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Model of ultrashort-pulse laser excitation of bulk and thin film dielectrics:
Coupling material excitation and electric field propagation
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The interaction of ultrashort laser pulses with dielectrics is associated with strong coupling between the
material response and the light. The ultrashort pulses excite the materials, and the corresponding rapid changes
in optical properties, induced by the generation of free carriers, determine the propagation of the light. In this
paper, we describe a self-consistent model for this interaction. The material excitation is described by a model in
which the electron dynamics is captured by a set of multiple rate equations coupling energy levels in a conduction
band that has been discretized into energy states separated by the photon energy. The propagation of the light
is calculated from Maxwell’s equations using the finite-difference time-domain approach. The model is used to
calculate key observables from laser ablation experiments, e.g., the threshold fluence versus pulse duration and
the depth of laser-ablated structures versus fluence, for bulk and thin film samples. For both freestanding thin
samples and dielectric stacks, corresponding to high-reflectivity mirrors, the results of the model are strongly
influenced by interference phenomena, which significantly influence the material response and ablation. The
model is compared to an existing approach using propagation of the intensity envelope of the pulse. In the
absence of interference, the two methods predict almost identical ablation thresholds as well as hole depths.

DOI: 10.1103/PhysRevB.108.094307

I. INTRODUCTION

When wide-band-gap dielectrics are exposed to ultrashort
laser pulses, the high intensities cause a large number of
valence-band electrons to be excited to the conduction band
[1,2]. For sufficiently high excitation levels, the material
may become unstable, and material will be ejected from the
surface. This is referred to as laser ablation. Laser abla-
tion of dielectrics has been studied extensively for the past
three decades [3–7], and the literature agrees that for pico-
and femtosecond pulses, three different processes are neces-
sary to describe the material response that eventually causes
laser ablation in dielectrics: (1) strong-field excitation of
valence-band electrons [8,9], (2) plasma absorption of excited
carriers [1,2], and (3) collisional excitation by which ener-
getic conduction-band electrons can promote valence-band
electrons to the conduction band [1,2]. For sufficiently long
pulses, the latter process can lead to carrier multiplication in a
so-called avalanche process [3].

These physical processes have, for the last two decades,
been incorporated into various numerical models for de-
scribing short-pulse laser ablation of dielectrics and predict
physical observables in ablation experiments. The first of
these models was the single rate equation (SRE) model
[3,10,11], in which the conduction band is considered a sin-
gle energy level. Although the SRE model has demonstrated
qualitative agreement with experimental data of ablation
thresholds [11–13], it lacks the ability to properly incorporate
the electron heating needed to induce collisional excitation
[14] and hence breaks down for long pulse durations, where
avalanche excitation is relevant [15–17]. A more sophisti-
cated model was proposed by Kaiser et al. [18] based on the

Boltzmann equation, which included all relevant mechanisms
and was used to predict the ablation threshold and its depen-
dence on pulse duration. Based on this model’s prediction of
the energy distribution of conduction-band electrons immedi-
ately after excitation, an improved rate-equation model was
proposed by Rethfeld [14] in which the conduction band was
discretized into multiple energetically equidistant levels. This
model was called the multiple rate equations (MRE) model
and has since been improved to also include propagation [5]
and has shown agreement with experimental data [2,19,20].

In previous implementations of the MRE model, the prop-
agation of the laser pulse was described in terms of intensity
[5], using a Drude model for the optical response to calculate
the plasma absorption and thereby propagating the pulse in
terms of its intensity envelope [21]. In this paper, we propose a
model of laser excitation of dielectrics in which the laser pulse
is propagated in terms of the electric field while the material
excitation is described by the MRE model. Several other stud-
ies have used similar approaches of simultaneously solving
Maxwell’s equations with the inclusion of material excita-
tion [22–26], some using three-dimensional field propagation
[23–26], including carrier diffusion [26], and investigating the
effects of interference in coatings [24]. Rather than relying on
variations of the SRE model [22–26] to describe the material
excitation, in the present paper we use the more complete
description given by the MRE model. We compare the present
model to results based on intensity propagation and discuss
their similarities and differences. Additionally, we perform
calculations on thin films and coatings and confirm that the
model corroborates the expectation of excitation being pre-
dominantly localized near regions of constructive interference
[27]. We demonstrate, in the case of a single freestanding thin
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film, how the fluence of the laser pulse directly determines
how many constructive interference layers are ejected from
the material, as reported experimentally by Kumar et al. [28]
and Roper et al. [29].

