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Anomalous Floquet-Anderson insulator with quasiperiodic temporal noise
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Time-periodic (Floquet) drive can give rise to novel symmetry breaking and topological phases of matter.
Recently, we showed that a quintessential Floquet topological phase known as the anomalous Floquet-Anderson
insulator is stable to noise on the timing of its Floquet drive. Here, we perturb the anomalous Floquet-Anderson
insulator at a single incommensurate frequency, resulting in a quasiperiodic two-tone drive. Our numerics
indicate that a robust topological phase survives at weak noise with topological pumping that is more stable
than the case of white noise. Within the topological phase, we show that particles move subdiffusively, which
is directly responsible for stabilizing topological transport. Surprisingly, we discover that when quasiperiodic
noise is sufficiently strong to kill topology, the system appears to exhibit diffusive dynamics, suggesting that the
correlated structure of the quasiperiodic noise becomes irrelevant.

DOI: 10.1103/PhysRevB.108.094207

Introduction. Time-dependent Hamiltonians exhibit a wide
variety of quantum phenomena that cannot be found in static
systems [1]. For instance, periodic time-dependence, a.k.a.
Floquet drive, opens up the possibility of discrete time crys-
tals [2–9] and Floquet symmetry-protected topological states
[10–29]. A canonical example of Floquet topology is the
anomalous Floquet-Anderson insulator (AFAI), in which the
insulating bulk has particles with nontrivial micromotion,
even though they are stroboscopically localizable. Despite
Anderson localization of the entire bulk, and thus a vanishing
Chern number, the AFAI nevertheless has chiral edge states
which remain robust to finite disorder.

More recently, we have shown that the AFAI remains
stable in the presence of white noise, which breaks the
time-periodicity of the Floquet problem. Not only is there a
well-defined topological invariant in the presence of noise but
also a quantized topological response—current pumped by the
edge states—remains precisely quantized up to a timescale
set by noise-induced diffusion [25]. While other papers have
suggested formal definitions of topological invariants in open
quantum systems via extensions of the Berry phase [30,31],
our work suggests that Floquet systems provide unique ro-
bustness to noise due to the fact that topology is defined via
time evolution of the entire manifold of states, rather than a
gapped ground state.

Given that the ultimate loss of topological response is due
to noise-induced diffusion, a natural question is what hap-
pens for systems between perfect periodic Floquet drive and
white noise, in which such diffusive dynamics will be altered.
Therefore, in this paper, we consider the important case of
multifrequency drive, also known as quasiperiodic Floquet
drive. Quasiperiodic drive is known to be interesting in a va-
riety of systems, enabling novel topological phases of matter,
symmetry breaking, and other extensions of Floquet theory
[28,29,32–34]. Quasiperiodic drive has also been argued to
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be consistent with many-body localization [35], which might
enable these phases of matter to remain robust to infinite time
even in the presence of interactions. Such drives are widely
expected to modify the diffusive approach to equilibrium,
but also, by extending the classification of Floquet topolog-
ical phases, may enable true, infinitely long-lived topological
states of matter.

In this paper, we consider the simplest case of replacing
the white noise from the bath by a single incommensurate
drive. We explore topological response in this bichromatically
driven system and find finite-time quantization similar to the
noisy case. Unlike the noisy case, quasiperiodic drive creates
an unusual potential landscape in the frequency lattice, which
changes diffusive transport into subdiffusive over a wide range
of parameters. Subdiffusion extends the timescale of topolog-
ically quantized pumping, although it still eventually decays
on timescales set by a power law of system size. In other
models, one may be able to find regimes with localization
in both spatial and frequency directions, for which the topo-
logical response would remain quantized to exponential time
in system size. It might also be worth exploring the absolute
diffusive regime that large chaos pushes the system into, but
that will be beyond the scope of this paper.

