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Effect of screening on the relaxation dynamics in a Coulomb glass
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This paper examines the relaxation dynamics of a two-dimensional Coulomb glass lattice model with high
disorder. The study aims to investigate the effects of disorder and Coulomb interactions on glassy dynamics by
computing the eigenvalue distribution of the linear dynamical matrix using the mean-field approximation. The
findings highlight the significance of the single-particle density of states (DOS) as the main controlling parameter
affecting the relaxation at intermediate and long times. For the model with unscreened Coulomb interactions,
our results indicate that the depletion of the DOS near the Fermi level leads to logarithmic decay at intermediate
times. As the relaxation progresses to longer times, a power-law decay emerges, with the exponent approaching
zero as the disorder strength increases, suggesting the manifestation of logarithmic decay at high disorders. The
effects of screening of interactions on the dynamics are also studied at various screening and disorder strengths.
The findings reveal that screening leads to the filling of the gap in the density of states, causing deviation from
logarithmic decay at intermediate disorders. Moreover, in the strong disorder regime, the relaxation dynamics are
dominated by disorder, and even with screened Coulomb interactions, the electronic relaxation remains similar to
the unscreened case. The time at which crossover to exponential decay occurs increases with increasing disorder
and interaction strength.
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I. INTRODUCTION

Slow dynamics is one of the most striking features of
glasses, as observed both numerically [1–4] and experimen-
tally [5–14]. Understanding the origin of these slow dynamics
is an important problem in condensed-matter physics. In
disordered electronic systems, it is generally believed that
the interplay of disorder and unscreened Coulomb interac-
tion results in glassy behavior. The Coulomb glass (CG)
model, which exhibits many characteristics of glass [4,
15–26], provides an excellent framework for understanding
these phenomena. The CG model describes a disordered
lattice of electrons that interact via unscreened Coulomb in-
teractions. The strength of disorder and interaction between
the electrons plays an important role in the formation of the
soft Coulomb gap at high disorders [27–37]. The gap in the
single-particle density of states (DOS) of the system is filled
up as the temperature is increased [38], or if the electron-
electron interaction is screened. Since unscreened Coulomb
interactions are pivotal to the formation of the soft Coulomb
gap at high disorder, one concludes that the slow relaxation
is due to the interplay between disorder and interactions. This
has been observed experimentally [39–47] for samples where
both disorder and interactions are strong, but the question
remains about the role of long-range Coulomb interactions
played in slow relaxation.

The relaxation dynamics in a CG system can be stud-
ied experimentally in a variety of procedures, for example,
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quenching the system from high temperatures to low tem-
peratures [48]. In this case one observes that the excess
conductance of the sample initially relaxes very fast, followed
by a slow relaxation. Similarly, a nonequilibrium state can
also be created using gate protocols [7,49] or by absorption of
light [50,51]. In all cases, the slow relaxation behavior can be
explained by the formation of the Coulomb gap in the density
of states (DOS) [52–54]. The gap forms slowly with time,
and its width depends on the strength of the disorder and the
electron-electron interactions.

Experiments [55] have also been carried out on samples
having screened Coulomb interactions, in which a metallic
plate is employed to screen the interaction between electrons.
The sluggish dynamics seen in these samples are surprisingly
quite similar to those in the reference sample without the
metallic plate.

In this paper we investigate the role of screening on slow
dynamics in the CG model using mean-field approximation.
We compare the dynamics with unscreened Coulomb interac-
tions to the dynamics with screened Coulomb interactions as
a function of disorder strength. Our aim is to gain a better un-
derstanding of the interplay between disorder and interactions
and the role of screening on slow dynamics. Other effects of
the screening not considered here, such as the polaronic effect
[56], may affect the dynamics.

Our paper is organized as follows. In Sec. I we describe
the experimental setup. In Secs. I and II we discuss the ex-
perimental setup and the model Hamiltonian. In Sec. IV A we
present the results of the single-particle density of states. In
Sec. IV B we discuss the relaxation dynamics in the presence
of unscreened Coulomb interactions and also in the case of
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screened Coulomb interactions. Finally, in Sec. V we con-
clude the paper with a summary of our results.

