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Implementation of the density functional perturbation theory for generalized susceptibility
in the projector augmented wave framework
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The quantification of materials’ dynamical responses to external electromagnetic fields is central to under-
standing their physical properties. Here we present an implementation of the density functional perturbation
theory for the computation of linear susceptibilities using the projector augmented wave method. The Stern-
heimer equations are solved self-consistently through a nested iterative procedure to compute the first-order wave
functions, from which the linear susceptibilities are obtained. As a demonstration, we compute the spin-wave
spectral functions of two magnetic metals. The computed magnon spectra for half-metallic CrO2 and a Heusler
intermetallic Cu2MnAl show gapless Goldstone modes when spin-rotation symmetry is preserved and display
reasonable agreement with available experimental data. The Landau damping is computed to be small in CrO2,
but significant in Cu2MnAl, producing an asymmetric Lorentzian spectral line shape. The access to linear
susceptibilities as well as first-order wave functions offers a range of novel possibilities in the quantitative
understanding of materials’ electronic properties from ab initio methods.
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I. INTRODUCTION

A microscopic understanding of the electrical and mag-
netic characteristics of materials plays a key role in condensed
matter physics, furnishing a unified insight into a wide range
of phenomena. Indeed, the generalized density response func-
tions (i.e., susceptibilities) of a many-electron system to
external electromagnetic fields [1] in a broad sense encompass
the information of the usual longitudinal dielectric function
and magnetic permeability, as well as the cross terms for
electromagnetic coupling. The properties of collective ex-
citations, e.g., plasmon and magnon, can also be procured
from the susceptibilities. Therefore, computing the suscep-
tibilities, which involve both charge and spin degrees of
freedom of electrons, is essential to a full characterization of
electronic properties. Though relatively straightforward for a
noninteracting system, computing the susceptibilities for an
interacting many-electron system is a nontrivial task due to
interaction effects.

The Kohn-Sham density functional theory (DFT) [2] is by
far the most widely employed ground-state electronic struc-
ture method for materials and molecules. By mapping the
interacting ground state to that of a noninteracting system
with the same density and described by Kohn-Sham equa-
tions, the static density (and response) of a many-body system
can be captured via a variational formulation of the Kohn-
Sham systems. In the time-dependent (TD) DFT [3], the
electrodynamics is described by TD Kohn-Sham equations. In
these theories, the Hartree and exchange-correlation potentials
are functionals of density and treated as self-consistent fields.
The self-consistent first-order perturbation in TD DFT leads to
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the density functional perturbation theory (DFPT) [4], which
is then the machinery for linear response calculations leading
directly to the full response functions. Another approach to
the response functions is the many-body perturbation theory
[5–8] based on diagrammatic techniques.

DFPT-based methods have been successfully applied to
calculate the dielectric function [9–13] and phonon disper-
sion [14–16], with the results in quantitative agreement with
experimental observations. In the computations of dielectric
function, the first-order wave functions with respect to k are
solved, while the deformation potential from frozen atomic
displacements is used as the external field to compute phonon
dispersions. Dynamical responses to external electromagnetic
fields from DFPT, which account for the screening of both
charge and spin, have attracted considerable interest recently
[17–24]. In addition to quantifying the electrical and magnetic
properties of materials, the linear susceptibilities computed
from DFPT also find applications in the GW approximations
[25–27].

Approaches to the DFPT can be broadly grouped into
two categories: a Dyson-like equation is solved in the first
[18,19,24], whereas the Sternheimer equations are solved in
the second [17,20–23]. The Dyson-like equation approach
starts with response functions computed for the Kohn-Sham
ground state, followed by solving a Dyson-like equation in the
response function. Though formally transparent and amenable
to various iterative techniques, this approach suffers from
two shortcomings: it requires a large number of unoccupied
states and huge plane-wave bases for adequate convergence
[24], and more serious is the subtle basis set incompatibil-
ity between the Kohn-Sham states and the DFPT process,
which gives rise to an artifactual spin excitation gap in sys-
tems with spin-rotation symmetry. The latter problem can
only be partially mended with delicate engineering of the
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interaction kernel [19,28]. In the second category, the first-
order wave functions are procured (often iteratively) by
solving the Sternheimer equations, from which the density
is updated with charge mixing iterations and the response
functions are computed upon convergence. In this case, one
is forced to deal with wave functions and various pseudopo-
tentials with all the technicalities [29–32], in addition to
the nested iterative procedure. On the other hand, since the
full Kohn-Sham response functions are never required, this
method is free of the burden of summation over a huge number
of empty states. In addition, the first-order wave functions and
densities are computed as bonuses, which can be useful for
computing a variety of properties.

A particularly popular plane-wave-based approach to DFT
is based on the projector augmented wave (PAW) method
[31,32]. Combining the formal simplicity of pseudopotentials
and the versatility of the linearized augmented plane-wave
method, the PAW method offers both efficiency and accu-
racy to Kohn-Sham DFT calculations on extended solids,
and a wide range of capabilities in various implementations
[33–35]. Despite its popularity, DFPT in the PAW framework
has remained to be developed, which is accomplished in this
work by solving the TD Sternheimer equations to compute
the linear susceptibilities of crystalline materials accounting
for both charge and spin degrees of freedom. The paper is
organized as follows. In Sec. II A, the general theory of DFPT
is introduced, and the dressed spin in TD external electro-
magnetic fields is defined. The screening built on the notion
of dressed spin leads to the Sternheimer equations in the
frequency and momentum domain and explicit formula for
the linear susceptibilities. In Sec. II B, the PAW method is
reviewed, based on which the formulation of DFPT in the
PAW framework is described, along with a few implementa-
tion details. As a first calibration of our implementation, the
spin-wave spectral functions are extracted from the computed
linear susceptibilities. Two examples are presented: half-
metallic CrO2 (Sec. III A) shows a clean spin-wave spectrum
and minimal Landau damping, and a full Heusler intermetallic
Cu2MnAl (Sec. III B) shows significant Landau damping in
the spin excitations that can be quantified with a simple asym-
metric Lorentzian line shape. Lastly, a summary is provided
with an eye on room for development from both algorithm
and physics points of view.

II. THEORY AND IMPLEMENTATION

A. Density functional perturbation theory

The TD DFT offers an efficient description of the dynamics
of an interacting many-electron system in the presence of
external fields [3]. As a self-consistent perturbation theory
of TD DFT, DFPT is introduced in this section, wherein the
Sternheimer equations are specialized to crystalline systems
under a monochromatic, periodic external electromagnetic
field.

