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Performing quantum measurements produces not only the expectation value of a physical observable O but
also the probability distribution P(o) of all possible outcomes o. The full counting statistics (FCS) Z (φ, O) ≡∑

o eiφoP(o), a Fourier transform of this distribution, contains the complete information of the measurement
outcome. In this work, we study the FCS of QA, the charge operator in subsystem A, for one-dimensional
systems described by non-Hermitian Sachdev-Ye-Kitaev-like models, which are solvable in the large-N limit. In
both the volume-law entangled phase for interacting systems and the critical phase for noninteracting systems,
the conformal symmetry emerges, which gives F (φ, QA) ≡ ln Z (φ, QA) ∼ φ2 ln |A|. In short-range entangled
phases, the FCS shows area-law behavior which can be approximated as F (φ, QA) ∼ (1 − cos φ)|∂A| for ζ � J ,
regardless of the presence of interactions. Our results suggest the FCS is a universal probe of entanglement phase
transitions in non-Hermitian systems with conserved charges, which does not require the introduction of multiple
replicas. We also discuss the consequences of discrete symmetry, long-range hopping, and generalizations to
higher dimensions.
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I. INTRODUCTION

Unitary evolution and projective measurements are basic
building blocks of quantum operations. Recent studies un-
veiled novel entanglement phase transitions driven by their
competition in systems under repeated measurements [1–22].
For small (large) measurement rates, the steady state in a
typical quantum trajectory is volume law (area law) entangled.
Later, it was realized that entanglement transitions also exist
in general nonunitary dynamics. In particular, Sachdev-Ye-
Kitaev (SYK) large-N solvable models with non-Hermitian
Hamiltonians have been proposed, in which the transition
of the second Rényi entropy is mapped to a transition of
classical spins [23–28]. The corresponding order parameter is
the quantum correlation Gud between forward and backward
evolution branches on the (replicated) Keldysh contour: the
Rényi entropy can be expressed as a correlator of the replica
twist operator Tr . For interacting systems, the spin model
is Z4 symmetric. When Gud �= 0, the spin model is in the
ordered phase. The insertion of Tr excites a domain wall.
This leads to a volume-law entangled phase. In noninteracting
systems, the Z4 symmetry is promoted to an O(2) symmetry.
Consequently, the domain wall is replaced by a half-vortex
pair, which gives rise to logarithmic entanglement entropy.
For Gud = 0, the spin model is disordered regardless of the
presence of interactions, which corresponds to an area-law
entangled phase.

*pengfeizhang.physics@gmail.com

On the other hand, it is known that the existence of con-
served charges plays an important role in the many-body
dynamics of quantum information [29–38]. For example, the
evolution of the out-of-time correlator shows a power-law tail
due to the charge diffusion in systems with U (1) symmetry
[29,30]. In this work, we explore the signature of conserved
charges across the entanglement phase transition in large-N
non-Hermitian complex SYK chains. We compute the steady-
state full counting statistics (FCS) [39–54]

Z (φ, QA) = lim
t→∞ tr[ρ(t )eiφQA ] ≡ e−F (φ,QA ). (1)

Here, QA =∑x∈A Qx is the total charge in subsystem A, which
will be described more precisely later. We choose the con-
vention that φ ∈ (−π, π ]. The FCS of charge operators is
also known as the disorder parameter in [55–57]. We mainly
focus on initial states described by the thermofield double
(TFD) state [58,59], which has been widely studied in both
high-energy and condensed matter physics. The FCS, which
takes the form of a generating function, contains the complete
information about charge fluctuations in subsystem A. A series
of works observed that charge fluctuations and charge statis-
tics are closely related to entanglement entropy [40–43]. Also,
entanglement entropy and FCS work well to characterize bulk
and edge spectrum problems [48,49]. Our work provides an-
other perspective to check the profound relation between FCS
and entanglement entropy.

We show that in our setup, FCS can also be viewed as a
correlator of twist operators Tc, which now generates a rela-
tive phase rotation in the charge U (1) group between branches
with forward and backward evolutions on the Keldysh
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FIG. 1. (a) Schematics of the non-Hermitian complex SYK
model. J and V are SYK random hopping and on-site interactions.
ζ is a staggered imaginary potential. (b) A comparison between the
path integral representations of F (φ, QA) and S(2)(A). Both quantities
can be expressed as a correlator of twist operators. (c) The phase
diagram of the non-Hermitian complex SYK model. The scaling
of F (φ, QA) changes qualitatively when we tune ζ/J across the
entanglement phase transition.

contour, as illustrated in Fig. 1(b). This leads to F (φ, QA) ∼
φ2 ln |A| when Gud �= 0, corresponding to both the volume-
law entangled entropy phase for interacting systems and
the critical phase for noninteracting systems. For Gud = 0,
F (φ, QA) satisfies an area law as the entanglement entropy.
A pictorial illustration is presented in Fig. 1(c), which clearly
shows the FCS can be used to probe the entanglement phase
transition of non-Hermitian Hamiltonians. We also remark on
generalizations to systems with discrete symmetry, in higher
dimensions, or with long-range hopping.

II. MODEL AND SETUP

We consider the non-Hermitian complex SYK chains with
Brownian couplings. The total Hamiltonian H = HR − iHI

reads

HR =
∑
i jx

[
Jx

i j (t )c†
ixc jx+1 + H.c.

]+
∑
i jklx

V x
i j,kl (t )

4
c†

ixc†
jxckxclx,

HI =ζ
∑

ix

(−1)x−1c†
ixcix. (2)

Here, i ∈ {1, 2, . . . , N} labels different fermion modes cix on
each site x ∈ {1, 2, . . . , L}. The total charge Qc =∑ix c†

ixcix
is conserved under the evolution. HR contains random hop-
ping Jx

i j between nearest-neighbor sites and random on-site
interactions V x

i j,kl , which are independent Brownian variables

with

Jx
i j (t1)Jx

i j (t2) = Jδ(t12)

2N
, V x

i j,kl (t1)V x
i j,kl (t2) = 2V δ(t12)

N3
.

(3)

HI describes a staggered imaginary potential with depth ζ . It
can be realized by performing weak measurements and fol-
lowing quantum trajectories without quantum jumps [23,38].
As an example, let us consider weak measurements for oper-
ator O, which is described by Kraus operators:

K0
O = 1 − γOO†O + O(γ 2), K1

O =
√

2γOO, (4)

where we have assumed γ 	 1. We perform forced measure-
ment by postselection of outcome 0. Introducing γO = ζOδt ,
the evolution of ρ due to the measurement then takes the form
of imaginary-time evolutions

ρ(t + δt ) ∝ e−hI δtρ(t )e−hI δt , (5)

with hI = ζOO†O. Adding contributions from measurements
with different O and contributions from the unitary part, the
total evolution is governed by the non-Hermitian Hamiltonian

H = HR − iHI , HI =
∑

O

ζOO†O. (6)

Choosing O = c†
ixcix and cixc†

ix for odd and even sites, re-
spectively, with ζO = ζ , and following quantum trajectories
without quantum jumps lead to the model introduced in
Eq. (2).

