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Dynamical quantum phase transitions occur in dynamically evolving quantum systems when nonanalyticities
occur at critical times in the return rate, a dynamical analog of the free energy. This extension of the concept of
phase transitions can be brought into contact with another, namely, that of topological phase transitions in which
the phase transition is marked by a change in a topological invariant. Following a quantum quench dynamical
quantum phase transitions can happen in topological matter, a fact which has already been explored in one-
dimensional topological insulators and in two-dimensional Chern insulators. Additionally, in one-dimensional
systems a dynamical bulk boundary correspondence has been seen, related to the periodic appearance of zero
modes of the Loschmidt echo itself. Here we extend both of these concepts to two-dimensional higher-order
topological matter in which the topologically protected boundary modes are corner modes. We consider a
minimal model which encompasses all possible forms of higher-order topology in two-dimensional topological
band structures. We find that dynamical quantum phase transitions can still occur, and can occur for quenches
which cross both bulk and boundary gap closings. Furthermore, a dynamical bulk boundary correspondence is
also found, which takes a different form to that in one dimension.
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I. INTRODUCTION

A dynamical quantum phase transition (DQPT) is said to
occur when nonanalyticities appear at critical times in the
return rate, a measure of the overlap between a time-evolved
and initial state [1–3]. More specifically, the return rate is
proportional to the log of the magnitude of the overlap it-
self, called the Loschmidt echo. This has a clear analogy
to nonanalyticities in the free energy, which appear at criti-
cal parameter values across quantum phase transitions. The
paradigmatic case is for quenches in which the initial state is
the ground state of one Hamiltonian, and the system is then
time evolved with a different Hamiltonian. Generalizations of
DQPTs have been made to mixed states, finite temperatures,
and open or dissipative systems [4–14], with somewhat mixed
results. Whether the DQPTs survive depends on details both
of the models studied and the particular generalization of the
return rate that is used. In the relatively simple model that was
first studied there appeared to be a direct connection between
the existence of DQPTs and the equilibrium phase diagram:
DQPTs only occurred if the quench crossed an equilibrium
phase boundary. However, it was realized soon after that such
a general one-to-one correspondence between the equilibrium
phase diagram and DQPTs did not exist [15–23]. DQPTs
can therefore be said to offer real insight into nonequilibrium
phenomena with the advantage that it is in a simple and con-
trolled way. Furthermore, interesting connections have been
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found between DQPTs and several other phenomena such as
the entanglement entropy [24], string-order parameters [25],
the characteristic function of work [8,26], and crossovers
in the quasiparticle spectra [27].

Although the focus began on simple two-band one-
dimensional models, this has been extended to multi-
band models [22,28–30] and two-dimensional systems [17,
31–33]. In the case of two-dimensional systems there was
an additional complication: the existence of extended lines
of critical times with finite length, rather than critical points.
In this case the DQPT manifested itself more directly in the
time derivative of the return rate [17]. A large amount of
theoretical work has followed [1,27,34–59]. Experimentally,
a variety of approaches have been used to realize DQPTs
including ion traps, cold atoms, and quantum simulator
platforms [60–66].

DQPTs have also been shown to exist in a variety of
topological models [17,20,24,25,30,67–75]. Crossing a topo-
logical phase boundary with a quench often results in DQPTs,
but is neither necessary nor sufficient. Previously the focus
was on topological band structures which can be characterized
by topological indices such as the Zak-Berry phase [76] or
Chern number [77]. Of great importance for the topolog-
ical classification are the symmetries of the Hamiltonians
[78,79], an idea which can be extended to crystalline sym-
metries [80–84]. One of the most interesting consequences of
topological band structures is, of course, the bulk-boundary
correspondence [77,85] and the existence of topologically
protected boundary modes with one dimension lower than
the bulk. In a higher-order topological insulator (HOTI) the
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dimension of the edge modes can be two or more lower
than the bulk dimension [86–97], i.e., one can have modes at
the corners of two-dimensional and three-dimensional topo-
logical matter, or along the hinges of a three-dimensional
crystal. As an example this can be loosely understood as
resulting from breaking a crystalline symmetry along the one-
dimensional edge of a two-dimensional system, which would
otherwise have boundary modes. These one-dimensional
edge modes become gapped and can, in turn, lead to one-
dimensional corner modes where they meet.

A natural question to ask in this context is if can one
have dynamical order parameters [6,7,98–100] and a dy-
namical bulk-boundary correspondence [3,24,30] related to
the dynamical quantum phase transitions. A dynamical order
parameter can be introduced via the phase of the com-
plex Loschmidt echo. DQPTs are caused by zeros of the
Loschmidt echo, which results in a phase jump, and by exten-
sion in the dynamical order parameter. This does not appear
to entail any further information than what is already con-
tained in the Loschmidt echo, but may be another method
of measuring the DQPTs [101]. In contrast, the dynamical
bulk-boundary correspondence considers boundary contribu-
tions to the Loschmidt echo or return rate which, as boundary
contributions, do not appear in these quantities in the thermo-
dynamic limit. It is found that, depending on the topology of
the time-evolving Hamiltonian, the Loschmidt echo develops
zero modes which periodically appear and disappear at the
critical times. These result in characteristic plateaus forming
in the boundary contribution to the return rate.

