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Anderson localization and swing mobility edge in curved spacetime
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We construct a quasiperiodic lattice model in curved spacetime to explore the crossover concerning both
condensed matter and curved spacetime physics. We study the related Anderson localization and find that the
model has a clear boundary of localized-extended phase separation, which leads to a swing mobility edge, i.e.,
the coexistence of localized, swing, and subextended phases. The swing mobility edge reported here features the
phase-dependent eigenstate, that is, the eigenstate swing between the extended and localized states for different
phase parameters of the quasiperiodic potential. Furthermore, a self-consistent segmentation method is developed
to calculate the analytical expression of the critical point of phase separation, and the rich phase diagram is
obtained by calculating the fractal dimension and scaling index in multifractal analysis.
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I. INTRODUCTION

The past few decades have witnessed extensive studies on
the Anderson localization [1–6], with many important results
being achieved both theoretically [7–19] and experimentally
[20–35]. To explain the disappearance of spin diffusion for
low doping density [1,2], Anderson proposed the famous the-
ory of Anderson localization [3], which states that the ergodic
property of electrons in a system without interaction will be
destroyed and the system will transform into a localized phase
when the intensity of disorder exceeds the critical value, thus
making the system turn from a metallic to an insulating phase.
Mott further proposed the concept of mobility edge [4], which
indicates that the localized and extended phases of the system
can coexist under certain circumstances. Previous studies have
suggested that one-dimensional (1D) and two-dimensional
(2D) systems will exhibit localized behavior when uncorre-
lated disorder potential is introduced. In the three-dimensional
(3D) case, however, the introduction of disorder will cause
mobility edge, i.e., both localized and extended states appear
in the system [6,36,37].

In addition to disordered systems, the 1D Aubry-André-
Harper (AAH) model, as a typical quasiperiodic system, has
been eye-catching as one of the simplest systems to demon-
strate the localized-extended phase transition [38,39]. The
quasiperiodic potential is incommensurate with the lattice
space, which can be regarded as a limbo system between
disorder and order. Due to the self-duality of AAH model,
the system is characterized by an extended phase (localized
phase) when the quasiperiodic potential is less than (greater
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than) the critical value, and the corresponding eigenstates are
all in extended (localized) states [39]. Therefore, compared
with low-dimensional random disordered systems, quasiperi-
odic systems can exhibit the localized and extended phase
transitions more efficiently. The AAH model is also valuable
in studying topological phases in quasicrystals for the reason
that it can be mapped to the 2D integer quantum Hall effect
by a continuous U(1) gauge transformation [40–52]. Apart
from the standard AAH model, studies on unique quasiperi-
odic systems have become a hot topic, where the mobility
edge can be obtained by introducing a long-range corre-
lation [53,54] or reconstructing the quasiperiodic potential
[55–61]. Furthermore, many-body localization can be studied
by exerting interactions [62–66]. So far, the quasiperiodic
system has been realized experimentally in various platforms
[67–70].

On the other hand, in 1981, Unruh proposed a sonic hori-
zon, which was an attempt to simulate a black hole horizon
and the relevant curve spacetime (CST) physics in the labora-
tories [71,72]. The seminal work provides an effective way of
exploring black holes, CST physics, and general relativity. Af-
ter 40 years of intensive efforts, long-lived black hole horizon
and CST have been successfully simulated in various tabletop
experiments, such as water flume [71,73–76], Bose-Einstein
condensates [77–81], exciton-polaritons [82], and nonlinear
optics [83–88]. These milestone achievements provide a solid
platform for studying the CST physics, which has deepened
our understanding of the nature of gravity, e.g., helping us
to reveal the relation between (1 + 1)D Jackiw-Teitelboim
gravity and the Sachdev-Ye-Kitaev model [89–93]. So far,
despite the successful simulation of Hawking radiation, lots
of effort on the verification of the Unruh effect [71–96], and
other phenomena related to CST physics [95], little research
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has been focused on the condensed matter properties in CST
lattice systems [97–109].

Inspired by the aforementioned achievements in artificial
CST systems, we construct a generalized 1D quasiperiodic
lattice model in CST to explore the crossover concerning both
condensed matter and CST physics. We find that condensed
matter lattice systems with Anderson phase transition will
exhibit phase separation in CST. In addition, a segmentation
method is developed to obtain the analytical expression of
the critical position of the phase separation. Based upon the
method, we reveal that the swing mobility edge emerges in the
system, i.e., localized, swing, and subextended phases can co-
exist in the system. Different from conventional quasiperiodic
systems, the CST-AAH model exhibits different localization
characteristics for different phase angles, i.e., corresponding
eigenstates show swing behavior, which means eigenstates
will exhibit extended or localized features for different phase
angles. This paper provides a CST version of Anderson local-
ization and mobility edge theory.

II. MODEL

Based on the CST lattice model [97,99,104,106,108], we
construct a CST version of quasiperiodic systems as shown in
Figs. 1(a) and 1(b). The corresponding Hamiltonian reads (see
Appendix A for details)

H =
N−1∑
j=1

Jj (c
†
j c j+1 + H.c.) +

N∑
j=1

Vjc
†
j c j (1)

where c†
j (c j ) is the fermionic creation (annihilation) operator

at the jth site. The on-site potential Vj = λ cos(2πφ j + θ ),
where λ denotes the strength of the incommensurate potential,
φ is an irrational number and θ ∈ [0, 2π ] is a phase angle
[110]. For CST, the nearest-neighboring hopping strength
Jj = J ( j

N−1 )σ , which depends on the site index j and the
parameter σ indicating warping degree of spacetime [99], i.e.,
the larger the value of σ , the greater the warping of spacetime.
When σ = 0, the spacetime returns to a flat one. When N
is large enough and σ > 1, J1 → 0, the system presents a
horizon from the first site to the critical point, where informa-
tion cannot pass through. Therefore, to simulate the behavior
outside the event horizon, we use open boundary conditions.
Without loss of generality, hereafter we take J = 1 as the unit
of energy, and select φ = (

