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Two-orbital spin-fermion model study of ferromagnetism in the honeycomb lattice
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The spin-fermion model was previously successful to describe the complex phase diagrams of colossal
magnetoresistive manganites and iron-based superconductors. In recent years, two-dimensional magnets have
rapidly risen up as a new attractive branch of quantum materials, which are theoretically described based on
classical spin models in most studies. Alternatively, here the two-orbital spin-fermion model is established as a
uniform scenario to describe the ferromagnetism in a two-dimensional honeycomb lattice. This model connects
the magnetic interactions with the electronic structures. Then the continuous tuning of magnetism in these
honeycomb lattices can be predicted, based on a general phase diagram. The electron/hole doping, from the
empty eg to half-filled eg limit, is studied as a benchmark. Our Monte Carlo result finds that the ferromagnetic
TC reaches the maximum at the quarter-filled case. In other regions, the linear relationship between TC and
doping concentration provides a theoretical guideline for the experimental modulations of two-dimensional
ferromagnetism tuned by ionic liquid or electrical gating.
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I. INTRODUCTION

The spin-fermion model describes a scenario of itinerant
electrons interacting with the local magnetic moment [1–3],
which was first proposed to study the conductivity in fer-
romagnetic manganites [4]. It is also sometimes referred to
as the Kondo model when only one orbital is involved for
itinerant electrons. Moreover, it has been adopted to describe
diluted magnetic semiconductors [5] as well as iron-based
superconductors [6–9] with one or more orbitals considered.
The most remarkable success of the spin-fermion model is for
manganites, e.g., La1−xSrxMnO3, where it is called the two-
orbital double-exchange model. By tuning the doping level
of eg orbitals and thus the subtle balance between compet-
ing interactions, the phase diagram of perovskite manganites
goes through a series of transitions and consequently, exotic
phenomena emerge, including colossal magnetoresistivity and
multiferroicity [10–13].

Recently, the discovery of intrinsic two-dimensional (2D)
ferromagnetism has attracted broad attention in multidisci-
plinary communities [14]. Many 2D van der Waals magnets
with hexagonal or honeycomb geometries, such as MX3-type
[15], MAX3-type [16–21], and M2X2X6-type transition metal
trichacogenides [20], have been investigated. Although in
these materials the magnetic transition metal ions are also
caged in distorted octahedra as in three-dimensional (3D)
perovskites, the adjacent octahedra are connected through an
edge-sharing or face-sharing manner, instead of the common
corner-sharing manner in perovskites. So far, most pioneering
theoretical works on 2D magnets employed classical spin
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models (e.g., the Ising model or Heisenberg model with some
auxiliary components), which can capture the essence of mag-
netic ground states.

Using some sophisticated techniques such as ionic liquid
and electrical gating, several recent experiments demonstrated
the tuning of ferromagnetism and magneto-transport in these
2D magnets [22–25]. In addition, via the electron doping from
organic intercalation, the ferromagnetism of Cr2Ge2Te6 can
be significantly enhanced, i.e., its TC is raised to ∼200 K [26].
Besides these artificial tunings, an interesting fact is that the
TC’s of MnX3’s (predicted to be hundreds Kelvin) are one or-
der of magnitude higher than those of neighboring CrX3’s. All
these phenomena suggest that the charge/orbital degrees of
freedom play a vital role in determining the magnetism in 2D
magnets. However, those classical spin models themselves are
incapable of tuning the charge degree of freedom and fail to
capture the physics governed by the electronic structures and
quantum fluctuation. Therefore, a more microscopic quantum
model, e.g., the spin-fermion model, should be developed
to unveil more novel properties and deeper physics of 2D
magnets, as done for 3D quantum magnets [27].

For manganites and iron-chalcogenides/pnictides, the
nearly cubic/square geometries make their octahedra or tetra-
hedra coordinates of eg and t2g wave functions uniform
through the whole lattice. However, for these hexagonal or
honeycomb lattices, when connecting the octahedra/double-
pyramid via an edge-sharing or face-sharing manner, the eg

