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Bidimensional crystals display unique properties of both fundamental and applied interest, with a good part
of these properties being related to the topological aspects of 2D materials. Discrete quantum walks models,
commonly used in the area of quantum information, are mathematical constructions in which the underlying
network topology plays a fundamental role in determining the systems behavior. Here we present a complete
scattering quantum walks approach to study 2D honeycomb lattice problems, the structure of paradigmatic 2D
Dirac materials like graphene, germanene and silicene. The framework great flexibility relies on considering
two arbitrary 3 × 3 unitary scattering matrices �̂(±) to describe the local dynamics in the lattice fundamental
cell. From a simple analytic choice for �̂(±), we address important aspects of 2D materials like transport
characteristics. We also readily obtain analytic formulas for quantities which are commonly derived from a
tight-binding approximation. Most importantly, we derive a rather general equation for the system energy bands
based on the determinant of products of �̂(±). We show that by properly setting these matrices (numerically),
we get good agreements between our calculations for the π and π∗ energy bands of the graphene, germanene
and siliciene with accurate ab initio methods in the literature. We finally briefly discuss how the �̂(±) could be
computed from first principles, making the present an useful protocol to investigate 2D materials.
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I. INTRODUCTION

More prominently since the 1980s [1–4], the realization
that topological factors can deeply determine key traits in
condensed matter physics has considerably enlarged our un-
derstanding of matter aggregation and organization [5–8].
Indeed, topology-induced properties and/or processes are
able to explain, e.g., phase transitions without symmetry
breaking [9,10], band gaps remaining finite along adiabatic
paths in parameter space [11], transport coefficients depen-
dent on topological invariants [12], and fractional charges
[11], to cite just few examples. All these features have
motivated the search for different materials with various fun-
damental and applied purposes [7,9,10,13,14].

In particular, 2D materials are systems for which topology
is especially significant in determining some of their funda-
mental characteristics [9,12,15,16]. It is also representative
that certain topological states in 3D solids have as origin-
embedded 2D layered motifs [17,18]. There are different
reasons for the relevance of topological effects in 2D struc-
tures (a good summary is given in Ref. [19]). We mention,
e.g., the great interplay between symmetry and topology in
planar materials [19,20].

Graphene, one of the best known and studied two-
dimensional stable crystals [21–32], is not an exception to the
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aforementioned scenario [33]. It consists of a monolayer of
sp2 hybridized carbon atoms arranged in a regular hexagonal
(honeycomb) infinite lattice. Graphene displays remarkable
electronic features. It is a semimetal allowing ballisticlike
spreading of electrons [21,22]. Further, the graphene valence
and conductance bands touch at Dirac (or Brillouin zone
K) points, resembling massless fermions with a dispersion
relation linear around K . More broadly, it belongs to the
important class of 2D Dirac materials [34], part of them also
presenting a hexagonal structure as germanene and silicene
[35–38]. In fact, graphene, germanene and silicene are akin
in other aspects. For instance, when “cut” in finite sheets
(nanoribbons), all them behave either as conductors or semi-
conductors, depending on the geometry specific boundary
conditions, respectively, zigzag or armchair.

As expected, distinct methods (some computationally ex-
pensive) have been proposed, including ab initio and semiem-
pirical approaches, to calculate several properties of Dirac
materials (for general discussions see, e.g., Refs. [39,40]).
Nonetheless, it has been argued [33,41,42] that important
aspects of these systems might be inferred from their pure
geometric and topological structures. Of course, the actual
chemical species and chemical bond specificities are funda-
mental [43]. But, eventually, they could be treated effectively,
as a parametric dynamical factor incorporated into the model
description. Hence, one could consider topologically oriented
theoretical schemes to address characteristics like transport
and energy bands of Dirac systems, notably in honeycomb
lattices [44–47].

Quantum walks (QWs) constitute a simple and versatile
mathematical framework along the above lines. Indeed, it is
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based on network (and thus topological) concepts and con-
structed using minimal rules of quantum mechanics [48–51].
Although finding distinct applications, like in cold atoms
trapping [52], molecular physics [53–55], and quantum op-
tics [56–58], by far the most common usage of QWs (in
its so-called coin formulation) is in quantum information
and computation [59–62]. Distinct works have also employed
QWs to analyze 2D materials, nevertheless usually focusing
just in specific aspects of the problem. For a glimpse see, e.g.,
the Refs. [44,45,47,63,64].

Considering the somehow more physically intuitive scat-
tering formulation for quantum walks (SQWs) [65–67]—
actually, it has been proven that coin and scattering QWs are
always unitarily equivalent [68], although the mapping may
be involved—recently, all the possible discrete time SQW
models in a plain (identical vertices) hexagonal lattice have
been classified [46]. In the present contribution, we show that
one of these SQW versions is particularly suitable to describe
2D Dirac materials in a honeycomb lattice.

We first review the basic formalism in the configuration
space of a proper SQW on a honeycomb (infinite) lattice,
also addressing its general properties, Secs. II and III. Then
we turn to the momentum space, deriving a general equa-
tion which yields the problem energy-band structures. Such
expression is based on two arbitrary U(3) scattering matri-
ces, �̂(+) and �̂(−), whose particular parameter values should
be defined depending on each specific 2D system, Sec. IV.
By a simple choice for these matrices, we can obtain in
a rather straightforward way known analytic results as the
tight-binding approximation (in fact, going beyond it) and
a formula for the Fermi velocity, Sec. V. Different analysis
for actual materials—more extensively for graphene, but also
for germanene and silicene—are performed. Especially, we
illustrate that from appropriate �̂(+) and �̂(−), we get the π

and π∗ energy bands displaying very good agreement with
accurate ab initio computations in the literature, Sec. VI. Final
remarks, including a brief discussion of how the scattering
matrices might be inferred from first-principles calculations,
are given in Sec. VII. Certain derivations and protocols are
left to Appendices A–C.

II. THE SQW IN A HONEYCOMB LATTICE

A thorough description of how to formulate distinct SQW
models in a honeycomb lattice has been presented in Ref. [46].
In the following, we summarize only the essential ingredients
necessary for our goals in this contribution.

The honeycomb topological structure is depicted in
Fig. 1(a), where each pair ( j, k) of integers represents a site
(vertex). The corresponding Cartesian coordinates are [with a
the bond (edge) length]

x j =
√

3 j

2
a, yk =

(
3k

4
+ 9 − (−1)k

8

)
a. (1)

The basic structure used to define local scattering processes
as well as the σ labeling convention for its bonds (or links)—
along which we assume two propagation directions—are
shown in Fig. 1(b).

The problem Hilbert space is spanned by the orthonormal
basis {|σ, j, k〉}, representing a propagation toward the site

FIG. 1. (a) The honeycomb lattice. Without loss of generality, the
k’s indicating the sites with one up and two down bonds are assumed
even numbers. (b) The reference structure used to label (as indicated)
the propagation direction quantum number σ = 1, 2, 3. Along each
bond, two directions are possible.

( j, k) along the bond σ = 1, 2, 3, so

〈σ ′, j′, k′|σ, j, k〉 = δσ ′σ δ j′ jδk′k,

1̂ =
3∑

σ=1

∑
j,k

|σ, j, k〉〈σ, j, k|. (2)

At discrete steps n (e.g., for the instant tn, we can assume
tn = n τ for n ∈ N and τ a typical time interval) we have that

|ψn〉 = Û n|ψ0〉 (3)

for |ψ0〉 the system initial state. The action of Û on |σ, j, k〉
yields

Û |σ, j, k〉 =
3∑

σ ′=1

�
( j,k)
σ ′σ |σ ′,J (σ ′, j, k),K(σ ′, j, k)〉, (4)

where J (σ ′, j, k) and K(σ ′, j, k) indicate the adjacent sites to
( j, k) through the direction σ ′, or

J (σ, j, k) = j + (σ − 2)(−1)k,

K(σ, j, k) = k + (−1)k+σ . (5)

Above, the �
( j,k)
σ ′σ ’s are matrix elements (of �̂( j,k)), describing

all the scattering processes that the particle can suffer: �
( j,k)
σ ′σ

is the scattering amplitude from the bond σ to the bond σ ′
through the site ( j, k). Moreover, from the unitarity of Û ,

3∑
σ=1

�
( j,k)
σσ ′ �

( j,k)∗
σσ ′′ =

3∑
σ=1

�
( j,k)∗
σ ′σ �

( j,k)
σ ′′σ = δσ ′σ ′′ , (6)
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so for any ( j, k),

�̂( j,k) =

⎛
⎜⎜⎜⎝

�
( j,k)
11 �

( j,k)
12 �

( j,k)
13

�
( j,k)
21 �

( j,k)
22 �

( j,k)
23

�
( j,k)
31 �

( j,k)
32 �

( j,k)
33

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎝

r ( j,k)
11 t ( j,k)

12 t ( j,k)
13

t ( j,k)
21 r ( j,k)

22 t ( j,k)
23

t ( j,k)
31 t ( j,k)

32 r ( j,k)
33

⎞
⎟⎟⎟⎠, (7)

is a U(3) unitary matrix, whose main diagonal elements are
associated to reflection and all the others to transmission
coefficients.

For the system state at the n time step being |ψn〉, the
probability to find the particle in the site ( j, k) simply reads

p( j, k, n) =
3∑

σ=1

|〈σ, j, k|ψn〉|2 =
3∑

σ=1

|ψσ ( j, k; n)|2, (8)

where |ψn〉 = ∑
σ, j,k ψσ ( j, k; n) |σ, j, k〉. Thus, we define the

probability distributions of the j and k coordinates at n,
px( j, n) and py(k, n), as

px( j, n) =
∑

k

p( j, k, n), py(k, n) =
∑

j

p( j, k, n). (9)

Further, we can determinate the QW mean squared displace-

ment (MSD) as (r( j,k) =
√

x2
j + y2

k ),

Dx =
∑

j

px( j, n) x2
j −

⎛
⎝∑

j

px( j, n) x j

⎞
⎠

2

, (10)

Dy =
∑

k

py(k, n) y2
k −

(∑
k

py(k, n) yk

)2

, (11)

Dr =
∑

j,k

p( j, k, n) r2
( j,k) −

⎛
⎝∑

j,k

p( j, k, n) r( j,k)

⎞
⎠

2

. (12)

Since QWs generally display superdiffusion, in fact, ballis-
tic behavior, one may expect the following scaling for Dr (see,
e.g., Refs. [51,69,70]):

Dr = K t2
n = K τ 2 n2, (13)

where K should depend only on the matrices’ �̂’s parameters.
The correctness of the above ansatz will be tested for an
explicit example in the next section.

III. A SYMMETRIC EXAMPLE OF �̂( j,k)

AND THE RESULTING DYNAMICS

There is a great freedom in choosing �̂( j,k). The most
general case in which all the reflection coefficients are equal,
likewise for all the transmissions, is described by the follow-
ing two-parameter unitary matrix:

�̂AB(θ, γ ) = exp[i γ ]

⎛
⎜⎝

rA(θ ) tB(θ ) tB(θ )

tB(θ ) rA(θ ) tB(θ )

tB(θ ) tB(θ ) rA(θ )

⎞
⎟⎠, (14)

FIG. 2. The modulus square of the reflection and transmission
coefficients of �̂AB(θ, γ ) in Eq. (14) as function of θ .

with (−π � θ � π ):

rA(θ ) = − exp[i θ ]√
5 + 4 cos[2θ ]

, tB(θ ) = 2 cos[θ ]√
5 + 4 cos[2θ ]

.