In this article we investigate DQPTs in two-dimensional
HOTIs with corner modes. We consider both intrinsic and
extrinsic cases with both two and four corner modes present.
For this purpose we introduce a model which encompasses
all these phases based on the Benalcazar-Bernevig-Hughes
(BBH) model [89,90]. We then extend the concept of the dy-
namical bulk-boundary correspondence to DQPTs in HOTIs.
In these HOTIs the topological phase can change not only
via the bulk gap closing, but also by closing the edge gap
without the bulk-gap closing. One can also change the phase
by breaking symmetries. For quenches which cross both types
of gap closing we find DQPTs, however, quenches which
break or restore symmetries, without crossing gap closings,
do not have DQPTs. For the relatively simple model here we
do not find DQPTs for quenches within a phase. As for the
one-dimensional cases previously studied we find that zeros
of the Loschmidt echo occur between critical times when
the time-evolving Hamiltonian is topologically nontrivial,
though the pattern is more complicated than for one-
dimensional topological systems. None of these results
depends qualitatively on whether we consider an extrinsic or
an intrinsic HOTI.

This article is organized as follows. In Sec. II we introduce
our generalized BBH model along with exemplary spectra
and its phase diagram. In Sec. III we introduce the defini-
tions of the Loschmidt echo and return rate and the details
of the quenches we will focus on. Section IV presents re-
sults for the Fisher zeros and DQPTs for a variety of the
quenches we explore. In Sec. V this is then related to the
dynamical bulk-boundary correspondence and in Sec. VI we
conclude.

II. MODEL

In general there are several types of behavior a two-
dimensional HOTI can display. It can have either two or four
corner modes present and additionally the topology may be
though of as extrinsic or intrinsic. For an intrinsic HOTI the
topology is protected by a bulk crystalline symmetry which
is absent for the extrinsic case. Here we introduce a minimal
four band model which includes all of these possibilities. Let
us consider the Hamiltonian

Hm,n,n′ = J �� · �dm,n,n′ , (1)

where �� is a vector containing eight 4 × 4 matrices. The
matrices are given by �k = −τ2σk and �4+k = −τ1σk for k =
1, 2, 3, and by �4 = τ1σ0 and �8 = τ2σ0. The momentum-
dependent vector is

�dm,n,n′ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

(1 − n) sin ky

m + (1 − n) cos ky

sin kx + n′ sin ky

m + cos kx + n cos ky

n cos ky

−n sin ky

−n′ cos ky

−n sin ky

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

J is an overall energy scale of the hopping terms and we
will set everywhere J = 1 and h̄ = 1. For n = n′ = 0 we
reproduce the BBH Hamiltonian with a possible four corner
states [89,90]. We will consider two variants of this general
Hamiltonian. First, we have n′ = 0 which as we will see is
an intrinsic HOTI with two or four corner modes. Second, we
have n′ �= 0, which is an extrinsic HOTI with two or four cor-
ner modes [96], and we focus particularly on the case n = n′.
Throughout this paper intrinsic will be used specifically to
refer to n′ = 0 and extrinsic to n = n′. Equation (1) can be
Fourier transformed to find the real-space Hamiltonian used
for the open boundary results in this paper, see Appendix D
for more details.

This model has a global particle hole symmetry, C =
τ3 × σ0K̂ , satisfying {C,Hm,n,n′ } = 0 and C2 = 1. It also
has a “time-reversal” symmetry T = τ0 × σ0K̂ satisfying
{T ,Hm,n,n′ } = 0 and T 2 = 1. K̂ is charge conjugation. There
are also crystalline symmetries present. For n = 0 we find the
mirror symmetries [90,96]

UyHm,0,0(−kx, ky)U†
y = Hm,0,0(kx, ky), (3)

and

UxHm,0,0(kx,−ky)U†
x = Hm,0,0(kx, ky), (4)

where Uy = τ1σ3 and Ux = τ1σ1. We also have a four-fold
rotational symmetry

U4Hm,0,0(−ky, kx )U†
4 = Hm,0,0(kx, ky), (5)

with

U4 =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1
0 −1 0 0
1 0 0 0

⎞
⎟⎟⎠, (6)
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0 2 4 Flat Band
Number of Zero Modes

FIG. 1. The topological phase diagram for the intrinsic case n′ =
0. The number of corner modes is given in the legend. The yellow
region marked as having a flat band has flat bands between bulk gap
closing points, see Appendix A for more details. In this analysis we
focus only on quenches between regions with zero, two, or four zero
modes, not the flat band region. The white lines are bulk-gap closing
topological phase transitions and the red lines show edge-gap closing
topological phase transitions. Edge-gap closing always means the
otherwise gapped edge modes which exist along the y-direction. The
white triangles show the points used in the quenches.

and U4
4 = −1. By combining the rotation and mirror symme-

tries it is therefore also possible to write the following mirror
symmetries:

Ux=−yHm,0,0(−ky,−kx )U†
x=−y = Hm,0,0(kx, ky), (7)

and

Ux=yHm,0,0(ky, kx )U†
x=y = Hm,0,0(kx, ky), (8)

where Ux=−y = UyU4 and Ux=y = UxU4. More details on
the symmetry operations and the matrices can be found in
Appendix A.