We are interested in computing the FCS on the steady
state of the non-Hermitian dynamics. In this work, we prepare
the system in a TFD state, as in the study of entangle-
ment phase transitions in SYK-like models. The definition
of the TFD state requires introducing an auxiliary fermion
system with annihilation operators ηix. We first construct
an Einstein-Podolsky-Rosen (EPR) state between cix and ηix

in the occupation basis as |EPR〉 = ⊗ix
1√
2
(|00〉ix + |11〉ix ).

The TFD state is obtained after adding imaginary-time evo-
lutions to the EPR state |TFD〉 =

√
Z−1e− μ

2 Qc |EPR〉, where Z
is a normalization factor.

For a realization of Brownian variables, the state at time T
is given by

|ψ (T )〉 = e−iHT |TFD〉√
〈TFD|eiH†T e−iHT |TFD〉

. (7)

For the FCS, we choose a bipartition of the total system
into A and Ā, where A contains fermion modes cix and
ηix, with i ∈ {1, 2, . . . , |A|}. We further take QA ≡ QcA −
QηA =∑x c†

ixcix − η
†
ixηix, which annihilates the initial state as

QA|TFD〉 = 0. The FCS (1) then reads

Z (φ, QA) = trc[eiH†TTce−iHT e−μQc/2T †
c e−μQc/2]

trc[eiH†T e−iHT e−μQc ]
. (8)

Here, the trace is over the Hilbert space of fermion cix. The
FCS takes the form of a correlator 〈Tc(T )T †

c (0)〉ρc , with Tc =
eiφQcA , on the ensemble of ρc = Z−1e−μQc . This is a close ana-
log of the Rényi entropy calculation, as illustrated in Fig. 1(b).
Moreover, for even L the FCS is symmetric across |A| = L/2.
This is due to the invariance of (2) under a combination of the
particle-hole transformation and the spatial reflection cix ↔
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c†
iL−x, which gives Z (φ, QA) = Z (−φ, QĀ′ ) = Z (φ, QA′ ), with

|A| = |Ā′| = L − |A′|.
After computing the FCS for given random couplings,

we need to perform the disorder average, which re-
quires introducing disorder replicas. In SYK-like models,
it is known that the saddle-point solution is replica di-
agonal [60,61]. Consequently, we can make the approxi-
mation Z (φ, QA) = Z(φ, QA)/Z(0, QA), with Z(φ, QA) =
tr[eiH†TTce−iHT e−μQc/2T †

c e−μQc/2]. In the following sections,
we begin with an analysis of Z(0, QA) and then develop an
effective theory for computing the response of twist operators
for finite φ.

There are two main reasons for selecting the TFD state.
First, measuring the relative charge QcA − QηA in the doubled
system, as shown in Fig. 1(b), is equivalent to measuring the
charge QcA at two different times. This allows us to directly
interpret the FCS as the statistics of the charge transfer across
the boundary ∂A. Second, the TFD state can be easily repre-
sented by a continuous boundary condition in the path-integral
approach, which makes it simpler to numerically verify our
results. However, we want to emphasize that our analysis
yields qualitative features that should hold for more general
initial states from a symmetry perspective.

III. SADDLE-POINT SOLUTION

In the large-N limit, Z(φ, QA) can be analyzed using the
saddle-point approximation. We first focus on φ = 0. The
Green’s functions are defined as Gab

x (t, t ′) = 〈ca
ix(t )c̄b

ix(t ′)〉,
where a, b ∈ {u, d} labels fermion fields on branches with
forward and backward evolutions. In SYK-like models, the
path integral of fermions can be transformed into a theory of
collective fields (Gab

x , �ab
x ), in which the saddle-point equa-

tion is equivalent to the Schwinger-Dyson equation:

[−i f a∂tδ
ac + ζ (−1)x−1δac − �ac

x ] ◦ Gcb
x = δabÎ, (9)

where the summation over c is implicit. We have f u/d = ±i
and self-energy

�ac
x = f a f cÎ

[
J

2

(
Gac

x+1 + Gac
x−1

)− V
(
Gac

x

)2(
Gca

x

)T]
. (10)

Here, we have viewed both G and � as matrices in the time
domain and defined the identity matrix Î (t, t ′) = δ(t − t ′).
The transpose is applied in the time domain, and the contour
indexes are explicitly shown. Away from the boundary of
branches at t = T and t = 0, the Green’s functions are time
translational invariant Gab

x (t, t ′) = Gab
x (t − t ′), which can be

verified numerically. The solution can be obtained analyti-
cally, parametrized by (P,S, z):

G̃x(ω) =
(

−iω + (−1)x−1P −z−1S
zS iω + (−1)x−1P

)−1

. (11)

Here, G̃x(ω) = ∫ dω
2π

e−iωt Gx(t ). z = eμ/2 is determined by the
initial density matrix ρ. For ζ � J , the solution is

P = ζ − J/2, S = 0, (12)

which gives a vanishing correlation between two branches
Gud = 0. Following the analysis in previous studies, this

corresponds to the area-law entangled phase. For ζ < J , we
instead have P = ζ/2 and

1 = J

2

1√
P2 + S2

+ V

8

S2

(P2 + S2)3/2
. (13)

Since Gud �= 0, this is a critical phase for V = 0 and a volume-
law entangled phase for V > 0, as illustrated in Fig. 1(c). For
V = 0, we find S = J

2

√
1 − ζ 2/J2. For V < 2J , S increases

from zero to J/2 + V/8 continuously when we tune ζ from
J to zero. For V > 2J , the transition at ζ = J becomes first
order.

IV. RELATIVE PHASE TWIST

We ask how the insertion of twist operators Tr changes
the saddle-point solution. We begin with the simplest case
where Ā = ∅ and QcA = Qc is the conserved charge. The twist
operator then commutes with the Hamiltonian H . As a result,
it induces only a relative phase rotation between the u and d
branches (cu

ix, cd
ix ) → (cu

ixe−iφ, cd
ix ), which gives

Gdu
x (t, t ′)φ = 〈cd

ix(t )Tc(T )c̄u
ix (t ′)T †

c (0)
〉
ρ

= eiφGdu
x (t, t ′).

(14)

Here, Gdu
x (t, t ′)φ is the Green’s function with twist operators.

Similarly, we have Gud
x (t, t ′)φ = e−iφGud

x (t, t ′). This reveals
that the twist operator is coupled to the phase fluctuation in
the off-diagonal components of the Green’s functions.

We then consider a general subsystem size |A|. Due to
the presence of twist operators, the system no longer exhibits
translation symmetry, and an exact solution of the saddle-
point equation is unavailable. However, for large L > |A| �
1, we expect only soft modes can be excited. For Gud = 0,
there is no symmetry reason for the existence of any soft
mode, and the correlation in the system is generally short
ranged. As a result, we expect F (φ, QA) to satisfy an area law.
For Gud �= 0 the soft mode in the system is just the relative
phase mode: The saddle-point equation (B4) is invariant under
the relative phase rotation, while the solution (C1) breaks
the symmetry when Gud �= 0. As a result, the relative phase
rotation becomes a Goldstone mode. This indicates we can
approximate

Gx(t, t )φ ≈
(

Guu
x (0) e−iϕ(x,t )Gud (0)

eiϕ(x,t )Gdu(0) Gdd
x (0)

)
. (15)

The FCS is then determined by minimizing the effective ac-
tion of ϕ(x, t ) with the boundary condition specified by the
twist operator:

ϕ(x, T ) =
{

0 x ∈ Ā,

φ x ∈ A.
(16)

This can be derived by noticing Gdu
x (T, T )φ = Guu

x (T, T )φ for
x ∈ Ā and Gdu

x (T, T )φ = eiφGuu
x (T, T )φ for x ∈ A.

