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Ultrafast demagnetization and its relation to microscopic momentum scattering
dynamics in a Rashba ferromagnet
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We analyze theoretically the demagnetization dynamics in a ferromagnetic model system due to the interplay
of Rashba-type spin-orbit coupling and electron-electron Coulomb scattering. We compute the k-resolved
electronic reduced spin-density matrix, including precessional dynamics around internal spin-orbit and exchange
fields as well as the electron-electron Coulomb scattering for densities and spin coherences. Based on a compar-
ison with numerical solutions of the full Boltzmann scattering integrals, we establish that the k-resolved reduced
spin-density matrix dynamics are well described using a simpler generalized relaxation-time ansatz for the
reduced spin-density matrix. This ansatz allows one to relate the complicated scattering dynamics underlying the
demagnetization dynamics to a physically meaningful momentum relaxation time τ . Our approach reproduces
the behavior of the demagnetization time τm ∝ 1/τ and τm ∝ τ for the limits of short and long τ , respectively,
and is also valid for the intermediate regime. The ansatz is not limited to the specific form of spin-orbit coupling
considered here and provides a tool to include the correct demagnetization behavior in approaches that treat other
contributions to the magnetization dynamics such as transport or magnon/phonon dynamics.
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I. INTRODUCTION

The relaxation of electrically or optically induced elec-
tronic spin polarizations in semiconductors and simple metals
has been studied for more than 50 years and has important
connections to the spin-dependent dynamics of electrons in
ferromagnets. Spin-relaxation dynamics in semiconductors
have often been interpreted in terms of three different “classi-
cal” mechanisms: Elliott-Yafet (EY), Dyakonov-Perel (DP),
and Bir-Aronov-Pikus, which were invented, respectively,
for semiconductors with degenerate bands, for electronic
bands with small spin splitting, and small-band-gap sys-
tems with electron-hole exchange interactions; see Refs. [1,2]
for a general overview. The most widely applicable EY
and DP mechanisms were based originally on a combi-
nation of spin-orbit coupling (SOC) with electron-impurity
and electron-phonon scattering. In semiconductor spintron-
ics it was realized about 20 years ago that electron-electron
scattering, which arises from the spin-independent Coulomb
interaction, can also contribute to spin relaxation, even though
this interaction does not directly couple electrons to the lattice.
More precisely, it leads to spin dephasing in the presence
of a k-dependent spin-orbit-induced splitting between ↑ and
↓ states, which can be described in terms of a k-dependent
internal effective magnetic field [3,4].

In ferromagnetic metals, a pronounced quenching of the
magnetization, which is mainly related to d-band electrons,
can be observed after excitation with an ultrashort optical
pulse. While this is a more sizable effect than the relaxation
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of an induced spin polarization of a small density of excited
electrons in semiconductor s- or p-like bands, the concept
of Elliott-Yafet spin dynamics via electron-phonon scattering
[5] was introduced early on as a mechanism to explain the
reduction of spin angular momentum observed in the demag-
netization process of ferromagnets [6].

The present paper is concerned with the characteristics of
magnetization dynamics that are caused by a “spin-relaxation-
like” approach to magnetization dynamics. Compared to
semiconductors, ferromagnetic metals possess a more com-
plicated ground state with correlated d-electron bands at
the Fermi level, more complicated elementary excitations
(magnons), and a different electron-phonon coupling (spin-
lattice coupling). The mechanism of incoherent electronic
dynamics [7,8] together with spin-orbit coupling considered
in this paper thus competes with or complements other mech-
anisms, such as (1) coherent electronic dynamics [9] coupling
of Fermi-level electrons to more tightly bound orbitals, (2)
direct angular momentum transfer to phonons [10,11], and (3)
magnon interactions [12,13], to name only a few. The dom-
inant scattering mechanisms contributing to the incoherent
electron dynamics arise from the interaction with phonons and
other electrons. Electron-phonon scattering is often regarded
as important because it can lead to electronic spin flips via
coupling to the lattice [6], which fits into the picture of a
three-temperature model as the spin-lattice coupling. Theo-
retical calculations indicate that the spin-dependent part of
the electron-phonon interaction, in which the phonons directly
change the electron spin, gives only a small contribution
to electronic dynamics [14,15]. Instead, the main impact of
electron-phonon scattering is the spin-independent contribu-
tion to its matrix element. The spin-independent electronic
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momentum scattering processes in combination with elec-
tronic precessional spin dynamics around internal spin-orbit
fields are mainly responsible for the change in electronic
spin polarization [16]. Reference [16] discusses this micro-
scopic picture of electron-spin to lattice coupling in some
detail and shows that the lattice acts as the spin sink. If
the electron-phonon scattering contributes to magnetization
dynamics mainly because it acts as a momentum scattering
channel for electrons, then the electron-electron scattering
provides an additional momentum scattering channel that
should be even more important for highly excited electrons
because it can act on an even shorter timescale of 10 fs. The
demagnetization dynamics corresponding to the latter mech-
anism have so far been investigated at the level of Fermi’s
golden rule rates for transitions between spin-mixed states due
to the Coulomb interaction [7,8]. This approach can explain
a sizable contribution to demagnetization, in particular, if a
dynamical Stoner exchange splitting is included [8,17].

In this paper we investigate the electron-electron scattering
contribution to the spin-dependent dynamics in a ferromag-
netic model system using a similar approach as we have
employed for electron-phonon scattering [16]. That is, we
go beyond Fermi’s golden rule rates for Coulomb scattering
between electronic distributions in k space and include the
precessional dynamics of coherences, i.e., the off-diagonal
components of the spin-density matrix, around anisotropic
effective spin-orbit fields. We apply this treatment of the spin-
dependent electronic dynamics to a ferromagnetic Rashba
model. We choose this generic spin-orbit coupling over a
d-band structure because of its simplicity, which makes the
numerical calculations feasible, as we can work with analyti-
cal expressions for the electronic spinor states. Such a Rashba
model has been applied to a simple model of spin-orbit cou-
pling in a thin ferromagnetic film; see, e.g., Ref. [18], but it
has its limitations. For instance, even if the electron spectrum
of surface states in metals is well described by the Rashba
Hamiltonian, the spin dynamics may not be [19].