For n �= 0 the crystalline symmetries Uy, Ux=−y, Ux=y, and
U4 are broken, leaving only Uy intact. This last one is broken
by n′ �= 0. Therefore, we find that Hm,n,n′ �=0 is an extrinsic
HOTI and Hm,n,0 is an intrinsic HOTI each with either two
or four corner modes.

In Fig. 1 the intrinsic topological phase diagram is shown,
with the positions used for the quenches in the following sec-
tions marked. The phases are divided by the edge-gap closing
lines 2|n| + |m| = 1 and |m| = 1; and the bulk-gap closing
line (n − 2)2 = 2(1 − m2). The flat bands which occur are
along the y-direction and lie between bulk-gap closing points
at some momenta, see Appendix A for examples of the band
structures. In Fig. 2 we show the single-particle spectra ε

along two cuts through the phase diagram. At n = 0.25 we
see the edge-gap closing between four and two corner modes,
followed by the edge-gap closing to the topologically trivial
phase. Although the bulk gap narrows, it does not, in fact,
close at this point. At n = 0.8 one can see the gapless phase
containing flat bands which gives way to the phase with two

FIG. 2. Low-energy spectra of the intrinsic HOTI through two
cuts in the phase diagram. The lowest six energy levels of a nanoflake
with open boundary conditions of size 40 × 40 are shown. The light
pink shaded areas show the one-dimensional edge states, calculated
with open boundary conditions in one direction and periodic in the
other, and the light orange shaded area shows the bulk states.

corner modes, followed by the edge gap closing to the topo-
logically trivial phase.

0 2 4 Flat Band
Number of Zero Modes

FIG. 3. The topological phase diagram in an extrinsic case,
specifically n′ = n. The number of corner modes is given in the leg-
end. The yellow region marked as having a flat band is fully gapped
in the bulk, see Appendix A for more details. In this analysis we
focus only on quenches between regions with zero, two, or four zero
modes, not the flat band region. The white lines are bulk-gap closing
topological phase transitions and the red lines show edge-gap closing
topological phase transitions. Edge-gap closing always means the
otherwise gapped edge modes which exist along the y-direction. The
white triangles show the points used in the quenches.
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FIG. 4. Low-energy spectra of the extrinsic HOTI through two
cuts in the phase diagram. The lowest six energy levels of a nanoflake
with open boundary conditions of size 40 × 40 are shown. The light
pink shaded areas show the one-dimensional edge states, calculated
with open boundary conditions in one direction and periodic in the
other, and the light orange shaded area shows the bulk states. The
region shaded solid pink has a flat band of one-dimensional edge
modes, but is fully gapped in the bulk.

In Fig. 3 the extrinsic topological phase diagram is shown,
with the positions used for the quenches in the following
sections marked. The phases are divided by the edge-gap
closing line 2|n| + |m| = 1; and the bulk-gap closing lines
|m| = 1 and 2n = 1 + m2. In the phase with flat bands these
exist along all edges, see Appendix A for examples of the
band structure. In Fig. 4 we show the single-particle spectra
ε along two cuts through the phase diagram. At n = 0.25 we
see the edge gap closing between four and two corner modes,
followed by the bulk gap closing to the topologically trivial
phase. At n = 0.8 one can see the gapless phase containing flat
bands which gives way to the phase with two corner modes,
followed by the edge gap closing to the topologically trivial
phase.

III. LOSCHMIDT ECHO AND RETURN RATE

Dynamical quantum phase transitions can be traced to
zeros which occur in the Loschmidt echo, which cause nonan-
alyticities in the associated return rate [1]. In the form we are
interested in here the Loschmidt echo is the overlap between
an initial and a time-evolved state, and we will follow the
usual quantum quench protocol. In such a case we prepare the
system in the half-filled ground state |�0〉 of a Hamiltonian
H0 = Hm0,n0,n′

0
, and then time evolve it with respect to a new

Hamiltonian H1 = Hm1,n1,n′
1
. The Loschmidt echo is then

L(t ) = 〈�0|e−iH1t |�0〉, (9)

and the Loschmidt amplitude is the absolute magnitude of the
Loschmidt echo. In the thermodynamic limit this quantity is
exponentially suppressed in the system size, and it is natural

to define the so-called return rate as

l (t ) = − 1

N
ln |L(t )|, (10)

where N is the system size, here the number of sites in the
lattice. This is analogous to a free energy for the “partition
function” L(t ) and it has a well-defined N → ∞ limit l0(t ) =
limN→∞ l (t ).