√
5 − 1)/2 as the typical irrational

number.
The standard AAH model (without spacetime warping for

the condition of σ = 0 and thus Jj = J) exhibits a phase
transition at λc = 2J [39], i.e., the system is of an extended
(localized) phase for λ < λc (> λc). Properties induced by
CST emerge when σ � 1, where the corresponding hoppings
gradually increase from 0 to 1 with the lattice index growing
from small to large [98,99,101]. As is known, nothing, even
as minuscule as photons, can be spared from being pulled in
the vicinity of a supergravitational source. The closer the little
thing is to the gravitational monster, the greater the influence
it will feel. Therefore, it is reasonable to assume that for the
near end of AAH chain to the event horizon, hopping becomes
difficult due to the extreme attraction, while the rear end of

FIG. 1. (a) Schematic diagram of the CST-AAH model in the
vicinity of a black hole, where the nearest-neighboring hopping
is power-law position dependent. (b) AAH chain in CST shows
phase separation, while the whole chain is divided into the localized
( j < jc) and extended ( j > jc) regions. (c)–(f) The evolution of a
test wave packet in flat space (σ = 0) and in CST (σ = 1). The
first (second) row corresponds to the case where the quasiperiodic
potential is absent (present). The centers of the initial states are at
j0 = 1000 and j0 = 2300, respectively. The system size N = 2584
and the corresponding critical site (dashed line) of phase separation
jc = 1937.

the chain, farther away from the gravitational pull, exhibits
normal flat-spacetime hopping.

Therefore, the CST-AAH chain [Eq. (1)] can well reflect
the lattice-gravity correspondence and the relevant dynamical
properties in the vicinity of an event horizon. The model
proves an ideal simulator to reveal the event horizon dynamics
of free particles in (1 + 1)D anti–de Sitter space, where the
particles slow down exponentially as they move towards the
event horizon and vice versa [72].

III. PHASE SEPARATION

Although the analytical expression of mobility edge for the
AAH model with constant hopping strength (Jj = J) can be
obtained by Avila’s global theorem [111], the method does
not work for a general Jj in CST. Here, we propose a method
of segmentation to explore the localization properties of the
CST-AAH model. By considering a chain composed of two
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subchains, four subchains, and N-1 subchians, we eventu-
ally approximate to the extreme case: CST-AAH chain (see
Appendix B for details). Based on the known critical point
of the phase transition in the flat standard AAH model, we
analytically solve the CST-AAH model. The results show that
the phase separation will occur, which divides the whole AAH
chain into two parts (the localized and the extended) with
a clear boundary in between. As shown in Appendix C, the
analytical expression of the phase separation’s critical site jc
can be obtained as

jc =
⌊(

λ

2J

) 1
σ

(N − 1)

⌋
. (2)

Here �...� denotes floor function, which is defined to round
down the number inside the function to an integer. When σ =
0, the system reduces to the case of flat spacetime, and the
expression Eq. (2) becomes jc = �( λ

2J )∞(N − 1)�. One can
see that as λ increases, the whole system will exhibit extended
phase (0 < λ

2J < 1) first and then the localized ( λ
2J > 1)

phase. Before and after the threshold value λ = 2J , the crit-
ical site jc = 0 and jc = ∞, which indicates no coexistent
localized and extended phases. That is to say, the system can
only be of a pure extended or a pure localized state, which is
consistent with what we knew previously on standard AAH
chains (Appendix C). Considering the opposite extreme case,
when spacetime is infinitely curved (σ = ∞), one can get
jc = �(N − 1)�. One can learn from the expression that the
boundary of phase separation is always at the rightmost end
of the chain, and then the whole chain of the system exhibits
the localized phase, which is quite in line with our knowledge:
infinitely curved spacetime means everything frozen.

Wave-packet dynamics is a very effective way to reflect the
CST properties [97–99]. One can consider a general Gaussian
function as the initial state, i.e.,

ψ ( j, t = 0) = 1
4
√

π
√

w
e− 1

2 ( j− j0
w

)2
eip0 j, (3)

where the width of the wave packet w = 50 and the initial
momentum p0 = −π/2 in the numerical calculation. The re-
sults are plotted in Figs. 1(c)–1(f), and calculation details are
contained in Appendix C. As a comparison, we show the cases
with no quasiperiodic potential first, i.e., λ = 0. The results
show that the wave packet in the flat spacetime [Fig. 1(c)]
is extended over the entire chain, while that in CST behaves
more like an object on the verge of the black hole horizon,
featuring continuous deceleration and localization [Fig. 1(d)].
The presence of quasiperiodic potential in the system can give
rise to a phenomenon of phase separation, with a clear bound-
ary jc existing between the localized and extended regions
[dashed line in Figs. 1(e) and 1(f)]. The wave function exhibits
the localized (extended) characteristics if it is initially placed
in the localized (extended) region.

IV. MOBILITY EDGE

To explore the phase separation and corresponding local-
ization properties of the CST-AAH chain, we calculate the
fractal dimension and scaling indices, both of which are core
observables in the investigation of the localization and mobil-
ity edge.

FIG. 2. (a) Fractal dimension � of all wave functions for CST-
AAH model with σ = 1. (b) The distribution of eigenvalues versus
level index β for extended and localized subchains, respectively. Ni

is the chain or subchain size, where i = ext, loc, total, corresponds
to the extended subchain size N − jc, the localized subchain size
jc, and the total chain size N , respectively. In the gray regions,
the eigenvalues of the extended and localized subchains overlap,
which is evidence of the emergence of the swing phase. (c) The
fractal dimension � of eigenstates for different eigenvalues E with
sizes N = 4181 (green), N = 10946 (blue), and N = 17711 (red).
The other parameters σ = 1, λ = 1.5. The gray regions show swing
phases. The scaling properties of � (d) and αmin (e) as a function
of 1/ ln(N ) for different regions are provided. Insets: The effect of
CST parameter σ on �(N → ∞) and αmin(N → ∞). The system
size N = 2584 in (a), (b), and 100 times quasiperiodic averages have
been performed on θ for all plots.