II. EXPERIMENTAL SETUP

Anderson insulators that possess strong disorder and strong
interaction (high carrier concentration) demonstrate slow re-
laxation and memory effects. The precise influence of the
long-range unscreened Coulomb interactions on these phe-
nomena occurring outside of equilibrium is not yet well
understood. Recently, experiments [55] were conducted to
investigate the relaxation of InxO samples. This was achieved
by introducing a metallic gold plate in close proximity to the
sample, with the sample being situated between two layers
of SiO2. The gold film was deposited on one of the SiO2

layers. The spacing between the screening layer (gold film)
and the sample was controlled by altering the thickness (d)
of the SiO2 layer. The degree of screening decreases as the
SiO2 layer thickness increases. The concentration of carriers
was deliberately maintained at relatively low levels, resulting
in shorter relaxation times of the order of 103 s. These short
relaxation times allowed an examination of deviations from
the expected logarithmic relaxation law by comparing the
outcomes of the screened and unscreened (reference) samples.

III. MODEL

The Hamiltonian used in this paper has been defined in
terms of occupation numbers ni and the on-site random field
energy φi. In dimensionless units, the Hamiltonian at half-
filling is given by

H{ni} =
N∑

i=1

φini + 1

2

∑
i �=k

Jik (ni − 1/2)(nk − 1/2). (1)

The occupation number ni takes on values 0 or 1, corre-
sponding to the absence or presence of an electron at site i,
and φi is the random on-site energy. The interaction between
sites i and k is given by Jik , which can be either unscreened
Coulomb interaction (CI) [57–60] or screened Coulomb
interaction (SI) [61]:

Jik = 1

rik
, unscreened Coulomb interaction (2a)

Jik = 1

rik
− 1√

r2
ik + 4d2

, screened interaction, (2b)

where rik is the distance between sites i and k under periodic
boundary conditions, and d is the separation between the
metallic plate and the system (we call it the screening distance
here).

IV. RESULTS

A. Local equilibrium

The first step in calculating the relaxation dynamics is to
find the local equilibrium state at a finite temperature for a
given disorder realization. We use the mean-field (MF) ap-
proximation to calculate the average occupancy at each site i

at temperature T = β−1. The average occupation is given by

Fi = fFD(εi ) = 1/(exp[βεi] + 1), (3)

where fFD is the Fermi-Dirac distribution function, and εi is
the Hartree energy at site i, defined using a self-consistent
equation as

εi = φi +
∑
k �=i

Jik (Fk − 1/2). (4)

We solve the self-consistent equations for a square lattice
with N = 1600 sites under periodic boundary conditions. The
values of φi are drawn from a box distribution of width
[−W/2,W/2], where W is the disorder strength. To ensure
the accuracy of our results, we average over 500 random
configurations.

We perform our calculations for both cases of unscreened
and screened Coulomb interactions to allow investigation of
the influence of screening on the dynamics of the system. The
screened interaction takes into account the electron-electron
Coulomb interaction and their images in the metal plane
that is parallel to the system at a distance d (screening dis-
tance). As the distance between the metallic plate and the
system increases, the screening of electron-electron interac-
tion decreases. The comparison between the density of states
(DOS) with screened and unscreened interactions is shown
in Fig. 1(a). In the presence of unscreened Coulomb interac-
tions and at finite temperatures, the density of states (DOS)
is expected to have a soft gap near the Fermi level (μ) such
that g(μ) ∝ T D−1, where D is the dimension [28,62]. As a
consequence, the minimum DOS value within the Coulomb
gap is attained at the Fermi level and is the main characteristic
defining the Coulomb gap. It is noteworthy that alterna-
tive methodologies for DOS computation [31,32,35,38,63,64]
reveal that the temperature-induced filling of the gap is
comparatively subdued within the context of mean-field ap-
proximations. The screening of Coulomb interactions leads to
the filling of the gap.