For a simple two-band free-fermion model an analytical
expression can be straightforwardly derived for translationally
invariant systems [17]. Generalizations to multiband systems
can, in some cases, be found [30], however, typically fully
analytical expressions are no longer possible. As we are
interested in boundary contributions for which we need a
finite open system, factorization of the Loschmidt echo in
momentum space in any case fails. Instead we can use an
alternative formation. Defining the correlation matrix as Ci j =
〈�0|�†

i � j |�0〉, where i and j run over a complete basis of
H0, then the Loschmidt echo is given by [102–104]

L(t ) = det
[
1 − C + CeiH1t

]
︸ ︷︷ ︸

≡M(t )

. (11)

H1 is the Hamiltonian matrix written in the same basis as C,
and we refer to M(t ) as the Loschmidt matrix. When momen-
tum is a good quantum number this trivially factorizes into
momentum subspaces and one recovers the previously derived
formulas. This makes it a convenient starting place for both
the open and periodic systems when considering more than
two bands, for which direct calculation of the overlap anyway
becomes cumbersome. Our results here are based on this
formulation, for bulk results we use momentum space where
factorization into different momenta allows us to reach large
system sizes, and for the thermodynamic limit to consider
integrals over momentum.

It is often helpful to consider the eigenvalues of the
Loschmidt matrix λi(t ) in terms of which we can write

L(t ) =
∏

i

λi(t ), (12)

and

l (t ) = − 1

N

∑
i

ln |λi(t )|. (13)

The nonanalyticities in the return rate are determined by the
zeros of the Loschmidt echo [1] which occur when L(t ) = 0.
These correspond to eigenvalues which become zero at critical
times. Therefore, one can analyze DQPTs directly from the
behavior of λi(t ). In one dimension the condition that L(tc) =
0 is satisfied for a critical i at a critical time. The nonanalyt-
icities only truly appear in the thermodynamic limit so let us
now turn to the the bulk case. The critical i corresponds to a
critical momentum k∗, which along with tc will be the solution
to the equation λ∗

k (tc) = 0. As λ are complex this gives two
equations for two unknowns.

In two dimensions the situation is different, as this equa-
tion can now be solved by a line of critical momenta k∗.
This results in an extended line of critical times. Therefore,
the DQPTs do not show up so clearly in l (t ) and one should
consider its derivative [17]. In terms of the eigenvalues one
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TABLE I. The points in the phase diagrams used for the
quenches, see Figs. 1 and 3. along with the number of corner modes
they possess. As only one point in each topological phase is consid-
ered in this article, each point in parameter space is given a simple
label for convenience.

Label Parameters Corner modes Type
Az (m, n, n′) z

I4 (0.4,0.1,0) 4 Intrinsic
I2 (0.4,0.4,0) 2 Intrinsic
I0 (1.2,0.1,0) 0 Intrinsic
E4 (0.4,0.1,0.1) 4 Extrinsic
E2 (0.4,0.4,0.4) 2 Extrinsic
E0 (1.2,0.1,0.1) 0 Extrinsic

finds

d (t ) ≡ l̇ (t ) = − 1

N

∑
k

∣∣∣∣
λ̇(t )

λ(t )

∣∣∣∣, (14)

and for the Loschmidt matrix this becomes

d (t ) ≡ l̇ (t ) = − 1

N
Re(tr[Ṁ(t )M−1(t )]). (15)

In the following we will use l (t ), d (t ), and λi(t ) to investigate
the DQPTs and the dynamical bulk boundary correspondence.
For the thermodynamic limit we will use the convention
l0(t ) = limN→∞ l (t ) and d0(t ) = limN→∞ d (t ), both of which
can be calculated as two-dimensional integrals over the
momenta.

The zeros of the Loschmidt echo can be understood as
those Fisher zeros in the complex plane which cross the real
axis [1,105]. Generalizing to the complex z plane we have

L(z) = 〈�0|e−iH1z|�0〉, (16)

which gives back the Loschmidt echo for t = Re [z]. As we
cannot solve L(z) we use a proxy. Let λ0(z) be the eigenvalue
with smallest magnitude. Then L(z) = 0 if and only if λ0(z) =
0, and we can study λ0(z) numerically at a certain system size.

We will consider the following quench scenarios. We will
use a convention where Az is a point in phase space with A
being either I for intrinsic or E for extrinsic and z the number
of corner modes. Here we will not quench into the flat band
regions of the phase diagram where higher-order topology is
not the relevant ordering principle. For the specific parameters
used see Table I, and see Figs. 1 and 3 for their locations in the
phase diagram. We consider all quenches between I4, I2, and
I0 and all quenches between E4, E2, and E0. We also tested
quenches Iz ↔ Ez for z ∈ {0, 2, 4}. We note that our model
is simple enough that we have only found DQPTs when we
quench between different topological phases.