In TD DFT, to account for both charge and spin degrees of
freedom, the generalized density is given by

ρ(r, t ) =
∑

n

θnψ
†
n (r, t )σψn(r, t )

= (ρ0, m) = (ρ0, ρ1, ρ2, ρ3),

(1)

where θn is the occupancy of the spinor single-particle
state ψ†

n = (ψ†
n↑, ψ

†
n↓), and the four-vector spin σ =

(σ0, σ1, σ2, σ3) (σ0 is the identity matrix and σα with α =
1, 2, 3 are the Pauli matrices). The atomic units [36] are
adopted in this paper, so ρ0 is the total charge density and m is
the magnetization density. The dynamics of ψn is prescribed
by the TD Kohn-Sham equations [3],

i∂t |ψn(t )〉 = [H + δH (t )]|ψn(t )〉. (2)

The ground-state Kohn-Sham Hamiltonian [2] in Eq. (2) is
H = − 1

2∇2 + v[ρ (0)](r), where the self-consistent potential
is a functional of the ground-state density ρ (0), composed
of ionic, Hartree, and exchange-correlation (xc) potentials,
namely, vi, vH, and vxc. Though the xc potential vxc as a
functional of density is, in principle, nonlocal in space and
time [37–41], the commonly adopted local and adiabatic ap-
proximation (ALDA) is assumed in this work [42–44].

The first-order Hamiltonian δH comprises two contribu-
tions. The first arises from the coupling of the four-vector spin
σ with external fields,

vext(r, t ) = −Bα (r, t )σα, (3)

where the four-vector electromagnetic field B(r, t ) =
(−φ, 1

2 B) [45]. Here, B is the Zeeman field. We ignore
the nonlocal coupling between the magnetic field and
orbitals, which requires the current density functional
theory and is beyond the scope of the present work. The
indices α, β = 0, 1, 2, 3 are implicitly summed over when
repeated, but we will keep other summations explicit. The
self-consistent inclusion of the density dependence in the
Hartree and xc potentials means that δH also includes
a second contribution from induced density δρ(r, t ) that
screens vext, which can be formulated as

δH ind(r, t ) = σα

∫
fαβ (r, r′)δρβ (r′, t )dr′. (4)

The interaction kernel has two components, fαβ = f H
αβ + f xc

αβ ,
namely, the Hartree and xc kernels in the ALDA,

fαβ (r, r′) = δα0δβ0

|r−r′| + 1

2
δ(r − r′) tr

[
σα

∂vxc

∂ρβ

]
. (5)

According to the linear response theory, we have

δρα (r, t ) =
∫

χαβ (r, r′, t − t ′)Bβ (r′, t ′)dr′dt ′, (6)

where χαβ (r, r′, t ) is the linear susceptibility that we pursue in
this work. Thus, the first-order Hamiltonian can be written in
terms of a dressed spin τα in unscreened external fields,

δH (r, t ) = −
∫

τα (r, r′, t − t ′)Bα (r′, t ′)dr′dt ′, (7)

which is defined via

τα (r, r′, t − t ′) = − δH (r, t )

δBα (r′, t ′)
= σαδ(r − r′)δ(t − t ′)

− σγ

∫
fγ β (r, r′′)χβα (r′′, r′, t − t ′)dr′′.

(8)

As elaborated below, the linear susceptibility can be expressed
explicitly in terms of dressed spin.
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FIG. 1. Flow chart for a nested-loop DFPT calculation in the
Sternheimer equation approach. The outer loop depicted here is the
charge mixing. The inner loop is incurred in solving the Sternheimer
equations in each step of the outer iteration.

Now with the first-order Hamiltonian, the first-order wave
functions can be obtained by solving the Sternheimer equa-
tions [15,17,20,46–48],

(i∂t − H )
∣∣ψ (1)

n (t )
〉 = δH (t )

∣∣ψ (0)
n (t )

〉
, (9)

in which ψ (�)
n (t ) is the �th-order wave function, with

|ψ (0)
n (t )〉 = e−iεnt |ψn〉. With the first-order wave functions, we

will be able to compute the induced density via the variation
of Eq. (1), from which the first-order Hamiltonian will be
updated.

With the above introduction, a DFPT calculation can then
be performed in a nested iterative process depicted in Fig. 1.
In the initializing step, δH is constructed from the external
electromagnetic fields, whence the Sternheimer equations are
solved in the inner iteration. This produces a set of first-order
wave functions, from which the induced density is calculated.
A charge mixing strategy [49,50] is employed to revise the
induced density and a new δH is then constructed to enter
a next outer iteration. The above process is repeated until
convergence, with the linear susceptibility and dressed spin
as the output.

We now explain how the Sternheimer equations are solved
for a crystalline solid. For electrons in a crystal, the ini-
tial Kohn-Sham states are Bloch functions such that |ψn〉 �→
|ψnk〉 = eik·r |unk〉, where n is the band index and k is the
crystal momentum, and unk is the cell-periodic part of the
Bloch function. The system is subject to spatially periodic and
monochromatic external electromagnetic fields,

Bα (r, t ) = Bαei(p·r−ωt ) + c.c., (10)

where p = q + g, with g being a reciprocal lattice vector for q
in the first Brillouin zone. In this case, the following expansion
is useful:

ζ (r, t ) =
∑

�

ei(l ·r−νt )ζ (r, �), (11)

for ζ = δH, δρα , in which ζ (r, �) is a time-independent cell-
periodic function. Here, � ≡ (ν, l, h), whose values can only
be taken as ±(ω, q, g). Then the first-order Hamiltonian in the
� channel is

δH (r, �) = − eih·rσαBα (�)

+ σα

∫
fαβ (r, r′)δρβ (r′, �)eil ·(r′−r)dr′,

(12)

where Bα (ω, q, g) = Bα , Bα (−ω,−q,−g) = (Bα )∗.
The first-order wave function is expanded as∣∣ψ (1)

nk (t )
〉 =

∑
ν

e−i(ν+εnk )t
∣∣ψ (1)

nk (ν)
〉
, (13)

with ∣∣ψ (1)
nk (ν)

〉 = ei(k+l )·r∣∣u(1)
nk (�)

〉
. (14)

Then the Sternheimer equations become

(ν + iη + εnk − Hk+l )
∣∣u(1)

nk (�)
〉 = δH (r, �)|unk〉, (15)

in which Hk = e−ik·rHeik·r is the Bloch Hamiltonian. A pos-
itive infinitesimal η is introduced on the left-hand side as
a convergence factor to embody the causality structure of
the linear susceptibility. In actual calculations, η takes finite
values to ensure convergence with finite k-mesh, especially
for metals, and bestows finite broadening on spectral peaks.