Using a screening parameter to control the strength of
the electron-electron Coulomb scattering, we find that the
influence of this scattering mechanism, including its effects
on the precessional dynamics, can be captured well using an
extended relaxation-time ansatz with a single effective mo-
mentum relaxation time τ for any given interaction strength.
The ansatz and the effective relaxation time provide an ar-
guably more general description of relaxation processes than
what can be obtained microscopically from our simple model
band structure. In terms of this relaxation time we can con-
sistently describe a whole range of different demagnetization
behaviors from a proportionality to τ−1 to the proportionality
to τ , including the important intermediate regime, which, to
the best of our knowledge, has not been mapped out in a fer-
romagnetic system yet. For semiconductors and nonmagnetic
metals, similar scalings of the spin-relaxation rates/times
have been found in their dependence of quasiparticle broad-
ening [20,21] and doping concentrations [22].

II. THEORETICAL APPROACH

Our theoretical approach to determine the demagnetiza-
tion dynamics and the quantities involved in the electronic

dynamics under the influence of internal spin-orbit fields
and electron-electron scattering proceeds by first determining
the single-particle energies and states of the Bloch electrons
in our model band structure and then setting up and nu-
merically solving the dynamical equations for the reduced
electronic spin-density matrix, including electron-electron
Coulomb scattering. We then introduce here a relaxation-time
ansatz that can approximate the spin-conserving electron-
electron Coulomb scattering well. The ansatz involves only
a single relaxation time and introduces a time-dependent ef-
fective quasi-equilibrium spin-density matrix, to which the
system evolves during demagnetization and remagnetization.

A. Hamiltonian and dynamical equation

The derivation of equations of motion (EOMs) for the
electron-electron interaction is closely related to what we have
presented in Refs. [23] and [16], but the general approach has
been well established for semiconductor spintronics earlier
[24]. Here we only give a short overview of the model system,
which uses a two-dimensional k space and applies to two-
dimensional electron gases and, in our case, to ferromagnetic
thin films. The single-particle states and energies can be ob-
tained in closed form from the system Hamiltonian,

Ĥ (k) = Ĥkin(k) + ĤSO(k) + ĤStoner, (1)

with the effective-mass contribution Ĥkin(k) = h̄2k2

2m∗ . The spin-
orbit contribution is of the Rashba form and can be written in
terms of the vector of Pauli matrices σ̂:

ĤSO(k) = α(σ̂ × k) · ez = α(σ̂xky − σ̂ykx ). (2)

The strength of the spin-orbit contribution to our effec-
tively two-dimensional electron system is controlled by the
Bychkov-Rashba parameter α. The mean-field Hubbard con-
tribution leads to a Stoner contribution ĤStoner = Um, which
depends on an effective on-site interaction energy U and the
magnetization m. In the Stoner approach, the magnetization
is essentially equal to the spin polarization. This quantity is
defined in Eq. (7). We self-consistently determine the band
structure and states in equilibrium, which results in an equi-
librium spin polarization of m ≈ 0.454 (0.5 would be the
maximum spin polarization). We keep the band structure fixed
throughout the dynamics, i.e., we do not self-consistently
adjust the band structure to the instantaneous value of m, see
also the discussion below.

Figure 1 illustrates the important features of the model. The
model band structure exhibits a k-dependent band splitting
and k-dependent Bloch spinors, which we denote by ⇑ and
⇓ to indicate that they are not pure spin states. The splitting
�Ek ≡ εk⇑ − εk⇓ of the bands shown in Fig. 1(a) ranges from
�Ek=0 = 400 meV to �Ek=10 nm−1 = 725 meV for different
k values. Figures 1(b) and 1(c) depict the k-local spin ex-
pectation values 〈kμ|σ|kμ〉/2 for the Bloch spinors |kμ〉:
(b) the longitudinal component vs k and (c) the components
perpendicular to z vs polar angle for a fixed k. Around k = 0
states are essentially ↑ and ↓ spin states, but the mixing
increases with increasing k, or equivalently, energy. For highly
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FIG. 1. Self-consistently calculated k-dependent band structure (a) with the corresponding spin structure in z direction (b). The ϕ-
dependent spin structure in x (red) and y (blue) direction are shown for a fixed k = 10 nm−1 (c). The solid lines correspond to the energies and
k-local quantization axes in the lower band, the dashed lines to those in the upper band. The parameters used throughout this paper are Stoner
interaction parameter U = 400 meV, Rashba parameter α = 30 meV nm, electron density ne = 0.7 nm−1. At each k point, the quantization
axis of the upper and lower bands point in opposite directions.

excited electrons at k states as shown in Fig. 1(c), the Bloch
states are considerably spin mixed. The parameters given in
Fig. 1 and throughout this paper are chosen to mimic a strong
ferromagnet. The strength of the Rashba parameter is chosen
considerably larger than in the prototypical GaAs-based semi-
conductors, where mainly s electrons contribute, but smaller
than in a system with “giant-Rashba” splitting [25].

The electronic quantum state is described by the reduced
spin-density matrix ρ

μμ′
k = 〈ĉ†

kμĉkμ′ 〉, where ĉ(†)
kμ

is the anni-
hilation (creation) operator of an electron with momentum
k in band μ. In the EOM for the spin-density matrix, we
include the electron-electron Coulomb interaction at the level
of second Born scattering integrals, which can be derived
using Green’s function or reduced density-matrix techniques
[26–28]:

∂

∂t
ρ

μμ′
k = i

h̄
(εkμ − εkμ′ )ρμμ′

k + π

h̄

∑

lq

∑

μ1μ2μ3
μ4μ5μ6μ7

(
V μμ1μ2μ3

klq

)∗(
V μ4μ5μ6μ7

klq − V μ4μ5μ6μ7
l+qlk−l

)
δ
(
�Eμ4μ5μ6μ7

klq

)

× [
ρ

μ3μ7
k+q ρ

μ2μ6
l

(
δμ1μ5−ρ

μ5μ1
l+q

)(
δμ′μ4−ρ

μ4μ
′

k

)−ρ
μ4μ

′
k ρ
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(
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μ2μ6
l