IV. DYNAMICAL QUANTUM PHASE TRANSITIONS

To find the DQPTs we start by considering the Fisher zeros.
In this section we will focus on results for the extrinsic case.
For the intrinsic case we see similar results, and we present
some in Appendix B. In Fig. 5 we show the magnitude of
the lowest eigenvalue of the Loschmidt matrix on a log scale
for z. For L(z) = 0 this should diverge, but at finite system

FIG. 5. Here we plot the proxy for the Fisher zeros for four
quenches, as labeled on the panels. Calculated for a system of size
N = 202 × 202. In the thermodynamic limit Fisher zeros would cor-
respond to − ln |λ0(z)| → ∞. For E2 → E4 the absence of DQPTs is
clear, in all other cases DQPTs are present.

sizes will just be large. Four examples are plotted. For the
quench E2 → E4 there are no DQPTs, whereas for the other
cases plotted DQPTs are present. A full list of when DQPTs
occur, and whether they are periodic or aperiodic is give in
Table II. In those cases where there are DQPTs it is less clear
whether they can be removed by continuously deforming the
positions. For the quenches E4 ↔ E0 it may be that the dis-
appearance of the zeros for large Im[z] is a finite-size effect.
For E0 → E2 it seems that the Fisher zeros cover only a finite

TABLE II. A list of all DQPTs found for the quenches studied.
Listed first are the phases of the initial state and time evolving
Hamiltonian, see main text for notation. We then note the type of
critical line crossed by the quench and whether there are DQPTs,
0 means no DQPTs are seen, and if so whether they appear periodi-
cally in time. z ∈ {0, 2, 4}.

|ψ0〉 H1 Critical line Nature of
Az Az crossed critical cusps

E4 E0 Bulk Periodic
E0 E4 Bulk Periodic
E2 E0 Bulk Aperiodic
E0 E2 Bulk Aperiodic
E4 E2 Edge 0
E2 E4 Edge 0
I4 I0 Edge Periodic
I0 I4 Edge Periodic
I2 I0 Edge Aperiodic
I0 I2 Edge Aperiodic
I4 I2 Edge 0
I2 I4 Edge 0
Ez Iz None 0
Iz Ez None 0
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FIG. 6. The return rate l0(t ) and its derivative d0(t ) for several quenches of the extrinsic HOTI. The critical regions are shown in gray
with tc1 a red line and tc2 a black line, where discontinuities in d0(t ) are visible. This can be seen more clearly in the zoom-in of the quench
E0 → E4. These critical times are calculated from the eigenvalues of M(t ) at a system size of N = 202 × 202. All results are for systems with
periodic boundary conditions.

region of the z-plane. Results for longer times which show the
periodic reappearance of the zeros can be seen in Fig. 12 in
Appendix B.

Let us now turn to the return rate and its derivative. For
the results in the thermodynamic limit, l0(t ) and d0(t ), we
take Eqs. (13) and (15) in momentum space and perform
the momentum integrals numerically. Due to the extended
critical times, cusps are no longer expected in l0(t ), rather we
should see discontinuities in d0(t ). In Fig. 6 we show several
examples. These are all taken from the extrinsic case, similar
results are found for the intrinsic HOTI, see Appendix B for
examples. For quenches between the intrinsic and extrinsic
HOTIs with the same number of corner modes, we see no
DQPTs, though we stress here we tested examples where no
critical line was crossed. For E0 → E2,4 DQPTs are clearly
visible. We also show a zoom of a DQPT for E0 → E4. As an
example of the lack of DQPTs we show the quench E2 → E4,
where both l0(t ) and d0(t ) can be seen to be smooth functions.
For quenches within a single phase we see no evidence of
DQPTs, though we can not rule this out conclusively [30].

Let tc1 and tc2 be the smallest and largest critical times for
the first DQPT. In the simplest case we expect [17] that the
critical regions are, therefore,

Tc =
∞⋃

m=1

Tcm =
∞⋃

m=1

[(2m − 1)tc1, (2m − 1)tc2], (17)

and for t ∈ Tc there are zeros eigenvalues of M(t ). Clearly
the length of any contiguous critical region also grows as
(2m − 1)(tc2 − tc1) with m = 1, 2, 3, . . .. As such, after some
time the regions start to overlap and it becomes difficult to dis-
cern their start and end. Here we choose quenches which delay
this problem as much as possible. In Fig. 6 the critical regions
are shown in gray with tc1 a red line and tc2 a black line. These
critical times are calculated from the minimum eigenvalue
of M(t ), which we label λ0(t ), for a periodic system size of

N = 202 × 202. When λ0(t ) � λ∗ we assume the system is
critical with λ∗ a cutoff due to the finite size of our system.
In the limit N → ∞ we could take the condition λ0(t ) = λ∗.
Examples of the eigenvalue behavior are given in the next
section on the dynamical bulk-boundary correspondence. In
some cases we find that the critical times are no longer pe-
riodic, in which case each critical region must be calculated
independently, and we label them as Tcm = [tc1m, tc2m] with
m = 1, 2, 3, . . .. The cases where we find aperiodic critical
regions are typically those involving two corner-mode phases.
This is due to the lower symmetry of this phase. See Table III
in Appendix C for examples of such critical times.