V. EFFECTIVE ACTION AND FCS

In this section, we explicitly derive the effective action gov-
erning the fluctuation around the saddle-point solution, which
justifies our analysis above and gives closed-form expressions
for F (φ, QA).
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FIG. 2. An illustration of the typical configurations of
Gud

x (t, t ) = |Gud
x (t, t )|e−iϕ(x,t ) in the calculation of the FCS.

Since ϕ(x, t ) is defined as a phase field, we represent it as
the angle of a 2D vector (spin). Furthermore, the magnitudes
of spins represent |Gud

x (t, t )|. (a) For ζ > J , F (φ, QA) can be
estimated by a perturbative calculation of the hopping term J ,
which gives F (φ, QA) ∼ (1 − cos φ)|∂A|. (b) For ζ < J , the twist
operators create a φ-vortex pair, whose excitation energy gives
F (φ, QA) ∼ φ2 ln |A|. There is also a similar contribution near t = 0.

We first consider the short-range entangled phase with ζ >

J . The effective action is given by expanding the G-� action
around the saddle point (C1) and (C2) [62]. Leaving details
for Appendix C, to the quadratic order we find

Seff

N
=
∫

�,k
gdu

−k

(
−2ζ + 2J − Jk2

2 i�

i� −2ζ

)
gud

k , (17)

where we have introduced gud
k = (δGud

k , δGud
k+π )T and gdu

k =
(δGdu

k , δGdu
k+π ). To estimate F (φ, QA), we take a perturbation

approach in terms of small J . Although Gud = 0 for 0 	 t 	
T , it becomes finite near the boundaries due to the boundary
condition of the contour. Without the hopping term J , different
sites decouple, and Gud can be computed as in (14), which
gives ϕ(x, t ) = φ for x ∈ A and ϕ(x, t ) = 0 for x ∈ Ā. This is
illustrated in Fig. 2(a). To further estimate the decay of |Gud |,
we integrate out gdu

k in (17). For small J , this imposes the
constraint (

− 1

2ζ
∂2

t + 2ζ − 2J

)
δGud

x (t, t ) = 0, (18)

which gives |Gud
x (t, t )| ∼ e−2(T −t )

√
ζ (ζ−J ). A similar calcula-

tion works for |Gdu
x (t, t )|. Then we can compute contributions

from small hopping terms inZ(φ, QA) as

JN Re
∫

dt Gud
A Gdu

Ā ∼ − J√
ζ (ζ − J )

N cos φ. (19)

Subtracting the contribution fromZ(0, QA), we finally obtain

F (φ, QA) ∼ J√
ζ (ζ − J )

N (1 − cos φ). (20)

Now we consider the long-range correlated phase with
ζ < J . As explained in the last section, we need to derive the
effective theory for the relative phase mode ϕ(x, t ). Similar
to the derivation of (17), we now expand the G-� action
around the saddle point (C1) and (C3) to quadratic order,
with the identification that δGud

x (t, t ) = −iϕ(x, t )Gud (0) and
δGdu

x (t, t ) = iϕ(x, t )Gdu(0). As derived in Appendix C, the
result reads

Seff = NS2

4(ζ 2 + 4S2)

∫
x,t

(
(∂tϕ)2

2
√

ζ 2 + 4S2 − J
+ J (∂xϕ)2

)
.

(21)

This is a large-N XY model. Consequently, the system ex-
hibits an emergent conformal symmetry. Unlike the emergent
replica conformal symmetry in non-Hermitian free-fermion
systems, here, the conformal symmetry is a consequence of
charge U (1) symmetry, which is stable against adding interac-
tions. The boundary condition in (16) then excites a φ-vortex
pair, as sketched in Fig. 2(b). The FCS is equal to the excita-
tion of the vortex pair. In the limit of L → ∞, the result reads
[24,63]

F (φ, QA) ∼ S2φ2N

ζ 2 + 4S2

(
J

2
√

ζ 2 + 4S2 − J

)1/2

ln |A|. (22)

In particular, it shows nonanalyticity near φ = π . For finite
L, ln |A| should be replaced by ln[L sin(π |A|/L)/π ] due to
the conformal invariance. Comparing (20) and (22), we find
F (φ, QA) shows qualitatively different scalings of both |A|
and φ for both interacting and noninteracting systems and
thus serves as a universal probe of the entanglement phase
transition in non-Hermitian Hamiltonian dynamics.

To justify our theoretical predictions (20) and (22), we
numerically study the FCS in the large-N limit by solving
the saddle-point equation with twist operators Tc and comput-
ing the on-shell action. Similar approaches have been widely
adopted to simulate dynamics of Rényi entropies in SYK-like
models [25–27,64]. In Fig. 3, we present results for L = 20
with μ = 0.5. For ζ < J , we check that F (φ, QA) is a linear
function of ln[L sin(π |A|/L)/π ] and is a quadratic function
of φ. Near φ = ±π , we have two different saddle-point so-
lutions, which leads to a nonanalyticity. For ζ > J , we check
that F (φ, QA) shows area-law behavior for large |A| and is
proportional to (1 − cos φ). All results are tested for both the
interacting case (V = J) and the noninteracting case (V = 0).

VI. DISCUSSION

In this work, we studied the full counting statistics of
the steady state of non-Hermitian complex SYK models. We
found F (φ, QA) show different scaling for both |A| and φ

in phases with different entanglement properties. Using an
effective spin model, we showed the following: For ζ > J ,
the system is short range correlated. We can approximate
F (φ, QA) ∼ (1 − cos φ)|∂A| for ζ � J . For ζ < J , the sys-
tem is long range correlated with F (φ, QA) ∼ φ2 ln |A|, which
exhibits nonanalyticity near φ = π . We further validated our
theoretical predictions by numerically solving the saddle-
point equation.
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(a)

(c) (d)

(b)

ln

FIG. 3. The numerical calculation of the FCS in the large-N limit
by solving the Schwinger-Dyson equation with μ = 0.5. (a) and
(b) F (φ, QA) for different subsystem sizes |A|. The results show
F (φ, QA) ∝ ln |A| for ζ/J = 0.5 and F (φ, QA) ∝ |∂A| for ζ/J =
2.5. (c) and (d) F (φ, QA) for different twist strengths φ. The results
show F (φ, QA) ∝ φ2 for ζ/J = 0.5 and F (φ, QA) ∝ (1 − cos φ) for
ζ/J = 2.5.