Model. We begin with the conventional model of the
AFAI, which consists of spinless fermions hopping on a
two-dimensional square lattice. In the absence of noise or
quasiperiodic drive, the Hamiltonian is given by a five step
drive with period T , such that each step has period T/5. The
first four steps involve hopping between select pairs of sites,

H� = −J
∑
〈i j〉�

c†
i c j, (1)

for � ∈ {1, 2, 3, 4} where the connected sites 〈i j〉� are chosen
such that the particles hop in a closed loop around the pla-
quette each Floquet cycle, as shown in Fig. 1. The hopping
strength J is fine tuned to JT = 5π/2 such that the parti-
cles hop exactly one site per step in the absence of noise or
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FIG. 1. Schematic representation of the five-step drive producing
the quasiperiodically driven anomalous Floquet-Anderson insulator.
In the absence of noise or disorder, bulk fermions hop around one
plaquette during each cycle, returning to their original location (light
blue arrows). Initially the bottom half of the cylinder is filled, but as
time progresses, particles delocalize subdiffusively. Bottom panels
illustrate white noise and triangular-wave quasiperiodic noise.

disorder. The final step is a staggered chemical potential,

H5 = �
∑

j

η jc
†
j c j, (2)

where η j = +1 (−1) on the A (B) sublattice. We consider
cylindrical geometry, with periodic boundary conditions in the
x direction and open boundary conditions in the y direction.
The system size is L × L lattice sites. Finally, we add static
chemical disorder,

Hdis =
∑

μ jc
†
j c j, (3)

to give Anderson localization. The strength of chemical po-
tential disorder is set by Wx such that μ j is uniformly sampled
between [−Wx,Wx]. Units are set by h̄ = 1 and T = 2π

throughout.
We add quasiperiodic noise to our model by varying the

timings of the five steps. Instead of fixed period T/5 per step,
we use

Tj = T

5
(1 + δ j ), (4)

where δ j ∈ [−Wt ,Wt ] is the temporal disorder of strength Wt .
In this paper, we compare two types of noise: true temporal

disorder, i.e., white noise, in which the δ j are chosen inde-
pendently and randomly as in Ref. [27], and quasiperiodic
“disorder,” in which the δ j are a periodic function of time
that is incommensurate with the original Floquet period T .
In particular, we choose

δ j = Wt f

(
2π� j

5
+ �

)
, (5)

where f (θ ) = f (θ + 2π ) is a 2π -periodic function, � is
an irrational number, which we choose as the golden ratio
� = (1 + √

5)/2, and � is the initial phase of the drive.
While a natural choice for f is a sinusoidal function, we
instead choose the triangular wave: f (−π/2 < θ < π/2) =
θ/(π/2), f (π/2 < θ < 3π/2) = f (π − θ ), such that the
probability of a given δ j will be evenly distributed from −Wt

to Wt , enabling direct comparison with white noise. For no-
tational simplicity, since we wish to keep the Floquet period
T constant, we instead think of this 1 + δ j factor as rescaling
coefficients of the Hamiltonian and keep each step at T/5. Our
results will not depend on this choice.

The topological response of the AFAI is most robustly
found by considering a cylinder geometry in which the bot-
tom half of the cylinder is initially filled and the top half is
initially empty. Chiral edge states appear at the top and bottom
edges, and our initial state ensures that only one edge state is
filled. This edge state carries current around the cylinder at a
quantized rate, while the bulk is localized and thus insulating.
Hence, we have quantization of the total charge pumped per
Floquet cycle (Q), which is defined for a given Floquet cycle
by

Q =
∫ t0+T̃

t0

dt〈ψ (t )|Ix|ψ (t )〉, (6)

where Ix is the current operator in the x direction, T̃ = ∑
� T�

is the Floquet period modified by the temporal noise, and t0 is
the start of the Floquet cycle. Our parameters are chosen such
that Q = 1 in the topological phase. We simulate the system
identically to the case with white noise; details may be found
in Ref. [27].