First, we calculate the fractal dimension defined as

�(β ) = − lim
N→∞

ln ξ (β )

ln N
, (4)

where ξ (β ) = ∑N
j=1 |ψ j (β )|4 denotes the inverse participa-

tion ratio (IPR) and β is the energy level index of the particle
eigenstate. The fractal dimension � → 0 (→ 1) corresponds
to the localized (extended) state, while � ∈ (0, 1) to multi-
fractal state [58–60,112,113]. Previous studies suggested two
possible ways to induce a mobility edge in the AAH model,
i.e., by introducing a long-range hopping or energy-dependent
quasiperiodic potential [53–60]. Here we show that warping
the spacetime is another way to induce the mobility edge
[see Fig. 2(a)].
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To better understand the generation mechanism of mobility
edge shown in Fig. 2(a), we compute the subchain eigenvalues
versus level index β of localized and extended subchains,
respectively. As shown in Fig. 2(b), the results reveal that
there are three different phases: a pure localized phase (region
I1 and I2), swing phase (region II1, II2 and II3), and pure
extended phase (region III). On the one hand, the extended
and localized phases correspond to pure subchain eigenvalues
[114], i.e., Eext and Eloc, corresponding Hamiltonians read

Hext =
jc−1∑
j=1

Jj (ĉ
†
j ĉ j+1 + H.c.) +

jc∑
j=1

Vjĉ
†
j ĉ j,

Hloc =
N− jc∑
j=1

Jjc−1+ j (ĉ
†
j ĉ j+1 + H.c.) +

N− jc+1∑
j=1

Vjc−1+ j ĉ
†
j ĉ j,

(5)
where the total number of localized (extended) subchain is
jc (N − jc) and the value range of corresponding hopping
strength is from J1 to Jjc−1 (Jjc to 1). On the other hand, the
swing phase features the superposition of eigenvalues of two
different subchains, i.e., the coexistance region of Eext and Eloc

[the gray regions of Fig. 2(b)].
Furthermore, one can distinguish different phases by the

behavior of the fractal dimension versus system size. To this
end, we perform the scaling analysis and plot the results
of different N in Fig. 2(c). One can find that the fractal
dimension � in region III (region I1 and I2) increases (de-
creases) with the increasing system size N , which exhibits
the properties of the extended (localized) phase. However,
� is independent of the system size in regions II1, II2, and
II3. This phenomenon arises from the counteracting scaling
behaviors between the extended and localized eigenstates
within this domain, thereby leading to the size-independent
nature of �, which is evidence of the swing phase. Both the
scaling behavior of the fractal dimension and the overlap of
subchain eigenvalues agree well with each other, and thus
corroborate the emergence of the swing phases. Second, we
calculate the scaling index in multifractal analysis to fur-
ther explore different phases [115–118]. The probability of
a particle occupied in site j is represented by the modulus
square of the wave function P j = |ψ j |2, which satisfies the
normalization condition

∑
j |ψ j |2 = 1. The scaling index of

multifractal analysis α j is defined by the probability measure
P j as

P j = N−α j . (6)

Since the occupation probability on all sites is P j = 1/N
for a completely extended wave function, the corresponding
scaling index α j = 1. For a localized wave function, the oc-
cupation probability is nonzero at just a few sites, therefore
α → 0 for such occupied sites and α → ∞ for the other
sites. For a multifractal wave function, the scaling index α is
distributed in a finite interval [αmin, αmax]. Thus, by consider-
ing the thermodynamic limit N → ∞, one can characterize
the localization properties of a wave function by αmin. To
be specific, for N → ∞, αmin = 1 (0) indicates the extended
(localized) states, whereas 0 < αmin < 1 corresponds to the
multifractal state.

FIG. 3. The probability distribution of eigenstates correspond-
ing to the eigenvalues E = 1.00124 (a), E = 1.63462 (b), and E =
2.13195 (c), with σ = 1 and λ = 1.5 for θ = 5.1191 (black), 3.9732
(blue), 1.7499 (green), and 0.7979 (red). Dashed line shows the
critical position of phase separation. The right-hand column shows
the fractal dimension � of the corresponding eigenstate as a function
of θ . The system size N = 2584 and then jc = 1937.

To better demonstrate the properties of the wave functions
in different regions, a routine approach is to calculate the
mean values of � and αmin in different regions, which are
defined as

� = 1

ηR

∑
R

�, αmin = 1

ηR

∑
R

αmin, (7)

where ηR denotes the total number of eigenstates in the region
denoted as R = I1, I2, II1, II2, II3, III. One can calculate the
corresponding fractal dimensions and scaling indices with
different region sizes and extrapolate the data to get �̄ and
ᾱ under the thermodynamic limit [112,113,117]. The corre-
sponding results are plotted in Figs. 2(d) and 2(e). Under this
condition, the values of � and αmin in the localized region de-
crease with the growing lattice size and finally approach zero.
However, the values of � and αmin in the extended regions
increase with the increasing lattice size until they approach
a fixed value. Note that, for the AAH model in flat space-
time, both � and αmin in the extended region will eventually
be close to 1. The mechanism behind the above interesting
phenomenon lies in the phase separation featured by the AAH
chain in CST. Though the wave function of the extended state
can experience all states of the extended subchain, it is all
the way prohibited from entering the localized subchain. The
insets of Figs. 2(d) and 2(e) exhibit the � and αmin of all
eigenstates versus the CST parameter σ at λ = 0, and the
results support that the larger the degree of spacetime warping,
the smaller the value of �(N → ∞) and αmin(N → ∞).

Furthermore, the distribution of the eigenstate wave func-
tions can soundly reveal the effects of the localized-extended
phase separations. Figures 3(a)–3(c) exhibit the distribution
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FIG. 4. The full phase diagram of the AAH model in CST (σ = 1), where Ssubext., swi., and loc. are the abbreviations of subextended,
swing, and localized phases, respectively. For clarity, the central regions in (c) and (e) are magnified by the insets. The corresponding detailed
analysis is provided in Figs. 16 and 17 of Appendix G.

of eigenstate wave functions of three typical phases, and we
randomly select four phase angles θ in the calculation. The
results reveal that the wave functions of the localized phase
[Fig. 3(a)] remain localized regardless of the value of θ ,
and the wave functions are all localized in the subchain of
j < jc. On the other hand, while the wave functions of the
subextended phase [Fig. 3(c)] still display extended behaviors
for different θ , the extended state is confined to the region of
extended subchains ( j > jc). For wave functions of the swing
phase [Fig. 3(b)], localization characteristics of the system
depend on the value of parameter θ . In other words, different
values of θ may produce either extended or localized states,
which represents a unique style of swing phase. We exhibit
the variation of the fractal dimension � of corresponding
eigenstates with respect to the phase angle θ in the right-hand
column to better illustrate this phenomenon. It can clearly be
seen that the localization properties of the subextended and
localized states do not change significantly versus θ , while
the fractal dimension of the swing state switches between the
two. After averaging different θ , although the value is between
the localized state and the subextended state, which is similar
to the multifractal case, the system is actually in a brand-new
swing phase. In other words, the numerical results are similar
to the multifractal state, but it is actually an average behavior
of subextended and localized states. Therefore, we call it the
swing state.