II. NUMERICAL MODEL

A. Optical response of laser-excited dielectrics

The MRE model used in this paper calculates the den-
sity of electrons excited to the conduction band. How these
conduction-band electrons affect the propagation of a laser
pulse through the excited dielectric depends on the optical
model. Here, we make use of the Drude model to describe the
dielectric function, which is related to the complex refractive
index ñ(ω) = n(ω) + iκ (ω) = √

ε(ω) [1,2],

ε(ω) = εB − ω2
p

ω2 + iω�
, (1)

where εB is the background permittivity, ωp is the plasma
frequency, ω is the central angular frequency of the laser
pulse, and � is the scattering rate. The background permit-
tivity ensures that the material response corresponds to the
unexcited material when ωp → 0 and is assumed to decrease
linearly from that of the unexcited material n2

0 with the degree
of excitation according to

εB = n2
0 − n2

0 − 1

ρtot
ρcon, (2)

where ρcon is the total density of conduction-band electrons
and ρtot is the total number of valence-band electrons prior to
excitation. The plasma frequency is defined as

ωp =
√

e2ρcon

ε0m∗
e

, (3)

where e is the elementary charge, ε0 is the vacuum permittiv-
ity, and m∗

e is the effective mass of conduction-band electrons.
The scattering rate � in Eq. (1) is, in general, a dynamic

quantity which depends on the density of conduction-band
electrons and their average energy above the conduction-band
minimum 〈εkin〉. Using a hard-sphere scattering model for
carrier-carrier collisions and using the Debye screening radius
as the radii of the scattering particles, a scattering rate can be
derived [5,30]:

�c-c = 4πε0

e2

√
6

m∗
e

(
2

3
〈εkin〉

)3/2

. (4)

Scattering between electrons and phonons also contribute to
the overall scattering rate in the Drude model. Hence, the total
scattering rate is taken to be the sum of two contributions � =
�e-ph + �c−c [5], where it is assumed that �e-ph is constant.

Equation (1) shows how the optical properties of the di-
electric will change drastically as electrons are excited to the
conduction band, typically resulting in an increased absorp-
tion and surface reflectivity. The changes in ε, and thereby ñ,
thus affect the electric field amplitude of pulses propagating
through the dielectric. For a harmonic electric field E prop-
agating in a homogeneous material with refractive index ñ,
the relation between the intensity and electric field inside the

dielectric is [31]

I = 〈S〉 = 1
2ε0cn|E|2, (5)

where c is the speed of light and 〈S〉 is the cycle-averaged
Poynting vector.

B. The multiple rate equations model

The MRE model describes the dielectric using a single
valence band and a conduction band divided into energetically
equidistant levels, separated by the laser photon energy [14].
The strong-field excitation of the dielectric by a short laser
pulse is described using Keldysh theory [8] and is considered
only from the valence-band level to the lowest conduction-
band level. The conduction-band electrons are excited to the
next higher level due to absorption of the plasma. In our im-
plementation of the MRE model, the rate of plasma absorption
is calculated based on the imaginary part of the refractive
index κ [5,32]. Once electrons have gained a sufficient amount
of kinetic energy, they can contribute to collisional excitation,
in which they collide with valence-band electrons and both the
energetic electron and the valence-band electron end up in the
conduction band. In our model, a constant rate of collisional
excitation is assigned to all electrons capable of driving this
process. Mathematically, this is all summarized in a set of
N coupled differential equations, where N is the number of
conduction-band levels included. They can be written as [2,5]

∂ρ1

∂t
= ρ̇

SFI
(|E|)ρval

ρtot
− Wplρ1

+ α
ρval

ρtot

N∑
i′=2

{ρi’
[εkin(i′) − εcoll(|E|)]ϒ (�ε̃(i′))}

...

