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Effect of electron-phonon scattering on the anomalous Hall conductivity of Fe3Sn: A kagome
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We report on magnetic and magnetotransport studies of the kagome ferromagnetic metal Fe3Sn. Our studies
reveal a large anomalous Hall conductivity σzx in this system, mainly contributed by temperature-independent
intrinsic Hall conductivity (σ int

zx = 485 ± 60 S cm−1) and temperature-dependent extrinsic Hall conductivity σ ext
zx

due to skew scattering. Although the σ ext
zx value is large and almost equivalent to the intrinsic Hall conductivity

at low temperatures, it drastically decreases with increasing temperature, following the relation σ ext
zx = σ ext

zx0
(aT +1)2 ,

under the influence of electron-phonon scattering. The presence of electron-phonon scattering in this system is
also confirmed by the linear dependence of the longitudinal electrical resistivity at higher temperatures [ρ(T ) ∝
T ]. We further find that Fe3Sn is a soft ferromagnet with an easy axis of magnetization lying in the ab plane of
the crystal with a magnetocrystalline anisotropy energy density as large as 1.02 × 106 J m−3.

DOI: 10.1103/PhysRevB.108.094404

I. INTRODUCTION

The Hall effect, due to which fast-moving charge carriers
get deflected transversely under external magnetic fields in
metals and semiconductors [1], has recently been used in
many real-life technological applications [2,3]. While an or-
dinary Hall effect has been noticed in nonmagnetic metals,
an anomalous Hall effect (AHE) was found in collinear ferro-
magnetic metals [4,5] and in noncollinear antiferromagnetic
(AFM) metals [6,7]. Moreover, the anomalous Hall effect
produces substantially higher Hall resistivity than the ordinary
Hall effect, and the field-dependent Hall resistivity scales
perfectly with magnetization [4,5]. Although the origin of the
AHE in noncollinear AFM metals is widely understood by
the presence of the nonzero Berry phase in momentum space,
several mechanisms were proposed to understand the AHE in
collinear ferromagnets.

Foremost, Karplus and Luttinger (KL) predicted that the
AHE in ferromagnetic metals originates from the interband
scattering of the charge carriers under spin-orbit coupling
[8], which was recently connected to the Berry curvature
of the electronic state of solids [9]. Since the KL theory
does not take into account the impurity scattering effects and
mainly talks about the intrinsic band structure, it is consid-
ered as the intrinsic theory of AHE. Later on, Smit et al.
proposed an extrinsic theory of AHE by incorporating the
impurity scattering [10]. The extrinsic AHE happens through
two scattering mechanisms, (i) the skew scattering, whereby
the charge carriers scatter asymmetrically via the localized
magnetic impurities [10], and (ii) the side jump, whereby
the charge carrier takes a small side jump upon scattering
with impurity under spin-orbit coupling [11,12]. Although
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many ferromagnetic metals are known to show the AHE [5],
kagome ferromagnets are quite fascinating systems because
they show an intrinsic geometrical frustration, leading to sev-
eral exotic electronic properties, such as flat bands near the
Fermi level [13–16], the quantum spin-liquid ground state
[17,18], the Chern insulating state [19,20], Weyl fermions
[21–23], Dirac fermions [21,24,25], and magnetic topological
skyrmions [26,27], manifesting the anomalous and topologi-
cal Hall effects.

Thus, the ferromagnetic metal Co3Sn2S2 is found to ex-
hibit giant intrinsic anomalous Hall conductivity (σxy ≈
505 S cm−1) [28] due to the presence of Weyl nodes near the
Fermi level [29], and Fe3Sn2 is found to show extremely large
anomalous Hall conductivity (σxy ≈ 1150 S cm−1) [30] below
2 K and large topological Hall conductivity (−0.875μ� cm)
above room temperature [31,32]. On the other hand, recently,
a few reports on polycrystalline Fe3Sn suggested it is a fer-
romagnetic metal in which the Fe atoms form a kagome
network in the ab plane. Further, it was also shown that Fe3Sn
exhibits a large magnetocrystalline anisotropy energy [33,34]
in addition to the anomalous Nernst effect [35]. Although
the previous report showed temperature-dependent anomalous
Hall conductivity to some extent, a thorough understanding of
the anomalous Hall effect in Fe3Sn is still missing, especially
the influence of electron-phonon scattering on the anomalous
Hall conductivity.