Finally, the full phase diagram of the CST-AAH model
is obtained as shown in Fig. 4. One can see that with the
increase of the quasiperiodic potential parameter λ, the system
experiences four intermediate phases from the extended to the
final localized state [Figs. 4(b)–4(d)]. Stepwise analyses of
Fig. 4 are given as follows. When λ = 0, the whole system
resides in the subextended phase [Fig. 4(a)], while the local-
ized properties become increasingly salient as λ grows larger.
First, there appears a multilayered structure composed of the
subextended and swing phases [Fig. 4(b)]. Then λ continues
to grow, leading to a much richer phase diagram that contains
the subextended, swing, and localized phases [Fig. 4(c)]. With
the ever-increasing λ, the localized properties gradually gain
the upper hand [Fig. 2(d)], occupying an overwhelming ma-
jority of regions in the multilayered structure [Fig. 4(e)].
Eventually, when λ exceeds the critical value, the entire AAH
chain will become localized [Fig. 4(f)].

V. CONCLUSION

In summary, we have constructed a CST-AAH model to
explore the properties of condensed matter in CST. We found
a phase separation phenomenon of the CST-AAH model with
a clear boundary, where the entire AAH chain can be re-
garded as a combination of the localized and the extended
subchains. By applying the segmentation method, the ana-
lytical expression of phase separation of the critical position
was obtained. Furthermore, we found that the phase separa-
tion gives rise to a swing mobility edge, i.e., the localized,
swing, and subextended phases coexist in the system, where
the eigenstates of the swing phase may be either subextended
or localized for different phase parameters θ . In CST, it is
impossible to be fully expanded even for the wave function
originally in the extended subchain, hence we call the state
a subextended state. Our paper is devoted to constructing
the CST version of Anderson localization and mobility edge
theory, helping foster a crossover research concerning both
condensed matter and CST physics. Nowadays, the ever-
advancing experimental techniques have enabled black hole
horizons and CST to be simulated in various artificial systems
[110,119,120]. Thus, it is promising that the phenomenon
predicted here will be realized in experiments in the near
future.
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APPENDIX A: THE CONSTRUCTION OF A
QUASIPERIODIC MODEL IN CURVED SPACETIME

As suggested by Refs. [99,101], to establish a connection
between continuum field theory and the condensed matter,
one can start from a 1D Jackiw-Teitelboim gravitation gauge
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with dilaton scalar field to obtain a 1D CST lattice model
with position-dependent hopping strength at last, where the
corresponding Hamiltonian reads

H =
N−1∑
j=1

Jj (ĉ
†
j ĉ j+1 + H.c.), (A1)

where ĉ†
j and ĉ j correspond to the creation and annihilation

operators, respectively, and Jj = J ( j
N−1 )σ denotes the hop-

ping strength between site j and site j + 1. It can be seen that
Eq. (A1) is the discrete version of a Hamiltonian for a Dirac
fermion on curved (1 + 1)D spacetime with a static metric of
the form

ds2 = −J2(x)dt2 + dx2. (A2)

For the appropriate coordinates x and t , the spacetime can
be described by the above Rindler metric, with a position-
dependent speed of light. One can define

dx̃ = dx/J (x) (A3)

to obtain the equivalent Minkowski metric

ds2 = J2(x)(−dt2 + dx̃2), (A4)

which is conformally equivalent to the metric Eq. (A2). We
let J (x) = J ( j

N−1 )σ . When J (x) = 0, the local speed of light
disappears and information cannot pass through from there,
thus separating spacetime into two Rindler wedges. In this
paper, the same spacing is used in the diagram to demon-
strate phase separation. Conformal equivalence between two
metrics suggests that conformal field theory techniques would
describe the universal properties of low-energy eigenstates
of Hamiltonian Eq. (A1). By the equivalence principle, any
casual horizon can be approximated by the Rindler metric in
a small region of spacetime [103–109], such as the space-
time structure close to a Schwarzschild black hole horizon
[103,106,121,122].

Under the thermodynamic limit (N → ∞), the hopping
strength of the two nearest-neighboring sites can be regarded
as a constant, thus one can obtain an approximate localized
band structure, i.e., ε( j, k) ≈ −2( j/N )σ cos k. Therefore, the
corresponding dispersion relation of the Hamiltonian Eq. (A1)
at k = ±π/2 has a Dirac cone shape, and its quasiparticle
shows the Dirac fermionic property. The position-dependent
group velocity of the quasiparticle is similar to that of the
Dirac field in a 1D Jackiw-Teitelboim gravitational back-
ground [103]. When σ > 0, the quasiparticle’s group velocity
vanishes at the sites of j → 0, and the quasiparticle shows in
its behavior the group velocity of the light cone approaching
the event horizon of a black hole. One can capture this in-
teresting phenomenon through the wave-packet evolution. We
consider a general Gaussian initial state as follows:

ψ ( j, t = 0) = 1
4
√

π
√

w
e− 1

2 ( j− j0
w

)2
eip0 j, (A5)

where w is the width of the wave packet, j0 is the position of
the center of the wave packet, and p0 = −π/2 is the initial
momentum.

FIG. 5. The wave-packet evolution of CST lattice model (λ = 0)
with σ = 0.5 (a), 1 (b), 1.5 (c), and 2 (d). The initial positions of the
wave packet are at j0 = 2300. The system size N = 2584.

We can see from Fig. 5(a) that, when σ = 0.5, since the
wave packet bounces back after touching the boundary, it
cannot simulate the deceleration process of the wave packet
approaching a black hole horizon.