∂ρi

∂t
= Wpl(ρi−1 − ρi ) − α

ρval

ρtot
ρi
[εkin(i) − εcoll(|E|)]

+ α
ρval

ρtot

N∑
i′=i+1

{ρi’
[εkin(i′) − εcoll(|E|)]

× ϒ[�ε̃(i′) − (i − 1)]}
...

∂ρN

∂t
= WplρN-1

− α
ρval

ρtot
ρN
[εkin(N ) − εcoll(|E|)], (6)

where E is the electric field, ρi is the electron density in the
ith level, ρ̇

SFI
is the strong-field excitation rate calculated from

Keldysh theory [2,8], ρval is the number of remaining valence-
band electrons, and Wpl is the plasma absorption rate [5,33],

Wpl = 2κω

c

I

h̄ω

1

ρcon
= �

2h̄ω

e2|E|2
m∗

e (ω2 + �2)
, (7)

where ρcon = ∑N
i=1 ρi and the second equality follows from

Eqs. (1) and (5). Furthermore, α is the constant collisional-
excitation rate, 
 is the Heaviside step function, εkin(i) is the
energy of the ith level with respect to the conduction-band
minimum, and εcoll is the energy needed to perform collisional
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excitation while satisfying energy and momentum conserva-
tion [18],

εcoll = 1 + 2μ

1 + μ
ε̃G, (8)

with ε̃G being the effective band gap, which is the sum of
the band gap εG prior to excitation and the ponderomotive
energy Up = e2|E|2

4m∗
e ω

2 [8]. μ = m∗
e/m∗

h is the ratio of the effective
electron and hole mass. In the simulations presented in this
paper, calculations are carried out with μ = 1, which was also
the case in previous works [5,19,20]. For further elaboration
on this choice, see the discussion in Sec. IV.

The function ϒ in Eq. (6) determines which levels are pop-
ulated by electrons that have undergone collisional excitation
to ensure energy conservation, and it is defined as [5]

ϒ(x) =
⎧⎨
⎩

2 if 0 � |x| � 0.25,

1 if 0.25 < |x| < 0.75,

0 otherwise.
(9)

This function takes �ε̃ as an argument, which is a dimension-
less quantity,

�ε̃(i) = 1

3

(
i − 1 − ε̃G(|E|)

h̄ω

)
. (10)

An important property of the MRE model is that it makes
no assumption of a thermalized energy distribution of the
conduction-band electrons and hence is able to describe out-
of-equilibrium dynamics. On the other hand, in its form in
Eq. (6), thermalization is not included, and hence, the model
should, in principle, not be used to describe excitation with
longer pulses where thermalization may have an effect, and
we will in this work show only results using pulse durations
up to 120 fs.

The MRE model was previously proven to be capable
of describing both time-resolved reflectivity and phase-shift
measurements, as well as fluence thresholds and hole depths
[19,20].

C. Methods of propagation

1. Intensity propagation

To propagate the laser pulse in terms of its intensity
envelope, the material is discretized into slabs along the
propagation direction. The incoming intensity profile is de-
termined from the peak fluence F0 and the full width at half
maximum pulse duration τ as

I (t ) =
√

4 ln(2)

π

F0

τ
exp

[
−4 ln(2)

(
t

τ

)2
]
. (11)

For each slab, the degree of excitation is solved as a function
of time. Reflection from the first layer is accounted for by
applying the Fresnel equations at normal incidence [34],

R(t ) =
∣∣∣∣1 − ñ

1 + ñ

∣∣∣∣
2

. (12)

As the pulse propagates through a slab of material, the degree
of excitation is calculated, thus giving the optical properties
of the material as a function of time. These are then used to

Intensity

z Δz1 Δz2 Δz3 ΔzM

Electric field

z
MRE 

Layers Passive Layers

(a)

(b)