Fe3Sn belongs to the Ni3Sn-type family of crystal structure
with an in-plane kagome network. Unlike its sister compound
Mn3Sn, which is a noncollinear antiferromagnet metal, Fe3Sn
is a collinear in-plane (ab plane) ferromagnetic metal. In
this paper, we mainly focus on the anomalous Hall effect of
Fe3Sn as a function temperature. For this, we have grown
high-quality single crystals of Fe3Sn and performed magnetic
and magnetotransport studies. Our results unravel two im-
portant contributions to the total Hall conductivity of Fe3Sn.
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One of them is the temperature-independent intrinsic Hall
conductivity originating from the electronic band structure,
and the other one is the temperature-dependent extrinsic
Hall conductivity originating from the asymmetric skew
scattering. Most importantly, we observe that the extrinsic
skew-scattering Hall conductivity strongly depends on the in-

elastic electron-phonon scattering rate γ , σ ext
zx = σ ext

zx0

(γ /γ0+1)2 . In
addition, the linear dependence of the longitudinal electrical
resistivity confirms the presence of electron-phonon scattering
at higher temperatures. We further show that Fe3Sn is a soft
ferromagnet with an easy axis of magnetization lying parallel
to the ab plane. We derive a magnetocrystalline anisotropy
energy density as large as 1.02 × 106 J m−3.

II. EXPERIMENTAL DETAILS

High-quality single crystals of Fe3Sn were grown by the
solid-state crystal growth (SSCG) technique. In the SSCG
method, the crystals are grown out of polycrystalline ma-
trix. Initially, Fe powder (99.99%, Stern Chemicals) and
Sn powder (99.995%, Alfa Aesar) were taken in stoichio-
metric ratio, ground thoroughly, and heated at 810 ◦C for
7 days. As-prepared Fe3Sn powder was again ground and
pressed into a pellet, which was then annealed at 810 ◦C
for another 45 days. Several small rod-shaped shiny crys-
tals with a typical size of 1 × 0.2 × 0.2 mm3 were grown
on the surface of the pellet. The x-ray diffraction (XRD)
technique was performed on a rod-shaped single crystal and
on the crushed crystals using a Rigaku SmartLab 9 kW Cu
Kα x-ray source. Elemental analysis was done using energy
dispersive x-ray spectroscopy (EDS) and suggests an actual
chemical composition of Fe2.98Sn, which is very close to
the nominal composition of Fe3Sn. For the electrical trans-
port and magnetotransport measurements linear four-probe
and Hall probe connections were made, respectively, using
copper wire and silver paint. Magnetic and magnetotransport
measurements were carried out on a 9 T physical properties
measurement system (Quantum Design DynaCool) using the
vibrating-sample magnetometer and electrical transport op-
tions. To eliminate the longitudinal voltage contribution due
to any misalignment of the connections, the Hall resistivity
was measured by applying both positive and negative mag-
netic fields, and average Hall resistivity was calculated by
ρH = ρH (H )−ρH (−H )

2 .

III. RESULTS AND DISCUSSION

Figure 1(a) depicts the schematic crystal structure of
Fe3Sn, where the Fe atoms form a kagome structure with Sn
sitting at the center of the kagome lattice. Figure 1(b) shows
the powder XRD pattern of crushed Fe3Sn single crystals,
confirming the hexagonal Ni3Sn-type crystal structure with
space group P63/mmc (No. 194). The inset in Fig. 1(b) depicts
the XRD performed on a rod-shaped single crystal, showing
the intensity of reflections from the (0 2 2̄ 0) Bragg plane,
suggesting that the length of rod-shaped crystals is parallel
to the c axis. Rietveld refinement performed on the powder
XRD of crushed single crystals using the FULLPROF software
[36] derived lattice parameters a = b = 5.4631(4) Å and c =
4.3552(4) Å, in good agreement with previous reports [33].