However, as shown in Figs. 5(b)–5(d), the evolving wave
packet slows down at the sites j → 0 and resides near j = 0.
When σ � 1, to be specific, the system can effectively simu-
late the dynamical properties of the wave packet in the vicinity
of the black hole horizon, i.e., the wave packet becomes
slower and more localized as it approaches the black hole
horizon.

Based on the above analysis, we develop a quasiperiodic
model in CST by applying quasiperiodic potential energy at
each site, which can be used to explore the CST version of
Anderson localization theory. The corresponding Hamiltonian
takes the form

H =
N−1∑
j=1

Jj (ĉ
†
j ĉ j+1 + H.c.) +

N∑
j=1

Vjĉ
†
j ĉ j, (A6)

where ĉ†
j (ĉ j ) is the fermionic creation (annihilation) operator

at the jth site. The on-site potential Vj = λ cos(2πφ j + θ ),
where λ denotes the strength of the incommensurate po-
tential, φ is an irrational number, and θ ∈ [0, 2π ] is the
phase angle. Similarly, we can study the evolution behavior
of wave packets in the CST-AAH model. Without loss of
generality, here we discuss the case of σ = 1 to study the
dynamical evolution of the wave packet by adjusting the
strength of the quasiperiodic potential. Figure 6 shows the
cases of λ = 0.1, 0.5, 1, 1.5, respectively. The initial position
of the wave packet is set at j0 = 2300, w = 50, and the
initial momentum p0 = −π/2. The results show that wave
packets can get close to the black hole horizon for small λ.
However, by increasing λ, the site where the wave packet
can reach will be further and further away from the black
hole horizon ( j = 0), i.e., as λ grows, the left region be-
comes even more prohibitive. To shed more light on this
phenomenon in the CST-AAH model, we propose a segmen-
tation method to expand our knowledge from flat to curved
spacetime.
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FIG. 6. The wave-packet evolution of σ = 1 CST-AAH model
with (a) λ = 0.1, (b) λ = 0.5, (c) λ = 1, and (d) λ = 1.5. The initial
positions of the wave packet are at j0 = 2300. The system size
N = 2584.

APPENDIX B: THE SEGMENTATION METHOD

In this section, we briefly demonstrate how the segmen-
tation method works as shown in Fig. 7. First, we consider
a standard AAH chain with the nearest-neighboring hopping
strength J and system size N → ∞. Then we cut the chain
in the middle to get two new AAH chains, with the hopping
strength of the left chain being set at 0.5J and the right at J .
In a system of size N → ∞, the two new chains acquired by
segmentation can be regarded as two individual flat-spacetime

AAH models featuring different hopping strengths. Simply
put, we have an AAH chain which consists of two standard
flat-spacetime AAH subchains that are step-different in the
hopping coefficient.

In the same way as above, we cut the two subchains in the
middle, respectively. That means the original AAH chain has
been cut three times to become four segments, and then we
set the hopping strengths of the four newly acquired subchains
at 0.25J, 0.5J, 0.75J , and J from left to right. By doing so,
we obtain a coupled AAH chain with three step changes in
hopping strength, which is composed of four individual flat-
spacetime AAH models featuring different hopping strengths.
Repeating the above segmentation N − 2 times, we will obtain
a flat-spacetime AAH model comprising N − 1 segments with
a series of hopping strengths. This reinvented AAH model can
be used to theoretically analyze the CST-AAH model with N
sites because the CST-AAH model with system size N also
exhibits a hopping strength that changes N − 1 times. Note
that the above segmentation model is equivalent to the CST-
AAH model when both the system size and the number of
segmentation approach infinity. In the next section, we will
take a closer look at an example of the segmentation method.

APPENDIX C: PHASE SEPARATION

1. The coupled AAH chain of two segments

The first important discovery of the segmentation method
is phase separation, where a complete AAH chain in CST is

FIG. 7. Schematic diagram of the segmentation method: Approximating the CST-AAH model by the standard AAH model in flat
spacetime. Throughout, for convenience, we choose J = 1 as the unit of energy.
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divided into two parts, with the more warped end (near a black
hole) featuring localized properties and the other end (away
from a black hole) maintaining extended properties. Between
the localized and the extended regions exists a clear bound-
ary, whose analytical expression, based on the segmentation
method, can be obtained through simple logical deduction.
Next, we will focus on the phenomenon of phase separation
during the transition from flat to curved spacetime by explor-
ing the dynamical evolution of particles in the segmentation
model.

For a standard AAH model in flat spacetime, the Hamilto-
nian takes the form

H =
N−1∑
j=1

J (ĉ†
j ĉ j+1 + H.c.) +

N∑
j=1

Vjĉ
†
j ĉ j, (C1)

where J is the hopping strength, which is equal at all sites.
λ is the strength of the quasiperiodic potential, and the rest
of parameters are of the same property as in Eq. (1) (see
the main text). The critical point of the localized-extended
phase transition for the standard AAH model is λc = 2J , i.e.,
when λ � 2J (λ � 2J), all sites exhibit extended (localized)
properties simultaneously. We split it once and set the hopping
strength of the left half of the chain at 0.5J . The corresponding
Hamiltonian reads

Hs=2 = H1 + H2, (C2)

with

H1 =
N
2∑

j=1

J

2
(ĉ†

j ĉ j+1 + H.c.) +
N
2∑

j=1

λ cos(2πα j + θ )ĉ†
j ĉ j,

(C3)

H2 =
N−1∑

j= N
2 +1

J (ĉ†
j ĉ j+1 + H.c.) +

N∑
j= N

2 +1

λ cos(2πα j + θ )ĉ†
j ĉ j,

(C4)

where the subscript s = 2 indicates that the Hamiltonian con-
sists of two parts. One can find from the Hamiltonian that
the phase transition point is at λc1 = 2J1 = 2(0.5J ) = J for a
subchain satisfying H1, while for the H2 subchain, the critical
point is at λc2 = 2(J2) = 2J . Therefore, as the quasiperiodic
potential λ increases, the H1 subchain will first enter the
localized phase (J < λ < 2J), and then the H2 subchain will
follow suit (λ > 2J).