From the first-order wave functions, we compute the first-
order induced density as

δρα (r, �) =
∑

nk

θnk
{
u†

nk(r)σαu(1)
nk (r, �)

+ u(1)
nk

†
(r,−�)σαunk(r)

}
. (16)

The linear susceptibility can be extracted from the Fourier
components of δρα (r, �),

δρα (g′, �) = χαβ (g′, �)Bβ (�),

whence

χαβ (g′, �) =
∫

e−i(g′+l )·rχαβ (r, r′, ν)ei(h+l )·r′
drdr′. (17)

It is worth mentioning that if we write the first-order
Hamiltonian in Eq. (12) in terms of the dressed spin,

δH (r, �) = − e−il ·rτα (r, �)Bα (�),

τα (r, �) =
∫

τα (r, r′, t )ei[(l+h)·r′+νt]dr′dt,
(18)

then the Sternheimer equations in Eq. (15) admit the following
formal solutions in the � channel:∣∣u(1)

nk (�)
〉 = −Bα (�)

∑
n′

|un′k+l 〉τα (k, �)n′n

ν + εnk−εn′k+l + iη
, (19)
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in which the dressed spin matrix element is

τα (k, �)n′n =
∫

u†
n′k+l (r)e−il ·rτα (r, �)unk(r)dr. (20)

Because it requires the summation over a large number of
empty states, this formal solution is not used in practice [51].
As will be explained later, in our implementation the exact so-
lution is used to quickly correct the contributions of occupied
and a small number of low-lying particle states in the iterative
solution of the Sternheimer equations. The screened suscepti-
bility then has the same expression as the (bare) Kohn-Sham
susceptibility, except that the (unscreened) external fields are
now coupled to the dressed spin; that is,

χαβ (g′, �) = −
∑
nn′k

(θnk − θn′k+l )

× 〈unk|e−ig′ ·rσα|un′k+l 〉τβ (k, �)n′n

ν + εnk − εn′k+l + iη
. (21)

In arriving at the last expression, we have used the fact that
τα (k, �)n′n = τα (k + l,−�)∗nn′ . Recalling that the dressed spin
in Eq. (8) is defined via the screened susceptibility, this in fact
leads to the Dyson-like equation in χ .

B. DFPT with PAW method

The previous section presents a sketch of the DFPT
for periodic systems without recourse to computational de-
tails. In practical calculations, however, various technologies
have been developed such that one can perform DFT (and,
therefore, DFPT) calculations on valence electrons only
for crystalline materials using plane-wave bases with the
aid of pseudopotentials to yield satisfactory accuracy with
high efficiencies. It is well known that the norm-conserving
pseudopotential [29] requires large plane-wave bases (par-
ticularly for localized orbitals in transition elements), while
the application of an ultrasoft pseudopotential [30] is partly
limited by the rather laborious construction. In contrast, the
PAW method, combining the pseudopotential and linearized
augmented plane-wave methods, is free from the above dif-
ficulties and has been widely used. Thus, performing DFPT
within the PAW framework [31,32] for inhomogeneous and
TD electromagnetic fields is evidently useful, though notably
nontrivial.

DFPT with the PAW method has been implemented within
the Vienna ab initio simulation package (VASP) [33] for
atomic displacements in the static and long-wavelength limit
to calculate zone-center phonon energies. The extension to in-
homogeneous and TD electromagnetic fields is accomplished
in this work based on VASP 5.4.4, and a few implementation
details warrant further clarification. Here, we will briefly re-
view the PAW method and describe how it is used in our DFPT
calculations. Although the formalism for the ground-state
quantities is identical to those in the literature and notationally
notorious, we feel compelled to provide some of these de-
tails, particularly in view of the time- and position-dependent
external fields involved in our implementation. The key of
this endeavor is to express various parts of the densities in
the PAW framework in monochromatic external potentials

that allows efficient and accurate determination of the various
parts of the induced potentials.

The PAW method is based on a linear transformation
between the all-electron (AE) Hilbert space orthogonal to core
states and pseudo (PS) Hilbert space. The AE and PS wave
functions are related by

|ψnk〉 = T |ψ̃nk〉, (22)

with the linear operator defined as

T = 1 +
∑

ia

(∣∣φa
i

〉 − ∣∣φ̃a
i

〉)〈
p̃a

i

∣∣. (23)

The index i = (nlms) is a shorthand encapsulating the quan-
tum numbers (nlm) of the local orbitals and spin s for the
atomic site located at Ra. φ, φ̃, and p̃ are AE partial waves,
PS partial waves, and projector functions, respectively, and
should all be understood as spinors. In order to perform the
DFPT calculations on a crystalline solid in the electromag-
netic fields in Eq. (10), the key is to find the cell-periodic part
of each PAW-pseudized quantity, especially the nonlocal ones.

Upon application of the time-independent transformation
T to the first-order wave functions, the pseudized Sternheimer
equations read

(i∂t S − H̃ )
∣∣ψ̃ (1)

nk (t )
〉 = δH̃ (t )

∣∣ψ̃ (0)
nk (t )

〉
, (24)

with S = T †T , H̃ = T †HT , and δH̃ (t ) = T †δH (t )T .
According to the implementation of the PAW method in

VASP (see Appendix A for a brief introduction) [32], we have

S = 1 +
∑
i ja

∣∣p̃a
i

〉
qa

i j

〈
p̃a

j

∣∣,
H̃ = −1

2
� + ṽeff +

∑
i ja

∣∣ p̃a
i

〉(
D̂a

i j + D̃a
i j

)〈
p̃a

j

∣∣. (25)

Here the local potential ṽeff (r) is a functional of the sum of
pseudodensity ñ(r) and compensation density n̂(r), while the
nonlocal potential D̃a

i j is a function of density matrix �a, i.e.,

ṽeff = ṽeff [ñ + n̂],

D̂a
i j =

∫
�a

ṽeff
α (r)Q̂aα

i j (r)dr,

D̃a
i j = D̃a

i j (�
a). (26)