(deg)

FIG. 1. (a) Schematic crystal structure and kagome lattice of
Fe3Sn. (b) Powder XRD pattern of crushed Fe3Sn single crystals.
The inset in (b) shows intensity reflections correspond to (022̄0) Brag
planes. The left panel in (c) presents the EDS spectra of Fe3Sn along
with tabulated elemental ratios and a photographic image showing
typical Fe3Sn single crystals. The right panels in (c) show the ele-
mental mapping of measured single crystals for Fe and Sn.

The left panel of Fig. 1(c) shows the EDS data from which the
atomic and weight percentages of the elements are tabulated in
the top left inset. A photographic image of typical Fe3Sn sin-
gle crystals is shown in the right inset in Fig. 1(c). Elemental
mapping performed for Fe and Sn using the EDAX is shown
in the right panel of Fig. 1(c), implying good homogeneity of
single crystals.

Temperature-dependent magnetization M(T ) between 2
and 300 K performed on an Fe3Sn single crystal with the field
H applied parallel to the y axis (H ‖ y) and parallel to the z
axis (H ‖ z) in the field-cooled mode is shown in Fig. 2(a).
From Fig. 2(a) it is evident that below 300 K, M(T ) is com-
pletely temperature independent. Figure 2(b) shows M(T )
performed between 300 and 800 K on an Fe3Sn pellet in the
zero-field-cooled mode in order to identify the ferromagnetic
transition. From Curie-Weiss fitting of the inverse suscepti-
bility χ−1(T ), using the formula χ = C

T −θ
, we derive a Curie

constant of C = 7.1 ± 0.1 emu mol−1 Oe−1 K−1 and a Curie-
Weiss temperature of θ = 689 ± 2 K, which are consistent
with a previous report [33]. The effective magnetic moment of
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FIG. 2. (a) and (b) Magnetization measured as a function of temperature for Fe3Sn single crystals and pellets, respectively. The inset in
(b) is the Curie-Weiss fitting of the inverse susceptibility plotted as a function of temperature. (c) and (d) The magnetization isotherms M(H )
for H ‖ y and H ‖ z, respectively. The insets in (c) and (d) show the saturation magnetization. (e) and (f) Hall resistivity and Hall conductivity,
respectively, plotted as a function of field at various sample temperatures for H ‖ y.

the Fe atom in Fe3Sn is found to be μeff (Fe) = 2.51μB using
the relation μeff = 2.828

√
C [37].

Figures 2(c) and 2(d) depict the magnetization isotherms
M(H ) measured at various sample temperatures for H ‖ y and
H ‖ z, respectively. The saturation field for H ‖ y is around
0.5 T, whereas it is 2 T for H ‖ z, clearly suggesting that
Fe3Sn has an easy axis of magnetization parallel to the ab
plane. Also, the absence of hysteresis in the M(H ) data for
the field applied parallel to both directions makes this system
a good soft ferromagnet. The saturation magnetic moment per
Fe atom is found to be Ms = 2.2μB, which is close to the value
of the effective magnetic moment μeff = 2.51μB. From the
magnetization isotherms shown in Figs. 2(c) and 2(d), we esti-
mate the magnetocrystalline anisotropic energy density Ku =
1.02 × 106 J m−3 using the relation Ku = μ0

∫ Ms

0 [Hy(M ) −
Hz(M )] dM after excluding the geometrical demagnetization
factor [38]. See the Supplemental Material for more details on
the calculations of the demagnetization factor [39]. Here, Ms

represents saturation magnetization, and Hz and Hy represent
H ‖ z and H ‖ y, respectively.