(and others) wave functions no longer form a representation
for the corresponding point group, i.e., the basis transform
as eg cannot form a representation matrix to transform the
hopping integral to another hopping path. Although the [111]-
bilayer of perovskites can mimic the honeycomb geometry
[28,29], as shown in Fig. 1(c), the eg basis set and hop-
ping integrals do not change from its 3D form, since the
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FIG. 1. Comparison of low-dimensional honeycomb magnets
and [111]-bilayer of ABO3 perovskites. (a) The local octahedral
structure. The red and yellow circles represent the magnetic cations
and ligand anions, respectively. The d orbitals split into the eg and
t2g orbitals in an undistorted octahedral crystal field in the absence of
spin-orbit coupling (SOC). The neighboring octahedra are connected
in an edge-sharing manner (M − X − M bond angle ∼90◦), which is
the common case for MX3, MAX3, and M2A2X6 type van der Waals
magnets. (c) The neighboring MO6 octahedra share a common corner
(M-O-M bond angle ∼180◦) in perovskites. The bold solid lines
denote the [111]-oriented bilayer, which forms a buckled honeycomb
lattice. (d) Top view of the [111] bilayer. The hopping integrals of eg

electrons are schematically shown by double arrows.

neighboring octahedra are still corner sharing. Therefore,
those real hexagonal or honeycomb magnetic lattices are dif-
ferent from the [111] bilayers.

Here, we develop a two-orbital spin-fermion model with
minimal hopping parameters for the honeycomb lattice with
neighboring octahedra connected in an edge-sharing manner,
to describe the ferromagnetism of MX3 and other similar
monolayers. We confine the orbital configurations with half-
filled t2g triplets and partially occupied eg doublets, which can
generally describe those cases with high-spin d3 − d5 tran-
sition metal ions. The hopping parameters can be extracted
from density functional theory (DFT) calculations, which can
be reduced to two-independent values by group theory in the
ideal limit.

II. MODEL AND METHODS

In general, the spin-fermion Hamiltonian can be expressed
as [13]:

H = −
∑
<i j>

ti jc
†
iσ c jσ + JH

∑
i

c†
iσ σciσ · Si

+ Jex

∑
<i j>

Si · S j + Az

∑
i

(
Sz

i

)2
, (1)

where ti j is the spin-conserved hopping integral for itinerant
eg electron, JH is the Hund’s coupling coefficient, Jex is the

superexchange parameter, and S is the classical spin vector
for t2g. c†

iσ σciσ represents the spin operator for the itinerant
electron in the quantum level. Az parameterizes single-ion
magnetocrystalline anisotropy.

The spin vector S can be expressed as S(sin θ cos φ,
sin θ sin φ, cos θ ), where θ and φ are the polar and azimuth
angles, respectively. In the strong Hund’s coupling limit which
is generally valid for most 3d electronic materials with the
high spin configurations (e.g., S = 3/2 in our case) [13], the
spin of the itinerant electron is confined to align parallel with
the localized spin. Then the first two items in Eq. (1) can be
simplified into a spinless form:

∑
<i j> ti j�i jc

†
i c j , where the

Berry phase �i j from the spin texture can be expressed as

�i j = cos
θi

2
cos

θ j

2
+ sin

θi

2
sin

θ j

2
exp−i(φi−φ j ) . (2)

For a plain ferromagnetic background, �i j = 1.
For those itinerant electrons involving the orbital degree of

freedom, the hopping parameter t can be orbital-/orientation-
dependent, which is defined as

tμμ′
R = 〈ψμ(r)|H |ψμ′

(r − R)〉, (3)

where μ/μ′ labels the orbital basis, ψ (r) is the wave function,
and R is the vector along the hopping path. Considering the
symmetries of given lattice, the hopping coefficients are not
fully independent, which are related by

t (ĝnR) = D(ĝn)t (R)[D(ĝn)]†, (4)

where ĝn is a symmetry operation of a given point group.
In perovskite manganites involving three hopping direction

(x/y/z) and two eg orbitals {x2 − y2, 3z2 − r2}, in principle,
there are nine components of t . Benefiting from the Oh point
group of cubic lattice, the independent components are re-
duced to only one t0 by the relationship [Eq. (4)], while all
others are proportional to t0. Although in most manganites the
lattices are not ideally cubic but distorted to an orthorhom-
bic, rhombohedral, or tetragonal pseudocubic one, the cubic
approximation remains a successful choice.

For those 2D magnets, the on-site crystal field remains
(distorted) octahedral, leading to the same splitting between
low-lying t2g and higher eg orbitals. However, the key dif-
ference for these honeycomb lattices is that their neighboring
octahedra are connected in an edge-sharing manner. Thus, the
local orbital basis set {x2 − y2, 3z2 − r2} no longer form a
global representation for the honeycomb lattice, whose point
group belongs to D3d . In the honeycomb lattice, the hop-
ping path can be related by threefold rotation symmetry (i.e.,
Rβ(γ ) = C1(2)

3 Rα). However, accompanying the C3 transforma-
tion, the eg orbital base will inevitably mix with the t2g xy
component. In fact, the full in-plane rotation matrix of d
orbitals can be written as R = Rxy,x2−y2 ⊕ R3z2−r2 ⊕ Rxz,yz, as
explained in Supplemental Material (SM) [30]. Therefore, the
hopping tR does not obey the relationship as in the cubic case
anymore, which needs a careful reestablishment.