The definitions of qa
i j and Q̂aα

i j (r) can be found in Appendix A.
We have hidden the functional dependence on the pseudized
core densities in ṽeff (r), which are kept frozen during the
DFPT calculations. ñ(r), n̂(r), and �a

i j are given by, respec-
tively,

ñα (r) =
∑

nk

θnkψ̃
†
nk(r)σαψ̃nk(r),

n̂α (r) =
∑
i ja

�a
i jQ̂

aα
i j (r),

�a
i j =

∑
nk

θnk
〈
ψ̃nk

∣∣ p̃a
i

〉〈
p̃a

j |ψ̃nk〉. (27)

Now we derive the expression for the first-order Hamil-
tonian δH̃ (t ). For the fields in Eq. (10), the first-order local
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densities and potentials follow the same expansion as in
Eq. (11), while the first-order density matrix δ�a

i j and nonlocal
potential δDa

i j can be expanded as

δζ a
i j (t ) =

∑
�

ei(l ·Ra−νt )δζ a
i j (�). (28)

Here, the factor eil ·Ra in the � channel is introduced such that
δζ a

i j (�) is cell periodic.
The contribution of external electromagnetic fields in

δH̃ (t ) can be calculated directly,

δH̃ ext(r, t ) =
∑

�

e−iνt

[
eil ·rvext(r, �)

(29)

+
∑
i ja

eil ·Ra
∣∣ p̃a

i

〉
Da,ext

i j (�)
〈
p̃a

j

∣∣],

with

vext(r, �) = − Bα (�)σαeih·r,

Da,ext
i j (�) = 〈

φa
i

∣∣eil ·(r−Ra )vext(r, �)
∣∣φa

j

〉
− 〈

φ̃a
i

∣∣eil ·(r−Ra )vext(r, �)
∣∣φ̃a

j

〉
. (30)

The contribution to δH̃ (t ) from the induced densities has
an expression similar to Eq. (29) and can be calculated via an
explicit finite difference, as H̃ is a functional of ñ, n̂, and �a.
The first-order densities are found to be

δñα (r, �) =
∑

nk

θnk
{
ũ†

nk(r)σα ũ(1)
nk (r, �) + ũ(1),†

nk (r,−�)σα ũnk(r)
}
,

δn̂α (r, �) =
∑
i ja

eil (Ra−r)δ�a
i j (�)Q̂aα

i j (r),

δ�a
i j (�) =

∑
nk

θnk
[〈

ũnk

∣∣ p̃a
ik

〉〈
p̃a

jk+l

∣∣ũ(1)
nk (�)

〉
(31)

+ 〈
ũ(1)

nk (−�)
∣∣ p̃a

ik−l 〉
〈
p̃a

jk|ũnk〉
]
,

where we define | p̃a
ik〉 = e−ik·(r−Ra )| p̃a

i 〉. The first-order effec-
tive local potential is then given by

δṽeff (r, �) =
∫

δṽeff (r)

δn(r′)

∣∣∣∣
n=ñ+n̂

[δñ(r′, �)

+ δn̂(r′, �)]eil ·(r′−r)dr′. (32)

The first-order Hartree term can be calculated directly in re-
ciprocal space, while the first-order xc potential in the ALDA
is approximated as

δṽxc(r, �) ≈ ṽxc[ñ + n̂ + δñ(�) + δn̂(�)] − ṽxc[ñ + n̂]. (33)

Similarly, the first-order nonlocal potentials can be approxi-
mated as

δD̂a
i j (�) =

∫
�a

eil ·(r−Ra )δṽeff
α (r, �)Qaα

i j (r)dr,

δD̃a
i j (�) =

∑
kl

∂D̃a
i j

∂�a
kl

δ�a
kl (�)

≈ D̃a
i j[�

a + δ�a(�)] − D̃a
i j (�

a). (34)

Though introduced as forward differences in Eqs. (33) and
(34), these quantities are evaluated using fourth-order cen-
tered finite differences, with a step length of a thousandth of
the density variables.

With the above results, the final Sternheimer equations be-
come

(νSk+l + εnkSk+l − H̃k+l )
∣∣ũ(1)

nk (�)
〉 = δH̃k(�)|ũnk〉, (35)

with

Sk+l = 1 +
∑
i ja

∣∣ p̃a
ik+l

〉
qa

i j

〈
p̃a

jk+l

∣∣,
H̃k+l = −1

2
�k+l + ṽeff +

∑
i ja

∣∣ p̃a
ik+l

〉(
D̂a

i j + D̃a
i j

)〈
p̃a

jk+l

∣∣,
δH̃k(�) = vext(�) + δṽeff (�) +

∑
i ja

∣∣ p̃a
ik+l

〉[
Da,ext

i j (�) + δD̂a
i j (�)

+ δD̃a
i j (�)

]〈
p̃a

jk

∣∣. (36)

Here, ũnk and ũ(1)
nk (�) are the cell-periodic parts of correspond-

ing pseudo-wave functions, respectively.
Moreover, additional terms should be involved in the

nonlocal potential when considering the spin-orbit coupling
and the local-spin-density approximation plus the multior-
bital mean-field Hubbard model (LSDA + U method), both
of which are functions of the density matrix, i.e., Da,SOC

i j (�a)

and Da,U
i j (�a) (see Appendix A). The corresponding first-order

contributions δDa,SOC
i j (�) and δDa,U

i j (�) can be computed in a
way similar to Eq. (34).

The pseudized Sternheimer equations in the ±(ω, q, g)
channels are solved separately in each iteration using a variant
of the residual minimization method with a direct inversion in
the iterative subspace (RMM-DIIS) [52,53], which is already
implemented in VASP 5.4.4. The Löwdin perturbation theory
is also performed to correct the first-order wave functions in
the subspace of occupied states and low-lying excitations to
speed up convergence,∣∣ũ(1)

nk (�)
〉 → ∣∣ũ(1)

nk (�)
〉 − ∑

n′
|ũn′k+l 〉

〈
ũn′k+l |Sk+l

∣∣ũ(1)
nk (�)

〉

+
∑

n′

|ũn′k+l 〉〈ũn′k+l |δH̃ |ũnk〉
ν + εnk − εn′k+l

. (37)

In the last equation above, the summations on n′ run over the
occupied bands plus a few empty bands. In our practice, if the
Löwdin perturbation theory is not performed, the results fail to
converge within 80 charge mixing steps. This is because the
projections of occupied states dominate the first-order wave
functions due to the small energy differences and, without
Löwdin perturbation correction, it will spend more time to
search in the occupied subspace, which, however, has no
contribution to the charge density.