)(
δμ3μ7−ρ

μ3μ7
k+q

)]

+ π

h̄

∑
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∑

μ1μ2μ3
μ4μ5μ6μ7

V μ′μ1μ2μ3
klq

(
V μ4μ5μ6μ7
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)∗
δ
(
�Eμ4μ5μ6μ7

klq

)

× [
ρ

μ7μ3
k+q ρ

μ6μ2
l

(
δμ5μ1−ρ

μ1μ5
l+q

)(
δμ4μ−ρ

μμ4
k

)−ρ
μμ4
k ρ

μ1μ5
l+q

(
δμ6μ2−ρ

μ6μ2
l

)(
δμ7μ3−ρ

μ7μ3
k+q

)]
. (3)

The first row describes a coherent precession of the off-
diagonal contributions of the spin-density matrix, i.e., the
coherences ρ

μμ′
k , μ = μ′, due to the splitting between the

bands μ and μ′ at k. The remaining terms are electron-
electron scattering contributions with the Coulomb-matrix
elements V μ1μ2μ3μ4

klq ≡ V μ1μ2μ3μ4
k,l+q→k+q,l = Vq〈kμ1|k + qμ4〉〈l +

qμ2|lμ3〉, where Vq denotes a screened Coulomb poten-
tial depending on the momentum q transferred from the
electron with initial momentum k to the electron with fi-
nal momentum l, i.e., k → k + q and l + q → l and with
the argument of the energy difference �Eμ4μ5μ6μ7

klq = εkμ5 +
εl+qμ6 − εlμ6εk+qμ7

, which as an argument of a δ function
guarantees energy conservation. To obtain the Boltzmann-like
scattering integrals in Eq. (3) one has to employ a Markov
approximation not only for real occupation-number distribu-
tions but also for complex coherences with a precessional

contribution stemming from the first term. This precessional
frequency is removed by transforming to a rotating frame, in
which the Markov approximation can be made, and then trans-
forming back [24,29,30]. A physical interpretation of lines
2–5 in Eq. (3) lies in Fermi’s golden rule, which yields scat-
tering rates for Fermionic occupation numbers/probabilities
of initial and final states n n (1 − n) (1 − n), as sketched in
Fig. 2. The many-particle approach used here extends these
quantities to the off-diagonal elements of the spin-density
matrix., i.e., coherences between different spin states.

Since the k space for the single-particle states defined
above is two dimensional (2D), we use the screened Coulomb
potential in two dimensions in the form Vq = e2

2Vε0εb(q+κ ) [31]
with the elementary charge e, the normalization volume V ,
the dielectric constant ε0, the screening constant εb, and the
screening parameter κ . Below we analyze the dependence of
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FIG. 2. Sketch of the two-electron scattering process mediated
by the Coulomb interaction as it applies to a scattering pro-
cess between electronic distributions for incoming electronic states
(k, μ), (l + q, μ1) and outgoing electronic states (k + q, μ3), (l, μ2)
with up and/or down spins defined with respect to the k-dependent
local quantization axis. The influence of scattering on the coherences
involves additional band indices that describe the noncollinear elec-
tron spins.

the dynamics in dependence of the inverse screening length,
which is determined by the band structure, carrier density,
and possibly by the dielectric environment. In our simplified
band structure we essentially regard this as a model parame-
ter and choose values on the order of 20 nm−1 and smaller.
This value is consistent with a calculation of the screening
parameter κ for electrons in parabolic bands [26,31] in the
2D limit via κ = m∗e2/(2π h̄2εbε0) f (k = 0) with a relative
background screening constant of εb = 1.

One goal of this paper is to compare and contrast the
electronic dynamics described by the full density matrix with
those obtained using occupation numbers. In principle, an ap-
proach that uses only occupation numbers nμ

k := ρ
μμ

k , i.e., the
diagonal elements of the density matrix, is an approximation
to the full density matrix. In this case, the Boltzmann scat-
tering integrals are essentially rates as one would obtain from
Fermi’s golden rule, which connect nonpure spin states and
thus lead to spin-flip transitions [6,32]. Because the Coulomb
interaction is spin independent, the Coulomb scattering alone
cannot cause a transition that changes the magnetization. For
electron scattering dynamics between nonpure spin states,
the restriction to occupation dynamics, which neglects the
influence of the off-diagonal parts of the spin-density matrix,
means that there is no conservation of ensemble spin, and
one obtains demagnetization due to Coulomb scattering [7,8].
In order to elucidate this, we also evaluate Eq. (3) at the
level of Fermi’s golden rule for occupations. This approach
is often called “Boltzmann scattering,” but this may cause
confusion in our case because we also have Boltzmann-like
scattering integrals for all elements of the spin-density matrix
in the complete EOM (3). To differentiate between the full
spin-density matrix calculation and the calculation that uses
only the occupations, we refer to them as “generalized Boltz-
mann scattering” (or simply “full”) and “occupation-number
approximation”, respectively.

B. Relaxation-time approximation

In addition to the dynamics of the spin-density matrix
with generalized Boltzmann scattering, which is nonlocal in
k space, we will use a relaxation-time ansatz that is designed
specifically for spin-polarized systems with spin-orbit cou-
pling. In Ref. [33] we applied the ansatz in the context of
optically driven dynamics. We stress that it allows one to re-
place the complexity of the scattering integrals by introducing

a single physically meaningful relaxation time that character-
izes the complex, k-dependent scattering dynamics. It thus
provides a simple and intuitive but also accurate description
of this scattering process that should also have applications
to calculations involving transport and/or in combination
with other scattering mechanisms, such as electron-magnon
scattering.

The ansatz is based on suitably defined quasi-equilibrium
density matrices of the general form

ρ̃eq = f (T, μ, ζz ), (4)

where f is a Fermi-Dirac distribution depending on temper-
ature T , chemical potential μ, and spin accumulation ζ . The
parameters T , μ, and ζ are determined such that the distribu-
tion reproduces a prescribed charge density, energy density,
and spin polarization. In this work we only consider the spin
polarization in z direction due to the symmetries of our model
system. The grand-canonical Hamiltonian for noninteracting
electrons corresponding to Eq. (4) is

K̂ = Ĥ + μN̂ − ζzσ̂z, (5)

where Ĥ is the many-particle Hamiltonian corresponding to
(1) discussed above, and N̂ is the particle number operator.