To quantify the effect of disorder and screening on the
smearing of the gap, we look into the DOS at the Fermi level
(g(μ)) as a function of d at different disorder strengths (W ),
as shown in Fig. 1(b). We also calculate the relative change in
g(μ), which is defined as

�g(μ) = g(μ)SI − g(μ)CI

δg
. (5)

Here g(μ)SI is the DOS at the Fermi level due to screened
interactions, g(μ)CI is the DOS at the Fermi level due to
Coulomb interactions, and δg ≈ W −1 is the height of the DOS
in the case of unscreened Coulomb interactions [see Fig. 1(a)
for details].

B. Relaxation dynamics

The conventional explanation for the sluggish dynamics
in glasses is that the system struggles to overcome potential
barriers and gets trapped in metastable states. This ap-
proach focuses on the energy landscape with multiple valleys
[45,62]. In contrast, the present paper considers a single valley
scenario where the system is only slightly off its local equilib-
rium [26,65]. The relaxation dynamics of the system back to
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FIG. 1. (a) Histogram of the Hartree energy ε [obtained using Eq. (4)] at W = 2 and β = 10. Here J = 1/r corresponds to the Coulomb
interaction case as defined in Eq. (2a), and d = 1 and d = 0.5 correspond to the screened interaction case [see Eq. (2b)]. δg is the height of
the density of states (DOS) in the unscreened Coulomb interaction case. g(μ)SI and g(μ)CI are the DOS at the Fermi level (μ = ε = 0) for
the screened and unscreened case, respectively. (b) The density of states at the Fermi level g(μ) as a function of distance d . Inset shows the
relative change in g(μ), which is calculated using Eq. (5).

its local equilibrium state are then observed using a general-
ized master equation [66]:

d

dt
P({nμ}, t ) = −

∑
μ �=ν

Wμ→ν P({nμ}, t )

+
∑
ν �=μ

Wν→μ P({nν}, t ) , (6)

where Wμ→ν signifies the transition rates from state μ to ν,
and P({nμ}, t ) is the likelihood that the system will be in state
μ at the time t . Single-electron transfer or multiple-electron
transfer can be used to describe the transition rates that con-
serve the particle (electron) number. In this paper we study the
evolution by considering only the single electron transitions.
The effect of multiparticle hops is not considered here.

When using the MF approximation, close to local equilib-
rium, the average occupation at site i can be given as

Ni(t ) = fi + δNi, (7)

where fi is the occupancy at local stable point, fi = mi − 1/2,
and δNi is the deviation of average occupancy from fi. The
time evolution of the fluctuation is controlled by the matrix
equation

d

dt
δNi = −

∑
l

Ail δNl , (8)

where we define

�ik = 1

2τ
γ (rik ) fi(1 − fk ) fFD

(
εe

k − εe
i

)
, (9a)

�ki = 1

2τ
γ (rki ) fk (1 − fi ) fFD

(
εe

i − εe
k

)
, (9b)

Aii =
∑
k �=i

�ik

fi(1 − fi )
, (9c)

Ail = − �li

fl (1 − fl )
− 1

T

∑
k( �=l �=i)

�ik (Jkl − Jil ). (9d)

Here γ (rik ) = γ0e−rik /ξ , where γ0 ≈ 1012 s−1 is a constant,
and ξ is the localization length. fFD(ε) = 1/(exp[ε/T ] + 1)
is the Fermi-Dirac distribution, and εe

k represents the Hartree
energy of site k in equilibrium. The equilibrium electron
transition rate from site i to k (k to i) is given by �ik (�ki)
and �ik = �ki. In the context of our work, when we refer
to the energy of the system, we are specifically referring to
the energy of electrons, which is given by Eq. (1) (electron-
phonon interaction is neglected). Within the framework of
mean-field approximation, the change in energy of electrons
due to an electron transition from site i to site k is captured
by εk − εi, where εk and εi represent the single-particle en-
ergy (Hartree energies) at sites k and i, respectively. It is
important to note that the actual energy change during the
transition from the site i to k is equal to εk − εi − 1/rik . The
transition that leads to an increase (or decrease) in the en-
ergy of an electron involves the absorption (or emission) of
a phonon with an energy equal to the energy of the electron
transition. The eigenvalue distribution P(λ) of the “A ma-
trix” controls the dynamics of the system, which was pushed
marginally away from its local equilibrium state in this case.