According to the Slater-Koster method [31], the hopping
integral contributed via the d − p − d orbital hybridization
can be approximated by the second-order perturbation td pd =
t ′
pd tpd


pd
, where tpd is the hopping coefficient and 
pd is the

energy difference between the p and d orbitals [32]. Here,
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after the orbital hybridization, the eg and ligand-p orbitals
form a doublet composed by |a〉 (x2 − y2 and p character)
and |b〉 (3z2 − r2 and p character). The new states should
respect the same symmetry with the eg orbitals [33]. Then
the nearest-neighboring d − d hopping integral obtained by
Slater-Koster coefficients in the honeycomb lattice with edge-
sharing octahedra resembles the following form [31]:

tα =
[

t aa2 0
0 t bb2

]
,

tβ =
[

t aa1 t ab

tab tbb1

]
,

tγ =
[

t aa1 −t ab

−t ab tbb1

]
,

(5)

where α/β/γ denote the three hopping paths as indicated in
Fig. 1(b). Then in the momentum space, a four-band Hamilto-
nian can be obtained and solved analytically, as shown in the
SM [30].

For a D3d point group with site symmetry being C3v and
basis set spanned by a general doublet {|a〉, |b〉}, the following
symmetric arguments can be proven [34]:

First, at the � point, the eigenvectors transform as two 2D
irreducible representations, namely, a1g ⊗ eg = eg and a2u ⊗
eg = eu. Therefore, this symmetry enforces two quadratic
touching pairs of eigenvalues at the � point.

Second, at the K (and K ′) point, the eigenvector can be
decomposed into ⊕K (K ′) = a1 ⊕ a1 ⊕ e. Therefore, there is
a band degenerate pair at the K (K ′) point with opposite
chirality (i.e., a Weyl point).

With these two symmetry constraints, one could obtain
some relationships between the hopping coefficients by com-
paring the eigenvalues of H of ferromagnetic state at the
� and K points. For the degeneracy at the � point, one has

2t bb1 + t bb2 = 2t aa1 + t aa2. (6)

For the degeneracy at the K point, one arrives at

t aa2 − t aa1 = t bb1 − t bb2,
√

3t ab =
√

(t aa2 − t aa1)(t bb1 − t bb2)

= |t bb1 − t bb2| = |t aa2 − t aa1|. (7)

Besides the analytic solution for the ferromagnetic back-
ground, the Hamiltonian can also be numerically solved using
an unbiased Monte Carlo simulation. The details of Monte
Carlo algorithm for such a spin-fermion model can be found
in SM [30], which has proven to be successful to simulate the
complex magnetism in manganites and others [13].

III. RESULTS

The hopping coefficients in real materials are contributed
by both the direct d − d interaction and the effective interac-
tion mediated by ligand-p orbitals [35], while aforementioned
symmetric relationships should work for both cases. To verify
this point, the hopping coefficients of a protype 2D honey-
comb magnet MnF3 are calculated by the maximally localized
Wannier functions (MLWFs) using the Wannier90 code [36].
For comparison, more hopping coefficients of other 2D hon-
eycomb materials taken from literature are also listed in

TABLE I. The nearest-neighbor transfer integral between eg or-
bitals fitted by MLWFs (in units of meV).

MnF3 AuF3 [37] AuCl3 [37] AuI3 [37] PdPS3 [38]

t bb1 14.5 224 60 44 82
t bb2 227 −50 −16 53 70
t aa1 156 41 9 50 72
t aa2 −56 313 85 41 87
t ab 122 158 44 5 9

Table I. All of them fit Eqs. (6) and (7) very well. Thus, the
independent hopping coefficients between eg orbitals in the
2D honeycomb lattice can be reduced to two parameters, e.g.,
t bb1 and t bb2, different from the perovskite cases where the
hopping integrals can be determined by a single parameter.