The expectation values of the particle density, the spin
polarization, and the energy density used in the quasi-
equilibrium distribution (4) will be obtained from those of
the nonequilibrium density matrix ρ as it arises during the
dynamics and are calculated as follows. The electron density
is given by

ne = 1

V
∑

μ

∑

k

ρ
μμ

k , (6)

the spin polarization/magnetization m by

m = 1

Vne

∑

μμ′

∑

k

〈kμ|ŝz|kμ′〉ρμμ′
k , (7)

and the energy density ε by

ε = 1

V
∑

μ

∑

k

εkμρ
μμ′
k . (8)

Here V is the normalization volume. Note, in particular, that
the spin-polarization dynamics also include the microscopic
coherences ρ

μμ′
k , μ = μ′, and that, since we will only be

discussing the relative change of the spin polarization further
below, magnetization and spin polarization are interchange-
able.

Our relaxation-time approximation consists of replacing
the scattering integrals by the following contribution to the
equation of motion for the spin-density matrix:

∂

∂t
ρ

μμ′
k

∣∣∣∣
rel

= −ρ
μμ′
k − ρ̃

μμ′
k

τ
. (9)

Here ρ̃
μμ′
k is the quasi-equilibrium reduced spin-density ma-

trix introduced in Eq. (4), which is diagonal in the eigenbasis
of the grand-canonical single-particle Hamiltonian K̂ , see
Eq. (5). The dynamics of the spin-density matrix ρ

μμ′
k ,

however, are calculated in the eigenbasis of the regular single-
particle Hamiltonian so that one must transform the density
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matrix accordingly, i.e., from the eigenbasis of K̂ to that
of Ĥ . Due to the transformation between the K̂ and Ĥ
bases, ρ̃

μμ′
k , which is diagonal in the grand-canonical basis,

has off-diagonal elements in the basis of Ĥ and therefore
also describes the influence of scattering processes on the
off-diagonal elements of the spin-density matrix, which are
needed for the correct determination of the ensemble spin
expectation value, i.e., the magnetization. With this approach
our Eq. (9) employs only a single relaxation time τ and
mimics incoherent electron-electron scattering as it conserves
the respective conservation laws. Note that the relaxation time
is by construction independent of k and energy and acts in
a different way compared to relaxation times that are usu-
ally introduced as energy-dependent out-scattering rates and
then averaged over suitably chosen quasi-equilibrium dis-
tribution functions [34,35]. Such an ansatz can also model
spin-conserving electron-phonon scattering if one uses a dif-
ferent quasi-equilibrium distribution with a fixed temperature
of the phonon bath Tpn. In this case, one only needs to
determine μ and ζ in order to conserve density and spin
polarization.

C. Model parameters and initial conditions

The magnetization dynamics discussed below start from
a magnetic equilibrium state, and since the Stoner contribu-
tion of the Hamiltonian (1) depends on the spin polarization
m of the system, this equilibrium state is determined self-
consistently (see Sec. II D below for more details).

In order to achieve a comparison of the different magne-
tization dynamics, we employ a simple model excitation by
an ultrashort optical pulse. As before [16,36], we assume that
the electronic energy is instantaneously raised to an excitation
temperature Tex � Teq = 100 K and the excited electrons are
distributed according to Eq. (10) with the excitation tem-
perature in the self-consistently determined band structure.
We stress that, as mentioned above, we keep the band struc-
ture fixed throughout the dynamics. A reduction of the band
gap usually has little impact on the demagnetization time
constant, resulting mainly in a more pronounced demagne-
tization [8,17]. Hence, we use a constant gap, as this also
helps to reduce the numerical complexity. In the following
we vary the interaction strength via the screening parameter
κ . The Rashba parameter α is kept fixed because it would
not only change the interaction strength (via the matrix ele-
ments) but also the band structure features and the equilibrium
magnetization.

The instantaneous heating leads to different chemical po-
tentials for the ⇑ and ⇓ bands, as well as to a small change of
the spin polarization m due to the k-dependent spin mixing of
the states. This approach does not change the electronic den-
sity in each band and is numerically simple and controllable
by a single parameter Tex; it is designed to capture qualita-
tively the effect of an ultrashort pulse that deposits energy in
the electronic system; see, e.g., Ref. [14] for a more detailed
description of this process. With this model of the excitation
process we neglect optically driven interband coherences that
may be excited by the excitation pulse, as the purpose of this
paper is to analyze the possible dynamics in the incoherent
regime.

We choose an excitation temperature Tex of 4000 K in order
to clearly exhibit the dynamical features. This quantity char-
acterizes an electronic excited state far from equilibrium and
should therefore not be compared to an equilibrium quantity,
such as the Curie temperature, which is TC ≈ 1030 K for the
model parameters listed in Fig. 1.

D. Numerical considerations

Restricting the model to two dimensions greatly simplifies
the numerical calculations, in particular, the summations over
momenta k, l, and q on the right-hand side of Eq. (3), which
have to be calculated in every time step. Even in 2D, the
numerical solution of the EOM (3) requires a considerable
accuracy to keep the numerical errors from accumulating over
the demagnetization and remagnetization dynamics, which
would spoil the important conservation laws. We thus use a
Runge-Kutta-type integration method developed by Dormand
and Prince [37], with a dynamical time-step control to keep a
high accuracy while also optimizing the CPU time.

The relaxation-time approximation introduced above has a
much lower numerical cost and better scaling, due to the lack
of nested summations over momenta k(l)(q) as they occur in
the time integration of Eq. (3). It is anticipated that this enor-
mous advantage in computational time and effort will allow an
application in three-dimensional multiband structures in the
future.