(15)

The plots of |rA|2 and |tB|2 as function of θ are shown in Fig. 2.
Note that |rA|2 = 1 for θ = ±π/2, with a minimum reflection
at θ = 0,±π when |rA(θ )|2 = 1/9 and |tB(θ )|2 = 4/9. For
θ = γ = 0, the above �̂ is the so-called Grover matrix, widely
implemented in quantum search algorithms and in some mod-
els of QW [71–74].

For the following examples, in our expression for Û in
Eq. (4), we assume that for any ( j, k) we have �̂( j,k) = �̂AB.
We also set

|ψ0〉 = 1√
3

3∑
σ=1

|σ, 0, 0〉. (16)

The resulting evolution at n = 200 is shown in Fig. 3 for
distinct values of the parameter θ . The plots display the nor-
malized probabilities to be in each site ( j, k). Notice that
the rotation and inversion point symmetries of the observed
patterns are a natural consequence of the system underlying
triangular Bravais lattice structures (for details, see Sec. IV).
However, this becomes explicit in the present case only due
to the specific symmetry of the scattering matrix �̂AB and
the particular initial state chosen, Eq. (16). For a compre-
hensive discussion about morphologies of general |ψn〉’s, see
Ref. [46]. Further, for θ approaching π/2, the probability dis-
tribution tends to be more and more concentrated around the
originally populated ring [represented by Eq. (16)]. In fact, for
θ → ±π/2 we have |rA(θ )|2 → 1 (and |tB(θ )|2 → 0), leading
to a full localization for the evolved quantum state.

We also investigate the radial MSD, Eq. (12). Figure 4(a)
[Fig. 4(b)] displays Dr versus n (Dr versus θ ) for different
values of the parameter θ (time step n). In Fig. 4(a), we
observe the expected ballistic behavior of QW’s, i.e., Dr ∝ n2

for long n’s [62]. The general trend of Dr versus θ in Fig. 4(b)
resembles that of the transmission probability |tB(θ )|2 seen in
Fig. 2. In Fig. 5, we depict Dr/(a n)2 as a function of θ for
different values of the time step n. Note that even for short
n’s, such a quantity is fairly independent on time as predicted
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FIG. 3. For all �̂( j,k) = �̂AB, the normalized probabilities to be at the sites ( j, k) obtained from |ψ200〉 [with |ψ0〉 in Eq. (16)] for different
θ values.

FIG. 4. For the conditions in Fig. 3, the radial Dr , Eq. (12), as
function of (a) n for distinct θ and (b) θ for distinct n.

by Eq. (13). So, we propose the following general fitting for
K (θ ) [cf. Eq. (13)]:

K (θ ) = a2

τ 2
|tB(θ )|2

∞∑
m=0

b2m cos2m[θ ], (17)

where the b2m’s are parameters to be adjusted. By truncat-
ing Eq. (17) up to m = 2, one finds b0 = 3.42 × 10−2, b2 =
4.95 × 10−3, and b4 = 6.78 × 10−3. In Figs. 6 and 7, we
show the difference between the numerically calculated K (θ )
and Eq. (17) with such m = 2 truncation. Overall, one finds
reasonably good agreement between the actual MSD Dr and
the present fitting approximation.

FIG. 5. For the conditions in Fig. 3, plots of Dr/(a2n2) versus θ

for distinct n (recall that tn = n τ ).
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FIG. 6. For the conditions in Fig. 3, plots of Dr/a2 versus n for different θ ’s, either from the actual time evolution (numerical) or from
Dr = K2 t2

n for K (θ ) given in the fitting Eq. (17), truncated up to m = 2 (approx.). Some discrepancy appears when θ → π/2. The insets
highlight the behavior of Dr/a2 in the first time steps.

IV. SQW IN THE MOMENTUM SPACE: ENERGY BANDS

As is well-known [75], the honeycomb can be mapped
into a triangular Bravais lattice, but with two nonequivalent

sites in its fundamental cell, Fig. 8. In this way, the sites
( j, k) corresponding to the associated two infinite sublattices
(named even and odd) are those having even and odd values

FIG. 7. Similar to Fig. 6, but for Dr/a2 versus θ for different n’s. The curves display discrepancies only for small n’s (see also the insets in
Fig. 6).
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FIG. 8. The mapping of hexagonal lattice sites (black points)
onto a triangular Bravais lattice (gray points). The area enclosed by
the dashed line represents the Wigner-Seitz cell (WSc), whose trans-
lations by vectors �R(m1,m2 )—perpendicular to the WSc sides—cover
the whole plane. The WSc contains two sites, both having the same j
coordinate. However, one of even and the other of odd k coordinates.

for k. By setting the basic vectors as

�a1 = a

2
(
√

3êx + 3êy), �a2 = a

2
(−

√
3êx + 3êy), (18)

the Bravais lattice is generated by �R(m1,m2 ) = m1 �a1 + m2 �a2,
with (m1, m2) integers. Furthermore, for

�b1 = 2π

a

(
1√
3

êx + 1

3
êy

)
, �b2 = 2π

a

(
− 1√

3
êx + 1

3
êy

)
,

(19)

the reciprocal lattice is generated by �G(m1,m2 ) = m1�b1 + m2�b2.
In Fig. 9, we illustrate a small region of the (infinite) recipro-
cal lattice, indicating the basic directions κx and κy.

To comply with the system’s perfect crystal symmetry, we
assume the SQW to be invariant under translations by the
vector �R(m1,m2 ). This implies that

�
( j,k)
σ ′σ = �

( j+m1−m2,k+2 (m1+m2 ))
σ ′σ . (20)

FIG. 9. The reciprocal associated with the Bravais lattice of
Fig 8. Akin to the direct lattice, it is also triangular. The area enclosed
by the dashed hexagon delimits the first Brillouin zone. The points
of high symmetry, �, K , and M, have, respectively, the coordinates,
(0,0), (− 2π

3
√

3a
, 2π

3a ) and (0, 2π

3a ).

Therefore, from Eq. (20) we find that the problem admits
just two possible distinct matrices, one for the sites with even
k’s, �

( j,keven )
σ ′σ = �

(+)
σ ′σ , and the other for the sites with odd k’s,

�
( j,kodd )
σ ′σ = �

(−)
σ ′σ , or

�̂( j,k) = �̂((−1)k ). (21)

We now introduce the translation operator, whose action on
a position state is

T̂�R(m1 ,m2 )
|�r〉 = |�r + �R(m1,m2 )〉. (22)

Then

T̂�R(m1 ,m2 )
= exp[i �̂K · �R(m1,m2 )]

= exp

[
i

3

2
a

(
(m1 − m2)√

3
K̂x + (m1 + m2) K̂y

)]
,

(23)

where K̂w = P̂w/h̄, for P̂w the momentum operator in the w =
x, y direction. By defining (with N a normalization constant)

|σ, κx, κy〉 = 1

N
∑

j

∑
k

exp[i (κx x j + κy yk )] |σ, j, k〉

= 1

N
∑

j

∑
keven

exp[i (κx x j + κy yk )] |σ, j, k〉

+ 1

N
∑

j

∑
kodd

exp[i (κx x j + κy yk )] |σ, j, k〉,

= |σ, κx, κy〉even + |σ, κx, κy〉odd, (24)

we have that

K̂w |σ, κx, κy〉 = κw |σ, κx, κy〉. (25)

The operator T̂�R(m1 ,m2 )
takes sites in the even (odd) sublattice

to sites in the even (odd) sublattice. Then, |σ, κx, κy〉even and
|σ, κx, κy〉odd are degenerate eigenstates of K̂w.

To derive the 2D lattice system energy bands, as usual we
must compute the eigenvalues of the time evolution operator
Û . But once the unit cell consists of two nonequivalent ver-
tices, Fig. 8, the evolution within the unit cell requires two
time steps. Thus, we need to consider the effective Ûeff given
by

Ûeff = Û 2, (26)

so the eigenvalue equation reads

Ûeff |u〉 = exp[−2iE/ε̃] |u〉, (27)

with E the eigenenergy associated to the eigenstate |u〉 and
ε̃ = h̄/τ .

As shown in Appendix A, [Ûeff, T̂�R(m1 ,m2 )
] = 0. Never-

theless, although the effective time evolution and transla-
tion operators do commute, |σ, κx, κy〉, |σ, κx, κy〉even, and
|σ, κx, κy〉odd, individually are not eigenstates of Ûeff as a direct
consequence of their degeneracy (see Appendix A). On the
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other hand, by writing

|u(κx, κy)〉 =
3∑

σ=1

C(+)
σ |σ, κx, κy〉even

+
3∑

σ=1

C(−)
σ |σ, κx, κy〉odd (28)

in Appendix A, we prove that by properly choosing the C(+)
σ

and C(−)
σ coefficients, the above |u(κx, κy)〉 solves Eq. (27).

Moreover, the energy bands for the SQW in an infinite honey-
comb lattice are obtained from

det(F̂ �̂(−)F̂ † �̂(+) − exp[−2iE/ε̃] 1̂) = 0, (29)

with the 3 × 3 diagonal matrix F̂ , function of κx and κy,
having the non-null elements [see Eq. (A10)]

Fσ σ = exp

[
i a

(√
3

2
κx σ + 3

4
κy (−1)σ

)]
. (30)

The expression in Eq. (29) is rather elucidating. First, we
observe that the elements of the matrix F̂ depend straight-
forwardly on κx and κy, but they unequivocally encode all
the hexagonal lattice topology information through the co-
efficients multiplying κx and κy. Actually, compare Eq. (30)
with Eq. (1). Second, the site characteristics are fully de-
termined by the 3 × 3 unitary matrices �̂(±). We recall that
in the present construction, generally we need two different
matrices since we have two distinct sites in the unit cell (but
see next section). Third, given the infinite many possibilities
of setting �̂(±) ∈ U(3), this mathematically explains the huge
diversity of the actual Dirac cone materials in 2D [12,76,77].
In fact, Eq. (29) generalizes recent important results pointing
to further, i.e., beyond Dirac, geometric phase structures for
2D systems based on the group symmetry extension SU(2) →
SU(3) [78] (see also Ref. [79]).

In the next section, we discuss a specific situation in which
the energy bands E (κx, κy) are analytically derived in a closed
exact form. Concrete honeycomb lattice materials are ad-
dressed in Sec. VI.

V. AN EXACT SOLVABLE EXAMPLE:
THE �̂AB SCATTERING MATRIX

As previously emphasized, in the most general case for a
honeycomb structure, we have two distinct scattering matri-
ces, �̂(±). Moreover, the corresponding �̂(±) elements should
reflect the eventually intricate interactions between the atoms
forming the crystal. This will be more concretely illustrated
in Sec. VI. However, we can get a proper qualitative under-
standing about the present approach by considering a simpler
situation, namely, by setting �̂(+) = �̂(−). Further, we can
assume arbitrary, but fully symmetric �̂(+) = �̂(−), thus al-
lowing analytic computations.