The dynamics of the system can be categorized into four
temporal zones, including the initial fast relaxation, slow re-
laxation at intermediate and long times, and the final decay
to equilibrium. The initial fast relaxation is caused by the
system relaxing through energy-lowering transitions between
nearest-neighbor sites. At intermediate and long times, the
slow relaxation is due to transitions, which result in an in-
crease in the system’s energy. The functional form of the
eigenvalue distribution P(λ) leads to different decay laws, and
the system will eventually relax to equilibrium via exponen-
tial decay for times t > 1/λmin, where λmin is the minimum
eigenvalue of the “A matrix.” We will discuss this in detail
in the next section for screened and unscreened Coulomb
interactions.

Slow dynamics are prevalent in systems having both inter-
actions and disorder. Yet, distinguishing whether the dominant
cause for slow dynamics lies in the interactions or in the
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FIG. 2. Plot of the distribution of the ln(λ) of the dynamical matrix A obtained by solving Eq. (9) using Coulomb interactions [given in
Eq. (2a)] at different disorders, (a) at short times and (b) intermediate and long times.

disorder may be difficult experimentally. Specifically, in the
electron glass, changing the electron density changes both
disorder and interaction strengths, making their independent
study difficult. Nevertheless, numerical methods can be used
to investigate the individual roles of disorder and interac-
tion. To achieve this, three different scenarios are considered
here: the unscreened Coulomb interaction case, the screened
Coulomb interaction case, and the case where the ratio of
disorder and interaction is kept constant to examine the re-
laxation dynamics.

1. Unscreened Coulomb interactions

In this section we study the relaxation dynamics of the
system for the case of unscreened Coulomb interactions. In
the first scenario, the interaction strength is kept constant
while varying the disorder strength to determine the effect of
the disorder on slow relaxation. The distribution P( ln(λ)) of
the eigenvalue λ of the “A matrix” is displayed in Fig. 2. The
eigenvalues have been scaled by the factor exp(−1.0/ξ ). The
plot shows that P( ln(λ)) displays peaks at high eigenvalues
(initial times) corresponding to λ = 1 and 2. These peaks rep-
resent an electron relaxing to the nearest-neighbor site through
an energy-lowering transition in the case of a single such
available site (λ = 1) and two such available sites (λ = 2). At
intermediate times, in the regime ln(λ) = −2 to ln(λ) = −5,
the distribution P( ln(λ)) is approximately parallel to the x
axis as shown in Fig. 2(b). This implies that P(λ) ≈ c/λ,
and thus the fluctuations in the system decay by the loga-
rithmic decay law, δn(t ) ∼ ln(t ), at intermediate times for all
disorders.

Subsequently, the relaxation process in the system occurs
through electron transitions to the next-nearest-neighbor site,
resulting in energy-lowering transitions. This phenomenon
gives rise to peaks in the probability distribution at approx-
imately ln λ ≈ −8 [see Fig. 2(b)]. Each peak corresponds
to a specific number of available transition sites: one peak
represents a single possible transition, while the other two
peaks correspond to two and three available transition sites.
This behavior is analogous to the peaks observed in Fig. 2(a)
for nearest-neighbor transitions.

As time progresses, particularly at long timescales, the
system undergoes relaxation to nearest or next-nearest-
neighbor sites through transitions, which result in an
increase in the system’s energy within the range of λmin <

λ < e−10. This region can be further divided into two parts.
Initially, there is a period of slow relaxation, ln(λ′) < ln(λ) <

−10, followed by a more pronounced decrease towards λmin.
We observe that the system relaxes slowly until the time
t ′ = 1/λ′, where the specific value of λ′ depends on the disor-
der (as depicted in Fig. 3). Subsequently, the system exhibits
exponential decay after the time τ = 1/λmin. It is worth noting
that these two distinct timescales, t ′ and τ , have also been
observed experimentally [55].