The Hall resistivity ρzx as a function of field is shown in
Fig. 2(e) at various sample temperatures. Here, the current is
applied along the z axis, and the magnetic field is applied
along the y axis to measure the Hall voltage along the x
axis of the crystal, as depicted in the inset in Fig. 2(e). It
is evident from Fig. 2(e) that Fe3Sn shows an anomalous
Hall effect with a small normal Hall effect that is visible
at very high temperatures. Next, the Hall conductivity σzx

is calculated using the formula σzx = − ρzx

ρ2
zx+ρ2

zz
, where ρzz is

the longitudinal resistivity measured along the z axis of the
crystal. Figure 2(f) shows σzx plotted as a function of field,
in which we observe a large anomalous Hall conductivity
in the range of 410–425 S cm−1 between 75 and 250 K
when measured at 5 T, and a sudden drop to 370 S cm−1 is

observed upon lowering the sample temperature below 75 K.
Although the high-temperature Hall conductivity obtained in
this study is consistent with a previous report made on poly-
crystalline Fe3Sn [35], the low-temperature Hall conductivity
of 200 S cm−1 at 2 K observed in Ref. [35] is significantly
smaller than our findings (≈ 370 S cm−1 at 5 K).

Next, Fig. 3(a) depicts the temperature-dependent longi-
tudinal resistivity ρzz measured with current applied along
the z axis of the crystal. We notice that ρzz quadratically
depends on the temperature (ρzz ∝ T 2) up to ≈ 75 K, demon-
strating a Fermi-liquid-type nature of the resistivity at low
temperatures [40]. Nevertheless, above 75 K, ρzz shows lin-
ear dependence on the temperature (ρzz ∝ T ) due to strong
electron-phonon interaction [41]. The temperature-dependent
resistivity profile of our Fe3Sn single crystal is consistent with
a previous report on polycrystalline Fe3Sn [35]. Particularly,
the linear dependence of ρzz above 75 K is in very good agree-
ment with Ref. [35]. The temperature-dependent longitudinal
conductivity σzz is also shown in Fig. 3(a). In general, the
total Hall resistivity presented in Fig. 2(e) can be expressed
by the empirical formula ρH = ρN

H + ρA
H [5]. Here, the first

term represents the normal Hall contribution ρN
H = μ0R0H ,

and the second term represents the anomalous Hall contri-
bution, which in turn depends on the magnetization M as
ρA

H = μ0RSM. Here, R0 and RS are the normal and anoma-
lous Hall coefficients, respectively. Further, with the help
of the normal Hall coefficient R0 one can calculate the charge
carrier q density using the relation n = 1

R0|q| . Since the field-
dependent anomalous Hall effect is a replica of magnetization,
anomalous Hall resistivity saturates beyond a critical field
and becomes almost field independent, while the normal Hall
resistivity linearly depends on field.

Thus, in order to separate the anomalous Hall resistivity
from the normal Hall contribution, we fitted the high-field

094404-3



LOW, GHOSH, GHORAI, AND THIRUPATHAIAH PHYSICAL REVIEW B 108, 094404 (2023)

FIG. 3. (a) Longitudinal electrical resistivity ρzz and electrical conductivity σzz plotted as a function of temperature. (b) and (c) Normal
Hall coefficient R0 and anomalous Hall coefficient RS plotted as a function of temperature, respectively. The charge carrier density n is shown
in the inset in (b). Top inset in (c) shows the anomalous Hall scale factor SH , and the bottom inset in (c) shows the anomalous Hall angle
percentage [AHA(%)]. (d) Anomalous Hall conductivity −σ A

zx as a function of temperature. (e) −σ A
zx vs σ 2

zz plot. The dashed line in (e) is a
linear fitting using the relation −σ A

zx = ρext
zx0σ

2
zz + b. (f) Extrinsic anomalous Hall conductivity σ ext

zx plotted as a function of temperature. The

solid green curve in (f) is a fit for the equation σ ext
zx = σ ext

zx0
(aT +1)2 .