In Fig. 8, we show the evolution behavior of wave packets
whose initial state positions are placed in different subchains.
The wave packet whose initial state is placed in the extended
subchain will never enter the localized subchain. The evolu-
tion results of wave functions again corroborate that the left
half of the chain (J1 = 0.5J) enters the localized phase first,
while the right half enters the localized phase later. Remark-
ably, we find that when the parameters are taken between
the critical points of the phase transition of the two chains
(J < λ < 2J), there will appear a clear boundary between the
localized and extended phases [see Fig. 8(b)]. This is like
water and oil mixed together, which will, after being put still
for a while, become spatially explicitly separated from each
other. Numerical and theoretical results are consistent that

FIG. 8. The wave-packet evolution for (a) λ = 0.5, (b) λ = 1.5,
and (c) λ = 3. Throughout, the initial positions of the two test wave
functions are at j0 = 2300, 500, and system size N = 2584. The
corresponding jc = 1292 in (b).

when λ = 1.5, the critical site of phase separation lies in the
middle of the whole chain, i.e., jc = N/2 [see Fig. 8(b)].

2. The coupled AAH chain of four segments

Now we discuss the four-subchain case, where the corre-
sponding Hamiltonian reads

Hs=4 = H1 + H2 + H3 + H4, (C5)

with

H1 =
N
4∑

j=1

J

4
(ĉ†

j ĉ j+1 + H.c.) +
N
4∑

j=1

λ cos(2πα j + θ )ĉ†
j ĉ j,

(C6)

H2 =
N
2∑

j= N
4 +1

J (ĉ†
j ĉ j+1 + H.c.) +

N
2∑

j= N
4 +1

λ cos(2πα j + θ )ĉ†
j ĉ j,

(C7)

H3 =
3N
4∑

j= N
2 +1

J (ĉ†
j ĉ j+1 + H.c.) +

3N
4∑

j= N
2 +1

λ cos(2πα j + θ )ĉ†
j ĉ j,

(C8)

H4 =
N−1∑

j= 3N
4 +1

J (ĉ†
j ĉ j+1 + H.c.) +

N∑
j= 3N

4 +1

λ cos(2πα j + θ )ĉ†
j ĉ j .

(C9)

Just as in the two-subchain case, the phase transition points
of the four new AAH subchains are λc1, c2, c3, c4 = 0.5J,
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FIG. 9. The wave-packet evolution for (a) λ = 0.2, (b) λ = 0.7, (c) λ = 1.2, (d) λ = 1.7, and (e) λ = 3. The initial wave packets are
placed at j0 = 2400, 1000 in column (a), j0 = 2400, 300 in column (b), j0 = 2400, 800 in column (c), j0 = 2400, 1000 in column (d), and
j0 = 2400, 1000 in column (e). The system size N = 2584. The corresponding jc = 646, 1292, 1938 in (b)–(d), respectively.

J, 1.5J, 2J , respectively. Reusing the above analysis, we find
that the system enters the localized phase in the following
order: H1 subchain, H2 subchain, H3 subchain, H4 subchain.
We show in Fig. 9, through the evolution behavior of the
wave packet over time, the phase separation phenomenon with
different values of parameter λ. Other calculation parameters,
like the system size etc., are marked in the figure.

Figure 9 shows the wave-packet dynamics of a coupled
chain with four segments. The results show that when λ < λc1,
all the subchains of the system are in the extended phase,
so the initial state placed in any position can be extended
throughout the entire chain [see Fig. 9(a)]. As λ increases,
when λc1 < λ < λc4, a part of the entire chain will enter the
localized phase and the rest will be in the extended phase.
Therefore, there is a clear phase separation boundary jc in the
entire chain, and the wave function evolutions on both sides
of the boundary exhibit localized and extended properties,
respectively [see Figs. 9(b)–9(d)]. Furthermore, as λ continues
to increase, the entire chain becomes localized. Therefore,
the wave-packet evolution exhibits localized characteristics
[see Fig. 9(e)].

3. From the coupled AAH chain of N − 1 segments
to CST-AAH model

Finally, let’s turn to the case of N − 1 segments. As shown
above, under the limit of thermodynamics, subchains formed
by segmentation can still be regarded as the standard AAH
model in flat spacetime. Therefore, all the produced AAH
subchains possess self-duality, which means that we can still
deduce the localized-extended critical points of the subchains
of the segmented AAH model from the conclusions of the
standard AAH model. Since the hopping strengths difference
�J = J 1

N−1 , the critical point satisfies the expression

λ = 2Jjc = 2J

(
jc

N − 1

)
. (C10)

As λ increases, subchains satisfying xHj=1,2,...,N−1 will suc-
cessively turn from the extended phase to the localized phase
from left to right. If we consider the more general case where
hopping difference �J between subchains is not a fixed value,
then we need to modify the above expression as λ = 2Jjc =

2J ( jc
N−1 )σ , where σ is the correction coefficient which con-

trols the changing rate of hopping strength.
In the thermodynamic limit, the system is divided into infi-

nite segments. Under such circumstances, the segmentation
model is equivalent to the AAH model in CST. There-
fore, through similar analysis, the analytical expression of
the critical site jc of the localized-extended phase separa-
tion of the CST-AAH model with system size N can be
obtained as

jc =
⌊(

λ

2J

) 1
σ

(N − 1)

⌋
, (C11)

where �...� is the symbol of floor function in mathematics,
which rounds down the numbers to the nearest smaller integer.
At the critical site jc, a clear phase boundary appears. For the
fixed system size N , we can see from the analytical expression
that jc is directly proportional to the strength of the quasiperi-
odic potential λ and inversely proportional to the hopping
strength J . Meanwhile, the CST parameter σ determines the
changing rate of the phase separation critical point jc versus
λ
2J .

Let’s discuss two extreme cases. We first consider the
flat spacetime scenario, where the CST parameter σ = 0 and
the expression becomes jc = �( λ

2J )∞(N − 1)�. As λ grows,
the system will change from an extended to a swing phase.
Specifically, when λ < 2J , we get 0 < λ

2J < 1, and the cor-
responding jc = 0, thus the whole AAH chain is of the
extended state. On the other hand, however, when λ > 2J ,
one can get λ

2J > 1, and then the corresponding critical site
jc = ∞, which leads to the localized phase in the entire
AAH chain. This is in accordance with our knowledge of
the standard AAH model, where no phase separation can
occur.