To determine the slow relaxation law in the long time
regime, P(λ) vs ln(λ) is shown in Fig. 3. It is noted that the
plot of P(λ) against λ on a log-log scale is a straight line when
λ is greater than λ′, with an absolute value of the slope less
than 1. This indicates that the relaxation follows a power-law
decay [δn(t ) ∼ t−α]. The absolute value of the slope increases
as W becomes larger, and for W = 4 and 6, it approaches 1,
indicating that the behavior is close to logarithmic decay in
these cases. The crossover from logarithmic decay to power-
law behavior with α = 0.2 with time has been observed in
experiments [8], while in some experiments [9], only ln(t )
behavior is observed.

For cases where λmint � 1, the change in energy �E ∝
δn(t ) [62], and thus the energy decay will exhibit distinct
behaviors depending on the form of the probability distribu-
tion P(λ). Specifically, when P(λ) = λ−1, the energy decay
follows a logarithmic relationship, expressed as �E ∝ ln(t ).
On the other hand, when P(λ) = 1

λ1−α , the energy decay
is characterized by a power law, resulting in �E ∝ t−α .
An assumption that holds some plausibility, though not en-
tirely conclusive, is that the reduction in conductivity is
directly proportional to the decrease in energy for timescales
t � λ−1

min [62].
We also observe [see Fig. 2(b)] that P(λ) for the interme-

diate times decreases as the disorder increases. This implies
that as the disorder increases, the probability of an electron
finding a hole to be excited to with only a small energy gain
at the nearest-neighbor site decreases. These electrons jump

094208-4



EFFECT OF SCREENING ON THE RELAXATION … PHYSICAL REVIEW B 108, 094208 (2023)

FIG. 3. The relaxation law governing the behavior of small eigenvalue distribution (in Coulomb interaction case) at long times, P(λ) ∝
c/λx (where x is provided by the slope of the straight line fit), are studied here for different disorders.

to higher energy holes (at long times) to relax as the disorder
increases, leading to a decrease in the value of λmin. These
effects can be explained by a decrease in the number of states
around the Fermi level as the disorder increases. The number
of holes in an energy range E above the Fermi level is propor-
tional to E/W for energies inside the Coulomb gap and 1/W
for sites outside the gap. Thus the probability of an electron
finding a hole (�E > 0 transitions) with energy E decreases
as disorder increases. For transitions that result in an increase
in the system’s energy, λ ∝ e−β�E , so P(λ) at intermediate
times and λmin decrease with an increase in disorder. The
system will eventually relax to a local equilibrium state via the
exponential law δn(t ) = e−t/τ . The value of τ = 1/λmin will
increase with increasing disorder. The conundrum of whether
the disorder or the Coulomb gap (due to long-range Coulomb
interactions) is the primary cause of the slow relaxation arises
from the fact that J/W is decreasing as W increases.

The finite-size analysis shows that the DOS at and around
the Fermi level varies with the system’s size. However, the
impact on the eigenvalue distribution of the A matrix (P(λ))
and hence on dynamics is negligible. The details are discussed
in Appendix.

2. Screened Coulomb interactions

In order to separate the effects of disorder and interaction,
we now consider the case where the disorder is constant, but
the interactions change as a result of the addition of a screen-
ing plate. The effect of disorder strength (W ) and screening
length (d) on the dynamics of the system is analyzed by
keeping the disorder strength constant while screening the
Coulomb interactions using the screened interaction speci-
fied in Eq. (2b). The behavior of P(λ) is studied for various
screening lengths and disorders, and the results are illustrated
in Fig. 4.

At a fixed disorder level, it has been observed that the slope
of P( ln(λ)) versus ln(λ) increases as the screening parameter
d decreases, specifically for intermediate and long timescales.
Furthermore, the value of λmin, which represents the inverse
of the longest relaxation time, also increases as d decreases.
These findings suggest that the relaxation process becomes
faster as the screening of Coulomb interaction increases. It
is worth noting that the changes in the slope value and λmin

are relatively small when the disorder is sufficiently high, as
depicted in Fig. 4(c).