Results. A priori, the effect of quasiperiodic temporal dis-
order on pumped charge (Q) is not obvious. On one hand,
quasiperiodically driven systems are amenable to localization,
allowing the possibility of exponentially long-lived topologi-
cal pumping. On the other hand, systems subjected to white
noise display quantized topological response up to the Thou-
less time for sufficiently weak disorder, which was argued
to result from direct averaging over multiple Floquet cycles
[27]. By contrast, quasiperiodically driven systems do not
self-average in this way, and in particular have the potential
to give constructive interference of the pumping over multiple
cycles that could destroy its quantization.

Therefore, we start with direct simulations of the charge
pumped, Q(t ), as a function of system size, disorder, and noise
strength. A characteristic trace is shown in Fig. 2 for Wx = 1
and Wt = 0.1, which lies in the topological phase of the noisy
model [27]. Both the white noise and quasiperiodic case show
the same general trend—a short-time transient, followed by a
long-lived quantized plateau, and finally decay towards Q = 0.
We first note that charge pumping in the quasiperiodic case
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FIG. 2. Finite-size dependence of charge pumping (Q) as a func-
tion of time with Wx = 1. White noise is seen to cause more rapid
decay than quasiperiodic noise. The noisy curves have Wt = 0.1, well
within the topological phase of the model with white noise [27].

decays much more gradually than the random noise case. This
suggests that the topological phase is at least as stable in the
quasiperiodic case as in the case of white noise. However, it
still leaves open the possibility of a topological phase that
extends to larger values of Wt and is, potentially, infinitely
long-lived for some parameter values.

To better understand the topological behavior with
quasiperiodic disorder, we study the behavior of decay
time τ as a function of system size L. A conventional
topological plateau would survive to time τ ∼ exp(L/ξ ) for
localization length ξ , but we do not see such exponential
growth for any of the parameters simulated. This suggests
that, for our parameter window, no stable topological phase
exists with both real-space and frequency-space localization
(cf. Ref. [29]). In the absence of such “conventional”
multifrequency Floquet topology, an additional importance
is placed on the longevity of the plateau region, since this
determines the nature of our long-lived topological pumping.
Therefore, we will proceed to study the dynamics of Q(t )
to understand this stability more precisely. Similar to the
noisy results, we will confirm that no absolutely stable region
exists, but whereas white noise inevitably leads to diffusion,
quasiperiodic drive can lead to subdiffusion. Towards this
end, we postulate power-law scaling of the decay time,
τ ∼ Lα , and attempt to numerically find the value of α as a
function of spatial (Wx) and temporal (Wt ) disorder.

While quantized charge pumping is the observable con-
sequence of topology, it has strong finite-size effects that
make it less useful for detecting topological phase transitions
[17,27]. Instead, we use metrics for single-particle (Anderson)
localization as sensitive detectors of the spatial and temporal
dynamics of the wave function.

One conventional metric for localization is the level
spacing ratio [36]. However, that requires identification of
eigenstates, which are not easily accessible in our bichromat-
ically driven system. Instead, we consider the participation
ratio (P), which is defined for an arbitrary single-particle state
|ψ〉 and position basis |r〉 as

P =
(∑

r

|〈r|ψ〉|4
)−1

. (7)

For a wave function that is fully delocalized in the position
basis, such that each basis element occurs with probability
p = 1/Nsites, the P is equal to the total number of sites,
Nsites = L2/2. By contrast, if the particle is localized on a
single r site, then P = 1. In general, for a d-dimensional
system, we can think of P1/d as a proxy for the localization
length.

Here we consider the participation ratio for the wave
function |ψ (NT )〉 obtained by time-evolving an initial state
|ψ (0)〉 = |r = (0, 0)〉 located in the middle of the system for
N � 1 Floquet cycles. Participation ratios for various system
sizes and noise strengths are shown in Fig. 3. The first thing
we notice is that P is much smaller for quasiperiodic noise
than for white noise, suggesting that, for a given time NT ,
the quasiperiodic system is much less delocalized than the
white-noise case, which is known to delocalize diffusively.
While a peak appears at finite W , this is not a direct sign
of a phase transition, unlike the Floquet case, because the
peak does not sharpen as a function of system size (data
not shown). Instead, we notice strong finite-size effects and,
more strikingly, large dependence on the evolution time NT .
Empirically, we see that at large L—where finite-size effects
can be neglected—the P appears to approach a power law
scaling, with P ∼ N0.70 for Wx = 1.5 and Wt = 0.1. This is
our first hint of subdiffusive dynamics, which we now probe
in more detail.