The initial equilibrium state is calculated as follows: We
start from an arbitrary value of m in z direction to set the
preferential direction and iteratively (i) calculate the new band
structure according to m, (ii) populate this band structure with
electronic equilibrium (Fermi) distributions

ρ
μμ′
k = 1

eβ(εkμ−μC ) + 1
δμμ′, (10)

by adjusting the chemical potential μC such that our desired
electronic density ne for a given equilibrium temperature Teq

is reproduced, and (iii) calculate the new spin polarization
mnew in this band structure and repeat steps (i)–(iii) until
the spin-polarization difference �m between two consecutive
iterations is small enough (we chose �m < 10−9).

III. RESULTS

We start with the generalized Boltzmann scattering. The
main quantity of interest to us is the time dependence of the
magnetization m, i.e., the spin polarization of the electrons in
the split bands. As it is our goal to compare the dynamics for
different ratios of typical scattering times to typical precession
times, we choose here to vary only the screening parameter κ ,
which changes the matrix element of the Coulomb interac-
tion and thus the k-dependent scattering rates. Using this one
adjustable parameter to control the Coulomb scattering rates,
we intend to illustrate the range of possible behaviors of the
magnetization dynamics and how well these can be captured
with our extended relaxation-time ansatz. We therefore make
no effort here to connect κ to a variable that can be tuned in
experiment.

Figure 3 shows the demagnetization dynamics obtained
for the excitation conditions discussed in Sec. II C. Shown
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FIG. 3. Relative magnetization change vs time for different
screening parameters κ for the full calculation (solid lines) and the
occupation-number approximation (dashed lines).

are the relative magnetization changes resulting from the full
calculation (solid lines) and using the occupation-number ap-
proximation (dashed lines) for small, intermediate, and large
screening parameters κ = 2 nm−1, κ = 10 nm−1, and κ = 20
nm−1. We do not include electron-phonon coupling, or any
other coupling, to an energy bath that would absorb the energy
transferred to the electronic system by the optical excitation
over time. The system therefore stays in a partially demag-
netized state even for times t � 0.1 ps. As described in the
last section, we do not include a dynamical band structure,
which would lead to a more pronounced demagnetization,
likely close to a complete demagnetization for our very strong
excitation conditions.

For the occupation-number approximation a smaller
screening parameter κ (faster scattering) always leads to faster
spin/magnetization dynamics. In the full calculation this
behavior is also visible but less pronounced, and the magneti-
zation dynamics only coincide for larger κ (slower scattering)
with those of the occupation-number approximation. For val-
ues of κ � 5 nm−1 the two calculations deviate at shorter
times and the demagnetization dynamics of the full calcula-
tion are considerably slower. This is shown more prominently
in Fig. 4, which plots the same curves vs a logarithmic
time scale to display the behavior at very short timescales.
Around and below the precession time Tp = h/�Ek ≈ 10 fs
one observes that Tp effectively sets a lower limit for any
magnetization change by this mechanism. The reason for this
discrepancy is that the occupation-number dynamics neither
include precessional spin dynamics nor its dephasing due to
the Coulomb interaction. The Golden-Rule-like scattering in
the occupation-number dynamics simply gets faster for larger
interaction matrix elements.

In an earlier paper [16] we have studied the influence on
spin dephasing of electron-longitudinal-phonon scattering, for
which the typical momentum scattering times are longer than
the precession times of electronic spins around typical ex-
change fields (determined by the exchange splitting between
the bands). For this mismatch of scattering and precession
times, we found that the occupation-number approximation
agreed well with the full calculation, and that it is thus justified
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FIG. 4. Same data as in Fig. 3 displayed with a logarithmic time
axis to emphasize the short-time dynamics. Regardless of κ , there is
only a marginal magnetization change for the full calculation (solid
lines) on short times <4 fs, since the buildup of the coherences
is limited by the precession time of ≈10 fs. The demagnetization
process in the occupation-number approximation starts at arbitrarily
early times for stronger scattering, i.e., smaller κ .

to use an Elliott-Yafet like description, i.e., an incoherent
scattering process that leads to a spin change, or, as it is
often called, a spin flip, and exhibits a linear time-dependence
of demagnetization times on typical electron-phonon scatter-
ing times. For the electron-electron scattering considered in
this paper, the occupation-number approximation reproduces
the result of the full calculation only for stronger screen-
ing effects. The discrepancy between the occupation-number
approximation and the full dynamics should be even more
pronounced in systems with a smaller splitting, where the
precession frequencies are smaller.

In Fig. 5 we turn to a comparison of the full calcu-
lation with the relaxation-time ansatz. We start with the
demagnetization characteristics as obtained for two different
screening parameters and suitably chosen relaxation times τ
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FIG. 5. Relative magnetization change vs time for the full calcu-
lation with two different screening parameters (solid lines) and two
relaxation-time calculations (dashed lines). The remaining parame-
ters are as in Fig. 3.

094403-6



ULTRAFAST DEMAGNETIZATION AND ITS RELATION TO … PHYSICAL REVIEW B 108, 094403 (2023)

−2

−1

0

R
e(

ρ
⇑⇓ k̃

)

κ = 20 nm−1

τ = 13 fs

κ = 2 nm−1

τ = 1.7 fs

0 25 50 75 100

t (fs)

0

1

2

Im
(ρ

⇑⇓ k̃
)

FIG. 6. Real (top) and imaginary part (bottom) of the coherence
at a k-point k̃ = 3.3 nm−1 near the Fermi edge vs time for the
full calculation with two different screening parameters (solid lines)
and two relaxation-time calculations (dashed lines). The remaining
parameters are as in Fig. 3.

for each screening parameter. We obtain a good agreement
of the demagnetization dynamics between the κ = 20 nm−1

and τ = 13 fs curves, as well as between the κ = 2 nm−1

and τ = 1.7 fs curves. This is already a satisfying result, as
a look back to Fig. 3 shows that such a good agreement for
different κ values cannot be achieved using the occupation-
number approximation. However, the magnetization change
is a k-integrated quantity, and we would also like to compare
the k-resolved dynamics.

Figure 6 compares the results of the full calculation and
the relaxation-time approximation for the dynamics of the
coherence ρ

⇑⇓
k at k̃ = 3.3 nm−1 for different values of κ .