We point out the identification of the relative phase
twist is not restricted to the TFD states and is valid
for general initial states that are eigenstates of local
charge operators. Without loss of generality, we assume
QA|ψ〉 = 0. This gives Z (φ, QA) ∝ 〈ψ |eiH†T eiφQA e−iHT |ψ〉 =
〈ψ |eiH†T eiφQA e−iHT e−iφQA |ψ〉. Like in (8), a pair of twist op-
erators appears, which leads to a relative phase twist between
forward evolution and backward evolution branches. More-
over, there is no difference between the TFD state and more
general initial states from the symmetry perspective: In the
absence of boundary conditions at t = 0 and t = T , fermion
fields on distinct branches of the system can undergo inde-
pendent transformations. As a result, the system exhibits a
U (1) ⊗ U (1) symmetry. However, in the volume-law phase
where Gud �= 0, this symmetry is broken down to a single
U (1) symmetry, leading to the emergence of a Goldstone
mode. As a result, we believe our theoretical predictions re-
veal universal features of the FCS across the entanglement
transition of non-Hermitian Hamiltonians.

Several additional remarks are in order: First, instead
of systems with U (1) symmetry, we can consider mod-
els with discrete symmetries. It is then natural to expect
that the phase with small non-Hermitian strength is still a
symmetry-breaking phase, except with no Goldstone mode.
The dominant contribution now becomes a domain wall, in-
stead of a vortex pair. This is consistent with recent numerics
in [65]. Second, our results can be generalized to higher di-
mensions straightforwardly. As an example, let us consider
a non-Hermitian complex SYK chain in two dimensions.
The short-range correlated phase with ζ > J is still area law
entangled with F (φ, QA) ∼ (1 − cos φ)R for a subsystem A
with radius R. For the phase with ζ < J , the effective theory

becomes a three-dimensional XY model. The vortex pair
is then replaced by a vortex ring. Consequently, we have
F (φ, QA) ∼ φ2R ln R. Finally, in experimental systems, long-
range interactions may present. If we consider a long-range
hopping term that decays as 1/rα as in [24], a fractal phase
with F (φ, QA) ∼ φ2L1−z

A appears, with z = 2α−1
2 for α ∈

(0.5, 1.5).
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APPENDIX A: THE DERIVATION OF THE FULL
COUNTING STATISTICS FOR THE TFD STATE

The FCS is defined as

Z(φ, QA) ≡ trc,η[ρ(T )e−iφQA ], (A1)

with QA ≡ QcA − QηA =∑x c†
ixcix − η

†
ixηix. Here, the trace

is over the c fermion system and η fermion system, and
ρ(T ) = 1

Z (T ) e
−iHT ρ(0)eiH†T is the density matrix at time T .

Z (T ) = tr[e−iHT e−iμQc eiH†T ] is the normalization factor. The
initial state is the |TFD〉 =

√
Z−1e− μ

2 Qc |EPR〉. Putting all the
definitions into the FCS, we obtain

Z(φ, QA) = 1

Z (T )
trc,η[e−iHT |TFD〉〈TFD|eiH†T e−iφQA ]

= 1

Z (T )
〈TFD|eiH†T e−iφQA e−iHT |TFD〉

= 1

Z (T )
〈TFD|eiH†T e−iφQcA eiφQηA e−iHT |TFD〉.

(A2)

Since the Hamiltonian H is defined on the c fermion system
and QηA is defined on the auxiliary η fermion system, the
operator H and QηA commute with each other. Thus, we have

Z(φ, QA) = 1

Z (T )
〈TFD|eiH†T e−iφQcA e−iHT eiφQηA |TFD〉.

(A3)

Given that QA annihilates the initial TFD state QA|TFD〉 =
0, we obtain eiφQA |TFD〉 = |TFD〉. Thus, we further have
eiφQcA |TFD〉 = eiφQηA |TFD〉. Therefore, FCS can be further
written as

Z(φ, QA) = 1

Z (T )
〈TFD|eiH†T e−iφQcA e−iHT eiφQcA |TFD〉

= 1

Z (T )
〈TFD|Tc(T )T †

c (0)|TFD〉, (A4)
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with Tc = e−iφQcA . Therefore, we find that the FCS takes the
form of a correlator. We also have

Z(φ, QA)

= 1

Z (T )
〈TFD|eiH†T e−iφQcA e−iHT eiφQcA |TFD〉

= 1

Z (T )
〈EPR|e− μ

2 Qc eiH†T e−iφQcA e−iHT eiφQcA e− μ

2 Qc |EPR〉

= 1

Z (T )
trc
[
e− μ

2 Qc eiH†T e−iφQcA e−iHT eiφQcA e− μ

2 Qc
]

= 1

Z (T )
trc
[
eiH†T e−iφQcA e−iHT eiφQcA e−μQc

]
= 1

Z (T )
trc
[
eiH†TTce−iHTT †

c e−μQc
]

= 1

Z (T )
trc
[
eiH†TTce−iHT e− μ

2 QcT †
c e− μ

2 Qc
]
. (A5)

We have used the fact that T †
c and Qc commute with each

other to obtain the last equality. This is Eq. (5) in the
main text. Notice that here, the trace is over the c fermion
system.

APPENDIX B: THE PATH-INTEGRAL REPRESENTATION
OF THE FULL COUNTING STATISTICS

As explained in the main text, we focus on the path-integral
representation of the FCS. The time evolution of a FCS
Z(φ, QA) is

Z(φ, QA) = tr[eiH†TTce−iHT e−μQc/2T †
c e−μQc/2], (B1)

and it does not preserve normalization. To evaluate Z(φ, QA)
using the path integral, one needs two contours similar
to the Keldysh contour. Denoted by u and d for forward
and backward evolution, the action on these two contours
schematically is

−I =
∫

dt
∑
x,a

(
−i f ac̄a

x∂t c
a
x + f a

[
Jx(t )c̄a

xca
x+1 + Jx(t )c̄a

x+1ca
x

]+ f a V x(t )

4
c̄a

x c̄a
xca

xca
x + ζ (−1)x−1c̄a

xca
x

)
, (B2)

where a = u, d denotes two contours and the superscript for the fermion species on each site is suppressed. Here, f u/d = ±i. The
last term in the equation does not have a contour-dependent prefactor because of the nonunitary HI and the definition of Eq. (B1).
The effective action on these two contours after integrating out disorder and introducing 1 = ∫ dtdt ′�ab

x (t, t ′)[Gba
x (t ′, t ) −

cb
x (t ′)c̄a

x (t )] is

− I

N
=
∑

x

Tr ln
[−i f a∂tδ

ac + ζ (−1)x−1δac − �ac
x

]+
∫

dtdt ′
[
�ac

x

(
Gca

x

)T

+ f a f cÎ

(
V

4

(
Gac

x

)2[(−Gca
x

)2]T + J

4

[
Gac

x+1

(−Gca
x

)T + Gac
x−1

(−Gca
x

)T ])]
, (B3)

where Gab and �ab are the bilocal fields with time arguments
t and t ′ omitted, which characterize the two-point function
of Majorana fermions or the corresponding self-energy at the
a and b contours. Here, Î = δ(t − t ′) means the Brownian
condition. As a result, the saddle-point equation is∑

c

[−i f a∂tδ
ac + ζ (−1)x−1δac − �ac

x

] ◦ Gcb
x = δabÎ,

�ac
x = f a f cÎ

[
V
(
Gac

x

)2(−Gca
x

)T + J
(
Gac

x+1 + Gac
x−1

)/
2
]
.