ρcon

FIG. 1. Illustrations of the working principle of the two methods
of propagation. (a) Intensity propagation: The material is divided
into M slabs of exponentially increasing thickness �zm. The pulse
is propagated through each slab individually by first obtaining the
degree of excitation for each point in time along the pulse and then
calculating the reduction in intensity for each of these points accord-
ing to Eq. (13). (b) FDTD propagation: The entire calculation region
is divided into slabs of constant thickness �z. The MRE model is
solved for the first part of the material, while the remaining material
remains unexcited. In both (a) and (b) the arrows mark the direction
of propagation, and the dashed gray lines represent the incoming
pulses.

propagate the pulse to the adjacent layer by using [5]

∂I

∂z
= −

(
2κω

c
+ ρval

ρtot

⌈
ε̃G

h̄ω

⌉
h̄ωρ̇

SFI

1

I

)
I = −βI, (13)

where �·	 is the ceil operator. The first term in Eq. (13) ac-
counts for the Drude absorption in the material, and the second
term accounts for the energy lost from the laser field due to
strong-field excitation. In practice, each temporal component
of the pulse is propagated to the next layer according to

I (t, zm+1) = I (t, zm)[1 − β(t, zm)�zm], (14)

where m is a spatial index for the different layers. Figure 1(a)
illustrates the working principle of the intensity propagation
technique. In the calculations presented in this paper, the in-
tensity propagation was carried out by dividing a 300 nm bulk
sample into 100 slabs of exponentially increasing thickness to
reduce computational time.

2. Finite-difference time-domain method

In the model presented in the current paper, Maxwell’s
equations are solved using the finite-difference time-domain
(FDTD) method [35,36] in one dimension by considering an
electric field linearly polarized in the x direction propagating
along the z direction. Formulated in the frequency domain, the
relevant Maxwell’s equations are [34]

∇ × E(ω) = −iωμ0H(ω), (15)

∇ × H(ω) = iωε0εBE(ω) + JDrude(ω) + JSFI(ω). (16)

Here, the dielectric function from Eq. (1) has been inserted
into Ampere’s law [Eq. (16)], and an additional current den-
sity term JSFI has been added. The first term in Eq. (16)
corresponds to the current density in a nondispersive dielectric
with refractive index

√
εB. The second term is interpreted as
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a polarization current density generated by the free carriers
described by the Drude model and is given by

JDrude(ω) = −iωε0

ω2
p

ω2 + i�ω
E(ω). (17)

The last term, JSFI, is a fictive current density induced by
strong-field excitation, which ensures energy conservation. In
the time domain it is given by [26,37,38]

JSFI(t ) = ρval

ρtot

ρ̇
SFI

ε̃G

|E(t )|2 E(t ). (18)

It should be understood that all material parameters are spa-
tially dependent and correspond to vacuum parameters outside
the material.

To solve for E and H in the time domain, we make use
of the auxiliary differential equation method [39,40]. Here,
Eq. (17) is Fourier transformed, and a differential equation is
obtained for JDrude(t ). The Drude current density is solved
for in every time step and is inserted back into Maxwell’s
equations in the time domain along with JSFI(t ) to obtain
solutions for E(t ) and H(t ). The incoming complex electric
field is generated as a hard source at one of the simulation
boundaries as

E = E0e−iωt exp
[

− 2 ln(2)
( t

τ

)2]
x̂, (19)

where E0 is the maximum electric field amplitude. It should
be noted that the actual field is Re(E). When evaluating the
strong-field excitation rate, the absolute value |E| is used,
which is consistent with Keldysh theory [8] and with the
intensity propagation method of using Eqs. (5) and (11). The
material parameters are updated in every time step according
to the value of the electric field.

For the results presented here, Eqs. (15) and (16) are solved
with a spatial resolution of �z = 10 nm and with a time step
of �t = �z/c ≈ 33.4 as, which is known as the Courant-
Friedrichs-Lewy condition [36]. The MRE model is solved
for only the first 5 µm into the sample, while the remaining
material retains the properties of the unexcited material. This
depth is chosen such that for fluences close to and above
the ablation threshold, the mismatch in the refractive index
between the last excited spatial layer and the next unexcited
passive layer is small enough to give no significant reflection
that would otherwise affect the output of the simulation. At
lower fluences, where penetration of the excitation is deeper,
one should increase the depth at which the MRE model is
solved. Figure 1(b) illustrates the working principle of the
FDTD propagation method.