So, next we suppose �̂(+) = �̂(−) = �̂AB, with �̂AB in
Eq. (14). Thus, we find from Eq. (29) that in such idealized

model

0 =
( |tB(θ )|2

4
h(�κ ) − cos2[E/ε̃ + γ ]

)
× (sin[E/ε̃ + γ − θ ] + 2 sin[E/ε̃ + γ + θ ]), (31)

with

h(�κ ) = 3 + 4 cos

[√
3κxa

2

]
cos

[
3κya

2

]
+ 2 cos[

√
3κxa],

(32)

where 0 � h(�κ ) � 9 for any κx, κy. Since the arguments of the
sine functions in Eq. (31) do not depend on (κx, κy), the two �κ
dependent solutions of Eq. (31) read

E±(�κ, θ, γ ) = ε̃

(
arccos

[
∓|tB(θ )|

2

√
h(κx, κy)

]
− γ

)
.

(33)

Equation (33) has three free parameters, γ , θ , and ε̃, which
therefore can be arbitrarily set. For instance, γ is simply
a global phase factor in the scattering matrix of Eq. (14).
Nonetheless, from Eq. (33) we see that γ leads to a shift in
the energy bands, thus constituting a tunable fitting parameter
for the offset of the dispersion relations. Also, in the present
particular case of �̂AB, if γ = π/2 then |E+(�κ, θ, π/2)| =
|E−(�κ, θ, π/2)|.

Figure 10 displays plots of the energy bands from Eq. (33),
normalized by ε̃, for various values of θ and γ = π/2. All of
them exhibit the same symmetry regardless of the values of
θ . The maximum values for E+ and the minimum values for
E− are at the point �. The upper and lower bands touch each
other at the K and K ′ points, corresponding to the hexagon
vertices delimiting the first Brillouin zone, Fig. 9. There is a
conical shape (Dirac cone) around K and K ′, i.e., the energy
bands have a linear behavior as a function of the wave num-
bers around these high-symmetry points. This is akin to the
graphene energy band structures [24].

Detailed density plots of the bands in Fig. 10—highlighting
the first Brillouin zone—are depicted in Fig. 11. In particular,
for θ = 0 we recall that �̂AB reduces to the Grover matrix, for
which |tB(0)|2 = 4/9 assumes its maximum possible value.
Analyzing the different graphs, we observe that θ = 0 is the
only situation where at point � (for which κx = κy = 0) the
band does not display a smooth behavior. This fact is better
visualized in Fig. 12, showing the band profiles along the
direction connecting the points of high symmetry, namely,
K , M, and �. Figure 12 also clearly illustrates that the bands
touch each other at K and display the largest gap at �.

For γ = π/2 and arbitrary θ , the maximum of both |E+|
and |E−| (at �) is given by

Emax(θ ) = ε̃

(
π

2
− arccos

[
3

2
|tB(θ )|

])
. (34)

The variation of Emax with θ is displayed in Fig. 13. It vanishes
for |θ | approaching π/2 once the transmission probability
tends to zero for θ → ±π/2 [cf. Eq. (15) and Fig. 2]. Such
trend is easy to understand since for θ = π/2, the SQW in
the configuration space would become confined to the links
occupied in the initial state.
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FIG. 10. For different values of θ and γ = π/2, the energy bands, divided by ε̃, resulting from Eq. (33).

A. The Fermi velocity and a tight-binding-like
energy expression

As aforementioned, the energy bands in Eq. (33) display a
linear behavior in the vicinity of K and K ′. Hence, for γ =
π/2 and defining

�q =
(

κx − 2π

3
√

3a

)
êx +

(
κy − 2π

3a

)
êy,

the expansion of Eq. (33) around K reads [for φq =
arctan[qy/qx] and �q = (qx, qy )]

E±(�q, θ, π/2) = ± 3 ε̃ |tB(θ )|
4

(
a | �q| + cos [3 φq]

4
(a | �q|)2

+ (6 |tB(θ )|2− cos [6 φq]−7)

64
(a | �q|)3+. . .

)
.

(35)
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FIG. 11. For distinct θ ’s and γ = π/2, density plots of the modulus of the energy bands normalized by their maximum value (recall that
in this case |E+| = |E−|). The hexagons represent the first Brillouin zone, with the high symmetry points �, M, K , and K ′ properly identified.
The bands exhibit the same symmetry regardless of θ . The maximum for |E±| lies in the point �, moreover with |E±| tending to zero at the
points K and K ′ (forming the Dirac cone).

Now, keeping only the linear term in | �q|, we have that in
first order the energy bands around K can be written as a
function of the Fermi velocity ṽF [24,81], or ( �p = h̄ �q)

E±(�q, θ, π/2) = ±ṽF (θ ) | �p|,
ṽF (θ ) = 3 a ε̃ |tB(θ )|

4 h̄
= 3 a |tB(θ )|

4 τ
. (36)

Consistently, Eq. (36) corroborates the previous results for
the MSD in Sec. II as well as the proposed Eq. (17), given that

K (θ ) = 16

9
ṽ2

F (θ )
∞∑

m=0

b2m cos2m[θ ]. (37)

In other words, the SQW MSD is proportional to the system
Fermi velocity.

Furthermore, from Eq. (33) we can derive the group veloc-
ity through

�v±(�κ, θ ) = 1

h̄
∇�κ E±(�κ, θ, γ ). (38)

Hence, for the system in the state represented by Eq. (28) and
having the eigenvalues E±(�κ, θ, γ ), we find

�v±(�κ, θ ) = ±(vx(�κ, θ ) êx + vy(�κ, θ ) êy), (39)

with

vx(�κ, θ ) = a ε̃

h̄

√
3 | cos[θ ]|√

|5 + 4 cos [2θ ]| h(�κ ) − (cos[θ ] h(�κ ))2

×
(

2 cos

[√
3κxa

2

]
+ cos

[
3κya

2

])
sin

[√
3κxa

2

]
,

(40)

vy(�κ, θ ) = a ε̃

h̄

3 | cos[θ ]|√
|5 + 4 cos [2θ ]| h(�κ ) − (cos [θ ] h(�κ ))2

× sin

[
3κya

2

]
cos

[√
3κxa

2

]
. (41)

The group velocity is generally related to the scattering ma-
trix reflection and transmission coefficients. As illustrations,
notice first that �v±(�κ, θ → π/2) → 0. But the reflection am-
plitude |rA(θ )| in �̂AB is maximum (and tB(θ ) is zero) exactly
for θ = π/2. Thus, the system becomes trapped, leading to a
null group velocity. Second, it is not difficult to realize that
|�v±(�κ, θ → 0)| → vmax(κx, κy). This is a consequence of θ =
0 to yield the highest values for the transmission amplitude.

Lastly, regarding �v±(�κ, θ ), from Eqs. (36) and (38) one
easily finds that the modulus of the group velocity near the
Dirac points coincides with the Fermi velocity expression.
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FIG. 12. (a) The energy band profiles, given by Eq. (33) with
γ = π/2, in the direction connecting the points of high sym-
metry. (b) The linear behavior of the energy bands around the
high-symmetry point K (and along the êx direction). Here κ0 a =
2π/(3

√
3) and δκ a = 0.05.

We end this section deriving two relevant results in the lit-
erature, somewhat surprisingly given the simple assumptions
made here, i.e., to set �̂(±) = �̂AB. Indeed, note that around the
high-symmetry point K , h(κx, κy) tends to zero. Then, from
the series expansion

arccos[x] = π

2
−

∞∑
n=0

(2n)!

22n(n!)2

x2n+1

2n + 1
, (42)

by taking x = (ε̃ |tB(θ )|/2)
√

h(κx, κy), in first order Eq. (33)
simplifies to

E±(�κ, θ, γ ) = ±ε
√

h(κx, κy), (43)

where the hopping energy can be identified as

ε = ε̃ |tB(θ )|/2. (44)

Further, using Eq. (44), we can rewrite Eq. (36) as

ṽF = 3 a ε

2h̄
. (45)

Remarkably, Eq. (43) corresponds to the energy bands ob-
tained from the tight-binding TB-1NN [80] model for the pz

orbital electrons of graphene [24,81]. In addition, Eq. (45) is
completely akin to the expression relating the Fermi velocity
to the hopping energy, as derived from the same TB-1NN
approximation [24,81].

We shall point out that all the developments in this
section—as to directly reproduce the tight-binding approxi-
mation and to derive Eq. (45)—are obtained by means of a
very basic SQW model, grounded just on the pure topological

FIG. 13. Emax/ε̃, Eq. (34), as function of θ .

structure of a honeycomb lattice and on a very symmetric
local scattering matrix. These findings endorse the great sig-
nificance of topology in establishing key properties of 2D
materials. This will become even more evident from the anal-
ysis in the following section.

VI. SQW AND ACTUAL 2D DIRAC MATERIALS

Having discussed the SQW theory for a general 2D hexag-
onal lattice structure, next we address concrete honeycomb
bidimensional systems. With this aim, the graphene is cer-
tainly the natural candidate, being the most broadly studied
Dirac material [21,22]. Nonetheless, two other important ex-
amples are germanene and silicene. Although both are not
truly planar in a freestanding configuration, some studies have
calculated their band energies assuming such a simplification
(for proper discussions, see, e.g., Refs. [35–38,82,83]). We
will suppose the same here.

We divide our analysis in two parts. We first consider
the analytic expressions in Sec. V A, particularizing them to
the above three materials. We then compare the results with
computations in the literature. Second, we turn to the general
Eq. (29). We demonstrate it can accurately capture the same
profiles of the energy bands obtained via ab initio methods.

A. Energy bands from the scattering matrix �̂AB, Eq. (33)

1. Graphene

From the tight-binding model approximation TB-1NN
[24,80] allied to some empirical considerations, the exchange
energy between first-neighbor carbons in graphene has been
estimated to be ε ≈ 2.75 eV [24,84–86], whereas measure-
ments lead to ε ≈ 3.0 eV [24,87–90]. For their mutual
distance, one finds a = 1.42 Å [81]. Hence, to contrast the
energy bands via the SQW (under the simplified scheme in
Sec. V A) with other approaches, we rewrite Eq. (44) as

ε̃ |tB(θ )|
2

= εeff. (46)

So, εeff is an effective hopping energy associated to the bare
parameters ε̃ and θ . For the graphene, we set εeff as either
εTB = 2.75 eV or εexp = 3.0 eV. For distinct θ , Table I dis-
plays the corresponding values of ε̃ and τ = h̄/ε̃ satisfying
Eq. (46).
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TABLE I. For graphene, assuming Eq. (46), the values of ε̃ and
τ for distinct θ ’s.