(B4)

APPENDIX C: THE DERIVATION OF THE EFFECTIVE
ACTION

The effective action is given by expanding the G − � ac-
tion (B3) around the saddle-point solution. In this section, we
give a detailed derivation for effective actions.

The solution can be obtained analytically, parametrized by
(P,S, z):

G̃x(ω) =
(

−iω + (−1)x−1P −z−1S
zS iω + (−1)x−1P

)−1

. (C1)

Here, G̃x(ω) = ∫ dω
2π

e−iωt Gx(t ). z = eμ/2 is determined by the
initial density matrix ρ. For ζ � J , the solution is

P = ζ − J/2, S = 0, (C2)

which gives a vanishing correlation between two branches
Gud = 0. Following the analysis in previous studies, this cor-
responds to the area-law entangled phase. For ζ < J , we
instead have

P = ζ/2, 1 = J

2

1√
P2 + S2

+ V

8

S2

(P2 + S2)3/2
. (C3)

Now we consider saddle-point fluctuations,

�(t1, t2) = �s(t1, t2) + δ�(t1)δ(t12),

G(t1, t2) = Gs(t1, t2) + δG(t1, t2). (C4)

We will separately evaluate the fluctuation in Eq. (B3), includ-
ing the Tr ln term, linear coupling �G term, and interaction
term related to J and V . Now we discuss both the ζ > J and
ζ < J cases.
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1. ζ > J

a. Tr ln term. Expanding the Tr ln term leads to the following equation:

Tr ln
[−i f a∂tδ

ac + ζ (−1)x−1δac − �ac
x

]
= Tr ln

[(
G−1

s

)ac

x

]+ Tr ln
[
Î ab − (Gs)ca

x ◦ (δ�s)ab
x

]
= Tr ln

[(
G−1

s

)ac

x

]−
∫

dτ1dτ2
[
(Gs)ca

x (τ1, τ2)(δ�s)ac
x (τ2)δ(τ2 − τ1)

]
−
∫

dτ1dτ2dτ3dτ4
1

2

[
(Gs)ab

x (τ1, τ2)(δ�s)bc
x (τ2)δ(τ2 − τ3)(Gs)cd

x (τ3, τ4)(δ�s)da
x (τ4)δ(τ4 − τ1)

]
. (C5)

The contour index a, b, c, d implicitly uses the Einstein summation. The second-order term can be transformed:

−
∫

dτ1dτ2dτ3dτ4
1

2

[
(Gs)ab

x (τ1, τ2)(δ�s)bc
x (τ2)δ(τ2 − τ3)(Gs)cd

x (τ3, τ4)(δ�s)da
x (τ4)δ(τ4 − τ1)

]
= −

∫
dτ1dτ2

1

2

[
(Gs)ab

x (τ1, τ2)(δ�s)bc
x (τ2)(Gs)cd

x (τ2, τ1)(δ�s)da
x (τ1)

]
= −1

2

∫
ω,�

Tr[Gs(ω + �)δ�(�)Gs(ω)δ�(−�)], (C6)

where
∫
�

≡ ∫∞
−∞

d�
2π

and we have used the Fourier transform δ�(�) = ∫ dtδ�(t )ei�t . In the last step of Eq. (C6),
∫
ω

can be
integrated out using the residue theorem, and Gs can be inserted into Eqs. (C1) and (C2). Finally, we arrive at

−δI (1)
1 /N =

∑
x

∫
�

σ T
x (�)M(1)

1 σx(−�) (C7)

for the trace log term. There are two independent diagonal fields δ�uu and δ�dd and two independent off-diagonal fields δ�ud

and δ�du. The full kernel implies that (a) off-diagonal fields decouple from the diagonal field and (b) two independent off-
diagonal fields have nontrivial interactions. We denote these two nontrivial off-diagonal fields as σx = (δ�ud

x , δ�du
x )T , and the

corresponding kernel reads

M(1)
1 = 1

2(�2 + (J − 2ζ )2)

(
0 J − 2ζ + i�(−1)x

J − 2ζ − i�(−1)x 0

)
. (C8)

b. �G term. For the �G term,∫
dtdt ′ �ac

x

(
Gca

x

)T = −I (1)
2 /N + Diag. term +

∑
x

1

2

∫
�

[
gT

x (�)

(
0 1
1 0

)
σx(−�) + σ T

x (�)

(
0 1
1 0

)
gx(−�)

]

≡ −I (1)
2 /N − δI (1)

2

/
N, (C9)

where gx = (δGud
x , δGdu

x )T and σ was defined before.
c. V term.∫

dtdt ′∑
x

f a f cÎ
V

4

(
Gac

x

)2[(−Gca
x

)2]T = Diag. term + 1

4

∑
x

∫
dt
{[

G12
x (t, t )

]2[−G21
x (t, t )

]2 + [G21
x (t, t )

]2[−G12
x (t, t )

]2}
.

(C10)

After applying the saddle-point fluctuation (C4) and keeping to second order of δG, we find all fluctuation terms are proportional
to G12

s (�) or G21
s (�). According to condition (C2), this means V term does not contribute to action in the second order.

d. J term. ∫
dtdt ′∑

x

J

4

[
Gac

x+1

(−Gca
x

)T + Gac
x−1

(−Gca
x

)T ]

= −I (1)
4

/
N + Diag. term −

∫
k

∫
dt

J

2

[
δG12

k (t, t )δG21
−k (t, t ) cos(k) + δG21

k (t, t )δG12
−k (t, t ) cos(k)

]
= −I (1)

4

/
N + Diag. term +

∫
k

∫
dt

−J

2
gT

k (�)

(
0 cos k

cos k 0

)
gk (−�)

≡ −I (1)
4 /N − δI (1)

4 /N. (C11)

In the last step, we apply the saddle fluctuation solution and perform the Fourier transition on k, where δGab
x (t, t ) =∫

k Gab
x (t, t )eikx. Here,

∫
k ≡ ∫ dk

2π
.
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e. Effective action. Summing all contributions (C7), (C9), and (C11) together and keeping the second-order off-diagonal
terms, we arrive at

−δI/N =
∫

�

[∑
x

{
σ T (�)M1σ (−�) + 1

2

[
gT

x (�)

(
0 1
1 0

)
σx(−�) + σ T

x (�)

(
0 1
1 0

)
gx(−�)

]}

+
∑

k

−J

2
gT

k (�)

(
0 cos k

cos k 0

)
gk (−�)

]
. (C12)

Integrating out σ leads to

−δI (1)/N =
∫

�

{∑
x

gT
x (�)

(
0 1

2 [2ζ − J + i(−1)x�]
1
2 [2ζ − J − i(−1)x�] 0

)
gx(−�)