III. RESULTS

A. Excitation dynamics

The results of the combined MRE and FDTD model are
illustrated in Fig. 2. The calculation provides the electric field
as well as the carrier distribution as a function of time for
all simulated depths. The model parameters correspond to
sapphire (see Table I). Most of the model parameters are taken
from the literature while two parameters are tuned in order
to obtain the best agreement with the crater profiles from

×

×

FIG. 2. Snapshots of the material-excitation and light-
propagation dynamics. The laser pulse has a pulse duration of
58 fs, a peak fluence of 4.5 J cm−2, and a central wavelength of
800 nm. Note that the snapshots show a zoom of the computational
window. The four panels show the electric field (scale not shown)
and the conduction-band-electron density versus depth (red line)
for four different time delays (with t = 0 fs corresponding to the
time when the peak of the electric field strikes the surface). A
full animation of the dynamics is available in the Supplemental
Material [41].

Ref. [46]: the density of conduction-band electrons needed to
cause ablation ρablation and the collisional-excitation rate α.

Figure 2 illustrates how the model nicely captures the ex-
pected excitation dynamics. The front end of the pulse (at
t = −50 fs) sees a dielectric material. It undergoes normal
Fresnel reflection at the surface but propagates mostly undis-
turbed into the material. As the electric field increases at later
times, the carrier concentration increases (red curve), and this
has a pronounced influence on the electric field propagation,
with a large fraction of the light being absorbed by the plasma.
Note that Fig. 2 represents frames from an animation showing
the detailed time evolution of excitation and propagation. The
animation is available in the Supplemental Material [41].

B. Prediction of key ablation parameters

From the two material-excitation models, we are able to
simulate key observables measured in laser-ablation exper-
iments reported in the literature. We choose the ablation
criterion and the collisional-excitation rate so that the model

TABLE I. Parameters used for the MRE to describe sapphire.

Parameter Value References

n0 1.76 [42]
εG 9.9 eV [43,44]
m∗

e 0.38me [44,45]
m∗

h 3.99me [44,45]
ρtot 2.8×1023 cm−3 [44]
ρablation 4% of ρtot

α 0.5×1015 s−1

�e-ph 1×1014 s−1

N 100
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FIG. 3. Calculated hole depth in sapphire as a function of laser
fluence using the FDTD propagation and the intensity propagation
for a 58 fs pulse with a central wavelength of 800 nm. The model
parameters used are from Table I. A comparison is shown with
experimental data from Guizard et al. [46].

agrees with experimental data for crater profiles from Guizard
et al. [46]. First, we explore the predicted hole depths for the
two models for a central laser wavelength of 800 nm and a
pulse duration of τ = 58 fs for a range of fluences, and we
then determine how the ablation threshold scales with the
pulse duration in the surface layer.

1. Hole depth versus fluence

To determine the depths of holes predicted by the two
models, the depth at which ρ = ρablation is calculated for a
series of laser fluences. In the case of the FDTD simulations,
it is ensured that the pulse has fully propagated through the
region of high excitation and that the carrier dynamics has
reached a steady state.

Figure 3 shows good agreement between the two methods
of propagation, which indicates that using a Lambert-Beer
approach [Eq. (13)] for the pulse propagation is valid in the
case of bulk dielectrics, which could not a priori be expected,
as discussed in detail later. We also see that both models show
good agreement with the experimental data from Ref. [46]
after adjusting only two parameters to that data set.

2. Threshold fluence versus pulse duration

To determine the ablation threshold for each of the two
propagation models, we determine the fluence at which ρcon =
ρablation. In the case of the intensity propagation, only a single
layer is included, whereas in the FDTD propagation, the sim-
ulation is stopped when the carrier dynamics at the surface
reaches a steady state. In practice, finding Fth for a specific
ρablation is an optimization problem, which is solved with an
accuracy of 0.01 J/ cm2 .