region of the total Hall resistivity with a linear function of
field and subtracted the normal Hall contribution from the
total Hall resistivity. In this way, we extracted various im-
portant parameters such as the normal (R0) and anomalous
(RS) Hall coefficients. Figure 3(b) depicts R0 plotted as a
function of temperature. The positive R0 values throughout the
measured temperature range as observed in Fig. 3(b) suggest
hole-carrier-dominant electrical transport in Fe3Sn. The in-
set in Fig. 3(b) demonstrates almost temperature-independent
hole carrier density nh which is of the order of ∼1022 cm−3,
suggesting Fe3Sn is a good metal. Figure 3(c) shows the
anomalous Hall coefficient RS plotted as a function of temper-
ature. The top inset in Fig. 3(c) presents the anomalous Hall

scaling factor SH , defined as SH = −σ A
zx

M = μ0RS

ρzz
2 (∼= ρA

zx

Mρzz
2 ),

plotted as a function of temperature. We observe that SH is
almost temperature independent within the error bars. More-
over, the value of SH = 0.03 ± 0.01 V−1 derived in this study
is within the range of 0.01–0.2 V−1 for any typical ferromag-
netic metal [42,43]. The bottom inset in Fig. 3(c) shows the
temperature-dependent anomalous Hall angle (AHA), defined
as the deviation of electron flow from the current direction,
which is calculated using the formula AHA = σzx

σzz
× 100(%).

We clearly notice that AHA ≈ 3% at 250 K and decreases
with temperature. The value of AHA ≈ 3% is close to the
AHA values reported for the similar kagome ferromagnetic
system Fe3Sn2 (≈ 1.1%) [43] and kagome antiferromagnetic
systems such as Mn3Sn (≈ 3.2%) [6] and Mn3Ge (≈ 5%)
[7] but much smaller than the value for the shandite kagome
ferromagnet Co3Sn2S2 (≈ 20%) [28].

Several mechanisms were proposed to understand the
anomalous Hall effect in magnetic and nonmagnetic metals.

In most of the proposals, the anomalous Hall resistivity ρA
zx is

represented mainly by the function of longitudinal resistivity
ρzz, ρA

zx = f (ρzz ). (i) More explicitly, the intrinsic Karplus-
Luttinger mechanism of the AHE describes the Hall resistivity
∝ ρ2

zz due to the interband scattering in presence of strong
spin-orbit coupling [8]. (ii) The extrinsic side-jump mecha-
nism of the AHE describes the Hall resistivity ∝ ρ2

zz due to
side-jump scattering of charge carriers at the impurities [11].
(iii) The extrinsic skew-scattering mechanism of the AHE de-
scribes the Hall resistivity ∝ ρzz due to skew scattering of the
charge carrier at the impurities [10], and (iv) a ρα

zz (1 < α < 2)
dependence of ρA

zx was proposed in the case of bad metals
[44]. For our case, mechanism (iv) can be ignored because the
longitudinal conductivity of Fe3Sn is found to be σzz = 31.4 e2

hc
(where c is the lattice constant), which is in the metallic
regime [45]. Recently, a new mechanism was proposed by
Tian, Ye, and Jin (TYJ) [46] in order to understand the AHE
in ferromagnetic metals. According to TYJ theory, the anoma-
lous Hall resistivity is described by ρA

zx = f (ρzz0, ρzz ), which
includes the residual resistivity ρzz0. Thus, following the TYJ
theory [46,47], the anomalous Hall resistivity takes the form
ρA

zx = (αρzz0 + βρ2
zz0) + bρ2

zz, and the anomalous Hall con-
ductivity is represented by −σ A

zx = (ασ−1
zz0 + βσ−2

zz0 )σ 2
zz + b =

ρext
zx0σ

2
zz + b. Here, α and β are real constants, σzz0 = 1/ρzz0 is

the residual conductivity, and b is the intrinsic Hall conductiv-
ity originating from the momentum space Berry curvature. It
is well known that the intrinsic Hall conductivity b is usually
temperature independent [5,28] except for systems showing
electronic or magnetic phase transitions [9,48]. Since Fe3Sn
shows neither an electronic nor magnetic transition within
the measured temperature range of 2–250 K, change in the
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Berry phase is not expected. From Fig. 3(d), we notice that
the anomalous Hall conductivity is almost constant at higher
temperatures but decreases below 150 K. To understand this
phenomenon, we employed the TYJ mechanism to fit the data
of −σ A

zx vs σ 2
zz, as shown in Fig. 3(e), demonstrating a good

fit within the error bars. From the fitting, we extracted intrin-
sic Hall conductivity b = 485 ± 60 S cm−1, which is close to
the previously reported values for polycrystalline Fe3Sn (≈
500 S cm−1) [35] and predicted by a theoretical calculation
(≈ 600 S cm−1 at EF ) [49].