This particular k̃ is located near the Fermi edge of the lower
band so that its dynamics play an important role during the
whole demagnetization process. The different k resolved dy-
namics for the two cases that arise in the full microscopic
calculation are reproduced well by the calculation with the
extended relaxation-time ansatz. For the full calculation and
the relaxation-time ansatz, precessional dynamics of the co-
herence are clearly visible at early times t � 30 fs for κ =
20 nm−1 and the fit with τ = 13 fs. There are two contribu-
tions we want to discuss here. First, the precessional dynamics
are driven by scattering events k → k + q which conserve the
vector spin and thus lead to a mismatch of the spin with the
local quantization axis at k + q. Second, the scattering also
dephases the precession of the spin coherences toward a finite
value at around t = 30 fs, at which time the demagnetization
is not even half completed (see Fig. 3). After that time there
is only a slow relaxation of the spin coherence. This result
is qualitatively similar to that obtained for spin-conserving
electron-phonon scattering [16].

For κ = 2 nm−1 in the full calculation, the respective τ =
1.7 fs that fits best in the relaxation-time approach becomes
shorter by a factor of 8, indicating a much faster scattering.
In this case one cannot discern a precessional motion in the
coherence but rather strongly damped dynamics with one in-
termittent maximum. The whole spin-density dynamics here
occurs on essentially the same timescale as the corresponding
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FIG. 7. Demagnetization time vs effective scattering time τ with
a fit. The remaining parameters are as in Fig. 3.

demagnetization curve in Fig. 5. In both cases the relaxation-
time ansatz comes close to the full calculation, even though it
replaces the complicated electron-electron scattering dynam-
ics in k space by a k-local expression with a constant, i.e.,
k-independent, relaxation time. That the quantitative agree-
ment of the k-resolved and k-integrated quantities is so good is
likely also due to our model excitation, which creates excited
electron distributions that are close to hot Fermi-Dirac distri-
butions. For excitations that exhibit stronger nonequilibrium
characteristics, the quantitative agreement may not be quite
as good, but the relaxation-time approximation should still
capture the most important features of the spin-dependent
electronic scattering dynamics.

Up to now we have demonstrated that the relaxation-time
ansatz reproduces the magnetization dynamics due to pre-
cessional dynamics and scattering quite well. Because the
complicated scattering dynamics are parametrized by the re-
laxation time τ , we can use it to study the influence of
scattering on the electronic spin-dependent dynamics via this
single parameter. For a range of relaxation times τ , we
calculate the demagnetization curves as in Fig. 5 and sub-
sequently extract the demagnetization time τm by fitting the
demagnetization dynamics by an exponential function m(t ) =
b − a exp(−t/τm ). Figure 7 plots the demagnetization times
obtained from this fitting procedure vs the relaxation time
τ as black diamonds. For long relaxation times τ , the de-
magnetization time increases with τ , but for short relaxation
times, it increases with decreasing τ . The scaling for small
and large τ is in agreement with that found in Ref. [22]
for electronic dynamics in quantum wells. Importantly, there
exists a minimum of τm(τ ) for intermediate τ . Calculations
using the occupation-number approximation (not shown) miss
the behavior at small τ and yield only a steady decrease of τm

with decreasing relaxation times τ . This behavior is already
evident in Fig. 3 where the occupation-number approximation
leads to ever faster demagnetization.

The quantitative dependence of τm on τ is fit to the follow-
ing expression:

τm = A

τ
+ Bτ. (11)
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This simple parametrization of the relaxation time contains
as limits the simple forms of the Dyakonov-Perel mechanism
for small and large τ , which are well known in spintronics
[2]. The result is shown as red solid line in Fig. 7. We see
a remarkably good agreement of the fit and the extracted
demagnetization times from the relaxation-time calculations.
The parameter A = 10.1 fs2 can be put into correspondence
with the precession frequency of the spin-splitting h̄� = �Ek

via A � �−2. In the short τ limit we thus obtain a connec-
tion τm ≈ �−2/τ . The form of Eq. (11) has already been
suggested by Refs. [20,21]. It can be obtained, for instance,
from a thermal Green function approach to spin relaxation in
semiconductors and metals. The relation of the spin-relaxation
time to a characteristic time τ0 = γ −1 in Refs. [20,21] is very
similar to ours, but there the momentum scattering rates are
related to lifetimes at the Fermi energy. Our results suggest
that the scaling of the demagnetization time with τ is rather
robust and also valid for excited systems with electronic pop-
ulations far away from the Fermi energy if τ is interpreted as
in Eqs. (4) and (9).

While the behavior for short τ is reminiscent of typical
spin-dephasing mechanisms of spintronics, the same micro-
scopic interplay of precessional spin dynamics around internal
fields with a spin-independent scattering mechanism is behind
the demagnetization dynamics for the whole range of τ shown
in Fig. 7. In particular, for larger τ we obtain the inverse
relation τm ∝ τ . Such a relation is usually associated with
spin relaxation, as it occurs via spin-flip transitions due to an
explicitly spin-dependent interaction. Figure 7 shows clearly
that both behaviors occur as limiting cases for small and large
τ , respectively, for electrons in a ferromagnetic band structure
with spin-orbit coupling. For intermediate τ of about 1–10 fs
a minimum of demagnetization times occurs, which is also
very well described by the fit curve. The range around the
minimum is likely close to the realistic range for metallic
systems. We believe that the result contained in Fig. 7 gives an
accurate and intuitive picture of electron-electron scattering
dynamics in highly excited ferromagnets by identifying τ as
a physically meaningful parameter. One can thus use it as
a fit parameter also for systems that are not described by
the model band structure used in this paper. This makes it
possible to extract τ from measured τm data via a fit, or obtain
τm(τ ) from numerical calculations solving the full Boltzmann
scattering problem. Figure 7 is particularly important for fits
to experimental τm data. If one does not include the nonlinear
regime at small τ and assumes a linear relation between τm

and τ , one would greatly overestimate the actual momentum
relaxation time and miss the contribution from the preces-
sional dynamics completely. We stress that our main result
is the transition between the different regimes and not the
minimum value of τm, which is specific to our model and has
yet to be determined for 3d ferromagnets.