θ ε̃ (eV) for εTB (for εexp) τ (fs) for εTB (for εexp)

0 08.3 (09.0) 0.0798 (0.0731)
0.250 π 08.7 (09.5) 0.0756 (0.0694)
0.333 π 09.5 (10.4) 0.0691 (0.0634)
0.385 π 11.0 (12.0) 0.0598 (0.0548)
0.420 π 13.5 (14.7) 0.0487 (0.0446)
0.477 π 38.9 (42.4) 0.0169 (0.0155)

Different robust ab initio protocols aimed at investigating
distinct aspects of graphene can be found in the literature
(see, for example, Refs. [24,36,81,90–94]). In particular, for
the energy bands, very reliable calculations are presented in
Ref. [36] (hereafter ab initio 1) and in Ref. [94] (ab initio 2).

For six values of θ and εeff = εTB = 2.75 eV, in Fig. 14 we
compare Eq. (33)—assuming a = 1.42 Å and the parameters
in Table I—with the results from TB-NN1, ab initio 1, and
ab initio 2 for the π and π∗ graphene band structures. All
the plots present the energy profiles along the direction of the
high-symmetry points �, K , and M. As it should be (refer
to Sec. V A), near the K point, regardless of θ , the energy
bands from SQW and TB-1NN closely agree. On the other
hand, around � the TB-NN1 approximation and Eq. (33) are
similar only for θ → π/2. In fact, TB-NN1 and Eq. (33)
coincide along the whole �–K–M curve just when θ ≈ π/2.
Mathematically, this is so because then |tB(θ ≈ π/2)| ≈ 0 and
a first-order truncation for the series in Eq. (42) works well for
any value of the function h(κx, κy).

Similarly to the TB-1NN approximation, Eq. (33) also
yields upper and lower bands which are just specular images
of each other (about E = 0). However, the plots from the ab
initio approaches show that this is not the case, with the π

and π∗ bands displaying certain mutual asymmetries. Note
that by varying θ , one can make Eq. (33) fairly agree with
the ab initio methods either for the one or for the other band,
but not for both simultaneously. This indicates that to suppose
�(+) = �(−) in Eq. (29) [as done to derive Eq. (33)] might be
a too strong simplification for the energy bands calculations
(see Sec. VI B).

As clear in Fig. 14, around the K point the tight-binding
approximations and thus also Eq. (33) tend to coincide with
more elaborated methods [84], like those from ab initio 1 and
ab initio 2. Since the region in the vicinity of K is the foremost
to determine transport features of graphene [81], the SQW
framework in its simplest construction already constitutes a
valuable tool to investigate the graphene transport character-
istics.

Finally, in Fig. 15 we repeat the same plots of Fig. 14, but
now with εeff = εexp = 3.0 eV. Qualitatively, the results are
essentially the same as those in Fig. 14.

2. Germanene and silicene

Different works [36–38,82,83,99] discuss that the planar
form of the germanene and silicene exhibit the same type of
hybridization and lattice structure of graphene, but distinct
lattice and hopping parameters. In this way, we can follow
exactly the same previous SQW construction to also analyze
these two 2D materials.

FIG. 14. Comparison between the graphene π and π∗ energy band structures obtained via TB-1NN with εeff = εTB = 2.75 eV [Eq. (43)],
ab initio 1 [36], ab initio 2 [94], and the SQW framework through Eq. (33), with γ = π/2 and six different values of θ . The ab initio curves
have been digitalized from, respectively, Refs. [36,94].
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FIG. 15. The same as in Fig. 14, but for εeff = εexp = 3.0 eV.

Figures 16 and 17 depict, respectively, the planar ger-
manene and silicene π and π∗ energy bands. The plots

compare the SQW, Eq. (33), for different θ values and γ =
π/2, the TB-NN1 approximation, Eq. (43), and the ab initio

FIG. 16. Comparison between the planar germanene π and π∗ band structures obtained via TB-1NN with εeff = 1.05 eV [Eq. (43)], ab
initio 1 [36], and the SQW framework through Eq. (33), with γ = π/2 and six different values of θ . The ab initio 1 curve has been digitalized
from Ref. [36].
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FIG. 17. Comparison between the planar silicene π and π∗ band structures obtained via TB-1NN with εeff = 1.03 eV [Eq. (43)], ab initio
1 [36], and the SQW framework through Eq. (33), with γ = π/2 and six different values of θ . The ab initio 1 curve has been digitalized from
Ref. [36].

1 of Ref. [36]. For a and εeff, refer to Table II. The overall
trends of the SQW contrasted to the TB-1NN and ab initio
1 calculations are similar to those already observed for the
graphene in Figs. 14 and 15. For instance, the SQW model
gives very good results in the regions near the Dirac cones.

However, some distinctions can be identified. Taking the
ab initio 1 curves as a reference, the upper (lower) bands of
the germanene and silicene are better fitted by the SQW for
smaller (larger) values of θ , a behavior akin to that found for
graphene. But for the upper bands, the agreement is always
greater for the graphene than for the germanene and silicene.
Actually, for the latter two materials, the ab initio 1 upper
band curves are always above those from the SQW for any
θ . So, the � peaks in the graphene π∗ band are fairly well
described by SQW when θ ≈ 0.25 π , which is not the case
for germanene and silicene. On the other hand, around the M

TABLE II. Some parameters for the three 2D materials discussed
in the present paper. For those resulting from the SQW model with
the �̂AB matrix, it has been set θ = π/3 and γ = π/2.

Material a (Å)a εeff
b v

(TB)
F

b v
(SQW)
F

c ε̃ τ (fs)

Graphene 1.42 2.75 8.73 8.74 9.356 0.0704
Germanene 2.43 1.05 5.81 5.81 3.634 0.181
Silicene 2.28 1.03 5.35 5.35 3.567 0.185

aReferences [36,38,95].
bHopping parameter (in eV) and Fermi velocity (in units of 105 m/s),
for the TB-1NN model [36,96–98].
cFermi velocity for the SQW via Eq. (36) (in units of 105 m/s).

points of both bands, the SQW accordance tend to be higher
in Figs. 16 and 17 than in Figs. 14 and 15.

3. Fermi velocity

Under the simplifying assumptions discussed in Sec. V A,
the SQW model velocity near the Dirac cone regions is just
the corresponding material Fermi velocity. It is given by the
analytic approximation in Eq. (36).

By inspecting Figs. 14, 16, and 17, we see that θ = π/3
leads to a good agreement between the SQW and the ab initio
computations around the symmetry point K [see all the (c)
panels] for the three discussed 2D materials.

Thus, considering Eqs. (36) and (46), with θ = π/3, γ =
π/2 and the corresponding materials parameters, we calculate
v

(SQW)
F . In Table II, we compare v

(SQW)
F with the tight-binding

v
(TB)
F obtained in the literature [36,96–98]. As expected, the

values are essentially the same, given the great agreement of
SQW and TB-1NN around the symmetry point K .

B. Energy bands from the general expression in Eq. (29)

As we have seen in the particular case of hexagonal lattices,
topology is one of the most relevant characteristics of SQW
models, where the dynamics is fully specified by the scattering
matrices and the spatial evolution established by the periodic
lattice local connectivity. Such key traits are manifested in
the very general expression for the energy bands in Eq. (29).
For instance, the former (latter) factor is concretely taken into
account by �̂(±) (F̂ ) in Eq. (29). Therefore, if a formula like
Eq. (29) can accurately lead to the actual energy bands of 2D
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FIG. 18. The graphene energy band structures from Eq. (29),
with �(+) �= �(−) (see main text). The results are compared with
those from the ab initio 1 method [36].

honeycomb systems, this certainly must be regarded as further
and very compelling evidence that important properties of
2D materials are indeed driven, at least in part [64], by their
topological features.

From the particular choice �̂(±) = �̂AB in Sec. V, we have
been able to improve the traditional tight-binding approxima-
tion; refer to Eqs. (33), (35), and (36). However, Eq. (33) does
not yield an overall good description for the π and π∗ bands
when compared to more precise calculations from ab initio
methods (often employing DFT together with parametriza-
tion schemes, where relevant parameters are empirically or
semiempirically estimated). One problem is that �̂AB is some-
what limited, depending only on two parameters, one a global
phase. So, conceivably it cannot properly capture all the
local physical-chemical aspects (e.g., the molecular orbital
features) of concrete materials as graphene.

Given the above, a key question is whether or not there
are �̂(±)’s such that Eq. (29) can properly describe the energy
bands E±(κx, κy) of a 2D honeycomb material. To address
this, the purpose next is not to compute �̂(±) from first prin-
ciples, say, from molecular orbitals calculations (nonetheless,
see the remarks in Sec. VII). Instead, we shall numerically
verify if specific �̂(±) into Eq. (29) can reproduce the results
from the much more elaborated and involved ab initio ap-
proaches.

Thus, we have first written our U(3) matrices �̂(±) in terms
of a general parametrization proposed in Ref. [100] (details in
Appendix B). Then, we have numerically varied these param-

FIG. 19. The same than in Fig. 18, but for the planar germanene.

FIG. 20. The same than in Fig. 18, but for the planar silicene.

eters, generating distinct �̂(±)’s. By solving the corresponding
Eq. (29), we have compared the obtained energy bands with
those from ab initio 1 [36], selecting the best results. The full
computational algorithm is described in Appendix C.

We have analyzed two situations. The first taking �̂(+) =
�̂(−) = �̂. We observe this instance is computationally rea-
sonably fast to run. Then, an extensive scan in the parameters
space of �̂ was possible. As they should, the energy profiles
obtained (not shown) are better than those from Eq. (33) in
Sec. VI A. Nevertheless, we have found that if one band is
globally very similar to ab initio 1, the other, although overall
displaying a fair agreement, still presents some relevant dis-
crepancies in certain (κx, κy) intervals.

The second, obviously computationally more time con-
suming, has been to assume �̂(+) and �̂(−) arbitrary. In this
case, by running the algorithm in Appendix C in a simple
personal computer of processor i7-9750h (4 Mhz) and 16
GB of RAM, for each system studied we have tested about
500 000 pairs of matrices for a simulation time of approxi-
mately 60 min. The best matrices found are those in Eq. (B3),
Appendix B. The corresponding energy band structures are
displayed in Figs. 18–20, respectively, for graphene, ger-
manene, and silicene.

We note that distinctly from the previous section, for the
graphene in Fig. 18 we see a global high similarity between
the curves from Eq. (29) and from the ab initio 1 protocol. A
certain discrepancy can be identified along the region between
the symmetry points K–M, more sensibly for the lower band.
But even then, the accordance is still fine.

For the germanene, Fig. 19, and silicene, Fig. 20, overall
the agreement is satisfactory, although not as good as for the
graphene. For example, observe in Fig. 19 that there are some
deviations, with Eq. (29) resulting in lower energy values for
the upper band close to the � symmetry points. In Fig. 20, the
discrepancies are observed in different regions, along �–K for
the upper band and along K–M for the lower band.

We finally mention that the greater concurrence of the
SQW model with graphene than with germanene and silicene
is probably related to a fundamental geometrical feature of
the latter two materials. They are, in fact, buckled structures,
not fully stabilizing in the planar form [35,36,42,99,101] if
not deposited on substrates, like gold [102]. The buckling is
known to alter the band gap and shapes (from the eventual flat
disposition) in certain (κx, κy) ranges. Thus, aimed to a perfect
planar arrangement, our present framework might not fully
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describe the actual bands profiles of these materials in their
innate bent configurations. Furthermore, some assumptions
made in typical ab initio calculations for germane and silicene,
being ways to mitigate their nonplanarity [35,101,103–106],
introduce few deviations from the correct bands. In this way,
some mismatches observed in Figs. 19 and 20 may also be
artifacts arising from such approximations.