By tuning the values of t bb1 and t bb2, it can be found that
t bb2 mainly changes the energy scale and t bb1 mainly alters the
shape of band structures, as shown in Figs. S2 and S3 in SM
[30]. A typical band structure for one eg occupancy (MnF3)
are shown in Fig. 2(a). The band degeneracy at � and K can be
clearly evidenced in both the model bands and the DFT bands,
as protected by corresponding symmetries. The similarity be-
tween the model and DFT bands implies the main physics has
been well captured in our model. The quantitative difference
is mainly due to the breaking of electron-hole symmetry in the

FIG. 2. Electronic band structures of two-orbital model on the
honeycomb lattice. Here the plain ferromagnetic background is used.
(a) A comparison between DFT band structure and model band struc-
ture for MnF3 monolayer. Here the values of t bb1 and t bb2 are listed
in Table I, obtained from the MLWFs fitting. In the DFT calculation,
the electron-hole symmetry is broken, leading to wider conducting
bands than valence bands. (b) The 3D dispersion curve near a single
Weyl point at K for MnF3. (c) The 3D dispersion curve for a Weyl
nodal line when using t bb1 = 139 meV and t bb2 = 227 meV.

094401-3



XU, HU, CHEN, YE, HAN, WANG, AND DONG PHYSICAL REVIEW B 108, 094401 (2023)

FIG. 3. Model simulated ferromagnetic transitions in
undoped/doped CrGeTe3 monolayers. The static structure factor
of t2g spins is defined as S(q) = ∑

i j〈Si · Sj〉 exp[−iq · (Ri − Rj )],
where 〈Si · Sj〉 is the spin correlation function in real space.
(a) The S(q = 0) curves for different doping levels as a function of
temperature. The TC can be significantly enhanced upon electron
doping. (b) The Monte Carlo TC as a function of doping level, in
comparison with the values obtained in the organic intercalation
experiments. (c), (d) The Monte Carlo snapshots at (c) 42 K and
(d) 300 K, respectively, for the 0.5 electron/Cr doping case.

DFT calculations, which comes from the hoppings beyond the
nearest neighbors as well as the interaction between electrons.
By tuning the values of t bb1 and t bb2, interestingly, both the
Weyl cone and Weyl nodal line are possible near the Fermi
level, as compared in Figs. 2(b) and 2(c).

In the following, the ferromagnetic transition will be
studied using the two-orbital spin-fermion model on the
honeycomb lattice. For better comparison with available ex-
perimental data, here we choose CrGeTe3 monolayer as the
starting material, which owns the S = 3/2 high-spin config-
uration, as supported by the magnetic moment 2.75 µB/Cr
(slightly lower than the ideal 3 µB due to near 90◦ d pσ
hybridization [26]). Experimentally, CrGeTe3 monolayer is
ferromagnetic with a low Curie temperature TC = 21 K [20].
This fact implies a ferromagnetic superexchange between t2g

spins, i.e., Jex = −2.71 meV according to Ref. [20]. With
this Jex and single-axis magnetocrystalline anisotropy (Az =
−0.5 meV with z being the easy axis from our DFT calcu-
lation), our Monte Carlo simulation leads to a TC ∼ 25 K, as
shown in Fig. 3(a).

Then the electron doping is considered. Using the MLWFs
fitting, the hoping intensity t bb1 and t bb2 for CrGeTe3 mono-
layer are obtained as 16.2 meV and 215 meV, respectively. In
addition, according to our DFT calculation, the shape of eg

bands is almost unchanged after doping, consistent with the
experiment evidences [25,26,39]. Thus, the t bb1 and t bb2 coef-
ficients will be fixed in our following model simulation. After
doping one electron per unit cell (i.e., 0.5 electron/Cr, which
corresponds to 2.46 × 1014 electron/cm2 in experiments),
our Monte Carlo (MC) simulation obtains a much enhanced

TC = 204 K, which is compatible with the organic intercala-
tion experiments at this doping level with TC = 208 K [26].
Noting that in the experiment, after the organic intercalation
CrGeTe3 layers are nearly isolated to each other, which can
mimic the monolayer case.

The above results have demonstrated the successful de-
scription of ferromagnetic transitions in doped CrGeTe3

monolayers, which allows us to go further to more hon-
eycomb magnets, especially those not well studied yet. In
the following, we will demonstrate the continuous tuning
of ferromagnetism in the MX3 system. We start with the
3d4 configuration (i.e., MnX3). The transfer integral coeffi-
cients (t bb1 and t bb2) are chosen to fit the ab initio data of
MnF3. Empirically, F− anion is expected to generate larger
crystal field and smaller SOC comparing with other halogen
Br−, Cl−, and I− [33], which make MnF3 an ideal candi-
date as a benchmark. In the full hole-doped case, the system
becomes 3d3, which can mimic CrX3. Considering the TC of
CrF3 determined by numerical studies [40], Jex is chosen as
−3.2 meV and easy-axis type magnetocrystalline anisotropy
energy Az = −0.5 meV, which leads to TC = 35 K. Then
by tuning the chemical potential continuously, a MC phase
diagram for MX3 from 3d3 to 3d5 can be obtained, as pre-
sented in Fig. 4. The value of TC can be drastically enhanced
from 35 K (for 3d3) to 450 K (for 3d4), in a nearly linear
manner upon increasing 3d electron concentration. Due to the
aforementioned particle-hole symmetry in our model, the TC

of 3d4+δ case equals to the one of 3d4−δ , resulting in a nearly
linear dropping of TC upon electron concentration from 3d4 to
3d5 (e.g., FeX3).