Unlike conventional localization problems, this quasiperi-
odically driven system also has another axis in which
localization must be probed. If we consider mapping the
two-frequency Floquet problem to a photon lattice—the
so-called Floquet extended zone picture—then the photons
themselves live on a two-dimensional square lattice with en-
ergy tilt (“electric field”) proportional to the drive frequencies.
This extended zone lattice is illustrated in Fig. 4(a). While
Wannier-Stark localization along the electric field direction
is guaranteed, localization in the orthogonal direction (green
shaded area) depends on the precise model. In the language of
Anderson localization, this orthogonal direction looks similar
to quasiperiodic chemical-potential disorder via a cut-and-
project method [37]. Taken together, the two spatial dimen-
sions and two frequency dimensions give a single-particle
localization problem in a quasi-three-dimensional space, with
a combination of uncorrelated (real-space) and quasiperiodic
(frequency-space) disorder. We are not aware of a solution
to this localization problem. Furthermore, frequency-space
localization has been shown to be fundamental in defining
topological invariants for other quasiperiodically driven sys-
tems [28,29]. Therefore, frequency space localization will be
required for exponentially long-lived topology in our model
as well.

We study frequency-space localization via a generalized
participation ratio, introduced in Ref. [29]. We start with a
discrete Fourier transform of the time-evolved wave function:

|ψN (ω)〉 = N−1/2
N∑

j=1

ei jωT |ψ ( jT )〉, (8)

where ω = 2πk/(NT ) with k = 0, 1, . . . , N − 1. If we think
of this frequency space lattice as our basis, then the density
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FIG. 3. Participation ratio (P) in (a), (d) real space and (b), (c) frequency space with temporal disorder Wt = 0.1. (a), (b) Comparison
of white noise and quasiperiodic drive as a function of number of Floquet periods for a system size of L = 30 (Nsites = L2/2) in both
(a) position space and (b) frequency space. Note that quasiperiodic drive consistently has smaller P�, indicating slower delocalization.
(c) Time-dependence of frequency-space P and (d) spatial P, showing consistency with subdiffusion in real space and superdiffusive but
sub-ballistic spreading in frequency space. In panels (c) and (d), the spatial disorder strength is Wx = 1.5 as indicated by the dashed black line in
panels (a) and (b).

for “site” ω is given by

ρN (ω) ∝ 〈ψN (ω)|ψN (ω)〉. (9)

We choose the normalization
∑

ω ρN (ω) = 1 to match the
conventional P. The frequency space P is then, by analogy,

P� =
(∑

ω

ρN (ω)2

)−1

. (10)

As with real-space participation ratio, P� = N for the fully
delocalized state and P� = 1 for the fully localized state.

The frequency-space P is shown in Figs. 3(b) and 3(c).
Similar to real-space P, it shows evidence of delocalization,
with strong finite-size and finite-time dependence. A power-
law fit gives P� ∼ N0.8 for the parameters shown, which we
analyze further below.

Subdiffusion. If we consider P1/2 and P� as proxies for
the real- and frequency-space localization lengths, then the
power-law fits in Fig. 3 are suggestive of subdiffusive mo-
tion. For Wx = 1.5 and Wt = 0.1, Fig. 3(c) shows spatial P ∼
r2 ∼ t0.70, which is below r2 ∼ t that characterizes diffusion.
Frequency-space P is more complicated, showing P� ∼ t0.8.
Since frequency space is effectively one-dimensional due to
Wannier-Stark localization along 	�, this is superdiffusive but
sub-ballistic. Most notably, frequency space and real space do
not have the same exponents, indicating that particle delocal-
ization is anisotropic in this extended zone picture.