VII. FINAL REMARKS AND CONCLUSION

Motivated by the importance of topology in setting distinct
properties of 2D materials, we have developed a SQW model
to study honeycomb lattice systems. In such a framework,
local scattering dynamics are determined by arbitrary 3 × 3
unitary matrices �̂, defined on the network distinct sites. The
crystal case is established by supposing just two matrices �̂(±)

for the whole infinite structure, associated to the two sites of
the Wigner-Seitz cell.

For the simpler case of �̂(+) = �̂(−) = �̂AB(θ, γ ), with �̂AB

given in Eq. (14), we have analyzed time evolution in the con-
figuration space, discussing characteristics as the associated
MSD and probability distributions along the lattice bonds.
As usual in QW models—and similarly to actual suspended
graphene structures [107]—we have observed ballisticlike
transport behavior in the system.

Formulating the problem in the momentum space, we have
derived a rather general expression, Eq. (29), yielding the
model energy bands as function of the scattering matrices
�̂(±). Again assuming �̂(±) = �̂AB(θ, γ ), the energy profiles
E±(�κ, θ, γ ) are then given by Eq. (33). From Eq. (33) we
have straightforwardly derived the same tight-binding TB-
1NN energies, group velocity, and Fermi velocity formulas
known in the literature (see, e.g., Refs. [24,81]). By varying θ

and γ , the energy bands in Eq. (33) have been compared with
accurate ab initio calculations for the paradigmatic graphene
(a honeycomb Dirac material) as well as for two important 2D
crystals, germanene and silicene. Although the energy curves
can be made very similar in different relatively large regions
of (κx, κy) and are consistently better than the tight-binding
approximation, an everywhere (in �κ) good agreement using
an unique pair of values for (θ , γ ) is not possible.

Lastly, by exploring the general Eq. (29)—i.e., allowing
�̂(+) and �̂(−) to be arbitrary—we have demonstrated that
by means of appropriate numerical choices for such matrices,
the agreement between our simple calculations with ab initio
methods is very good for graphene and rather satisfactory
for germanene and silicene. The discrepancies for these two
last examples are likely connected to the fact they are not
really stable in a full planar form. We also mention that for
germanene and silicene, although a small effect, spin-orbit
coupling (not included in the ab initio schemes considered
here) can induce a small opening of the Dirac point [106].
Interestingly, this effect may be incorporated into our formal-
ism through the matrices �̂(±). This will be the subject of a
forthcoming contribution.

Our present findings naturally raise a few relevant ques-
tions. From a fundamental point of view, a crucial one relates
to the exactness of Eq. (29). In Sec. VI B, we have seen our
construction does lead to fine numerical results. Nonethe-
less, a key issue is if the energy bands of a honeycomb 2D

crystal can indeed be exactly described by the expression
in Eq. (29)—of course, provided �̂(±) are correctly speci-
fied. Some facts seem to point to a positive answer. First,
it has been rigorously proved for a hexagonal lattice [108]
that local scattering matrices, our �̂(±), should completely
determine any symmetric compact support potential (so, the
typical atomic interactions forming localized orbitals [109])
along a bond—see also Ref. [110]. This complies with cer-
tain scattering methods able to unveil properties of molecular
orbitals in molecular crystals [111] and the spatial shapes
of orbitals in molecules [112]. Second, the functional form
of Eq. (29), demanding only two scattering matrices for the
two nonequivalent sites in the basic cell (Sec. IV), are in
complete accordance with ab initio approaches, mainly con-
structed from the potentials between the atoms in the basic
cell [24,25,104].

Conversely, from a practical perspective the important
point is how to adequately determine the scattering matrices.
We emphasize that in this paper, instead of calculating �̂(±)

from first principles, our goal has been to show that their
proper choice in Eq. (29) does result in the energy bands of
representative 2D crystal materials (graphene, germane, and
silicene). Therefore, we have numerically searched for �̂(±)

so as to reproduce accurate results in the literature. However,
for novel systems obviously one would need to obtain �̂(±)

by means of independent procedures (for a useful parallel in
the context of photonic crystals see, e.g., Refs. [58,113]). A
possible scheme would be to define an artificial molecule-
constituted by the (eventually extended) lattice primitive cell
and from ab initio quantum chemistry protocols, allied to
QW models [54,55] to solve for the molecular orbitals and
thus to obtain �̂(±) from the orbitals overlaps (e.g., follow-
ing the prescription mentioned in Ref. [112]). Currently, this
is under investigation and progress will be reported in due
course.

As a final potential application, we recall we have ad-
dressed perfect infinite crystals. But our approach could
easily be considered for finite honeycomb sheets. In such
context, SQW models would be particularly useful to test
finite size effects [114], e.g., how the geometry of specific
boundary conditions, such as zigzag, armchair and even their
combination, would determine the conductivity character of
nanoribbons.
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APPENDIX A: THE ACTION OF Ûeff ON THE MOMENT
EIGENSTATES AND THE ENERGY BANDS DERIVATION

Here we derive important results for Sec. IV. We start by
showing that [Ûeff, T̂�R(m1 ,m2 )

] = 0.
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Given |σ, j, k〉 in Eq. (24), �r( j,k) = (x j, yk ) in Eq. (1), and
the relation in Eq. (22), we have

T̂�R(m1 ,m2 )
|σ, j, k〉 = |σ, j + m1 − m2, k + 2 (m1 + m2)〉. (A1)

With the help of Eq. (4), we can write Û in the basis {|σ, j, k〉}
as

Û =
∑

j,k

∑
σ

∑
σ ′

�
((−1)k )
σ ′σ |σ ′,J (σ ′, j, k),K(σ ′, j, k)〉〈σ, j, k|.

(A2)

Then, from Eqs. (A1), (20), and (21):

T̂�R(m1 ,m2 )
Û =

∑
j,k

∑
σ

∑
σ ′

�
((−1)k )
σ ′σ |σ ′,J (σ ′, j, k) + m1 − m2,K(σ ′, j, k) + 2 (m1 + m2)〉〈σ, j, k|, (A3)

Û T̂�R(m1 ,m2 )
=

∑
j,k

∑
σ

∑
σ ′

�
((−1)k )
σ ′σ |σ ′,J (σ ′, j, k),K(σ ′, j, k)〉〈σ, j − m1 + m2, k − 2 (m1 + m2)|. (A4)

Now, from the labeling change j → j − m1 + m2 and k → k − 2 (m1 + m2) in Eq. (A4) and since

J (σ, j + m1 − m2, k + 2 (m1 + m2)) = J (σ, j, k) + m1 − m2,

K(σ, j + m1 − m2, k + 2 (m1 + m2)) = K(σ, j, k) + 2 (m1 + m2), (A5)

one readily finds that Eqs. (A3) and (A4) coincide. So, the commutation between Û and T̂ is established and, consequently, that
between Ûeff = Û 2 and T̂ .

Next we address the action of Ûeff (representing two time steps) on the momentum states of Eq. (24). Observe that if k is even
(odd) then K(σ, j, k) is odd (even) regardless of σ and j. Thus, from Eqs. (4) and (5), it reads

Ûeff |σ, j, k〉 =
∑
σ ′

∑
σ ′′

�
((−1)k )
σ ′σ �

(−(−1)k )
σ ′′σ ′ |σ ′′,J (σ ′′,J (σ ′, j, k),K(σ ′, j, k)),K(σ ′′,J (σ ′, j, k),K(σ ′, j, k))〉,

=
∑
σ ′

∑
σ ′′

�
((−1)k )
σ ′σ �

(−(−1)k )
σ ′′σ ′ |σ ′′, j + (−1)k (σ ′ − σ ′′), k + (−1)k ((−1)σ

′ − (−1)σ
′′
)〉. (A6)

We shall write the above equation in the momentum space. With this goal, we consider Eq. (24), also setting f (σ ′′, σ ′) =
(σ ′ − σ ′′) and g(σ ′′, σ ′) = (−1)σ

′ − (−1)σ
′′
. Hence

Ûeff |σ, κx, κy〉 = 1

N
∑

j

∑
k

∑
σ ′′

∑
σ ′

�
((−1)k )
σ ′σ �

(−(−1)k )
σ ′′σ ′ exp[i (κx x j + κy yk )]

× |σ ′′, j + (−1)k f (σ ′′, σ ′), k + (−1)k g(σ ′′, σ ′)〉. (A7)

Under Ûeff, a state corresponding to site ( j, k) can evolve only to the states associated to sites ( j′, k′) belonging to the
set

( j′, k′) ∈ {( j, k), ( j ± 2, k), ( j ± 1, k − 2), ( j ± 1, k + 2)}.
In this way, k and k′ have the same parity. Also, from Eq. (1)

x( j′−(−1)k′ f (σ ′′,σ ′ )) = x j′ − (−1)k′
√

3

2
f (σ ′′, σ ′) a,

y(k′−(−1)k′ g(σ ′′,σ ′ )) = yk′ − (−1)k′ 3

4
g(σ ′′, σ ′) a. (A8)

Then, from the following changes in Eq. (A7): j′ = j + (−1)k f (σ ′′, σ ′) and k′ = k + (−1)k g(σ ′′, σ ′), we get

Ûeff |σ, κx, κy〉 = 1

N
∑

j′

∑
k′

∑
σ ′′

∑
σ ′

�
[−(−1)k′

]
σ ′′σ ′ �

[(−1)k′
]

σ ′σ exp

[
− i (−1)k′

a

(√
3

2
f (σ ′′, σ ′) κx + 3

4
g(σ ′′, σ ′) κy

)]

× exp[i (κx x j′ + κy yk′ )] |σ ′′, j′, k′〉

= 1

N
∑
σ ′′

∑
σ ′

{ ∑
j′

∑
k′

even

�
(−)
σ ′′σ ′�

(+)
σ ′σ exp

[
− i a

(√
3

2
(σ ′ − σ ′′) κx + 3

4
[(−1)σ

′ − (−1)σ
′′
] κy

)]

+
∑

j′

∑
k′

odd

�
(+)
σ ′′σ ′ �

(−)
σ ′σ exp

[
+ i a

(√
3

2
(σ ′ − σ ′′) κx + 3

4
[(−1)σ

′ − (−1)σ
′′
] κy

)]}
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× exp[i (κx x j′ + κy yk′ )] |σ ′′, j′, k′〉.
=

∑
σ ′′

(F̂ �̂(−)F̂ † �̂(+) )σ ′′σ |σ ′′, κx, κy〉even +
∑
σ ′′

(F̂ † �̂(+)F̂ �̂(−) )σ ′′σ |σ ′′, κx, κy〉odd. (A9)

Above, the diagonal unitary matrix F̂ has the elements (for δσ ′′ σ ′ the usual Kronecker’s delta)

Fσ ′′ σ ′ = exp

[
i a

(√
3

2
κx σ ′′ + 3

4
κy (−1)σ

′′
)]

δσ ′′ σ ′ . (A10)

From the actual structure of Eq. (A9), one directly sees that neither |σ, κx, κy〉, |σ, κx, κy〉even or |σ, κx, κy〉odd are eigenstates
of Ûeff. But then we consider

|u(κx, κy)〉 =
∑

σ

C(+)
σ |σ, κx, κy〉even +

∑
σ

C(−)
σ |σ, κx, κy〉odd. (A11)

By imposing that

Ûeff |u(κx, κy)〉 = exp[−2iE/ε̃] |u(κx, κy)〉, (A12)

it reads [for Ô a 3 × 3 null matrix and for s = ± with C(s)T = (C(s)
1 C(s)

2 C(s)
3 )]⎛

⎝F̂ �̂(−)F̂ † �̂(+) Ô

Ô F̂ † �̂(+)F̂ �̂(−)

⎞
⎠(

C(+)

C(−)

)
= exp[−2iE/ε̃]

(
C(+)

C(−)

)
. (A13)

The solution of Eq. (A13) implies that (with 1̂ the 3 × 3 identity matrix)

0 = det
(
F̂ �̂(−)F̂ † �̂(+) − exp[−2iE/ε̃] 1̂

)
det(F̂ † �̂(+)F̂ �̂(−) − exp[−2iE/ε̃] 1̂). (A14)

It is straightforward to prove that both determinants in Eq. (A14) result in the same expression. So, the energy bands for our
problem is given by Eq. (29) in Sec. IV.