V. DYNAMICAL BULK BOUNDARY CORRESPONDENCE

As we are interested in the boundary contributions to the
return rate in principle we must consider the first correction to
the thermodynamic limit

l (t ) ∼ l0(t ) + lB(t )

N
, (18)

with l0(t ) and lB(t ) the bulk and boundary contributions, re-
spectively. In principle, lB(t ) can be found from a finite-size
scaling analysis [24], though in practice this is not always

TABLE III. A list of the critical times for the quench E2 → E0.
tc1m is the onset of the mth critical region and tc2m its end. For these
quenches the critical times are aperiodic.

|ψ0〉 H1 tc11/J tc12/J tc13/J

E2 E0 2.2 7.95 13

|ψ0〉 H1 tc21/J tc22/J tc23/J

E2 E0 2.75 8.3 15

094306-6



DYNAMICAL BULK-BOUNDARY CORRESPONDENCE AND … PHYSICAL REVIEW B 108, 094306 (2023)

possible. Due to the limited system size it is possible to reach
for the two-dimensional systems studied here a finite-size
scaling analysis is unfeasible. We note that a contribution
to this difficulty is the necessity for multipoint precision to
correctly describe the zero modes, which severely limits the
system sizes that can be reached with reasonable memory
capabilities and calculation times. In such a case we can use
the behavior of the λi(t ) as a proxy [24,30]. The dynamical
bulk boundary correspondence states that for DQPTs with H1

belonging to a topologically nontrivial phase, lB(t ) will exhibit
characteristic plateaus between critical times. These plateaus
are caused by eigenvalues of M(t ) which become pinned to
zero between the critical times. For one-dimensional topolog-
ical insulators and superconductors one can show [24,30] that
taking these zero modes λn(t ), where n = 0, 1, 2, . . . , ñ − 1
one finds that

l (t ) − l0(t ) ≈ − 1

N

ñ−1∑
n=0

ln |λn(t )|, (19)

where l (t ) is calculated for a system size of N . ñ is the number
of modes which become pinned to zero.

Here we focus on the appearance, or not, of these zero
modes. As the HOTI DQPT already results in extended times
of λn(t ) ≈ 0 a direct comparison of l (t ) − l0(t ) and ln |λn(t )|
at available system sizes is not possible, and we focus purely
on the behavior of the λn(t ). In the following we show results
for both an open nanoflake of size N = 50 × 50, which has the
corner modes present in the appropriate phases, and a periodic
“bulk” system of size N = 202 × 202. For the bulk case we
plot only the smallest eigenvalue |λn(t )|, and the lowest four
for the open systems.

In Fig. 7 the eigenvalues of the Loschmidt matrix are
shown for two quenches into the topologically nontrivial
phases where DQPTs are present for the extrinsic HOTI. In
both cases zero eigenvalues can be seen. First, for the quench
E0 → E2 a single (approximately) zero eigenvalue occurs be-
tween the critical regions Tc1 and Tc2 and also between Tc2 and
Tc3. There are then no zeros present Tc3 and Tc4 or between Tc4

and Tc5. After Tc5 they may reappear, but the data are already
not very clear. For the quench E0 → E4 three (approximately)
zero eigenvalues occur between the critical regions Tc1 and
Tc2 and also between Tc2 and Tc3. After this it becomes hard
to be confident on whether they exist or not. This tentative
“double presence” then “double absence” is already different
from previous behavior seen in one-dimensional topological
systems. In one dimension, for quenches to a topological
phase with winding number 1, two zero eigenvalues appear
periodically between critical times [24]. For larger winding
numbers more zero eigenvalues are present, and the critical
times at which they appear and disappear becomes more com-
plicated [24,30]. We can also check that for the quenches
E2 → E0 and E4 → E0 there are no pinned zero eigenvalues
outside of Tc, see Fig. 8.

For the intrinsic case all quenches cross critical lines where
only the edge gap closes. In Fig. 9 the lowest Loschmidt
eigenvalues for quenches I0 → I2,4 are plotted. They show
the same pattern as for the extrinsic HOTI in Fig. 7. In ac-
cordance with the dynamical bulk-boundary correspondence
the reverse quenches I2,4 → I0 have, within finite-size errors,

FIG. 7. Plots of the absolute values of the smallest eigenvalues
of M(t ), |λn(t )| for two quenches of the extrinsic HOTI, as labeled
on the panels. Shown are the lowest four eigenvalues for an open
nanoflake of size N = 50 × 50 and the lowest value for a periodic
system of size N = 202 × 202, orange dots. The shaded region is
the region where eigenvalues of M(t ) exist for the bulk system. In
both of these cases DQPTs are present, see Fig. 6, and we expect
pinned zero eigenvalues λn(t ) due to the dynamical bulk-boundary
correspondence.