Apparently, solving Eq. (35) requires a k-grid supple-
mented by two additional grids shifted by ±q when q itself
is not on the k-grid. Doing so, however, not only increases
the computational burden but also, more seriously, obliterates
the exact cancellation of the contribution of the occupied
manifold to the density change due to a k-grid discretization
error. The latter can be easily avoided by employing a pair of
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TABLE I. Reported implementations of DFPT for spin-wave spectra calculations by solving the Sternheimer equations.

Lead author (year) Potential Basis set Software

Savrasov (1998) [17] Full potential LMTO1 LMTO MAGNONS

Cao et al. (2018) [20] NCPP2, USPP3 Plane wave QE4

Gorni et al. (2018) [21] NCPP Plane wave QE

Tancogne-Dejean et al. (2020) [22] NCPP Real space OCTOPUS

Singh et al. (2020) [23] Full potential LAPW5 ELK

1Linear muffin-tin orbital; 2Norm-conserving pseudopotential; 3Ultrasoft pseudopotential; 4QUANTUM ESPRESSO; 5Linearized augmented plane
wave.

grids with a q shift, which also partly reduces the calculation.
Then Eq. (35) is solved on the k-grid in the +q channel, and
on the k + q grid in the −q channel. It is observed that in this
dual grid setup, the above cancellation is well preserved.

The xc potentials in ALDA are functionals of real-valued
densities. Thus, calculating δṽxc(�), such as in Eq. (33), re-
quires caution as δñ(�) and δn̂(�) are usually complex. In
fact, the real and imaginary parts of δṽxc(�) are calculated
separately,

Fδṽxc(�) ≈ ṽeff [ñ + n̂ + Fδñ(�) + Fδn̂(�)] − ṽeff [ñ + n̂],

(38)

where F = Re, Im takes the real or imaginary part, respec-
tively. In the case of the nonlocal potential, δD̃a

i j (�) and
δ�a

i j (�) are first decomposed into two independent Hermitian
matrices (i.e., the Hermitian part and −i times the anti-
Hermitian part), and then finite differenced separately in an
analogous fashion.

Symmetry reduction is also performed in our implemen-
tation, where the summation over k points in Eq. (31) is
restricted to the symmetry-irreducible part of the Brillouin
zone. The symmetry group here is the subgroup of the mag-
netic group of the studied crystal in which the external
electromagnetic fields in Eq. (10) are invariant.

III. APPLICATION TO SPIN-WAVE
SPECTRUM CALCULATION

Our implementation enables computing the linear suscepti-
bilities χαβ with the self-consistent inclusion of the interaction
kernel. Directly inverting χαβ yields the dielectric tensor,
which is composed of the usual charge sector ε00, spin sector
εαβ , and the spin-charge sector ε0β , each embodying unique
physics. Computing χαβ then can have diverse applications
in evaluating materials properties pertaining to both charge
and spin fluctuations, or in subsequent many-body calcula-
tions beyond the Kohn-Sham mean fields. One immediate
application that has received considerable attention is the
calculation of spin-wave excitation [17–24]. According to
the fluctuation-dissipation theorem, the spin-spin correlation
function, directly accessible by various spin-sensitive inelastic
scattering probes [54–56], is related to the imaginary part of
the linear susceptibilities,

S+−(p, ω) = Im χ+−(p, ω)

1 − e−h̄ω/kBT
. (39)

For notational convenience, we have defined χ+−(p, ω) ≡
χ+−(g, ω, q, g) as p = q + g.

Although, for magnetic systems dominated by local mo-
ments, the magnon can be described effectively by localized
spin models, this method is subject to debate when delocal-
ization sets in, and ultimately of questionable validity for
itinerant magnetism. In these latter cases, which include a
wide range of magnetic materials, the DFPT route becomes
invaluable for computing the spin-wave spectra ab initio. To
our knowledge, there have been just a handful of works de-
voted to implementing the DFPT scheme for this purpose
by solving the Sternheimer equations, as summarized in Ta-
ble I. In these efforts, implementations are limited to the full
potential [17,23], or norm-conserving and ultrasoft pseudopo-
tentials [20–22].

In this section, we present an initial application of our
implementation of DFPT in the PAW framework to the cal-
culations of spin-wave spectra for a couple of magnetic
materials. For ferromagnets with the spin polarized along the
z direction, the transverse magnetic field can be applied by
choosing B = (0, 1,−i, 0) in Eq. (10), from which χ+− is di-
rectly calculated. In these cases, the only remaining symmetry
operation keeping the crystal and the transverse magnetic field
unchanged is identity transformation. Thus, there is no room
for symmetry reduction.

A. Half-metallic chromium dioxide

As shown in the inset in Fig. 2, chromium dioxide CrO2

is a ferromagnetic half-metallic oxide with a rutile crystal
structure, where each Cr atom is situated at the center of
an octahedral cage formed by oxygen atoms [57,58]. Widely
used as a magnetic recording material, CrO2 also has various
potential applications in spintronics and magnetoelectronics
[59,60] due to its half-metallic properties.

The experimental lattice parameters a = b = 4.4218 Å and
c = 2.9182 Å [58] are used in our calculations. The plane-
wave energy cutoff is set to be 500 eV and a 13 × 13 ×
20 �-centered mesh of k points is used. For the Brillouin zone
integration, the tetrahedron method with Blöchl corrections
is used in all subsequent calculations [61]. The spin-resolved
densities of states of CrO2 are computed from the collinear
spin-polarized calculation and shown in Fig. 2, where the half-
metallic nature is clearly seen. The magnetic moment of Cr is
found to be ∼2 µB. We then turn to the noncollinear calcula-
tions and compute the transverse spin susceptibility χ+−(p, ω)
along the [100] and [001] directions for ω � 400 meV in
10 meV intervals. The broadening parameter η introduced in
Eq. (15) is set to be 50 meV in the calculations in this section.
Increasing the numbers of k points or reducing the value of
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FIG. 2. Spin-resolved densities of states of CrO2. The spin-flip
gap is found to be about 310 meV. Inset: The crystal structure of
CrO2, highlighting the CrO6 octahedra.

η has negligible effects on the energies of the magnons (see
Appendix B).