APPENDIX B: A GENERAL PARAMETRIZATION FOR THE UNITARY MATRICES �̂(±)

To search for appropriate scattering matrices in Eq. (29), leading to numerically accurate energy bands, it is very handy to
consider a specific parametrization for �̂(±). Therefore, we adopt the one proposed in Ref. [100]. Supposing the same global
phase factor γ (+) = γ (−) = γ , we write �̂(±) = exp[i γ ] Ŝ(±), so the SU(3) matrices Ŝ are written as

Ŝ =
⎛
⎝S11 S12 S13

S21 S22 S23

S31 S32 S33

⎞
⎠, (B1)

where [100]

S11 = cos[θ1] cos[θ2] exp[i φ1], S22 = cos[θ1] cos[θ3] exp[i φ2],

S33 = cos[θ2] cos[θ3] exp[−i (φ1 + φ2)] − sin[θ1] sin[θ2] sin[θ3] exp[i (−φ3 + φ4 + φ5)],

S21 = sin[θ2] sin[θ3] exp[−i (φ4 + φ5)] − sin[θ1] cos[θ2] cos[θ3] exp[i (φ1 + φ2 − φ3)], S12 = sin[θ1] exp[i φ3],

S23 = − cos[θ2] sin[θ3] exp[−i(φ1 + φ5)] − sin[θ1] sin[θ2] cos[θ3] exp[i (φ2 − φ3 + φ4)], S32 = cos[θ1] sin[θ3] exp[i φ5],

S31 = − sin[θ1] cos[θ2] sin[θ3] exp[i (φ1 − φ3 + φ5)] − sin[θ2] cos[θ3] exp[−i (φ2 + φ4)], S13 = cos[θ1] sin[θ2] exp[i φ4].

(B2)

Here 0 � θ1, θ2, θ3 � π/2, 0 � φ1, φ2, φ3, φ4, φ5 � 2π .
Then, we have numerically varied the parameters as defined above (both for �̂(+) and �̂(−)), solved the corresponding Eq. (29),

and compared the obtained energy bands with the computations from the ab inition methods mentioned in the main text, looking
for the best agreements. From such (limited in time) searching procedure, see Appendix C, we have found that the optimal Ŝ(±)

’s are

Ŝ(+)
graf =

⎛
⎝−0.688114 − 0.150771 i −0.246765 − 0.2626 i −0.381596 − 0.477807 i

−0.180346 + 0.405402 i −0.410796 − 0.418278 i 0.67699 + 0.0331718 i
−0.546443 + 0.0910583 i 0.317197 + 0.652552 i 0.399643 − 0.0834001 i

⎞
⎠,

Ŝ(−)
graf =

⎛
⎝−0.138184 + 0.00919204 i −0.828744 + 0.438194 i −0.315014 + 0.0525038 i

0.867777 + 0.0560679 i 0.0422888 + 0.0754977 i −0.424689 − 0.236579 i
0.20242 + 0.428562 i −0.124223 − 0.313448 i −0.0501766 + 0.811888 i

⎞
⎠,
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FIG. 21. Flowchart of the algorithm which numerically searches for proper matrices �(±) leading, from Eq. (29), to energy band structures
closely resembling those from the ab initio 1 computations [36]. The protocol operational details are given by (i)–(v) in Appendix C.

Ŝ(+)
germ =

⎛
⎝−0.235401 − 0.234025 i 0.907655 + 0.00356565 i −0.149145 + 0.209104i

−0.50009 − 0.644277 i −0.137028 − 0.0414458 i 0.317586 − 0.46202 i
0.473104 + 0.0284348 i 0.269421 − 0.288216i −0.218807 − 0.756195 i

⎞
⎠,

Ŝ(−)
germ =

⎛
⎝−0.38446 − 0.0755964 i 0.12191 − 0.652291 i 0.112986 + 0.627188 i

−0.316329 + 0.606195 i −0.105728 + 0.454626 i −0.352752 + 0.43608 i
0.0840718 − 0.609813 i −0.359216 + 0.461254 i 0.188915 + 0.493539 i

⎞
⎠,

Ŝ(+)
sili =

⎛
⎝−0.107015 − 0.00798447 i −0.0265558 + 0.869958 i 0.269032 − 0.398214 i

−0.690817 − 0.648893 i −0.0470178 + 0.0331329 i −0.306416 + 0.0671659 i
−0.300254 + 0.0064432 i 0.0124119 − 0.488882 i 0.460001 − 0.677529 i

⎞
⎠,

Ŝ(−)
sili =

⎛
⎝−0.457887 + 0.324023 i 0.538585 + 0.326047 i −0.533475 + 0.0661224 i

−0.35892 + 0.442505 i −0.239453 + 0.39051 i 0.611317 + 0.303022 i
0.60042 + 0.0144789 i −0.210423 + 0.591191 i −0.309735 + 0.386738 i

⎞
⎠, (B3)

moreover, γgraf = −0.39870242089536767, ε̃graf = −11.073477059111063; γgerm = 0.309361885861335, ε̃germ =
4.371430728147026; γsili = −0.3565029108304439, ε̃sili = −5.38457659978849.

APPENDIX C: THE NUMERICAL SEARCH
PROCEDURE FOR �̂(±)

As previously mentioned, we have implemented a numer-
ical protocol to search for proper �(±)’s which, once inserted
into Eq. (29), yield energy band structures closely agreeing

with those from the ab initio 1 method [36] discussed in the
main text. For the run times considered, never more than one
hour for each material, the best found �(±)’s are those given
in Eq. (B3). The flowchart in Fig. 21 summarizes the actual
algorithm. The main quantities/variables and the key stages
of the procedure are the following.
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(i) Pref = {p1, . . . , pPu , pPu+1, . . . , pPu+Pl }, with p j =
E+(κx, j, κy, j ) if j � Pu and p j = E−(κx, j, κy, j ) if j > Pu,
calculated from the ab initio 1 approach. Thus, Pref is the
reference set of P = Pu + Pl points from the upper and lower
energy bands generated by ab initio 1. The (κx, j, κy, j ) are
fairly equally spaced along the direction of the high-symmetry
points �, K , and M (refer to Figs. 18–20). We have set Pu =
58, Pl = 50 for graphene, Pu = 93, Pl = 87 for germanene,
and Pu = 69, Pl = 59 for silicene.

(ii) For each pair of matrices �(±), E (�κ ) results from
Eq. (29). The set P = {E (κx, j, κy, j )} is computed for E either
E+ or E− depending on j. So, the distance d = |Pref − P|
reads d =

√∑
j (p j − E (κx, j, κy, j ))2.

(iii) To test distinct �(±)’s, we randomly choose the θ (±)
s ’s,

φ(±)
s ’s and γ (see Appendix B) values according to a specified

rule R, which is upgraded in the code each time the set S
is updated. For sake of discussion, consider z generically
representing any one of the θ (±)

s ’s, φ(±)
s ’s, γ parameters. In

the routine initialization, when for the first time the set S —
whose elements S(n) have the form {d, {θ (±)

s , φ(±)
s , γ }} — is

generated (see Fig. 21), the rule R is simply to draw z from
a uniform distribution (obviously, within the proper interval
of z). For the subsequent upgrades of R, the code takes the K
collection of matrices parameters in S resulting in the lowest
d’s. For each specific parameter z, the routine calculates an
average zS and variance σz,S over the corresponding K sample.
Then, the redefined rule R becomes to sort the z’s drawn from
a Gaussian distribution characterized by zS and σz,S .

(iv) Updates of S are implemented by substituting the el-
ement S(n) of S presenting the largest distance quantifier, of

value dmax, by the parameters of a randomly created pair �(±)

whenever they lead to d < dmax.
(v) Lastly, the quantities N , L, M, and K , see Fig. 21,

have been established by means of preliminary numerical
tests (the aforementioned run times do not include such ini-
tial simulations). The values used are N = M = 75, L =
6695, K = 13 for graphene; N = M = 75, L = 6695, K =
15 for germanene; and N = M = 75, L = 6695, K = 15 for
silicene.

Finally, we mention an extra condition, not described in
the algorithm depicted in Fig. 21. Eventually, d could be
small because most of the points in Prev and P are very
close together. However, a few special (but important) points,
usually around �, K , and M, could display considerable
discrepancies. So, we have assumed an additional selection
rule, besides discarding those matrices leading to large d’s.
If d is small, but some great local variations of |Pref − P|
occur around the symmetry points, the corresponding �(±)

are also eliminated. This extra exclusion is rarely employed
for the graphene. But it is frequent for germanene and sil-
icene. For example, for the about 500 000 pairs of matrices
tested for germanene and silicene only, respectively, 29%
and 34% showed no strong local fluctuations for the dif-
ference between the points of Pref and P in the vicinity of
�, K , or M. We speculate that global small d’s also tend
to lead to the nonexistence of strong local fluctuations of
|Pref − P| for the former but not for the two latter because
although graphene does present a truly stable planar config-
uration, germanene and silicene do not (see the discussion in
Sec. VI B).

[1] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and
M. den Nijs, Quantized Hall Conductance in a Two-
Dimensional Periodic Potential, Phys. Rev. Lett. 49, 405
(1982).

[2] J. E. Avron, R. Seiler, and B. Simon, Homotopy and Quanti-
zation in Condensed Matter Physics, Phys. Rev. Lett. 51, 51
(1983).

[3] M. V. Berry, Quantum phase factors accompanying adiabatic
changes, Proc. Royal Soc. A 392, 45 (1984).

[4] F. D. M. Haldane, Model for a Quantum Hall Effect Without
Landau Levels: Condensed-Matter Realization of the “Parity
Anomaly,” Phys. Rev. Lett. 61, 2015 (1988).