IV. CONCLUSION

In this paper we discussed the spin-dependent incoher-
ent carrier dynamics due to electron-electron scattering in a
ferromagnetic model system with spin-orbit coupling, which
provide an extension of our earlier study of electron-phonon
scattering in this system. We described a dynamical calcula-
tion using the spin-density matrix, spin-orbit coupling, and
electron-electron scattering, which is nonlocal in k space, and
compared the numerical results with a calculation using only
occupation numbers and with a generalized relaxation-time
ansatz. We found that the calculation using only occupa-
tion numbers failed to capture the demagnetization behavior
for weak screening, i.e., strong scattering because the pre-
cessional dynamics around spin-orbit fields is neglected.
The comparison with the generalized relaxation-time ansatz
showed a very good agreement both for weak and strong
Coulomb scattering, i.e., in situations where precessional dy-
namics of the off-diagonal part of the reduced spin-density
matrix are clearly visible and also in cases where they are
suppressed by scattering/dephasing. This suggests that the
relaxation-time ansatz can capture essential properties of the
incoherent spin-dependent dynamics using a k-local expres-
sion with a single momentum relaxation time τ . Such a simpler
form should be useful in numerical calculations for more
complicated problems in which scattering/dephasing due to
the Coulomb interaction plays a role, such as transport and/or
electronic dynamics due to coupling to magnons. In terms of
the momentum relaxation time, we were able to fit the calcu-
lated demagnetization times using a sum of terms proportional
to τ and τ−1. The τm vs τ relationship is much simpler than the
microscopic electron dynamics, and such a fit should be pos-
sible regardless of the details of the underlying band structure.
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[1] I. Žutić, J. Fabian, and S. Das Sarma, Spintronics: Fundamen-
tals and applications, Rev. Mod. Phys. 76, 323 (2004).

[2] J. Fabian, A. Matos-Abiague, C. Ertler, and P. Stano, Semicon-
ductor spintronics, Acta Phys. Slovaca 57, 565 (2007).

[3] M. Wu and C. Ning, Dyakonov-Perel effect on spin dephasing
in n-type GaAs, Phys. Status Solidi B 222, 523 (2000).

[4] M. M. Glazov and E. L. Ivchenko, Dyakonov–Perel spin relax-
ation controlled by electron–electron scattering, J. Supercond.
16, 735 (2003).

[5] Y. Yafet, g Factors and spin-lattice relaxation of conduction
electrons, in Solid State Physics (Elsevier, New York, 1963),
Vol. 14, pp. 1–98.

[6] B. Koopmans, G. Malinowski, F. Dalla Longa, D. Steiauf, M.
Fähnle, T. Roth, M. Cinchetti, and M. Aeschlimann, Explaining
the paradoxical diversity of ultrafast laser-induced demagneti-
zation, Nat. Mater. 9, 259 (2010).

[7] M. Krauß, T. Roth, S. Alebrand, D. Steil, M. Cinchetti, M.
Aeschlimann, and H. C. Schneider, Ultrafast demagnetization

094403-8

https://doi.org/10.1103/RevModPhys.76.323
https://doi.org/10.2478/v10155-010-0086-8
https://doi.org/10.1002/1521-3951(200011)222:2<523::AID-PSSB523>3.0.CO;2-0
https://doi.org/10.1023/A:1025370024651
https://doi.org/10.1038/nmat2593


ULTRAFAST DEMAGNETIZATION AND ITS RELATION TO … PHYSICAL REVIEW B 108, 094403 (2023)

of ferromagnetic transition metals: The role of the Coulomb
interaction, Phys. Rev. B 80, 180407(R) (2009).

[8] B. Y. Mueller, A. Baral, S. Vollmar, M. Cinchetti, M.
Aeschlimann, H. C. Schneider, and B. Rethfeld, Feedback
Effect during Ultrafast Demagnetization Dynamics in Ferro-
magnets, Phys. Rev. Lett. 111, 167204 (2013).

[9] J. K. Dewhurst, S. Shallcross, P. Elliott, S. Eisebitt, C. v. Korff
Schmising, and S. Sharma, Angular momentum redistribution
in laser-induced demagnetization, Phys. Rev. B 104, 054438
(2021).

[10] P. Maldonado, T. Chase, A. H. Reid, X. Shen, R. K. Li, K.
Carva, T. Payer, M. Horn von Hoegen, K. Sokolowski-Tinten,
X. J. Wang, P. M. Oppeneer, and H. A. Dürr, Tracking the
ultrafast nonequilibrium energy flow between electronic and
lattice degrees of freedom in crystalline nickel, Phys. Rev. B
101, 100302(R) (2020).

[11] S. R. Tauchert, M. Volkov, D. Ehberger, D. Kazenwadel, M.
Evers, H. Lange, A. Donges, A. Book, W. Kreuzpaintner, U.
Nowak, and P. Baum, Polarized phonons carry angular mo-
mentum in ultrafast demagnetization, Nature (London) 602, 73
(2022).

[12] S. Eich, M. Plötzing, M. Rollinger, S. Emmerich, R. Adam,
C. Chen, H. C. Kapteyn, M. M. Murnane, L. Plucinski, D.
Steil, B. Stadtmüller, M. Cinchetti, M. Aeschlimann, C. M.
Schneider, and S. Mathias, Band structure evolution during the
ultrafast ferromagnetic-paramagnetic phase transition in cobalt,
Sci. Adv. 3, e1602094 (2017).

[13] M. Beens, R. A. Duine, and B. Koopmans, Modeling ultrafast
demagnetization and spin transport: The interplay of spin-
polarized electrons and thermal magnons, Phys. Rev. B 105,
144420 (2022).

[14] S. Essert and H. C. Schneider, Electron-phonon scattering
dynamics in ferromagnetic metals and their influence on ul-
trafast demagnetization processes, Phys. Rev. B 84, 224405
(2011).

[15] K. Carva, M. Battiato, and P. M. Oppeneer, Ab Initio Inves-
tigation of the Elliott-Yafet Electron-Phonon Mechanism in
Laser-Induced Ultrafast Demagnetization, Phys. Rev. Lett. 107,
207201 (2011).