+
∑

k

−J

2
gT

k (�)

(
0 cos k

cos k 0

)
gk (−�)

}
. (C13)

To deal with site-dependent phase (−1)x, we can define new enlarged bases gud
k = (δGud

k , δGud
k+π ) and gdu

k = (δGdu
k , δGdu

k+π )T .
Focusing on k 	 1, the action becomes

−δI (1)/N =
∫

�,k	1
gud

k (�)

(
2ζ − J cos(k) − J −i�

−i� 2ζ + J cos(k) − J

)
gdu

−k (−�). (C14)

An expansion of (C14) leads to the result cited in the main text. We also compute the smaller eigenvalue of the matrix as

1

2
(4ζ −

√
2
√

J2 cos(2k) + J2 − 2�2 − 2J ) = �2

2J
+ Jk2

2
+ (2ζ − 2J ). (C15)

After integrating out gdu
k , the resulting δ function leads to two coupled constraint equations,(−2ζ + 2J − Jk2

2 i�

i� −2ζ + Jk2

2

)(
δGud

k

δGud
k+π

)
= 0, (C16)

which can be simplified as (
−2ζ + 2J − Jk2

2
+ �2

−2ζ + Jk2/2

)
δGud

k = 0

⇒ −
(

2ζ − 2J + 1

2ζ
�2 + Jk2

2
+ O(�2k2)

)
δGud

k = 0. (C17)

This leads to the differential equation in the main text:(
− 1

2ζ
∂2

t + 2ζ − 2J

)
δGud

x (t, t ) = 0. (C18)

According to the translationally invariant solution, the equal-time Green’s function in this case is

Gx(0+) =
(− 1

2 [(−1)x − 1] 0

0 − 1
2 [(−1)x + 1]

)
,

Gx(0−) =
(− 1

2 ((−1)x + 1) 0

0 − 1
2 [(−1)x − 1]

)
. (C19)

Several observations help us to determine the detailed form of δGud
k . First, δGud (t, t ) is bounded by Gud (0±) = 0 when the

fermion operator is away from the boundary, i.e., t 	 T . Therefore, |δGud
x (t, t )| ∼ e2t

√
ζ (ζ−J ) corresponds to the correct decaying

direction.
Second, in the main text, we noticed the boundary condition Gdu

x (T, T )φ = Guu
x (T, T )φ for x ∈ Ā and Gdu

x (T, T )φ =
eiφGuu

x (T, T )φ for x ∈ A. Without loss of generality, we consider a special case where x is at the boundary of A, namely,
x ∈ A and x + 1 ∈ Ā. We can have |δGud

x (T + 0−, T )| ∼ |Guu
x (0−)| = 1

2 |(−1)x + 1| and |δGdu
x+1(T, T + 0−)| ∼ |Guu

x+1(0+)| =
1
2 |(−1)x+1 − 1|. If x is an even site, then we find both δGud and δGdu have a O(1) value. Then we can write |δGud

x (t, t )| ∼
e−2(t−T )

√
ζ (ζ−J ) and |δGud

x (t, t )| ∼ e−2(t−T )
√

ζ (ζ−J ).
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Third, we consider the phase difference between δGud
A (t, t ) and δGdu

Ā (t, t ). As in our previous discussion, the differences are
a minus sign [referring to Eq. (C1)] and an eiφ phase [referring to Eqs. (12) and (13) in the main text:

JN Re
∫

dt Gud
A (t, t )Gdu

Ā (t, t ) ∼ JN Re
∫

dt e−4(t−T )
√

ζ (ζ−J )(−eiφ ) ∼ − J√
ζ (ζ − J )

N cos φ. (C20)

2. ζ < J

a. Tr ln term. Taking saddle points (C1) and (C3) and expanding the Tr ln term leads to

−δI (2)
1 /N = − 1

2

∫
ω,�

Tr[Gs(ω + �)δ�(�)Gs(ω)δ�(−�)]

=
∑

x

∫
�

σ̃ T
x (�)M(2)

1 σ̃x(−�), (C21)

where σ̃x = (δ�uu
x , δ�dd

x , δ�ud
x , δ�du

x )T . Since the off-diagonal couplings Gud
s and Gdu

s are nonzero, the diagonal and off-
diagonal parts of the self-energy are coupled. Therefore, we consider all fluctuation components in σ̃x. The kernel reads

M(2)
1

√
ζ 2 + 4S2(ζ 2 + 4S2 + �2)

=

⎛
⎜⎜⎜⎜⎜⎝

S2 S2 − 1
2Sz[ζ (−1)x + i�] S[ζ (−1)x−i�]

2z

S2 S2 − 1
2Sz[ζ (−1)x + i�] S(ζ (−1)x−i�)

2z

− 1
2Sz[ζ (−1)x − i�] − 1

2Sz[ζ (−1)x − i�] −S2z2 1
2 {−2S2 − ζ [ζ − i(−1)x�]}

S[ζ (−1)x+i�]
2z

S[ζ (−1)x+i�]
2z

1
2 {−2S2 − ζ [ζ + i(−1)x�]} −S2

z2

⎞
⎟⎟⎟⎟⎟⎠.

(C22)

b. �G term. For the �G term, we also need to consider all components of the fluctuating Green’s function. Similarly, we
define g̃x = (δGuu

x , δGdd
x , δGud

x , δGdu
x )T . The linear coupling term reads

∫
dtdt ′ �ac

x

(
Gca

x

)T = −I (2)
2

/
N +

∑
x

1

2

∫
�

⎡
⎢⎢⎣g̃T

x (�)

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠σ̃x(−�) + σ̃ T

x (�)

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠g̃x(−�)

⎤
⎥⎥⎦

≡ −I (2)
2

/
N − δI (2)

2

/
N. (C23)

c. V term. In contrast to the ζ > J case, the second-order off-diagonal term contributed by the V term is nonzero. Together
with the diagonal term, we calculate the second-order fluctuation action∫

dtdt ′∑
x

f a f cÎ
V

4

(
Gac

x

)2[(−Gca
x

)2]T

= −I (2)
3

/
N + 1

4

{−6δGuu
x (−�)δGuu

x (�)Guu
s,x(t = 0)2 − 6δGdd

x (−�)δGdd
x (�)Gdd

s,x(t = 0)2

+ 4Gud
s,x (t = 0)Gdu

s,x (t = 0)
[
δGud

x (−�)δGdu
x (�) + δGdu

x (−�)δGud
x (�)

]
+ 2δGud

x (−�)δGud
x (�)Gdu

s,x(t = 0)2 + 2δGdu
x (−�)δGdu

x (�)Gud
s,x (t = 0)2

}
= −I (2)

3

/
N +

∑
x

∫
�

g̃T
x (�)M(2)

3 g̃x(−�)

≡ −I (2)
3

/
N − δI (2)

3

/
N, (C24)

where the kernel reads

M(2)
3 = 1

ζ 2 + 4S2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−3ζ (−1)xz2
√

ζ 2+4S2−6S2z2−3ζ 2z2

4z2 0 0 0

0
3ζ (−1)xz2

√
ζ 2+4S2−6S2z2−3ζ 2z2

4z2 0 0

0 0 S2z2

2 −S2

0 0 −S2 S2

2z2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (C25)
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d. J term.

