σ )|2∑
σ |ψθ (σ )|2 , (A2)

Oloc
θ (σ ) =

∑
σ ′

〈σ |O|σ ′〉ψθ (σ ′)
ψθ (σ )

. (A3)

Here, Oloc
θ (σ ) is the local estimator and pθ (σ ) is the probabil-

ity distribution of |σ 〉. Thus the quantum expectation value
of an observable O is the average of a random variable
Oloc

θ (σ ) over the probability distribution pθ (σ ). Since the sum
over all the states |σ 〉 scales exponentially with the system
size, Markov Chain Monte Carlo, with Metropolis-Hastings
algorithm, is used to sample a series of states |σ 〉n and stochas-
tically estimate the expectation values

〈O〉 ≈ 1

N

N∑
n=1

Oloc
θ (σn), (A4)

where N is the total number of samples.
The energy of the system can be calculated by taking O to

be the Hamiltonian. The NQS is then optimized for the ground
state iteratively by minimizing the energy using a gradient
descent algorithm. Here, we use the Adam optimizer, with
the moments β1 = 0.9, and β2 = 0.999 [37]. The learning
rate η is set to η = 0.001 for the phase part and increases
linearly from 0 to 0.001 over the first 5000 iterations for
the modulus part of the NQS. The learning rate is then re-
duced to η = 0.0001 after some iterations, evident by a small
kink in the energy convergence plots near 20000 iterations
in Fig. 2(a) and near 40 000 iterations in Fig. 2(b). We also
tried a stochastic gradient descent optimizer with a stochastic
reconfiguration method as a preconditioner to the gradient
[26] and obtained similar results as with the Adam optimizer
but with increased computational cost. A critical step in the
optimization procedure is to first optimize the phase part of
the network and keep the modulus part constant to facilitate
the learning of the phase of the wave function. According
to the variational principle, the variational energy is bounded
from below by the actual ground state energy, which makes
energy a convenient loss function to minimize. We sample by
flipping a spin locally N times, each at a random location,
where N is the total number of spins in the lattice. This makes
one Monte Carlo sweep. We use 104 samples for energy
calculation and 107 for all the other expectation values. The
calculations were performed on a Xeon Gold 6338 CPU with
multi-threading up to 4 cores.

To calculate the fidelity between two NQSs, |ψ1〉 and |ψ2〉
(dropping the dependence on θ for clarity), we follow a simi-
lar procedure as in Eq. (A1):

F = |〈ψ1|ψ2〉|2
〈ψ1|ψ1〉〈ψ2|ψ2〉

=
∑

σ,σ ′ 〈ψ1|σ 〉〈σ |ψ2〉〈ψ2|σ ′〉〈σ ′|ψ1〉∑
σ |ψ1(σ )|2 ∑

σ ′ |ψ2(σ ′)|2

=
∑

σ

|ψ1(σ )|2∑
σ |ψ1(σ )|2

ψ2(σ )

ψ1(σ )

∑
σ ′

|ψ2(σ ′)|2∑
σ ′ |ψ2(σ ′)|2

ψ1(σ ′)
ψ2(σ ′)

=
∑

σ

p1(σ )
ψ2(σ )

ψ1(σ )

∑
σ ′

p2(σ ′)
ψ1(σ ′)
ψ2(σ ′)

.
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Thus F can be evaluated by first sampling from two dif-
ferent probability distributions corresponding to the two
NQSs, and then computing the ratio of the wave function
amplitudes.

APPENDIX B: AN ALTERNATIVE PROJECTION METHOD

Variational wave functions can be improved by projection
techniques, which require the variational state to have a finite
overlap with the exact ground state. Then, the high-energy
components can be projected out by applying the “power
method.” However, this method can be done exactly only for
systems manageable by exact diagonalization. In other cases,
stochastic methods have to be used, requiring the Hamilto-
nian’s off-diagonal terms to be real and non-negative. When
this condition is not fulfilled, as in our case with Eq. (1) with
complex off-diagonal terms, there is a fixed-node approxi-
mation for Hamiltonians with real and negative off-diagonal
terms and its modification fixed-phase approximation for
complex off-diagonal terms [41].

Here, we propose another method to filter out high-
energy components by projecting the Hamiltonian on a
few low-energy states, which can be directly obtained
by the variational Monte Carlo scheme introduced in the
main text.

Given a Hamiltonian H , its eigenvalue equation is

H |φ〉 = E |φ〉, (B1)

where E and |φ〉 are the eigenvalues and eigenvectors, re-
spectively. By expanding this equation in a complete but not
necessarily orthonormal basis |n〉, we obtain the generalized
eigenvalue equation

1

�

⎛
⎝∑

ni,n j

〈n j |H |ni〉〈ni|φ〉 − E〈nj |ni〉〈ni|φ〉
⎞
⎠ = 0. (B2)

Using an incomplete set of states, |ni〉, we can define
the projection of the Hamiltonian into the space spanned
by these states as Hproj = 〈n j |H |ni〉 and the overlap ma-
trix X = 〈n j |ni〉. If |ni〉 are approximations of the ground
state and the lowest excited states of the Hamiltonian, the
ground state of the projected Hamiltonian will be an im-
proved version of the variational ground state of the full
Hamiltonian.