Figure 4 again shows excellent agreement between the
two methods of propagation, thus showing that the intensity
propagation method is adequate when considering bulk abla-
tion. The simulated results are compared to experimental data
from several sources, all using 800 nm Ti:sapphire lasers in
single-shot operation. The general pulse-duration dependence
of the ablation threshold seems to be captured by the model.

FIG. 4. The ablation threshold versus pulse duration for sapphire
calculated using FDTD propagation and intensity propagation for
pulses with a central wavelength of 800 nm. The model parameters
used are from Table I. A comparison is shown with experimental data
from Li et al. [48], Winkler et al. [47], and Garcia-Lechuga et al. [44].

The data from Li et al. suggest that our model underestimates
the ablation threshold, especially at longer pulse durations,
while the individual data points from Winkler et al. [47] and
Garcia-Lechuga et al. [44] show better agreement. We note
that ablation thresholds reported in the literature vary signif-
icantly for all dielectrics and only a small number of studies
on single-shot ablation of sapphire exist.

C. Excitation of a freestanding thin film

An advantage of formulating the laser pulse in terms
of its electric field is that interference within the dielectric
is automatically accounted for. Interference is particularly
important when ablating thin films whenever there is a sig-
nificant refractive-index mismatch between the film and its
substrate [49]. This was demonstrated experimentally in the
excitation of 1 µm SiOx films on silicon substrates [29], where
it was shown that due to the formation of periodic plasma
disks [28,29] in the depth of the film, the removal of film
was divided into several layers for high fluences. The same
phenomenon is predicted by our model, and we show it here
in the case of a freestanding dielectric film with a thickness
of 910 nm with material properties corresponding to sapphire
excited by a 58 fs 800 nm laser pulse in Fig. 5. The thickness
was chosen to be ∼4 × λ/(2n0) such that an interference
maximum is present on the front surface and we see several
interference maxima. Figure 5 illustrates the importance of
incorporating interference into the excitation in the case of
thin films. The interference between the incoming and re-
flected waves leads to periodic regions of alternating high and
low excitation. It may be noted that although the reflectivity of
the sapphire-air interface is only 7.6%, interference has a large
impact on the degree of excitation due to the nonlinear exci-
tation mechanism. It also becomes apparent that interference
within the film significantly affects the ablation threshold.
In particular, one might expect a near-stepwise increase in
hole depth, corresponding to separated ejected layers, as a
function of fluence, as indicated by the blue and red solid
lines in Fig. 5 corresponding to the ejection of one and two

094307-5



SNEFTRUP, MØLLER, AND BALLING PHYSICAL REVIEW B 108, 094307 (2023)

×

FIG. 5. A model prediction of the degree of excitation as a func-
tion of the depth for a freestanding 910 nm thick film of sapphire
irradiated by a 58 fs pulse with a central wavelength of 800 nm
for three different fluences (solid lines). For the highest fluence, a
calculation is shown for a bulk sample by the red dotted line. The
dashed gray line shows the ablation criterion. The model parameters
used are from Table I.

layers, respectively. We note that for this to be observed, the
unexcited material must be ejected out of the surface, which
depends entirely on the dynamics of the ablation and is not
included in our model. However, even if the material is not
ejected, the present model can still be used to determine the
ablation threshold for such structures even if ablation is not
visible at the surface. The reason why the fluence determines
the number of ejected layers in our model is that for flu-
ences far below the bulk ablation threshold, the propagation
of the pulse is mostly unaffected by the excitation, leaving
the excitation and propagation largely uncoupled. This leads
to an excitation profile which mimics that of the intensity
distribution inside of a Fabry-Pérot etalon. For fluences close
to and above the bulk ablation threshold, excitation and prop-
agation become coupled. This is caused by the pulse being
able to effectively excite the material without the presence
of constructive interference. Hence, as the pulse propagates
towards the rear surface and back towards the front surface,
it is already strongly absorbed, leading to a weaker effect of
interference close to the front surface. The fact that thin film
interference can heavily affect the threshold for laser ablation
is clearly demonstrated by the solid and dotted red lines in
Fig. 5, which compare the excitation versus depth for the
freestanding thin film (solid) and bulk sample (dotted) for
the same laser fluence. The electron density in the conduction
band at the surface of the freestanding thin film is more than
twice as high as that of the bulk sample. Note that whenever
the substrate, in this case air, has a lower refractive index
than the film, the rear surface will always be an interference
maximum because the phase of the reflected light is preserved
[34]. On the other hand, depending on the film thickness, the
constructive interference closest to the front surface may shift
significantly away from the surface such that one may already
be ablating the bulk before observing surface ablation. Last, it
should be noted that interference within a thin film as shown
here occurs only if the longitudinal spatial extent of the pulse