∫
dtdt ′∑

x

J

4

[
Gac

x+1

(−Gca
x

)T + Gac
x−1

(−Gca
x

)T ] = − I (1)
4

/
N +

∫
k,�

J

2
g̃T

k (�)

⎛
⎜⎜⎝

cos k 0 0 0
0 cos k 0 0
0 0 0 − cos k
0 0 − cos k 0

⎞
⎟⎟⎠g̃−k (−�)

≡ − I (1)
4

/
N − δI (1)

4

/
N. (C26)

e. Effective action. To obtain the effective action, we need to integrate out the self-energy σ̃ . However, we find there are two
zero eigenvalues in the kernel of the fluctuating self-energy (C22). Since the self-energy δ� and Green’s function δG are linearly
coupled, these two zero modes lead to two constraints on δG. After applying these constraints, we can safely integrate out the
self-energy in the reduced subspace. Finally, we expect to obtain effective action with 4 − 2 = 2 fluctuation fields in the x space.

We perform the calculations in detail following the arguments above. First, the four eigenvalues ofM(2)
1 are

λ1,2 = 0,

λ3 =
√

�2z2[2S2(z4 + 1) + ζ 2z2] + [S2(z2 + 1)2 + ζ 2z2]2 − S2(z2 − 1)2

2z2
√

ζ 2 + 4S2(ζ 2 + 4S2 + �2)
,

λ4 = −
√

�2z2[2S2(z4 + 1) + ζ 2z2] + [S2(z2 + 1)2 + ζ 2z2]2 − S2(z2 − 1)2

2z2
√

ζ 2 + 4S2(ζ 2 + 4S2 + �2)
. (C27)

The corresponding eigenvectors without normalization are

u1 = (1,−1, 0, 0)T ,

u2 =
(

0,
ζ (−1)x+1

Sz
,− 1

z2
, 1

)T

,

u3 =

⎛
⎜⎜⎜⎜⎜⎜⎝

S{
√

�2z2[2S2(z4+1)+ζ 2z2]+[S2(z2+1)2+ζ 2z2]2+S2(z2+1)2+ζ z4[ζ+i(−1)x�]}
2S2(ζ (−1)x (z3+z)+i�z)+ζ 2z3(ζ (−1)x+i�)

S{
√

�2z2[2S2(z4+1)+ζ 2z2]+[S2(z2+1)2+ζ 2z2]2+S2(z2+1)2+ζ z4[ζ+i(−1)x�]}
2S2(ζ (−1)x (z3+z)+i�z)+ζ 2z3(ζ (−1)x+i�)

ζ (−1)x+1
√

�2z2[2S2(z4+1)+ζ 2z2]+[S2(z2+1)2+ζ 2z2]2+S2[ζ (−1)x (z4−1)+2i�z2]
2S2(ζ (−1)x (z2+1)+i�)+ζ 2z2[ζ (−1)x+i�]

1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

u4 =

⎛
⎜⎜⎜⎜⎜⎜⎝

S{−
√

�2z2[2S2(z4+1)+ζ 2z2]+[S2(z2+1)2+ζ 2z2]2+S2(z2+1)2+ζ z4[ζ+i(−1)x�]}
2S2(ζ (−1)x (z3+z)+i�z)+ζ 2z3(ζ (−1)x+i�)

S{−
√

�2z2[2S2(z4+1)+ζ 2z2]+[S2(z2+1)2+ζ 2z2]2+S2(z2+1)2+ζ z4[ζ+i(−1)x�]}
2S2(ζ (−1)x (z3+z)+i�z)+ζ 2z3(ζ (−1)x+i�)

ζ (−1)x
√

�2z2[2S2(z4+1)+ζ 2z2]+[S2(z2+1)2+ζ 2z2]2+S2[ζ (−1)x (z4−1)+2i�z2]
2S2(ζ (−1)x (z2+1)+i�)+ζ 2z2(ζ (−1)x+i�)

1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (C28)

The eigenvalues and eigenvectors satisfy M1U = UDiag{λ1, λ2, λ3, λ4}, where U = ( u1
‖u1‖ ,

u2
‖u2‖ ,

u3
‖u3‖ ,

u4
‖u4‖ ) and Diag means

constructing diagonal matrix using the elements. The transformation matrix U is normalized and therefore satisfies the unitary
condition UU † = 1̂. We consider �G and the Tr ln term,

∑
x

∫
�

σ̃ T
x (�)UDiag{λ1, λ2, λ3, λ4}U †σ̃x(−�)

+
∑

x

1

2

∫
�

⎡
⎢⎢⎣g̃T

x (�)

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠UU †σ̃x(−�) + σ̃ T

x (�)UU †

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠g̃x(−�)

⎤
⎥⎥⎦

=
∑

x

∫
�

σ̃
†
eig,x(�)Diag{λ1, λ2, λ3, λ4}σ̃eig,x(−�) +

∑
x

1

2

∫
�

[g̃†
eig,x(�)σ̃eig,x(−�) + σ̃

†
eig,x(�)g̃eig,x(−�)]. (C29)
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Here, we define the field in the eigenbasis

σ̃eig,x = U †σ̃x, σ̃
†
eig,x = σ̃ T

x U,

g̃†
eig,x(�) = g̃T

x (�)

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠U,

g̃eig,x(−�) = U †

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠g̃x(−�). (C30)

Since λ1,2 = 0, the absence of quadratic (σ̃eig,x )1 and (σ̃eig,x )2 leads to two delta functions, δ((g̃eig,x )1) and δ((g̃eig,x )2), when
performing the integration on the self-energy, which leads to two constraints in the Green’s function. In detail,

(g̃†
eig,x )1 = (δGuu

x , δGdd
x , δGdu

x , δGud
x

)
u1 ∝ −δGuu

x + δGdd
x = 0,

(g̃†
eig,x )2 = (δGuu

x , δGdd
x , δGdu

x , δGud
x

)
u2 ∝ ζ (−1)x+1

Sz
δGdd

x − 1

z2
δGdu

x + δGud
x = 0. (C31)

These two constraints reduce to δGuu
x = δGdd

x = 0 when we set S = 0. This is consistent with the ζ > J case where the diagonal
terms are decoupled from the off-diagonal terms and therefore should be ignored. Returning to Eq. (C29), we can integrate out
the residual self-energy∑

x

∫
�

σ̃
†
eig,x(�)Diag{λ1, λ2, λ3, λ4}σ̃eig,x(−�) +

∑
x

1

2

∫
�

[g̃†
eig,x(�)σ̃eig,x(−�) + σ̃

†
eig,x(�)g̃eig,x(−�)]

⇒
∑

x

∫
�

σ̃
†
eig,R,x(�)Diag{λ3, λ4}σ̃eig,R,x(−�) +

∑
x

1

2

∫
�

[
g̃T

eig,R,x(�)σ̃eig,R,x(−�) + σ̃
†
eig,R,x(�)g̃eig,R,x(−�)

]