The effect of screening on the relaxation dynamics is at-
tributed to the smearing of the gap in the density of states
(DOS) due to screening, as seen in Fig. 1(a). The screening
leads to a sufficient number of electrons (holes) close to the
Fermi level, allowing the system to relax to a low-energy state
more effectively. The filling of the gap is found to be around
10%–25% for screening lengths corresponding to d � 1.5, as
shown in Fig. 1(b). For these values of d , the difference in
the slopes between screened and unscreened cases at W =
4 and 6 is small, and hence the system will decay via a
nearly logarithmic law, similar to experimental observations
[55] where Coulomb interactions were screened by a metallic
plate, resulting in a 12%–23% filling of the Coulomb gap.

The effect of very strong screening (d = 0.5) on the dy-
namics is also studied. In Fig. 1(b) one observes that at d =
0.5, the gap is about 60% filled for all disorders. Upon com-
parison [see Figs. 5(a) and 4] one observes that λmin increases
substantially by a factor of approximately e3 with respect to
the unscreened case. This implies that the system will show
slow relaxation for a much shorter period of time, which may
not be observable experimentally. For the smallest disorder
considered (W = 2), the system will show no logarithmic
decay, and for W = 4 [see Fig. 5(b)], the system will decay
via power law [δn(t ) = 1/tα] for intermediate and long times
with α values of 0.1136 and 0.3490, respectively. At high
disorder (W = 6), as shown in Fig. 5(c), the system will decay
via a nearly logarithmic law (with α values of 0.0555 and
0.1080 at intermediate and long times, respectively), showing
that slow relaxation can happen without strong interaction
effects consistent with the experimental findings [55].

To grasp the significance of the role of interactions on
relaxation, we have analyzed the effect of doubling the in-
teraction strength while keeping the disorder constant for the
unscreened interaction case. Here we study a W = 4 case (see
Fig. 6) in which the unscreened Coulomb interaction exhibits
logarithmic decay at intermediate times. The relaxation time
τ increases by a factor of approximately 103 (e7) on doubling
the interaction strength. This slowdown in the relaxation pro-
cess is due to the doubling of the width of the Coulomb gap,
leading to a significant decrease in DOS around the Fermi
level. Experimentally [40], one has observed a rapid increase
in τ as the width of the Coulomb gap increases. The Coulomb
gap width is proportional to the strength of interaction, which
is proportional to the square root of the carrier concentra-
tion. In experiments, increasing the carrier concentration also
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FIG. 4. Log-log plot of the distribution of the eigenvalues of the
dynamical matrix A obtained by solving Eq. (9) using Coulomb
interactions and screened interactions. (a)–(c) Represent the interme-
diate and long time behavior at W = 2, 4, and 6, respectively. Here
J = 1/r corresponds to the Coulomb interaction case as defined in
Eq. (2a), and d = 1.5 to d = 3 corresponds to the screened interac-
tion case [see Eq. (2b)].

leads to an increase in disorder [41], making it difficult to
understand the role of interactions in the slow relaxation pro-
cess when disorder and interaction strength are comparable.

FIG. 5. (a) Log-log plot of the distribution of the eigenvalues of
the dynamical matrix A obtained by solving Eq. (9) using screened
interactions with d = 0.5 in Eq. (2b) at different disorders. The re-
laxation law governing the behavior of small eigenvalue distribution
(in the screened interaction case) with d = 0.5 and W = 4. (c) The
relaxation law governing the behavior of small eigenvalue distribu-
tion (in the screened interaction case) with d = 0.5 and W = 6.

At later times, the power-law exponent α decreases signifi-
cantly, and the decay becomes approximately logarithmic.