FIG. 6. Calculated excitation as a function of depth through an
800 nm mirror for a 58 fs pulse with a central wavelength of 800 nm.
Darker layers correspond to sapphire, and lighter layers correspond
to MgF2. The model parameters used are from Table I, except for
the refractive index of MgF2, which is 1.375. The inset shows
the reflectivity as a function of the wavelength of the dielectric
coating calculated using the transfer-matrix method implementation
from [52].

within the film (i.e., cτ/n0) is significantly larger than the film
thickness.

D. Excitation of a dielectric mirror

A very relevant application of the model is to calculate the
excitation of dielectric coatings such as high-reflectivity or
antireflective coatings. From the properties of each material
used in the stack of dielectric thin films, one can directly de-
termine ablation thresholds for the dielectric stack. This could,
for instance, be used to design more durable dielectric mirrors
for intense-laser applications. To illustrate this, we simulate a
dielectric stack corresponding to an 800 nm dielectric mirror
of alternating layers of sapphire with model parameters ac-
cording to Table I and MgF2. For simplicity, we use the same
material parameters for MgF2 and change only the refractive
index to nMgF2

= 1.375 [50]. To produce a dielectric mirror,
the layer thickness of each material must be λ/(4n) [51], and
the material with the highest refractive index must be located
at the surface. Figure 6 shows the degree of excitation (on a
logarithmic scale) as a function of depth through the dielectric
mirror for different fluences. As expected, the highest excita-
tion appears at depths of constructive interference, which in
a dielectric mirror is at the interface when going from a high
to low refractive index. This is again because reflected waves
at these interfaces preserve the phase, and thus, these depths
will always correspond to antinodes of the electric field, while
interfaces going from a low to high refractive index will be
nodes and thus will experience low excitation. It is observed
that the high excitation is located primarily close to the front
surface, which is expected since reflections cause the intensity
to decrease as light penetrates further into the dielectric stack.
Since the intensity is at a maximum exactly at the interface
between the two materials, one must then expect the material
that has the smaller ablation threshold to determine the overall
ablation threshold for the coating. The same conclusion was
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reached by Jasapara et al. [27] using an SRE model combined
with a local intensity factor from linear propagation and was
also demonstrated by Zhang et al. [24] using FDTD combined
with a variation of the SRE model.

IV. DISCUSSION

The model presented here is an elaboration on previous
implementations of the MRE model [5,14], and the results can
both serve as a benchmark for the previous implementations
and allow for calculations influenced by interference. A key
difference between the two methods is that propagation of the
intensity envelope using a Lambert-Beer approach (Eq. 13)
assumes that reflections from the bulk are negligible. Since
we are in a regime where the spatial changes of the dielec-
tric function are substantial over the wavelength scale, this
cannot a priori be expected. Our model based on a direct
solution of Maxwell’s equations shows that this must be a
negligible effect, even though the critical density is reached
inside the material. This suggests that the computationally
less expensive intensity propagation method can be applied
when simulating propagation through bulk samples. However,
FDTD has the advantage that linear dispersion from the Drude
plasma is directly accounted for in the propagation. While
dispersion of the unexcited dielectric has been neglected here
for simplicity, it could easily be incorporated simply by using
a Drude-Lorentz optical model and adding the appropriate
current density term in Eq. (15).