⇒ − 1

4

∑
x

∫
�

g̃†
eig,R,x(�)Diag

{
λ−1

3 , λ−1
4

}
g̃eig,R,x(−�). (C32)

Here, the R subscript means to take 3, 4 components in the eigenbasis, according to the definition in Eq. (C30). In addition to
�G and the Tr ln term, we consider the V term and the J term. We apply constraint (C31) in Eq. (C24) and (C26), respectively.
Then we sum all contributions together and simplify the result, which leads to

−δI (2)/N =
∑

x

∫
�

gT
x (�)

⎛
⎜⎝ − S2z2

√
ζ 2+4S2

ζ 2

√
ζ 2+4S2(2S2+ζ (ζ+(−1)x i�))

2ζ 2

√
ζ 2+4S2{2S2+ζ [ζ−(−1)x i�]}

2ζ 2 − S2
√

ζ 2+4S2

ζ 2z2

⎞
⎟⎠gx(−�) + V

∑
x

∫
�

gT
x (�)

×
⎛
⎝− S2z2(ζ 2+3S2 )

ζ 4+4ζ 2S2
ζ 2S2+6S4

2ζ 4+8ζ 2S2

ζ 2S2+6S4

2ζ 4+8ζ 2S2 − S2(ζ 2+3S2 )
ζ 2z2(ζ 2+4S2 )

⎞
⎠gx(−�) + J

2

∑
k

∫
�

gT
k (�)

⎛
⎝ 2S2z2 cos(k)

ζ 2 cos(k)
(− 2S2

ζ 2 − 1
)

cos(k)
(− 2S2

ζ 2 − 1
) 2S2 cos(k)

ζ 2z2

⎞
⎠g−k (−�).

(C33)

Here, the effective action is still in the bilinear form of vector gx = (δGud
x , δGdu

x )T since we have applied two constraints in the
derivation. As we pointed out in the main text, we need two identifications,

(δGud
x (t, t ), δGdu

x (t, t )) = ϕ1(x, t )( − iGud (0), iGdu(0)),

(δGud
x (t, t ), δGdu

x (t, t )) = ϕ2(x, t )( − iGdu(0),−iGud (0)). (C34)

With these two identifications, the action is projected onto two new subspaces, where

−δI (2)

N
=
∫

�,k
(ϕ1, ϕ2)

⎛
⎝ JS2(cos(k)−1)

ζ 2+4S2 − JS2(z4−1)[cos(k)−1]
2z2(ζ 2+4S2 )

− JS2(z4−1)[cos(k)−1]
2z2(ζ 2+4S2 ) Kϕ

2,2

⎞
⎠(ϕ1

ϕ2

)

+
∫

�

∑
x

(ϕ1, ϕ2)(x,�)

⎛
⎜⎜⎝

0 − iS2(−1)x�(z4+1)
2ζ z2

√
ζ 2+4S2

iS2(−1)x�(z4+1)
2ζ z2

√
ζ 2+4S2

0

⎞
⎟⎟⎠
(

ϕ1

ϕ2

)
(x,−�), (C35)
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with

Kϕ
2,2 = S

2{−JS2(z4 + 1)2[cos(k) + 3] − ζ 2J (z4[cos(k) + 1] + z8 + 1) + (z4 + 1)2(ζ 2 + 4S2)3/2}
ζ 2z4(ζ 2 + 4S2)

. (C36)

Here, we have used the identity of parameters (C3). Finally, like in the ζ > J section, we rewrite the action in the enlarged basis
ϕ(k,�) = (ϕ1(k,�), ϕ1(k + π,�), ϕ2(k,�), ϕ2(k + π,�))T , which reads

−δI (2)

N
=
∫

�,k
ϕ(k,�)M(2)ϕ(−k,−�), (C37)

where the kernel is

M(2) =
⎛
⎝ JS2(cos(k)−1)

2(ζ 2+4S2 ) v

v† M(2)
gap

⎞
⎠, (C38)

where

v =
(

0 − JS2(z4−1)[cos(k)−1]
4z2(ζ 2+4S2 ) − iS2�(z4+1)

4ζ z2
√

ζ 2+4S2

)
, (C39)

M(2)
gap =

⎛
⎜⎜⎜⎜⎜⎝

− JS2[cos(k)+1]
2(ζ 2+4S2 ) − iS2�(z4+1)

4ζ z2
√

ζ 2+4S2

JS2(z4−1)[cos(k)+1]
4z2(ζ 2+4S2 )

iS2�(z4+1)
4ζ z2

√
ζ 2+4S2

(
M(2)

gap

)
2,2 0

JS2(z4−1)[cos(k)+1]
4z2(ζ 2+4S2 ) 0 (M(2)

gap)3,3

⎞
⎟⎟⎟⎟⎟⎠, (C40)

with (
M(2)

gap

)
2,2 = S

2{−J cos(k)[S2(z4 + 1)2 + ζ 2z4] − 3JS2(z4 + 1)2 − ζ 2J (z8 + z4 + 1) + (z4 + 1)2(ζ 2 + 4S2)3/2}
2ζ 2z4(ζ 2 + 4S2)

,

(
M(2)

gap

)
3,3 = S

2{J cos(k)[S2(z4 + 1)2 + ζ 2z4] − 3JS2(z4 + 1)2 − ζ 2J (z8 + z4 + 1) + (z4 + 1)2(ζ 2 + 4S2)3/2}
2ζ 2z4(ζ 2 + 4S2)

. (C41)

We derive the final action in the k → 0,� → 0 limit. We find ϕ1(k) corresponds to a gapless mode and the other fields
correspond to gapped modes. Therefore, we can integrate out the gapped modes to obtain effective action. In detail, we keep v

to leading order,

ṽ =
(

0
Jk2S2(z4−1)
8z2(ζ 2+4S2 ) − iS2�(z4+1)

4ζ z2
√

ζ 2+4S2

)
, (C42)

and take limk→0,�→0M(2)
gap. The final gapless mode can be obtained as

−δI (2)/N =
∫

�,k
ϕ1(k,�)

[
− Jk2S2

4(ζ 2 + 4S2)
− ṽ
(

lim
k→0,�→0

M(2)
gap

)−1
ṽ†

]
ϕ1(−k,−�)

�

∫
�,k

ϕ1(k,�)

[
− Jk2S2

4(ζ 2 + 4S2)
− S2�2

4(ζ 2 + 4S2)(2
√

ζ 2 + 4S2 − J )

]
ϕ1(−k,−�)

�

∫
�,k

ϕ1(x,�)

[
− Jk2S2

4(ζ 2 + 4S2)
− S2�2

4(ζ 2 + 4S2)(2
√

ζ 2 + 4S2 − J )

]
ϕ1(−k,−�). (C43)

In leading order, we drop the high-order k4 term. Finally, the effective action reads

Seff = NS2

4(ζ 2 + 4S2)

∫
x,t

(
1

2
√

ζ 2 + 4S2 − J
(∂tϕ)2 + J (∂xϕ)2

)
. (C44)

According to Eq. (C3), we have
√

ζ 2 + 4S2 � J , and therefore, the coefficients of the gapless mode are always positive.
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