We will now examine the impact of doubling the inter-
action strength on relaxation dynamics under the condition
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FIG. 6. (a) Histogram of the Hartree energies ε [obtained using Eq. (4)] for different interaction strengths at W = 4. (b) Log-log plot
of the distribution of the eigenvalues of the dynamical matrix A obtained by solving Eq. (9). J ′ = 1/rik − 1/

√
r2

ik + 4d2 and 2J ′ = 2/rik −
2/

√
r2

ik + 4d2 correspond to the screened interaction case where d = 0.5. J = 1/rik , and J = 2/rik corresponds to the Coulomb interaction
case.

of constant disorder, specifically focusing on the scenario
of strong screening (d = 0.5). Comparison of 2J ′ = 2/r −
2/

√
r2 + 4d2, W = 4 with J ′ = 1/r − 1/

√
r2 + 4d2, W = 4

where d = 0.5 [see Fig. 6(b)] shows that relaxation in both
cases is similar. Thus in the case of strong screening, the
interaction is now short range, and the degree of relaxation
is mainly determined by the degree of disorder. Our results
suggest that doubling the interaction without screening has
a far more substantial effect on the dynamics than doubling
the interaction in the strongly screened scenario. Another
observation that is made from Fig. 6(a) is that the width of
the Coulomb gap is roughly comparable for the two screened
cases and the J = 1/r case. The only notable variation is
the Coulomb gap’s dip. While the gap is well formed in the
unscreened case, it is substantially filled in the two screened
cases. As a result, the variation in τ values for these three sce-
narios is minimal, but logarithmic decay at intermediate times
can only be seen for the unscreened Coulomb interaction. We
provide a rough explanation for this behavior. The width of
the Coulomb gap and the single-particle density of states (both
depend upon the strength of interaction for constant disorder)
affect the distribution’s lowest eigenvalue. On the other hand,
the depletion of the DOS at the Fermi level is responsible
for the logarithmic time dependence observed at intermediate
times for the unscreened Coulomb interaction.

3. Constant J/W ratio

Finally, in the third scenario both the disorder and interac-
tion strength are increased while keeping their ratio constant.
This scenario is expected to be similar to the experimental
situation where the carrier concentration and disorder in a
sample increase.

The results show that when both the disorder and interac-
tion strength are doubled for the unscreened interaction case,
the relaxation dramatically slows down. This is evident from
the increase in τ , which is roughly 20 000 (e10) times greater
when J = 2/r and W = 4 compared to when J = 1/r and
W = 2 [as shown in Fig. 7(b)]. The decrease in DOS around
the Fermi level, as shown in Fig. 7(a), is attributed to both
an increase in disorder and the widening of the Coulomb gap.

Therefore for high disorder with unscreened interaction, the
system decays according to the logarithmic law, but the re-
laxation time (τ = 1/λmin) depends on the degree of disorder
and interaction. The results for the strong screening scenario
(d = 0.5), when the disorder and interaction are doubled, are
also discussed [see Figs. 7(c) and 7(d)]. The lower value of
DOS around the Fermi level and increase in the width of the
distribution in the W = 4 case compared to the W = 2 case
leads to slower relaxation as the disorder increases.

V. DISCUSSION

In summary, this study discusses the relaxation dynamics
of a Coulomb glass model in relation to disorder and screen-
ing. The results show that the system relaxes via logarithmic
decay at intermediate intervals, regardless of the degree of
disorder, when unscreened Coulomb interactions are present.
However, the system decays via power law [δn(t ) ∼ tα] at late
times with a smaller exponent (α) as the disorder increases,
and for strong disorders, the exponent can be almost zero,
with logarithmic decay potentially visible in experiments. The
relaxation is faster, and the deviation from logarithmic decay
can be observed when the interactions are screened, and the
density of states near the Fermi level plays a crucial role in
explaining these findings. The system begins to relax grad-
ually when there are few electronic states close to the Fermi
level. The depletion of electronic states around the Fermi level
is accelerated by increasing disorder and opening a Coulomb
gap, which causes slower relaxation. The Coulomb gap is
filled and narrowed due to the Coulomb interaction being
screened, leading to faster relaxation. In the case of strong
disorders with weak screening (where the gap is filled by
10%–25%), we observe that the relaxation behavior closely
resembles that of the unscreened case. These findings are
consistent with experimental observations where a metal plate
was used to screen the Coulomb interaction, resulting in a
filling of the gap by approximately 12%–23%. Our findings
concerning strong screening within the high-disorder regime
indicate that the relaxation dynamics are primarily governed
by the disorder strength. In this scenario the time required to
enter the exponential decay regime decreases compared to the
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FIG. 7. (a)–(c) Histogram of the Hartree energies ε [obtained using Eq. (4)] for different disorder values and interaction strengths.
(b)–(d) Log-log plot of the distribution of the eigenvalues of the dynamical matrix A obtained by solving Eq. (9). J ′ = 1/rik − 1/