In the converged variational NQS ground state |n0〉, the
main component is the exact ground state with small contri-
butions from the excited states. By optimizing a second NQS,
which is nearly orthogonal to the ground state NQS, using the
cost function

Lθ = 〈n1|H |n1〉 + J|〈n0|n1〉|2, (B3)

as described in the main text in Eq. (6), the first excited
state can be approximated as |n1〉. This procedure can be
repeated to approximate the excited states of H . We then
can use these variational low-energy states to calculate the
projected Hamiltonian and the overlap matrix in a Markov
Chain Monte Carlo scheme. We note that even by using the
cost function Eq. (B3), there is no guaranty that the overlap of
|n0〉 and |n1〉 exactly vanishes. We use a similar procedure as
in Eq. (A1) to calculate the matrix elements of the projected

Hamiltonian and the overlap matrix. For the projection on two
low-energy states, we sample using the product of these two
wave functions |n0(σ )||n1(σ )|, as it gave us the best results.
The projected Hamiltonian and the overlap matrix are then
given as

〈ni|H |n j〉
�

=
∑

σσ ′
|n0(σ )||n1(σ )|
|n0(σ )||n1(σ )|n



i (σ ′)n j (σ )〈σ |H |σ ′〉∑

σ |n0(σ )||n1(σ )| (B4)

〈ni|n j〉
�

=
∑

σ
|n0(σ )||n1(σ )|
|n0(σ )||n1(σ )|n



i (σ )n j (σ )∑

σ |n0(σ )||n1(σ )| , (B5)

which determines the normalization constant in Eq. (B2) as
� = ∑

σ |n0(σ )||n1(σ )|. The wave functions in Eq. (B2) do
not need to be normalized because the overlap matrix X takes
care of any factors arising due to the absence of normalization.
Hence, this method can be used in the variational Monte
Carlo scheme, which usually considers unnormalized wave
functions.

Then, by solving the generalized eigenvalue problem,
Eq. (B2), we can filter out the high energy components from
the variational ground state. The new variational ground state
is |n0〉new = ∑

i φ0i|ni〉, where φ0i are the components of the
lowest energy eigenvector of Eq. (B2). This procedure is
feasible when only a few excited states are mixed in the
approximation of the ground state, as the calculation of the
excited state itself is variational, and the errors build up with
each excited state calculation. This method works well for the
3 × 3 lattice over the entire parameter range, as the variational
ground state has negligible overlap with the second and higher
excited states. Then, only the calculation of the first varia-
tional excited state is required. However, while it improves the
variational energy slightly for larger lattices, we do not obtain
the correct ground state in the small DMI and A region of the
ground state diagram.

APPENDIX C: RENYI ENTROPY

When a system is divided into two parts, A and B, the
variational wave function can be written as

|ψθ 〉 =
∑
σAσB

ψθ (σAσB)|σA〉|σB〉, (C1)

where σA and σB are the basis states in region A and region
B, respectively. The Renyi entropy of order α between A
and B is

Sα (ρA) = 1

1 − α
ln

(
Tr

(
ρα

A

))
, (C2)

where ρα
A is the reduced density matrix obtained after tracing

out the degrees of freedom in region B. To calculate the
Renyi entropy of the second order (α = 2), we use the replica
trick to evaluate the expectation value of the ‘Swap’ operator
on two copies of the variational wave function. The Swap
operator swaps the spins in one region with that of another
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region between the two wave functions [42]

SwapA|ψθ 〉 ⊗ |ψθ 〉 = SwapA

⎛
⎝∑

σAσB

ψθ (σAσB)|σA〉|σB〉
⎞
⎠ ⊗

⎛
⎝∑

σ ′
Aσ ′

B

ψθ (σ ′
Aσ ′

B)|σ ′
A〉|σ ′

B〉
⎞
⎠

=
∑
σAσB

ψθ (σAσB)
∑
σ ′

Aσ ′
B

ψθ (σ ′
Aσ ′

B)|σ ′
A〉|σB〉 ⊗ |σA〉|σ ′

B〉, (C3)

where σ and σ ′ are the basis states for the two copies of the wave function. The expectation value of SwapA is then given by

〈SwapA〉 = 〈ψθ ⊗ ψθ |SwapA|ψθ ⊗ ψθ 〉
〈ψθ ⊗ ψθ |ψθ ⊗ ψθ 〉

=
∑

σAσBσ ′
Aσ ′

B
ψ∗

θ (σAσB)ψ∗
θ (σ ′

Aσ ′
B)ψθ (σ ′

AσB)ψθ (σAσ ′
B)∑

σσ ′ |〈ψθ ⊗ ψθ |σ ⊗ σ ′〉|2
= Tr(ρ2

A)

= exp(−S2(ρA)). (C4)

For the final step we use the definition in Eq. (C2) with α = 2. In the Monte Carlo scheme, Eq. (C4) can be evaluated as

〈SwapA〉 =
∑

σAσBσ ′
Aσ ′

B

|ψθ (σAσB)|2∑
σ |ψθ (σ )|2

|ψθ (σ ′
Aσ ′

B)|2∑
σ ′ |ψθ (σ ′)|2 · ψθ (σ ′

AσB)ψθ (σAσ ′
B)

ψθ (σAσB)ψθ (σ ′
Aσ ′

B)

=
∑

σAσBσ ′
Aσ ′

B

pθ (σ )pθ (σ ′)
ψθ (σ ′

AσB)ψθ (σAσ ′
B)

ψθ (σAσB)ψθ (σ ′
Aσ ′

B)
. (C5)
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