[5] M. I. Monastyrsky, Topology in Condensed Matter (Springer,
Berlin, 2006).

[6] A. Altland and B. D. Simons, Condensed Matter Field Theory
(Cambridge University Press, Cambridge, 2010).

[7] F. Ortmann, S. Roche, and S. O. Velenzuela, Topological In-
sulators: Fundamentals and Perspectives (John Wiley & Sons,
Weinheim, 2015).

[8] C. Chamon, M. O. Goerbig, R. Moessner, and L. F.
Cugliandolo, Topological Aspects of Condensed Matter
Physics (Oxford University Press, Oxford, 2017).

[9] S. Q. Shen, The family of topological phases in condensed
matter, Nat. Sci. 1, 49 (2014).

[10] X. G. Wen, Zoo of quantum-topological phases of matter, Rev.
Mod. Phys. 89, 041004 (2017).

[11] J. Liu, A short review on first-principles study of gapped topo-
logical materials, Comput. Mater. Sci. 195, 110467 (2021).

[12] D. Culcer, A. C. Keser, Y. Li, and G. Tkachov, Transport in
two-dimensional topological materials: Recent developments
in experiment and theory, 2D Mater. 7, 022007 (2020).

[13] S. Gupta and A. Saxena, A topological twist on materials
science, MRS Bull. 39, 265 (2014).

[14] M. G. Vergniory, L. Elcoro, C. Felser, N. Regnault, B. A.
Bernevig, and Z. Wang, A complete catalogue of high-quality
topological materials, Nature (London) 566, 480 (2019).

[15] A. R. Ashrafi and M. V. Diudea, Distance, Symmetry, and
Topology in Carbon Nanomaterials (Springer, Cham, 2016).

[16] P. Bondavalli, 2D Materials: and Their Exotic Properties (De
Gruyter, Berlin, 2022).

[17] M. Ashton, J. Paul, S. B. Sinnott, and R. G. Hennig, Topology-
Scaling Identification of Layered Solids and Stable Exfoliated
2D Materials, Phys. Rev. Lett. 118, 106101 (2017).

[18] Z. Song, T. Zhang, Z. Fang, and C. Fang, Quantitative
mappings between symmetry and topology in solids, Nat.
Commun. 9, 3530 (2018).

[19] X. Zou, Y. Xu, and W. Duan, 2D materials: Rising star for
future applications, Innov. 2, 100115 (2021).

[20] M. Geier, L. Trifunovic, M. Hoskam, and P. W. Brouwer,
Second-order topological insulators and superconductors with
an order-two crystalline symmetry, Phys. Rev. B 97, 205135
(2018).

094303-19

https://doi.org/10.1103/PhysRevLett.49.405
https://doi.org/10.1103/PhysRevLett.51.51
https://doi.org/10.1098/rspa.1984.0023
https://doi.org/10.1103/PhysRevLett.61.2015
https://doi.org/10.1093/nsr/nwt033
https://doi.org/10.1103/RevModPhys.89.041004
https://doi.org/10.1016/j.commatsci.2021.110467
https://doi.org/10.1088/2053-1583/ab6ff7
https://doi.org/10.1557/mrs.2014.28
https://doi.org/10.1038/s41586-019-0954-4
https://doi.org/10.1103/PhysRevLett.118.106101
https://doi.org/10.1038/s41467-018-06010-w
https://doi.org/10.1016/j.xinn.2021.100115
https://doi.org/10.1103/PhysRevB.97.205135


VENANCIO, GHIZONI, AND DA LUZ PHYSICAL REVIEW B 108, 094303 (2023)

[21] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Two-dimensional gas of massless Dirac fermions in graphene,
Nature (London) 438, 197 (2005).

[22] D. Li and R. B. Kaner, Graphene-based materials, Science
320, 1170 (2008).

[23] A. K. Geim, Graphene: Status and prospects, Science 324,
1530 (2009).

[24] A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, The electronic properties of graphene, Rev.
Mod. Phys. 81, 109 (2009).

[25] M. J. Allen, V. C. Tung, and R. B. Kaner, Honeycomb carbon:
A review of graphene, Chem. Rev. 110, 132 (2010).

[26] E. Kan, Z. Li, and J. Yang, Graphene nanoribbons: Geometric,
electronic, and magnetic properties, in Physics and Appli-
cations of Graphene, edited by S. Mikhailov (IntechOpen,
Rijeka, 2011).

[27] A. H. C. Neto and K. S. Novoselov, New directions in science
and technology: Two-dimensional crystals, Rep. Prog. Phys.
74, 082501 (2011).

[28] V. Berry, Impermeability of graphene and its applications,
Carbon 62, 1 (2013).

[29] L. E. F. Torres, S. Roche, and J. C. Charlier, Introduction to
Graphene-Based Nanomaterials: From Electronic Structure to
Quantum Transport (Cambridge University Press, Cambridge,
2020).

[30] H. S. Arora, R. Polski, Y. Zhang, A. Thomson, Y. Choi, H.
Kim, Z. Lin, I. Z. Wilson, X. Xu, J. Chu et al., Superconduc-
tivity in metallic twisted bilayer graphene stabilized by WSe2,
Nature (London) 583, 379 (2020).

[31] B. Wang, T. Ruan, Y. Chen, F. Jin, L. Peng, Y. Zhou, D.
Wang, and S. Dou, Graphene-based composites for elec-
trochemical energy storage, Energy Stor. Mater. 24, 22
(2020).

[32] R. You, Y. Liu, Y. Hao, D. Han, Y. Zhang, and Z. You, Laser
fabrication of graphene-based flexible electronics, Adv. Mater.
32, 1901981 (2020).

[33] A. Cortijo, F. Guinea, and M. A. H. Vozmediano, Geometrical
and topological aspects of graphene and related materials,
J. Phys. A: Math. Theor. 45, 383001 (2012).

[34] T. O. Wehling, A. M. Black-Schaffer, and A. V. Balatsky,
Dirac materials, Adv. Phys. 63, 1 (2014).

[35] G. G. Guzmán-Verri and L. C. Lew Yan Voon, Electronic
structure of silicon-based nanostructures, Phys. Rev. B 76,
075131 (2007).

[36] N. J. Roome and J. D. Carey, Beyond graphene: Stable el-
emental monolayers of silicene and germanene, ACS Appl.
Mater. Interfaces 6, 7743 (2014).

[37] A. Feyzi and R. Chegel, Heat capacity, electrical and thermal
conductivity of silicene, Eur. Phys. J. B 89, 193 (2016).

[38] M. H. Rahman, S. Mitra and D. A. Redwan, Electronic
band structure of group IV 2D materials: Graphene, sil-
icene, germanene, stanene using tight binding approach, in
2020 2nd International Conference on Advanced Information
and Communication Technology (ICAICT) (IEEE, 2020),
pp. 207–212.

[39] J. M. Soler, E. Artacho, J. D. Gale, A. García, J. Junquera, P.
Ordejón, and D. Sánchez-Portal, The SIESTA method for ab
initio order-N materials simulation, J. Phys.: Condens. Matter
14, 2745 (2002).

[40] A. V. Akimov and O. V. Prezhdo, Large-scale computations
in chemistry: A bird’s eye view of a vibrant field, Chem. Rev.
115, 5797 (2015).

[41] K. K. Gomes, W. Mar, W. Ko, F. Guinea, and H. C.
Manoharan, Designer Dirac fermions and topological phases
in molecular graphene, Nature (London) 483, 306 (2012).

[42] J. Wang, S. Deng, Z. Liu, and Liu. Z, The rare two-dimensional
materials with Dirac cones, Natl. Sci. Rev. 2, 22 (2015).

[43] N. T. T. Tran, S. Lin, C. Lin, and M. Lin, Geometric and
Electronic Properties of Graphene-Related Systems Chemical
Bonding Schemes (CRC Press, Boca Raton, 2018).

[44] I. G. Karafyllidis, Quantum walks on graphene nanorib-
bons using quantum gates as coins, J. Comput. Sci. 11, 326
(2015).

[45] H. Bougroura, H. Aissaoui, N. Chancellor, and V. Kendon,
Quantum-walk transport properties on graphene structures,
Phys. Rev. A 94, 062331 (2016).

[46] B. F. Venancio and M. G. E. da Luz, Construction of distinct
discrete time scattering quantum walk formulations on the
honeycomb lattice, Ann. Phys. 396, 517 (2018).

[47] J. Mareš, J. Novotný, and I. Jex, Quantum walk transport on
carbon nanotube structures, Phys. Lett. A 15, 126302 (2020).

[48] Y. Aharonov, L. Davidovich, and N. Zagury, Quantum random
walks, Phys. Rev. A 48, 1687 (1993).

[49] A. M. Childs, E. Farhi, and S. Gutmann, An example of
the difference between quantum and classical random walks,
Quantum Inf. Process. 1, 35 (2002).

[50] J. Kempe, Quantum random walks: An introductory overview,
Contemp. Phys. 44, 307 (2003).

[51] N. Konno, Quantum walks, in Quantum Potential Theory,
edited by U. Franz and M. Schürmann (Springer, Berlin,
2008).

[52] C. M. Chandrashekar and R. Laflamme, Quantum phase tran-
sition using quantum walks in an optical lattice, Phys. Rev. A
78, 022314 (2008).

[53] A. Ahlbrecht, A. Alberti, D. Meschede, V. B. Scholz, A. H.
Werner, and R. F. Werner, Molecular binding in interacting
quantum walks, New J. Phys. 14, 073050 (2012).

[54] C. Fábri and A. G. Császár, Vibrational quantum graphs and
their application to the quantum dynamics of CH5+, Phys.
Chem. Chem. Phys. 20, 16913 (2018).

[55] P. Chawla and C. M. Chandrashekar, Quantum walks in
polycyclic aromatic hydrocarbons, New J. Phys. 23, 113013
(2021).

[56] J. C. F. Matthews and M. G. Thompson, Quantum optics: An
entangled walk of photons, Nature (London) 484, 47 (2012).

[57] F. Cardano, F. Massa, H. Qassim, E. Karimi, S. Slussarenko,
D. Paparo, C. Lisio, F. Sciarrino, E. Santamato, R. W. Boyd,
and L. Marrucci, Quantum walks and wavepacket dynamics on
a lattice with twisted photons, Sci. Adv. 1, e1500087 (2015).

[58] L. C. Botten, N. A. Nicorovici, R. C. McPhedran, C. Martijn
de Sterke, and A. A. Asatryan, Photonic band structure cal-
culations using scattering matrices, Phys. Rev. E 64, 046603
(2001).

[59] S. E. Venegas-Andraca, Quantum Walks for Computer Scien-
tists (Springer, Cham, 2008).

[60] R. Portugal, Quantum walks and Search Algorithms (Springer,
New York, 2013).

[61] H. S Ghizoni and E. P. M. Amorim, Trojan quantum walks,
Braz. J. Phys. 49, 168 (2019).