√
r2

ik + 4d2 and
2J ′ = 2/rik − 2/

√
r2

ik + 4d2 correspond to the screened interaction case where d = 0.5. J = 1/rik and J = 2/rik correspond to the Coulomb
interaction case.

unscreened case, with the main determining factor being the
disorder.

Furthermore, the study investigates the separate roles of
disorder and interaction strength in determining the relaxation
dynamics. In experiments on thin films, increasing the con-
centration (n) of sites in the material increases the interaction
between electrons. When n increases, the interaction grows
while the average distance between sites (ravg) decreases. In
a system with strong localization, the disorder strength will
be of the order of Fermi energy, which rises with n. As a
result, an increase in site density causes the ratio of interaction
strength (J = 1/ravg) to disorder strength (W ) to decrease

by n1/2. In our model a rise in disorder causes a fall in the
height and an increase in the width of the density of states,
whereas a rise in interaction causes a rise in the width of
the Coulomb gap and the DOS. Hence, both disorder and
interaction strength contribute equally to sluggish relaxation
when they are of similar strength. The relaxation time (τ ),
after which fluctuations follow the exponential decay law
towards equilibrium, is another crucial parameter in experi-
ments. In agreement with experiments, our results show that
the τ increases very fast as the strength of the interaction is in-
creased, keeping the disorder strength constant. The increase
in τ is even more when both disorder and interaction strength

FIG. 8. Comparing the single-particle density of states on a logarithmic scale for system sizes L = 40 and L = 20 at disorder W in the
Coulomb interactions case.
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FIG. 9. Comparing the distribution of the eigenvalues of the dynamical matrix A on a logarithmic scale for system sizes of L = 40 and
L = 20 at disorder W in the Coulomb interactions case.

increase, which was also observed experimentally. According
to our data, τ decreases quickly as system disorder decreases,
but interaction strength stays the same. This could explain
why slow relaxation is not seen in semiconductors with light
doping.

Our work is able to qualitatively explain the role of in-
teraction and disorder strength as well as the screening of
Coulomb interaction in the slow relaxation of the CG system.
However, to reach experimental timescales of 103 s or higher
can be achieved by a Monte Carlo simulation [67,68] tailored
to probe long timescales.

Overall, our results suggest that the intermediate and long-
time dynamics are dictated by the DOS near the Fermi energy
and far from the Fermi energy, respectively. Thus, and since
disorder dictates a pseudogap in the DOS, we find that at
large disorders, the decay is logarithmic and slows down with
increased disorder. And also, interactions decrease the DOS
near the Fermi energy and cause slower dynamics.
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APPENDIX: FINITE-SIZE EFFECT

We have examined the impact of system size on the
density of states (DOS) and the distribution of eigenvalues
of the A matrix (P(λ)) within the context of unscreened
Coulomb interactions. Figure 8 illustrates the finite-size ef-
fects on the density of states near the Fermi level for disorder
strengths of W = 2, 4, and 6. Additionally, Fig. 9 presents
the finite-size behavior of the probability distribution P(λ)
of eigenvalues (λ) of the dynamical matrix (A matrix) un-
der different disorder strengths for the unscreened Coulomb
interactions case. It is observed that when |ε| � 0.1, there
are variations in the density of states with respect to the
system size. However, as seen from Fig. 9, these variations
have a negligible impact on P(λ) and hence on the relaxation
dynamics.
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