Next, Fig. 3(f) shows the extrinsic Hall conductivity σ ext
zx

extracted from the total conductivity by subtracting the intrin-
sic Hall contribution b. From Fig. 3(f), it is evident that the
extrinsic Hall conductivity decreases with increasing sample
temperature. Further, the sign of extrinsic Hall conductivity
is opposite the intrinsic Hall conductivity, resulting in the
reduced total Hall conductivity at lower temperatures. As we
know, in the clean limit, for h̄/τ → 0 (τ is the relaxation
time) the extrinsic skew-scattering contribution diverges [50].
On the other hand, from Fig. 3(f), we can see that as the
sample temperature decreases, the extrinsic Hall conductiv-
ity rapidly increases. This observation indicates that skew
scattering plays a major role in generating the anomalous
Hall conductivity in Fe3Sn. The longitudinal resistivity ρzz

suggests electron-phonon scattering at higher temperatures in
this system. In order to understand the phonon influence on the
anomalous Hall conductivity, we employed the mechanism
proposed by Shitade and Nagaosa [45], which involves the
electron-phonon inelastic scattering rates γ . In this mecha-
nism, the extrinsic Hall conductivity decays with γ following

the relation σ ext
zx = σ ext

zx0

(γ /γ0+1)2 . Since the inelastic scattering

rate is proportional to the longitudinal resistivity [γ ∼ (ρzz −
ρzz0)] and ρzz − ρzz0 linearly depends on temperature [(ρzz −
ρzz0) ∝ T ] above 75 K [see Fig. 3(a)], we can rewrite the

equation as σ ext
zx = σ ext

zx0

(aT +1)2 . Here, a = 0.011 ± 0.003 K−1

represents the measure of the inelastic electron-phonon scat-
tering strength. In this way, we can fit the σ ext

zx data very
well, as shown in Fig. 3(f). Thus, our results clearly demon-
strate the influence of electron-phonon interaction on the

extrinsic skew-scattering anomalous Hall conductivity, which
decreases with increasing temperature. Finally, we would like
to mention here that recently, a paper on the magnetic study of
Fe3Sn single crystals appeared [51]. The magnetic properties
presented in that study are consistent with our findings. Par-
ticularly, the magnetocrystalline anisotropy energy density of
1.23 × 106 J m−3 reported in Ref. [51] is in good agreement
with the value of 1.02 × 106 J m−3 found in this study.

IV. SUMMARY

In summary, we successfully grew high-quality single
crystals of Fe3Sn. In this study, we mainly focused on under-
standing the anomalous Hall effect as a function temperature.
Our results unravel two main contributions to the total Hall
conductivity of Fe3Sn. One of them is the temperature-
independent intrinsic Hall conductivity originating from the
electronic band structure, and the other one is the temperature-
dependent extrinsic Hall conductivity due to the asymmetric
skew scattering. Most importantly, we found that the extrinsic
skew-scattering Hall conductivity is significantly influenced
by the electron-phonon scattering at higher temperatures and

obeys the relation σ ext
zx = σ ext

zx0

(aT +1)2 . In addition, the longitudinal

electrical resistivity ρzz confirms the presence of electron-
phonon scattering as the resistivity linearly depends on the
temperature. We showed that Fe3Sn is a soft ferromagnet with
easy-axis magnetization lying parallel to the ab plane. We
estimated a magnetocrystalline anisotropic energy density as
large as 1.02 × 106 J m−3 in Fe3Sn.
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