094303-20

https://doi.org/10.1038/nature04233
https://doi.org/10.1126/science.1158180
https://doi.org/10.1126/science.1158877
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1021/cr900070d
https://doi.org/10.1088/0034-4885/74/8/082501
https://doi.org/10.1016/j.carbon.2013.05.052
https://doi.org/10.1038/s41586-020-2473-8
https://doi.org/10.1016/j.ensm.2019.08.004
https://doi.org/10.1002/adma.201901981
https://doi.org/10.1088/1751-8113/45/38/383001
https://doi.org/10.1080/00018732.2014.927109
https://doi.org/10.1103/PhysRevB.76.075131
https://doi.org/10.1021/am501022x
https://doi.org/10.1140/epjb/e2016-70333-x
https://ieeexplore.ieee.org/document/9333480
https://doi.org/10.1088/0953-8984/14/11/302
https://doi.org/10.1021/cr500524c
https://doi.org/10.1038/nature10941
https://doi.org/10.1093/nsr/nwu080
https://doi.org/10.1016/j.jocs.2015.05.006
https://doi.org/10.1103/PhysRevA.94.062331
https://doi.org/10.1016/j.aop.2018.07.026
https://doi.org/10.1016/j.physleta.2020.126302
https://doi.org/10.1103/PhysRevA.48.1687
https://doi.org/10.1023/A:1019609420309
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1103/PhysRevA.78.022314
https://doi.org/10.1088/1367-2630/14/7/073050
https://doi.org/10.1039/C8CP03019G
https://doi.org/10.1088/1367-2630/ac314a
https://doi.org/10.1038/nature11035
https://doi.org/10.1126/sciadv.1500087
https://doi.org/10.1103/PhysRevE.64.046603
https://doi.org/10.1007/s13538-019-00638-9


SCATTERING QUANTUM WALK FRAMEWORK FOR … PHYSICAL REVIEW B 108, 094303 (2023)

[62] K. Kadian, S. Garhwal, and A. Kumar, Quantum walk and its
application domains: A systematic review, Comput. Sci. Rev.
41, 100419 (2021).

[63] C. Lyu, L. Yu, and S. Wu, Localization in quantum walks on a
honeycomb network, Phys. Rev. A 92, 052305 (2015).

[64] Focus on the topological properties of 2D layered materials
(Special Issue), edited by S. Dong, D. Xiao, and S. Wu,
2D Mater. 6 (2018).

[65] M. Hillery, J. Bergou, and E. Feldman, Quantum walks based
on an interferometric analogy, Phys. Rev. A 68, 032314
(2003).

[66] E. Feldman and M. Hillery, Scattering theory and discrete-
time quantum walks, Phys. Lett. A 324, 277 (2004).

[67] B. F. Venancio, F. M. Andrade, and M. G. E. da Luz, Unveil-
ing and exemplifying the unitary equivalence of discrete time
quantum walk models, J. Phys. A 46, 165302 (2013).

[68] F. M. Andrade and M. G. E. da Luz, Equivalence between
discrete quantum walk models in arbitrary topologies, Phys.
Rev. A 80, 052301 (2009).

[69] S. E. Venegas-Andraca, Quantum walks: A comprehensive
review, Quantum Inf. Process. 11, 1015 (2012).

[70] S. Karimi, E. Helal, G. Gutierrez, N. Moghimian, M.
Madinehei, E. David, M. Samara, and N. Demarquette, A
review on graphene’s light stabilizing effects for reduced pho-
todegradation of polymers, Crystals 11, 3 (2021).

[71] L. K. Grover, A fast quantum mechanical algorithm for
database search, in Proceedings of the Twenty-Eighth Annual
ACM Symposium on Theory of Computing (Association for
Computing Machinery, New York, 1996).

[72] A. M. Childs and J. Goldstone, Spatial search by quantum
walk, Phys. Rev. A 70, 022314 (2004).

[73] N. B. Lovett, S. Cooper, M. Everitt, M. Trevers, and V.
Kendon, Universal quantum computation using the discrete-
time quantum walk, Phys. Rev. A 81, 042330 (2010).

[74] F. Magniez, A. Nayak, J. Roland, and M. Santha, Search via
quantum walk, SIAM J. Comput. 40, 142 (2011).

[75] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saun-
ders Collage Publishing, Philadelphia, 1976).

[76] S. Tang and M. S. Dresslhaus, Constructing a large vari-
ety of Dirac-cone materials in the Bi1-xSbx thin film system,
Nanoscale 4, 7786 (2012).

[77] E. Kalesaki, C. Delerue, C. M. Smith, W. Beugeling, G.
Allan, and D. Vanmaekelbergh, Dirac Cones, Topological
Edge States, and Nontrivial Flat Bands in Two-Dimensional
Semiconductors with a Honeycomb Nanogeometry, Phys. Rev.
X 4, 011010 (2014).

[78] A. Das and S. Pujari, SU(3) fermions in a three-band
graphene-like model, Phys. Rev. B 100, 125152 (2019).

[79] V. P. Gerdt, Y. G. Palli, and A. M. Khvedelidze, Light-cone
Yang-Mills mechanisms: SU(2) vs. SU(3), Theor. Math. Phys.
155, 557 (2008).

[80] P. R. Wallace, The band theory of graphite, Phys. Rev. 71, 622
(1947).

[81] S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Electronic
transport in two-dimensional graphene, Rev. Mod. Phys. 83,
407 (2011).

[82] M. Ali, X. Pi, Y. Liu, and D. Yang, Electronic and
magnetic properties of graphene, silicene and germanene
with varying vacancy concentration, AIP Adv. 7, 045308
(2017).

[83] V. Zolyomi, N. D. Drummond, J. R. Wallbank, and V. Falko,
Density-functional and tight-binding theory of silicene and
silicane, in Silicene: Prediction, Synthesis, Application, edited
by P. Vogt and G. Le Lay (Springer, Cham, 2018).

[84] S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejon, Tight-
binding description of graphene, Phys. Rev. B 66, 035412
(2002).

[85] K. Wakabayashi, Y. Takane, M. Yamamoto, and M. Sigrist,
Electronic transport properties of graphene nanoribbons, New
J. Phys. 11, 095016 (2009).

[86] D. R. Cooper, B. D’Anjou, N. Ghattamaneni, B. Harack, M.
Hilke, A. Horth, N. Majlis, M. Massicotte, L. Vandsburger, E.
Whiteway et al., Experimental review of graphene, Int. Sch.
Res. Notices 2012, 501686 (2012).

[87] C. Thomsen and S. Reich, Double Resonant Raman Scattering
in Graphite, Phys. Rev. Lett. 85, 5214 (2000).

[88] R. Saito, A. Jorio, A. G. Souza Filho, G. Dresselhaus, M. S.
Dresselhaus, and M. A. Pimenta, Probing Phonon Dispersion
Relations of Graphite by Double Resonance Raman Scatter-
ing, Phys. Rev. Lett. 88, 027401 (2001).

[89] A. Jorio, M. S. Dresselhaus, R. Saito, and G. Dresselhaus, Ra-
man Spectroscopy in Graphene Related Systems (John Wiley
& Sons, Weinheim, 2011).

[90] M. S. Dresselhaus, G. Dresselhaus, K. Sugihara, I. L. Spain,
and H. A. Goldberg, Graphite Fibers and Filaments (Springer,
Berlin, 2013).

[91] G. S. Painter and D. E. Ellis, Electronic band structure and
optical properties of graphite from a variational approach,
Phys. Rev. B 1, 4747 (1970).

[92] D. Coello-Fiallos, T. Tene, J. L. Guayllas, D. Haro, A.
Haro, and C. Vacacela Gomez, DFT comparison of struc-
tural and electronic properties of graphene and germanene:
Monolayer and bilayer systems, Mater. Today 4, 6835
(2017).

[93] P. Narang, L. Zhao, S. Claybrook, and R. Sundararaman,
Effects of interlayer coupling on hot-carrier dynamics in
graphene-derived van der Waals heterostructures, Adv. Opt.
Mater. 5, 1600914 (2017).

[94] N. Marzari, A. A. Mostofi, J. R. Yates, I. Souza,
and D. Vanderbilt, Maximally localized Wannier func-
tions: Theory and applications, Rev. Mod. Phys. 84, 1419
(2012).

[95] S. K. Sahoo and K. Wei, A perspective on recent advances
in 2D stanene nanosheets, Adv. Mater. Interfaces 6, 1900752
(2019).

[96] A. Kara, H. Enriquez, A. P. Seitsonen, L. C. Lew, Yan
Voon, S. Vizzini, B. Aufray, and H. Oughaddou, A review on
silicene—new candidate for electronics, Surf. Sci. Rep. 67, 1
(2012).

[97] Y. Ding and J. Ni, Electronic structures of silicon nanoribbons,
Appl. Phys. Lett. 95, 083115 (2009).

[98] C. Liu, H. Jiang, and Y. Yao, Low-energy effective Hamil-
tonian involving spin-orbit coupling in silicene and two-
dimensional germanium and tin, Phys. Rev. B 84, 195430
(2011).

[99] X. Yang and J. Ni, Electronic properties of single-walled sil-
icon nanotubes compared to carbon nanotubes, Phys. Rev. B
72, 195426 (2005).

[100] J. B. Bronzan, Parametrization of SU (3), Phys. Rev. D 38,
1994 (1988).

094303-21

https://doi.org/10.1016/j.cosrev.2021.100419
https://doi.org/10.1103/PhysRevA.92.052305
https://iopscience.iop.org/journal/2053-1583/page/topological-layered-materials
https://doi.org/10.1103/PhysRevA.68.032314
https://doi.org/10.1016/j.physleta.2004.03.005
https://doi.org/10.1088/1751-8113/46/16/165302
https://doi.org/10.1103/PhysRevA.80.052301
https://doi.org/10.1007/s11128-012-0432-5
https://doi.org/10.3390/cryst11010003
https://doi.org/10.1103/PhysRevA.70.022314
https://doi.org/10.1103/PhysRevA.81.042330
https://doi.org/10.1137/090745854
https://doi.org/10.1039/c2nr32436a
https://doi.org/10.1103/PhysRevX.4.011010
https://doi.org/10.1103/PhysRevB.100.125152
https://doi.org/10.1007/s11232-008-0046-3
https://doi.org/10.1103/PhysRev.71.622
https://doi.org/10.1103/RevModPhys.83.407
https://doi.org/10.1063/1.4980836
https://doi.org/10.1103/PhysRevB.66.035412
https://doi.org/10.1088/1367-2630/11/9/095016
https://doi.org/10.5402/2012/501686
https://doi.org/10.1103/PhysRevLett.85.5214
https://doi.org/10.1103/PhysRevLett.88.027401
https://doi.org/10.1103/PhysRevB.1.4747
https://doi.org/10.1016/j.matpr.2017.07.011
https://doi.org/10.1002/adom.201600914
https://doi.org/10.1103/RevModPhys.84.1419
https://doi.org/10.1002/admi.201900752
https://doi.org/10.1016/j.surfrep.2011.10.001
https://doi.org/10.1063/1.3211968
https://doi.org/10.1103/PhysRevB.84.195430
https://doi.org/10.1103/PhysRevB.72.195426
https://doi.org/10.1103/PhysRevD.38.1994


VENANCIO, GHIZONI, AND DA LUZ PHYSICAL REVIEW B 108, 094303 (2023)

[101] S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, and S.
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