Now let’s turn to the other extreme, where the spacetime is
severely warped. Without loss of generality, we take σ = ∞.
From Eq. (C11), we have the corresponding phase separation
critical site at jc = N − 1, which is independent of the param-
eters λ and J . Therefore, the extreme CST will completely
freeze the hopping inside lattice systems of condensed matter
to make the whole region localized.

Finally, we analyze the general case through Eq. (C11).
Phase separation occurs when the spacetime curvature value
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FIG. 10. The wave-packet evolution of σ = 1 CST-AAH model
with λ = 0.1 (a), 0.5 (b), 1 (c), and 1.5 (d). In extended subchain,
the initial positions of test wave packet are all at j0 = 2300, while
for localized subchain, j0 = 50, 300, 800, and 1000 from the top
to the bottom. For the right of row (a), we set w = 20, while for
the rest of the figures, w = 50. The system size N = 2584 and the
corresponding jc = 129, 645, 1291, 1937, respectively.

is finite. Taking the parameters discussed in the main text as
an example, when σ = 1, one can obtain the corresponding
expression as jc = �( λ

2J )(N − 1)�. From the above expres-
sion, one can obtain the exact position of the site where phase
separation occurs, and here the j < jc( j > jc) part of the
whole chain exhibits localized (extended) properties.

Similarly, we can depict this characteristic of the system
through the wave-packet evolution. Figure 10 shows the in-
fluence of different λ on the position of the critical point of
the phase separation. The wave packets used for diagnosis are
placed on both sides of the phase separation point, i.e., one
in the extended subchain and the other one in the localized
subchain. In the above calculation, we fix the system size as
N = 2584. The results well confirm our theoretical prediction
that it is CST that induces the localized-extended phase sepa-
ration.

APPENDIX D: MOBILITY EDGE

The occurrence of phase separation can affect the localiza-
tion property of the system. In this section, we dive deeper
into the mobility edge generated in the system based on the
segmentation method.

FIG. 11. (a) Contour plot of eigenstate fractal dimensions corre-
sponding to different eigenvalues as a function of λ, where the black
dashed line is the transition point of the left- and right-half chains.
(b) The distribution of eigenvalues versus level indices in λ = 1.5.
The regions where the eigenenergy of localized subsystem Eloc and
extended subsystem Eext overlap are colored in gray. (c) Fractal
dimensions � of eigenstates corresponding to different eigenvalues
E at different sizes N = 4181 (green), N = 10946 (blue), and N =
17711 (red). The parameter λ = 1.5 and system size N = 2584 in
(a) and (b). In computation, 100 times quasiperiodic averages have
been performed on θ .

1. Two segments

First, we discuss the two-segment case, where fractal
dimensions are calculated to characterize the localization
property of the system. As shown in Fig. 11(a), when the
parameters J < λ < 2J , the fractal dimension indicates the
existence of mobility edge in the system. Previous studies
have shown that there are two ways to induce a mobility edge
in the standard AAH model, i.e., one can either introduce
long-range hopping or exert an energy-dependent quasiperi-
odic potential. We propose in this paper, however, a quite
different approach of CST to induce mobility edge and get
satisfactory results. Next, we will analyze the mobility edge
through the eigenenergy distribution and scaling behavior of
the system. Without loss of generality, we fix the parameter
λ = 1.5. In this case, the H1 subchain becomes localized,
while the H2 subchain still remains extended. We show in
Fig. 11(b) the eigenenergy distribution of Eext and Eloc of
H1 and H2 subchains with respect to the level index β. The
results show that there are three different phases in the system,
namely, the localized phase (regions I1 and I2), the extended
phase (regions III1 and III2), and the swing phase (regions II1,
II2, and II3). Their corresponding wave function eigenener-
gies show three different distributions, namely, the pure local
subchain eigenvalues, the pure extended subchain eigenval-
ues, and the superposition of eigenvalues of the localized
and extended subchains. To better understand the mobility
edge, we scale the fractal dimensions of the eigenstate of
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FIG. 12. (a) Contour plot of eigenstate fractal dimensions corre-
sponding to different eigenvalues as a function of λ, where the black
dashed line is the transition point of H1,2,3,4 subchain. (b) The distri-
bution of eigenvalues versus level indices in λ = 0.7. The regions
where the eigenenergy of localized subsystem Eloc and extended
subsystem Eext overlap are colored in gray. (c) Fractal dimensions
� of eigenstates corresponding to different eigenvalues E at different
sizes N = 4181 (green), N = 10946 (blue)m and N = 17711 (red).
The parameter λ = 0.7 and system size N = 2584 in (a) and (b). In
computation, 100 times quasiperiodic averages have been performed
on θ .

the system. As shown in Fig. 11(c), the fractal dimension
of the localized (extended phase) decreases (increases) with
the ever-growing system size, while the gray region is in-
dependent of system size, which is evidence of the swing
phase.

2. Four segments

Let’s move on to the four-segment case. As has been ana-
lyzed before, since hopping strengths of the four subchains
are J1 = 0.25J, J2 = 0.5J, J3 = 0.75J, andJ4 = J , respec-
tively, they will enter the localized phase successively.
Figure 12(a) shows the fractal dimension of the eigenstates,
and we find that the mobility edge appears in the sys-
tem when the parameter ranges 0.5J < λ < 2J . Since the
critical points of the four subchains entering the localized
phase are different, the mobility edge in the Fig. 12(a)
is actually composed of mobility edge of H1,2,3,4 sub-
chains. Then we fix λ = 0.7J and take it as an example.
In this case, only the H1 subchain is in the localized phase
while the other three subchains are all in the extended
phase.

Figure 12(b) shows the eigenvalues’ distribution of the
localized and extended subchain versus level indices β,
and the gray area indicates where the eigenvalues over-
lap. The distribution of eigenvalues can clearly depict the
existence of multiple energy regions in the system, which

FIG. 13. Fractal dimensions with different CST parameters
σ = 1.5 (a), 2 (b), 3 (c), and 100 (d). The system size N = 2584.

belong to three different phases, namely, the localized, ex-
tended, and swing phases. Through the analytical expression,
we calculate the critical site of phase separation at jc =
646. To prove the occurrence of three different phases in
the system, we conduct scaling analysis again in different
energy regions. The scaling behavior well reflects the dif-
ferences between the regions as well as the three phases
occurring in the system. This is consistent with the con-
clusion in the two-segment case, reaffirming that phase
separation produces rich localized behaviors and mobility
edge.