Figure 3(a) shows the computed Imχ+−(p, ω), without
spin-orbit interaction, along two p paths. In general, χ+−(p, ω)
is not periodic in p. Then the branch in the first Brillouin zone
is composed of acoustic magnon modes, while the branch
in the second Brillouin zone is composed of optical modes.
The profile of the magnon peak at a given p is a nearly
perfect Lorentzian over the entire energy range. The extracted
half width at half maximum ηp are almost a constant and
equal to the artificial broadening parameter η, indicating that
the Landau damping in CrO2 is negligible. This is expected
given that half-metallic CrO2 has a large spin-flip gap around
310 meV, as shown in Fig. 2. The computed bare suscepti-
bilities Imχ0

+−(p, ω) shown in Fig. 3(b) for ω � 600 meV also
support such conclusion, where the Stoner continuum is found
at energy above 450 meV near the Brillouin zone center.

The locations of the maxima of magnon peaks, ωp, are then
recorded and folded to the first Brillouin zone (ωq). As shown
in Fig. 3(c), we find one acoustic magnon branch and one
optical branch, consistent with the fact that the unit cell in

CrO2 contains two magnetic Cr atoms. There is no magnon
gap at the Brillouin zone boundaries, which is a result of the
n glide symmetry. The energy of long-wavelength acoustic
magnons is quadratic in q with a gapless Goldstone mode,
ωq = D‖(q2

x + q2
y ) + Dzq2

z , as expected for a ferromagnet with
spin-rotation symmetry. The spin stiffness coefficients are
found to be D‖ = 82 meV Å2 along the [100] and Dz =
92 meV Å2 along the [001] directions, respectively. From this,
we can estimate the average spin stiffness coefficient to be
85 meV Å2. Several experiments have reported the spin stiff-
ness of CrO2, including 150 meV Å2 [62], 90 meV Å2 [63],
112.5 meV Å2 [64], and 91 meV Å2 [65]. All these values
agree well with our calculated result.

For comparison and a demonstration, we introduce ad-
ditional (static) electron correlation within the LSDA + U
formalism [66,67] in both the ground-state calculation and
subsequent DFPT calculations, with U eff = 2.1 eV [68]. As
shown in the inset of Fig. 3(c), the gapless Goldstone mode is
intact in the LSDA + U calculations. This is expected, given
that the total energy functional of LSDA + U formalism,

E tot = ELSDA + U eff

2

(∑
ma

�a0
mm − 1

2

∑
mm′a

�aα
mm′�

aα
m′m

)
, (40)

is invariant under an arbitrary spin rotation when spin-orbit
coupling is not included. The density matrix of d orbitals �aα

m′m
in the PAW framework is given in Eq. (A14). Spontaneously
breaking this continuous symmetry in a ferromagnetic state
then leads to gapless Goldstone excitations. The average spin
stiffness coefficient is evaluated to be D = 391 meV Å2, al-
most five times that without the Hubbard U . The energy of
the magnon in CrO2 seems to be highly overestimated in
LSDA + U calculations, which can be attributed to the en-
hanced exchange splitting of the d-orbital dominated bands
[5,6].

As a further test, we examine the Goldstone gap as a result
of breaking the spin-rotation symmetry by introducing spin-
orbit interaction. The atomic spin-orbit interaction for Cr is
fairly weak (of the order of tens of meV). Since the gap in the
Goldstone magnon is second order in the spin-orbit coupling,
it is small for CrO2. In order to visualize the effect of spin-
orbit coupling, we introduce a parameter λ to artificially tune
its strength (or speed of light), as in H = H0 + λHSOC, where

FIG. 3. (a) Imχ+−(p, ω) and (b) Imχ 0
+−(p, ω) of CrO2 along the [100] and [001] directions. The black vertical line indicates the center

of the first Brillouin zone. (c) The folded magnon energy dispersion ωq of CrO2 in the first Brillouin zone, extracted from Im χ+− shown in
(a). The inset shows the quadratic fits to ωq at small q along the [100] and [001] directions, respectively, for calculations without Hubbard U
correction and with U eff = 2.1 eV. The squares are the calculated data.
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FIG. 4. (a) Imχ+−(p = 0, ω) as a function of ω for different λ

values. λ = 1 corresponds to the actual strength of spin-orbit cou-
pling in CrO2. The squares are the calculated data and the solid lines
are the fits with Lorentzian line shape. (b) The Goldstone gap as a
function of λ2 in CrO2. The solid line is the linear fit.

λ = 1 corresponds to the actual strength of spin-orbit coupling
in CrO2. The calculated Imχ+−(p = 0, ω) as a function of ω

for different λ values are shown in Fig. 4(a). Apparently there
is a blueshift of the Goldstone mode with increasing λ, indi-
cating the emergence of a Goldstone gap. The Goldstone gap
indeed shows a quadratic dependence on λ, as demonstrated
by the gap-vs-λ2 plot in Fig. 4(b). The extrapolated Goldstone
gap in CrO2 is about 0.1 meV.

B. Heusler intermetallic Cu2MnAl

The ternary intermetallic Cu2MnAl is a Mn-based full-
Heusler alloy with the L21 structure type (see inset in Fig. 5).
The experimental lattice parameter for the conventional cubic
cell (space group Fm3̄m) is a = 5.968 Å [69]. Cu2MnAl is
ferromagnetic below the relatively high Curie temperature
(603 K) [69]. Apart from being regarded as a prototype for
understanding the electronic correlations in Heusler inter-
metallics [70], Cu2MnAl is also being used as a neutron
polarizer and monochromator material [71,72].

FIG. 5. Spin-resolved densities of states of Cu2MnAl. Inset: The
crystal structure of full Heusler Cu2MnAl, showing a conventional
cubic unit cell for the L21 structure.

A plane-wave energy cutoff of 350 eV and a 15 × 15 ×
15 �-centered k-grid are used in our calculations. Spin-orbit
coupling is not included. The spin-resolved densities of states
of Cu2MnAl computed from the collinear spin-polarized cal-
culation confirms the ferromagnetism of Cu2MnAl, as shown
in Fig. 5. The magnetic moment is primarily carried by Mn
atoms and computed to be 3.4 μB/Mn. The transverse spin
susceptibility χ+−(p, ω) along the [100], [110], and [111]
crystallographic directions is then computed in noncollinear
calculations for ω � 300 meV in 5 meV intervals, with a
broadening parameter η of 50 meV.