FIG. 8. Plots of the absolute values of the smallest eigenvalues
of M(t ), |λn(t )| for two quenches of the extrinsic HOTI, as labeled
on the panels. Shown are the lowest four eigenvalues for an open
nanoflake of size N = 50 × 50 and the lowest value for a periodic
system of size N = 202 × 202, orange dots. The shaded region is
the region where eigenvalues of M(t ) exist for the bulk system.
As expected there are no pinned zero eigenvalues outside of Tc, in
agreement with the dynamical bulk-boundary correspondence.
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FIG. 9. Plots of the absolute values of the smallest eigenvalues
of M(t ), |λn(t )| for two quenches of the intrinsic HOTI, as labeled
on the panels. Shown are the lowest four eigenvalues for an open
nanoflake of size N = 50 × 50 and the lowest value for a periodic
system of size N = 202 × 202, orange dots. The shaded region is
the region where eigenvalues of M(t ) exist for the bulk system.

FIG. 10. Plots of the absolute values of the smallest eigen-
values of M(t ), |λn(t )| for two quenches of the intrinsic HOTI,
as labeled on the panels. Shown are the lowest four eigenvalues
for an open nanoflake of size N = 50 × 50 and the lowest value
for a periodic system of size N = 202 × 202, orange dots. The
shaded region is the region where eigenvalues of M(t ) exist for
the bulk system. As expected there are no pinned zero eigenval-
ues outside of Tc, in agreement with the dynamical bulk-boundary
correspondence.

TABLE IV. The lowest few eigenvalues, λ0, λ1, . . . , for several
quenches at a time t where zero eigenvalues should exist. Both
cases given as examples here show eigenvalues close to zero, with
differences from zero due to finite-size effects.

|ψ0〉 H1 t/J λ0 λ1 λ2 λ3

E0 E4 3.5 2.19 × 10−7 8.72 × 10−5 8.71 × 10−5 0.64
I0 I4 3.5 1.99 × 10−7 6.55 × 10−5 6.55 × 10−5 0.65

no zero eigenvalues outside of Tc, see Fig. 10. An example,
of the numerical values of the lowest eigenvalues is given in
Table IV in Appendix C.

VI. DISCUSSION AND CONCLUSION

In this article we extended the definition of DQPTs to
higher-order topological matter, focusing on two-dimensional
HOTIs with different numbers of corner modes. A general
model was developed which allows us to reach a multitude
of different phases with a single model. As for the usual
two-dimensional topological insulators the DQPTs can be
observed in the time derivative of the return rate. For quenches
between the topologically trivial and nontrivial phases we find
DQPTs. The critical regions Tcm are periodic for quenches
involving the four corner mode phases, and aperiodic for
quenches involving the two corner-mode phases. All other
quenches investigated result in no DQPTs. We tested both an
intrinsic and extrinsic HOTI, with qualitatively similar results
in both cases. The model described here also possesses flat
bands of one-dimensional edge modes, and what role they
may play in the dynamics, as well as how generic the results
seen here are for HOTIs, would be interesting questions for
further studies.

To summarize we see that eigenvalues of M(t ) be-
come pinned to zero between critical regions Tcm between
DQPTs for quenches into the topologically nontrivial phases.

FIG. 11. Band structures for two points in the phase diagrams
along x and y edges. The top panels (a,b) are for the extrinsic HOTI
in the flat band phase, see Fig. 3. The bottom panels (c,d) are for
the intrinsic HOTI in the flat band phase, see Fig. 1. Panels (a,b)
have fully bulk-gap-protected one-dimensional flat bands along both
edges and panels (c,d) have one-dimensional flat bands only along
kx , which appear between gap closings at specific momenta.
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This constitutes the main generalization of the dynamical
bulk-boundary correspondence to two-dimensional HOTIs.
The exact number of the zeros and the critical regions be-
tween which they appear seem ordered, but the exact nature
of that ordering is not clear. The phases with two corner
modes appear to result in ñ = 1 and those with four corner
modes appear to result in ñ = 3, see Eq. (19). Furthermore,
the zero eigenvalues appear and disappear not between suc-
cessive Tcm but on an alternative pattern. Which of these
observations are generic and which particular to the model
here would be an interesting extension of this work. Also
of interest would be any potential proof of the dynamical
bulk-boundary correspondence and extensions to usual two-
dimensional topological insulators and crystalline topological
insulators.
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APPENDIX A: SOME MORE DETAILS ON THE MODEL

In this Appendix we give some more details about the
model used throughout this article. First, for convenience,
here we list some of the commutation properties of the ma-
trices involved in the symmetry operations on the model. One
can show that

{�3,Uy} = 0 and {�5,6,8,Uy} = 0 (A1)

anticommute, and that

[�7,Uy] = 0 and [�1,2,4,Uy] = 0 (A2)

commute.
The flat band phase which can be seen in Figs. 1 and

3 is different for the extrinsic and intrinsic HOTIs. In the
extrinsic case n′ = n when there are no crystalline symmetries
there is a robust flat band of one-dimensional edge states with
a bulk gap, see Figs. 11(a) and 11(b). In the intrinsic case
n′ = 0 when there are crystalline symmetries there are flat
bands of one-dimensional edge states with a bulk gap between
nodal point at which the gap closes for particular momenta,
see Figs. 11(c) and 11(d). However, these edge modes ex-
ist only along the kx direction, suggesting a form of weak
topology.