[16] K. Leckron, S. Vollmar, and H. C. Schneider, Ultrafast spin-
lattice relaxation in ferromagnets including spin-orbit fields,
Phys. Rev. B 96, 140408(R) (2017).

[17] K. Leckron and H. C. Schneider, Ferromagnetic model
system with spin-orbit coupling: Dynamical gap and effec-
tive spin-flip scattering, J. Magn. Magn. Mater. 471, 482
(2019).

[18] D. A. Pesin and A. H. MacDonald, Quantum kinetic theory of
current-induced torques in Rashba ferromagnets, Phys. Rev. B
86, 014416 (2012).

[19] J. Ibañez-Azpiroz, A. Bergara, E. Y. Sherman, and A.
Eiguren, Spin-flip transitions and departure from the Rashba
model in the Au(111) surface, Phys. Rev. B 88, 125404
(2013).

[20] P. Boross, B. Dóra, A. Kiss, and F. Simon, A unified theory of
spin-relaxation due to spin-orbit coupling in metals and semi-
conductors, Sci. Rep. 3, 3233 (2013).

[21] A. A. Burkov and L. Balents, Spin relaxation in a two-
dimensional electron gas in a perpendicular magnetic field,
Phys. Rev. B 69, 245312 (2004).

[22] Y. Zhou, T. Yu, and M. W. Wu, Anomalous Dyakonov-Perel
spin relaxation in semiconductor quantum wells under a strong
magnetic field in the Voigt configuration, Phys. Rev. B 87,
245304 (2013).

[23] A. Baral and H. C. Schneider, Magnetic switching dynamics
due to ultrafast exchange scattering: A model study, Phys. Rev.
B 91, 100402(R) (2015).

[24] M. Wu, J. Jiang, and M. Weng, Spin dynamics in semiconduc-
tors, Phys. Rep. 493, 61 (2010).

[25] K. Ishizaka, M. Bahramy, H. Murakawa, M. Sakano, T.
Shimojima, T. Sonobe, K. Koizumi, S. Shin, H. Miyahara, A.
Kimura et al., Giant Rashba-type spin splitting in bulk bitei,
Nat. Mater. 10, 521 (2011).

[26] R. Binder and S. Koch, Nonequilibrium semiconductor dynam-
ics, Prog. Quantum Electron. 19, 307 (1995).

[27] H. Haug and A.-P. Jauho, Quantum Kinetics in Transport
and Optics of Semiconductors, Solid-State Sciences No. 123
(Springer, Berlin, Heidelberg, 2008).

[28] M. Kira and S. W. Koch, Semiconductor Quantum Optics (Cam-
bridge University Press, Cambridge, UK, New York, 2012).

[29] A. Baral, S. Vollmar, and H. C. Schneider, Magnetization dy-
namics and damping due to electron-phonon scattering in a
ferrimagnetic exchange model, Phys. Rev. B 90, 014427 (2014).

[30] S. Vollmar, Theoretische Beschreibung von Spin- und Mag-
netisierungsdynamik in Systemen mit Spin-Bahn-Kopplung
und Austauschwechselwirkung, Ph.D. thesis, TU Kaiser-
slautern, 2018.

[31] H. Haug and S. W. Koch, Quantum Theory of the Optical
and Electronic Properties of Semiconductors, 5th ed. (World
Scientific, Singapore, 2009).

[32] D. Steiauf and M. Fähnle, Elliott-Yafet mechanism and the
discussion of femtosecond magnetization dynamics, Phys. Rev.
B 79, 140401(R) (2009).

[33] C. Scholl, S. Vollmar, and H. C. Schneider, Off-resonant all-
optical switching dynamics in a ferromagnetic model system,
Phys. Rev. B 99, 224421 (2019).

[34] P. H. Song and K. W. Kim, Spin relaxation of conduction elec-
trons in bulk III-V semiconductors, Phys. Rev. B 66, 035207
(2002).

[35] Z. G. Yu, S. Krishnamurthy, M. van Schilfgaarde, and N.
Newman, Spin relaxation of electrons and holes in zinc-blende
semiconductors, Phys. Rev. B 71, 245312 (2005).

[36] S. Vollmar, D. J. Hilton, and H. C. Schneider, Generalized
Elliott-Yafet spin-relaxation time for arbitrary spin mixing,
Phys. Rev. B 96, 075203 (2017).

[37] J. Dormand and P. Prince, A family of embedded Runge-Kutta
formulae, J. Comput. Appl. Math. 6, 19 (1980).

094403-9

https://doi.org/10.1103/PhysRevB.80.180407
https://doi.org/10.1103/PhysRevLett.111.167204
https://doi.org/10.1103/PhysRevB.104.054438
https://doi.org/10.1103/PhysRevB.101.100302
https://doi.org/10.1038/s41586-021-04306-4
https://doi.org/10.1126/sciadv.1602094
https://doi.org/10.1103/PhysRevB.105.144420
https://doi.org/10.1103/PhysRevB.84.224405
https://doi.org/10.1103/PhysRevLett.107.207201
https://doi.org/10.1103/PhysRevB.96.140408
https://doi.org/10.1016/j.jmmm.2018.09.105
https://doi.org/10.1103/PhysRevB.86.014416
https://doi.org/10.1103/PhysRevB.88.125404
https://doi.org/10.1038/srep03233
https://doi.org/10.1103/PhysRevB.69.245312
https://doi.org/10.1103/PhysRevB.87.245304
https://doi.org/10.1103/PhysRevB.91.100402
https://doi.org/10.1016/j.physrep.2010.04.002
https://doi.org/10.1038/nmat3051
https://doi.org/10.1016/0079-6727(95)00001-S
https://doi.org/10.1103/PhysRevB.90.014427
https://doi.org/10.1103/PhysRevB.79.140401
https://doi.org/10.1103/PhysRevB.99.224421
https://doi.org/10.1103/PhysRevB.66.035207
https://doi.org/10.1103/PhysRevB.71.245312
https://doi.org/10.1103/PhysRevB.96.075203
https://doi.org/10.1016/0771-050X(80)90013-3