Figure 6(a) shows the computed magnon spectral function
Imχ+−(p, ω) along the three principal directions. The acoustic
magnon branch is seen clearly only at low energies near the
Brillouin zone center. The spectral peaks of these low-energy
modes can be adequately fitted with the Lorentzian line shape
as in the CrO2 case. The dispersion of the long-wavelength
modes is quadratic and isotropic, as demonstrated in the inset
of Fig. 6(c). A spin stiffness coefficient D = 268 meV Å2 is
procured from the quadratic fit, which is about 1.5 times larger
than the experimental value of 175 meV Å2 [74].

Notably, at higher energies and near Brillouin zone bound-
aries, the magnon peaks become fuzzier and broader, attesting
to substantial Landau damping in this material. The strong
Landau damping is consistent with the presence of the Stoner
continuum shown in Fig. 6(b). In stark contrast to the CrO2

case with almost no Landau damping, the coupling to the
Stoner continuum in Cu2MnAl bestows a magnon peak at a
given p, an asymmetric profile that defies a Lorentzian fit (see
Appendix C). Viewing the coupling to the Stoner continuum
as a Fano-type resonance, we superimpose a linear function
on the Lorentzian to describe the asymmetric line shape,

A(p, ω) = apηp

(ω − ωp)2 + η2
p

+ ξp(ω − ωp), (41)

with ωp, ap, ηp, and ξp as fitting parameters.
As it turns out, this simple modification leads to sat-

isfactory fitting for the entire spectrum, as evidenced in
Appendix C. The extracted magnon dispersion is then shown
in Fig. 6(c), which coincides with the calculated results of
Buczek et al. [18,73] and agrees well with the experimental
observations along the [100] direction [74]. Along the [110]
and [111] directions where the Landau damping seems more
pronounced, our computed dispersion shows significant dis-
crepancy from the experimental one. For low-energy modes,
ηp is dominated by the artificial broadening parameter η and
the asymmetry is small, as shown in Fig. 6(d). With increasing
energies, however, the broadening quickly exceeds η and the
asymmetry becomes pronounced, especially near Brillouin
zone boundaries, both providing quantitative characterization
of the Landau damping.

IV. SUMMARY AND OUTLOOK

In conclusion, we report an implementation of the DFPT
method in the PAW framework, which is capable of comput-
ing the full linear susceptibilities of real materials. A nested
iterative procedure is employed to self-consistently solve the
Sternheimer equations, to procure linear susceptibilities along
with the first-order wave functions and densities in monochro-
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FIG. 6. (a) Imχ+−(p, ω) and (b) Imχ 0
+−(p, ω) of Cu2MnAl along the [100], [110], and [111] directions. Reciprocal lattice vectors of

a conventional cubic cell are adopted here. (c) The magnon energy dispersion ωp of Cu2MnAl along the [100], [110], and [111] directions,
extracted from the asymmetric Lorentzian fits. © is the calculated data of Buczek et al. [18,73], using the Dyson scheme. � is the experimental
data of Tajima et al. [74]. Inset: The quadratic fit to the long-wavelength acoustic magnons. (d) Broadening ηp and asymmetry ξp of the magnon
peaks in Cu2MnAl along the [100], [110], and [111] directions. The error bars show 95% confidence bounds on the fitting parameters from the
fits.

matic and periodic external electromagnetic fields. The time
cost of each DFPT calculation (given an external field direc-
tion, momentum, and frequency) is comparable to that of a
corresponding Kohn-Sham DFT calculation.

As a demonstration, we compute the spin-wave spectra for
CrO2 and Cu2MnAl. Gapless magnon dispersion is obtained
for both materials from the calculations without spin-orbit
coupling. The spin stiffness coefficients extracted from the
quadratic fits are in agreement with experimental values for
both CrO2 and Cu2MnAl. The Landau damping in CrO2 is in-
significant due to its half-metallic nature, while in Cu2MnAl,
it is remarkable at high energies and can be quantified with
a simple asymmetric Lorentzian fit. The LSDA+U method as
well as the effect of spin-orbit coupling are examined in CrO2,
from which the former highly overestimates the magnon en-
ergy, while the latter gives rise to a Goldstone gap that is
quadratic in spin-orbit coupling strength λ. In order to further
validate our implementation, we also compare our result on
bcc Fe with previous theoretical and experimental studies,
which shows a good agreement, in Appendix D.

There is clearly room for future developments to make the
current implementation more efficient and versatile. From an
algorithm viewpoint, the occupied subspace is not projected
out in Sternheimer equations in the current implementation.
As the contribution to the first-order wave functions from the
occupied states does not contribute to the first-order densi-
ties, projecting out the occupied subspace [15] can potentially

improve the efficiency and stability of the nested iteration. As
an additional benefit of the projection, it also renders the prin-
ciple integrals explicit and amenable to analytic techniques,
which can further reduce the number of k points required and
improve efficiencies. Alternative iterative techniques should
be tested in general, for both inner and outer loops, especially
in conjunction with the projection.

From a physics viewpoint, a few tasks are on the immedi-
ate agenda and new possibilities are clearly on the horizon,
beyond the initial demonstrations presented herein. For the
spin-wave spectral functions, it will be valuable to compare
the computed spectra with experimental results for more ma-
terials. A particularly interesting comparison can be made
between the dispersion relations obtained ab initio from our
DFPT implementation and those from Heisenberg models
parametrized from constrained DFT energies on the basis
of the magnetic force theorem [75–77]. Such comparisons
should be examined in detail for materials in the localized
and the itinerant limits, as well as for the continuum falling in
between. Further systematic studies for the gradient correction
(as in generalized gradient approximations) and for the Hub-
bard correction in the LSDA + U method can reveal the effect
of correlation on the spin-wave spectra. As the first-order
wave functions are also produced in our code, it is also tempt-
ing to evaluate other physical properties, related to density and
current responses, such as the magnetoelectric coupling and
related transport coefficients. A particular connection may be
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made by observing that

W = f + f χ f (42)

is the screened kernel, which now includes the charge, spin,
and cross screening effects. This will enable one to analyze the
many-electron effects in magnetic materials with strong spin-
orbit coupling, and potentially evaluate novel bound states
from the screened charge/spin interactions.
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APPENDIX A: HAMILTONIAN IN PAW METHOD

Here we briefly introduce the implementation of PAW
method in VASP, including the spin-orbit coupling and
LSDA + U method, to complement the discussions in the
paper. For further details, please refer to Refs. [31,32].