3. N − 1 segments

Based on the above analysis, now we discuss the case
of N − 1 segments, so as to generalize the theory to the
CST-AAH model. One can see that in the two-segment and
four-segment cases, mobility edge displayed by the fractal di-
mension is zigzagged because the whole chain was segmented
far less than enough. However, for the N − 1 segment case,
the result of the segmentation method is the same as that
obtained by directly calculating the CST-AAH model, i.e., a
very smooth mobility edge appears in the system. In Fig. 13,
we illustrate how the fractal dimension of the CST-AAH
model varies with the parameter λ. The results show that the
mobility edge appears as the spacetime curves, and to what
degree the spacetime curves has an impact on the structure
of the mobility edge. It is worth mentioning that since a very
large CST parameter σ will lead to a dwindling subextended
region, the expansion of the system is inhibited. Therefore,
the fractal dimension of the extended state demonstrated in
the figure cannot turn red, i.e., no matter what the value
of λ is, the fractal dimension � is always less than 1 [see
Fig. 13(d)].

APPENDIX E: SCALING ANALYSIS
OF PARTICIPATION RATIOS

In this Appendix, we discuss the scaling behavior of the
participation ratios in different regions for λ = 1.5, σ = 1. We
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FIG. 14. The scaling behavior of log10(ξ̄ ) (a) and log10(ζ̄ )
(b) versus log10(L) for different λ, where regions I, II, and III rep-
resent localized, swing, and subextended regions, respectively.

define the normal participation ratio (NPR) of the β eigenstate
as

ζ (β ) =
(

N
N∑

j=1

|ψ j (β )|4
)−1

, (E1)

For a localized (extended) state, IPR ξ > 0 and NPR ζ ∼ 0
(IPR ξ ∼ 0 and NPR ζ > 0). We define the average IPR and
NPR within a region as

ξ = 1

ηR

∑
R

ξ, ζ = 1

ηR

∑
R

ζ , (E2)

where ηR denotes the total number of eigenstates in the region
R = I1, I2, II1, II2, II3, III. The scaling behavior of the av-
erage IPR and NPR versus system size is plotted in Fig. 14.
In the log-log plane, the ξ of the localized and swing regions
exhibit the independent of system size, whereas that of the
subextended regions decay linearly with the increasing sys-
tem size. Under certain circumstances, one cannot distinguish
between the localized and swing phases. However, from the

scaling behavior of the average NPR ζ , one can see that ζ of
the localized region decays linearly, whereas the ζ of both the
swing region and the subextended region gradually decrease
to a constant with increasing system size. Comparing the IPR
and NPR, one can distinguish the localized phase from the
swing phase.

APPENDIX F: THE SPATIAL DISTRIBUTION
OF EIGENSTATES FOR DIFFERENT PHASES

To reveal phase separation, we calculate the eigenstates of
different phases versus quasiperiodic potential λ in σ = 1. As
shown in Fig. 15, the localized (extended) region becomes
wider (narrower) with increasing λ. The eigenstates of local-
ized and subextended phases are independent of θ , while that
of the swing phase depends on θ , which agrees well with the
previous analysis.

APPENDIX G: THE COMPLETE PHASE DIAGRAM

In the end, we provide a complete phase diagram of the
AAH model in CST by fractal dimensions under different
parameters. In Fig. 16, by showing scaling behaviors of the
fractal dimension at different energy E , we list and summarize
all possible phases of the CST-AAH model in Fig. 4 in the
main text. Different dashed boxes in Fig. 16 correspond to the
results of σ = 0 (flat spacetime), σ = 1 (CST), and σ = ∞
(CST to the extreme), respectively. One can see that although
the CST-AAH model still experiences a change from the ex-
tended to the localized phases as the quasiperiodic potential
λ increases, the process of phase transition differs from AAH
model in flat spacetime. To be specific, during phase transition
of the CST-AAH model there appears four transitory stages,
i.e., the extended phase steps into the swing phase first, and
then gradually enters the localized phase.

Swing Swing Swing

FIG. 15. Density distribution of eigenstates for localized (top row), swing (middle row), and subextended phase (bottom row). The system
size N = 2584 and the corresponding jc = 904, 1291, 1937 for column (a)–(c), respectively.
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FIG. 16. Scaling analysis for σ = 0 (traditional AAH), σ = 1 (CST-AAH), σ = ∞ (the most curved case). The system size N = 4181
(green), N = 10946 (blue), and N = 17711 (red). The quasiperiodic potential strength λ = 0 (a), λ = 1 (b), λ = 0 (c), λ = 0.5 (d), λ = 0.7
(e), λ = 1 (f), λ = 1.5 (g), λ = 3 (h), λ = 1 (i), and λ = 3 (j). The insets show the eigenvalues Eloc (Eext) of the localized (extended) subsystem
versus different energy indices β. In computation, 100 times quasiperiodic averages have been performed on θ .

Another way to distinguish among the three different
phases and confirm the mobility edge is to examine the
wave function itself. This method is called multifractal
analysis and is often used to study the localized behavior
of AAH models [116]. Through the scaling index in the

multifractal analysis, we again test the correctness of the
above results. The concrete calculation results are shown in
Fig. 17. The fractal dimension and scaling index consistently
prove the existence of a mobility edge in the CST-AAH
model.
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FIG. 17. The minimum of the scaling index αmin for σ = 0 (traditional AAH), σ = 1 (CST-AAH), σ = ∞ (the most curved case). The
system size N = 4181 (green), N = 10946 (blue), and N = 17711 (red). The quasiperiodic potential strength λ = 0 (a), λ = 1 (b), λ = 0 (c),
λ = 0.5 (d), λ = 0.7 (e), λ = 1 (f), λ = 1.5 (g), λ = 3 (h), λ = 1 (i), and λ = 3 (j). In computation, 100 times quasiperiodic averages have
been performed on θ .
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