Our model simulation can also deal with the case with anti-
ferromagnetic Jex, which can compete with the ferromagnetic
eg hoppings (i.e., double-exchange). Also shown in Fig. 4, the
ferromagnetism appears in the middle region (∼3d4 region),
while the Néel-type antiferromagnetic phase appears in two
ends (∼3d3 and ∼3d5), also in the symmetric manner. The
difference of ferromagnetism and antiferromagnetism can be
clearly visualized by its order parameter (S(q)), as compared
in Figs. 4(b) and 4(c).

The particle-hole symmetry of electronic bands would be
slightly broken when the Hamiltonian includes higher-order
hopping terms as well as Coulombic interaction, as visualized
in Fig. 2(a). As a consequence, the ferromagnetism in FeX3

(3d5) is expected to be even weaker than CrX3 (3d3) [41].
In fact, several ab initio studies showed controversial results
on whether the ground states of FeX3 is ferromagnetic or even
antiferromagnetic [41,42]. Another possible reason to break
the particle-hole symmetry in real MX3 is the non-negligible
changes of coefficients (t bb1, t bb2, Jex) as well as the crystalline
field splitting when M changes from Cr to Fe. For example,
the lattice constants of CrF3 and MnF3 differ by 0.22 Å
[43,44]. Even so, our MC simulation of spin-fermion model
can still capture the main physics and lead to a semiquantita-
tive description of MX3 monolayers. More precise description
of concrete materials and subtle physics can be obtained by
using more precise hopping coefficients and Jex for particular
materials.

Generally, the above phase diagram and underlying phys-
ical mechanism are similar for both the corner-sharing and
edge-sharing cases, namely the ferromagnetic TC’s are mostly
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FIG. 4. (a) The evolution of magnetic transition temperatures (TC

or TN) as a function of chemical potential μ. Here two types of Jex are
considered: Jex = −3.2 meV and Jex = 10 meV. The former leads to
paramagnetic-ferromagnetic transitions in the whole range, while the
latter can lead to paramagnetic-antiferromagnetic transitions in two
ends. Inset: The corresponding eg electron density (n) as a function
of μ at 4.1 K. (b-c) Typical spin structure factors at 36.7 K. (b) The
ferromagnetic state with Bragg peak centered at the � point and
(c) the Néel antiferromagnetic state with Bragg peaks resided on the
corner of 1st Brilliouin Zone.

related to the bandwidth and occupation level of itinerant
electrons [27,45]. However, one cannot straightforwardly
compare their TC’s from the model aspect, since different coef-
ficients (t bb1/t bb2 vs t0) and coordinations (three neighbors vs
four/six neighbors) are involved. Even so, it is unambiguous

that the edge-sharing case is more in favor of the rich band
topology inherited from its honeycomb geometry.

Our spin-fermion model is just a starting point to investi-
gate this magnetism in these 2D honeycomb magnets. Other
interactions can be further implemented to describe more
physical phenomena. For example, in order to describe those
4d/5d electrons with medium or low spin configurations,
one may need to consider the moderate Hund’s coupling and
non-negligible SOC. In addition, higher-order hopping terms
may also be needed, considering the more spatially extended
4d/5d electron clouds. Then more exotic effects, like the
Kitaev physics, may be explored with the revised spin-fermion
model.

IV. CONCLUSION

In summary, we proposed a general two-orbital spin-
fermion model on the honeycomb lattice with edge-sharing
octahedra. The relationship between orbital-orientation-
dependent hopping coefficients were derived from symmetry
analysis, leading to two independent parameters. Based on
this model, MC simulation was employed to investigate the
evolution of magnetism upon doping, which can well re-
produce the experimental gating-tunable ferromagnetism in
some 2D materials. As a general tight-binding model to de-
scribe the magnetism in honeycomb lattice, our model goes
beyond the classic spin model and captures deeper physics
originating from electronic structures. As a starting point,
our model is also adaptable to include more realistic terms
to cover more interesting physics in these two-dimensional
quantum materials, such as phase competition and topological
bands, which will stimulate more works in the near future.
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