In this paper, Maxwell’s equations have been solved only
in the one-dimensional case, which has primarily been for
simplicity and to reduce computational time. While a similar
two-dimensional analysis could be done, the large number
of coupled differential equations in the MRE model would
make such calculations time-consuming. For such calcula-
tions it might be appealing to utilize a computationally less
demanding laser-matter interaction model, such as the SRE
model. Attempts were made to simulate ablation thresholds
and hole depths with an SRE model, but we were unsuccessful
in finding a set of physically meaningful parameters that could
reproduce the experimental data. A better alternative seems to
be the dynamical rate equations (DRE) model, proposed by
Déziel et al. [33], which is a simplification of the MRE model,
in which the assumption of a Maxwellian distribution of the
excited carriers (which was also used in [22,24]) reduces the
number of coupled differential equations to just two. It was
shown that for a properly chosen set of material parameters,
the DRE model could produce results similar to those of the
MRE model using the original formulation from [14]. Two-
or three-dimensional propagation opens up the ability to in-
vestigate effects of nonlinear field propagation [53] or more
complex material geometries.

When determining the parameters for the MRE model, it
was observed that for the known effective masses for sapphire,
εcoll became quite small, which gave rise to very efficient
avalanche excitation, meaning that the model did not agree
with experimental data. Rather than using the effective masses
as a fitting parameter, as was done in other studies [33], we
used the known effective masses of the band structure to
calculate the strong-field ionization rate and ponderomotive
energy, while the free electron mass was used to calculate εcoll

for both electrons and holes. Our reasoning behind this is that
the strong-field excitation process occurs primarily from the
valence-band maximum to the conduction-band minimum and
hence is a process for which the approximation of parabolic
bands is mostly valid. For the case of collisional excitation,
however, the electrons capable of driving this process reside
far from the band edge where the parabolic approximation is
undoubtedly very poor. Instead, they are expected to behave
more like free electrons, and hence, a value of μ = 1 has been
used. The consequence of this is that it always takes an en-
ergy 3

2εG above the conduction-band minimum for collisional
excitation to be allowed, as opposed to 1.09εG that would
otherwise be the case for sapphire.

Several time-resolved experiments have shown delayed on-
set of reflectivity of probe pulses with respect to the exciting
pump [7,54,55]. This phenomenon seems not to be explained
through the MRE model in its current form. Reference [7]
suggested that the effect is due to band filling and Pauli
blocking. In general, it could be speculated that energetic
electrons behave optically differently from those close to the
conduction-band edge, in part because the effective mass
changes and in part because the scattering rate is significantly
different. In that case, the delayed onset of reflectivity could
be a sign of thermalization of the conduction-band electrons.
This can be incorporated into the MRE model but would add
an additional layer of complexity as well as additional free
parameters.

Carrier diffusion has not been considered in this paper,
which is common when simulating carrier dynamics in di-
electrics [5,24,33]. The reason is that the low carrier mobilities
in dielectrics makes the timescale for carrier transport signifi-
cantly longer than the timescale for excitation and local carrier
dynamics. It has, however, been proposed that due to the high
temperatures and the marked difference in mobilities between
electrons and holes, large electric fields may be generated as
carrier separation occurs [56]. It was proposed that this could
be linked to an observed strong difference in the s and p
reflectivities of fused silica in a time-resolved reflectivity mea-
surement [7]. To include such effects it would be necessary
to incorporate diffusion into our model. Although its effects
on ablation are unclear, it would have measurable effects on
reflectivity and transmission and result in a predicted emission
of terahertz radiation [56]. In particular, it could be interesting
to investigate how carrier diffusion may play a role in the
optical response of excited thin films because the strong gra-
dients in the conduction-band electron density (Fig. 5) should
enhance diffusion effects.

V. CONCLUSION

We have presented a model for simulating excitation of di-
electrics in which the laser-matter interaction is described by
the multiple rate equations model and the propagation of the
laser pulse is carried out by solving Maxwell’s equations using
a Drude model for the optical response. Simulations of abla-
tion thresholds and hole depths of sapphire were compared
to a previously used method of propagation, yielding al-
most identical results, and both models show good agreement
with existing experimental results. The advantages of our
method of propagation were demonstrated by illustrating how
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interference between incoming and reflected waves affects the
level of excitation in a single freestanding thin film as well as
a stack of dielectric films corresponding to a dielectric mirror
at normal incidence for 800 nm.
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