The overlap operator is defined by

S = 1 +
∑
i ja

∣∣ p̃a
i

〉
qa

i j

〈
p̃a

j

∣∣, (A1)

with

qa
i j = 〈

φa
i

∣∣φa
j

〉 − 〈
φ̃a

i

∣∣φ̃a
j

〉
. (A2)

The Hamiltonian of the Kohn-Sham equation is given by

H̃ = −1

2
� + ṽeff +

∑
i ja

∣∣ p̃a
i

〉(
D̂a

i j + D̃a
i j

)〈
p̃a

j

∣∣, (A3)

with D̃a
i j = Da,1

i j − D̃a,1
i j .

The local potential ṽeff involves the Hartree and xc terms,

ṽeff = vH[ñ + n̂ + ñZc] + vxc[ñ + n̂ + ñc]. (A4)

The partial electronic core density ñc and pseudized core
density ñZc are frozen. The pseudodensity ñ and compensation
density n̂ have been shown in Eq. (27), with n̂(r) defined via
Q̂a

i j (r):

Qaα
i j (r) = φ

a†
i (r)σαφa

j (r) − φ̃
a†
i (r)σαφ̃a

j (r),

qaLα
i j =

∫
Qaα

i j (r)|r − Ra|lY ∗
L ( ̂r − Ra)dr,

Q̂aα
i j (r) =

∑
L

qaLα
i j gl (|r − Ra|)YL( ̂r − Ra). (A5)

Here, Qa
i j (r), qaL

i j , and Q̂a
i j (r) are all four-vectors, and L is a

shorthand for (l, m).
D̂a

i j is given by

D̂a
i j =

∫
�a

ṽeff
α (r)Q̂aα

i j (r)dr, (A6)

with ṽeff
α (r) = 1

2 tr{σα ṽeff (r)}. The terms Da,1
i j and D̃a,1

i j are
given by

Da,1
i j = 〈

φa
i

∣∣ − 1

2
� + veff

1

∣∣φa
j

〉
,

D̃a,1
i j = 〈

φ̃a
i

∣∣ − 1

2
� + ṽeff

1

∣∣φ̃a
j

〉 + ∫
ṽeff

α,1(r)Qaα
i j (r)dr,

(A7)

with

veff
1 [n1] = vH[n1 + nZc] + vxc[n1 + nc],

ṽeff
1 [ñ1] = vH[ñ1 + n̂ + ñZc] + vxc[ñ1 + n̂ + ñc]. (A8)

The on-site densities n1 and ñ1 are

n1
α (r) =

∑
i ja

�a
i jφ

a†
i (r)σαφa

j (r),

ñ1
α (r) =

∑
i ja

�a
i j φ̃

a†
i (r)σαφ̃a

j (r). (A9)

It is then clear that D̃a
i j = Da,1

i j − D̃a,1
i j is a function of density

matrix �a.
The spin-orbit coupling in the PAW method is given

by [78]

H̃SOC =
∑
i ja

∣∣ p̃a
i

〉
Da,SOC

i j

〈
p̃a

j

∣∣, (A10)

with

Da,SOC
i j = 〈

φa
i

∣∣α2

4

K (r)

r

dveff
1 (r)

dr
σ · L

∣∣φa
j

〉
,

K (r) =
(

1 − α2veff
1 (r)

2

)−2

. (A11)

Here, veff
1 (r) is the spherical part of the effective AE potential

and α is the fine-structure constant. As seen from Eqs. (A8)
and (A9), veff

1 (r) is determined by �a.
The Hubbard correction of LSDA + U formalism in the

PAW method is given by [66,67]

H̃U =
∑
i ja

∣∣ p̃a
i

〉
Da,U

i j

〈
p̃a

j

∣∣, (A12)

and the nonlocal potential Da,U
i j is

Da,U
i j =

∑
α

Ueff

2

(
δα0δmm′ − �aα

m′m
)〈
φa

nls

∣∣σα
∣∣φa

n′l ′s′
〉
, (A13)

with

�aα
m′m =

∑
ns,n′s′

�a
i j

〈
φa

nls

∣∣σα
∣∣φa

n′l ′s′
〉
. (A14)
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FIG. 7. Imχ+−(p, ω) as a function of ω for different (a) k-point
meshes and (b) η in CrO2 with p = (0, 0, 0.5). The squares are the
calculated data and the solid lines are the fits with Lorentzian line
shape. In (a), η is set to be 50 meV. In (b), a 13 × 13 × 20 �-centered
mesh of k points is used.

Here, i = (nlms) and j = (n′l ′m′s′), with l and l ′ restricted
to 2 for d orbitals. |φa

nls〉 is the radial part of |φa
i 〉. Again, both

Da,SOC
i j and Da,U

i j are functions of density matrix �a.

APPENDIX B: CONVERGENCE

We examine the convergence of Imχ+− with respect to the
k-point mesh and the effect of broadening parameter η intro-
duced in Eq. (15), as shown in Fig. 7. In Fig. 7(a), the values
of Imχ+−(p, ω) decrease slightly when increasing the number
of k points, while the location of the peak remains unchanged.
The extracted magnon energies for different k-point meshes
are 219.8 meV (7 × 7 × 10), 218.7 meV (13 × 13 × 20), and
218.2 meV (20 × 20 × 30). In Fig. 7(b), the peak value of
Imχ+−(p, ω) is inversely proportional to η with its location
independent of η. A small η slows convergence.

APPENDIX C: ASYMMETRIC LORENTZIAN FITTING

We examine the symmetric and asymmetric Lorentzian
fittings for Cu2MnAl in Fig. 8.

FIG. 8. (a),(b) Imχ+−(p, ω) as a function of ω for p = (1, 0, 0),
(1,1,0), and (1,1,1) in Cu2MnAl. The squares are the calculated data.
The solid lines are the fits with (a) symmetric or (b) asymmetric
Lorentzian function.

APPENDIX D: BENCHMARK ON BCC FE

We perform a benchmark with body-centered cubic (bcc)
Fe, of which the computed spin-wave spectrum is shown in
Fig. 9.

FIG. 9. Imχ+−(p, ω) of bcc Fe along the [001] and [110] di-
rections. Reciprocal lattice vectors of a conventional cubic cell
are adopted here. © is the calculated data of Cao et al. [20] and
� is the experimental data of Loong et al. [79].
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