APPENDIX B: SUPPLEMENTAL RESULTS ON DQPTS

In Fig. 12 the Fisher zeros are shown for longer ranges of
time, equivalently the real part of z. The aperiodicity (for the
quench E0 → E2) and periodicity (for the quench E0 → E4)
of the DQPTs are clearly visible.

Figure 13 gives a more comprehensive set of results for
the return rate and its derivative for quenches in the intrinsic
HOTI. All quenches except those between the different topo-
logically nontrivial phases result in DQPTs. We did not find
any DQPTs for quenches within any phase, though this cannot
be ruled out.

FIG. 12. Here we plot the proxy for the Fisher zeros for two
quenches, as labeled on the panels. Calculated for a system of size
N = 202 × 202. In the thermodynamic limit Fisher zeros would
correspond to − ln |λ0(z)| → ∞. Here we show results for a wider
range of z, to make clear the aperiodicity (for the quench E0 → E2)
and periodicity (for the quench E0 → E4) of the DQPTs along the
real axis, i.e., time.

Finally, for completeness Fig. 14 gives one example of
a quench between the extrinsic and intrinsic HOTI. This
does not cross a critical line, but does restore a symmetry.
No DQPTs can be seen. Similar results were found for all
quenches Iz ↔ Ez with z = 0, 2, 4.

APPENDIX C: ADDITIONAL TABLES

In this Appendix we give two tables of data to demonstrate
the aperiodicity of the critical times in quenches E0 ↔ E2 and
I0 ↔ I2, see, for example, Fig. 7, and the existence of the
zero eigenvalues between certain critical times. In Table III we
show tc1m and tc2m for m ∈ {1, 2, 3} for the quench E2 → E0

as an exemplary case. In Table IV we give some examples
of the numerical values of the lowest eigenvalues for sev-
eral quenches at times where we expect the zero eigenvalues
to exist.

APPENDIX D: REAL-SPACE HAMILTONIAN

Here we give the explicit form of the real-space lattice
Hamiltonian, a standard Fourier transform of Eq. (1). The
lattice is square, and the subspace could be understood for
example as a combination of spin and orbital spaces, but this
plays no role in our analysis. The Hamiltonian is

H =
∑

l

�
†
l h0�l +

∑
〈l,l ′〉

[�†
l hOBC�l ′ + H.c.], (D1)

with �†
n = (c†

l1, c†
l2, c†

l3, c†
l4) and c†

l j is a fermionic creation
operator at site l with a label j.

For a lattice of size Nx × Ny with open boundary conditions
we have

h0
m = INxNy ⊗ �� · �dm, (D2)

and

hOBC
n,n′ = INy ⊗ XNx + I(−1)

Ny
⊗ YNx . (D3)

We introduced

[
I(k)

N

]
i j = δi+k, j, (D4)

094306-9



T. MASŁOWSKI AND N. SEDLMAYR PHYSICAL REVIEW B 108, 094306 (2023)

FIG. 13. The return rate l0(t ) and its derivative d0(t ) for several quenches of the intrinsic HOTI. The critical regions are shown in gray with
tc1 a red line and tc1 a black line, where discontinuities in d0(t ) are visible. These critical times are calculated from the eigenvalues of M(t )
at a system size of N = 202 × 202. For the quench I2 → I0 the critical regions are aperiodic and further regions could not be satisfactorily
identified. For this model only quenches between the different topologically non-trivial phases did not result in DQPTs.

FIG. 14. Top panel: The return rate l0(t ) and its derivative d0(t ).
Bottom panel: A plot of the absolute values of the smallest eigenval-
ues of M(t ), |λn(t )|. Shown is the lowest eigenvalue for a periodic
system of size N = 202 × 202, orange dots. The shaded region is
the region where eigenvalues of M(t ) exist for the bulk system. No
DQPTs can be sen for this quench, E2 → I2.

so that IN = I(0)
N is the N × N identity matrix. The operators

X, X̃ and Y are given by

XNx =I(−1)
Nx

⊗ �� · �dX , (D5)

X̃Nx =I(−(Nx−1))
Nx

⊗ �� · �dX , and (D6)

YNx =I(−1)
Nx

⊗ �� · �dY . (D7)

The vectors are

�dm =m(0, 1, 0, 1, 0, 0, 0, 0), (D8)

�dX = 1
2 (0, 0, i, 1, 0, 0, 0, 0), and (D9)

�dY = 1
2 [i(1 − n), 1 − n, in′, n, n,−in,−n′,−in]. (D10)

Imposing periodic boundary conditions and performing the
Fourier transform one then finds Hm,n,n′ , see Eq. (1). In real
space for periodic boundary conditions we replace hOBC by
hPBC where

hPBC
n,n′ =I(−1)

Ny
⊗ YNx + I

(1−Ny )
Ny

⊗ YNx

+ INy ⊗ XNx + INy ⊗ X̃Nx . (D11)
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