We can study spatial subdiffusion directly by looking at the
variance of the position in the time-evolved state,

R2 = 〈ψ (NT )|r2|ψ (NT )〉. (11)

Fitting this for a given value of spatial and temporal disorder,
as illustrated in Fig. 4(b), we find clear subdiffusive power-
law growth. A phase diagram of the subdiffusive exponent
as a function of Wx and Wt is shown in Fig. 4(c). Note that
the power laws obtained from R2 and those from P match
within error bars [cf. Figs. 3(b) and 4(c)]. More importantly,
the exponent shown here, R2 ∼ tα , matches that from the
timescale for loss of quantized pumping. L2 ∼ τα as a loss
of quantization, is caused by the depopulation of the edge
states, which occurs on a timescale set by subdiffusion. Over
the majority of the phase diagram, quasiperiodic drive shows
clear differences from white noise, where the dynamics are
always diffusive [27]. For sufficiently strong Wx and Wt , the
dynamics is not readily distinguished from diffusion, which
is consistent with the well-studied possibility of diffusion
in three-dimensional disordered systems [38,39]. We have
also added curves corresponding to the numerically identified
topological phase transitions for the case with white noise,
taken from Ref. [27]. Intriguingly, these transitions align
somewhat closely with cases where the exponents appear to
approach those of diffusion. One possible origin of this effect
is the physics of the crossover phase, which was argued in
Ref. [27] to occur for Wx

<∼ 3.6 and Wt > Wt,c(Wx ) (the phase
to the right of the blue line in Fig. 4). In the crossover phase,

FIG. 4. (a) Illustration of the Floquet extended zone picture for two-mode driving. Frequencies ω1 and ω2 map to photons, whose wave
function is Wannier-Stark localized in the direction parallel to the drive frequency ( 	�). Localization perpendicular to 	� (green shaded direction)
depends on many factors, including irrationality of ω2/ω1. (b) Direct calculation of subdiffusion for Wx = 1 and Wt = 0.1. The mean-square
radius increases as ∼t0.5, well below the diffusive exponent, t1. (c) Dependence of subdiffusive exponent, R2 ∼ tα , on spatial and temporal
disorder. Dashed lines show the phase boundaries for white noise, taken from Ref. [27].
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some realizations of temporal noise correspond to a trivial
Floquet problem, while others are topologically nontrivial.
As the Anderson localized micromotion within these two
phases is topologically incompatible, one may imagine that
the cycles add “incoherently” despite the structured nature of
the quasiperiodic drive. This would effectively restore true
decohering noise, and could result in the observed diffusive
spreading.

Discussion. We have seen topological pumping in a
quasiperiodically driven variant of the anomalous Floquet-
Anderson insulator (AFAI). Initially localized states spread
subdiffusively, with exponents determined by the strength
of spatial disorder (Wx) and quasiperiodic temporal disorder
(Wt ). In all situations, the quasiperiodically driven system
is seen to be at least as stable as the equivalent noisy sys-
tem. Given the existence of a stable topological phase with
long-lived quantized pumping in the noisy system [27], our
numerics suggest that such a stable topological phase exists in
the quasiperiodically driven system as well; in particular, we
predict that the topological phase diagram is identical to that
in Ref. [27] (dashed lines in Fig. 4).

While it is encouraging that a topological phase persists at
finite Wt , the nature of the phase and phase transitions remains
unclear. It is not exponentially long-lived in system size, as
is the case for conventional topological phases of matter that
are Anderson localized; despite our best attempts, no fully
localized points in the phase diagram were found. In general,
the study of combined Wannier-Stark and Anderson local-
ization in systems like ours remains an interesting unsolved
problem. Yet we can hope that variants of the model may
be found in which localization is present in both spatial and
frequency directions, for which a topological invariant can
be defined by analogy with the noiseless case. Given that the
topological pumping only relates to the original Floquet cycle
T = 2π/ω1, we expect any topological invariant to integrate
over the ω2 direction. Inspired by the three-dimensional Chern
insulator [40,41], and more generally weak and/or higher-
order topology [42–44], we therefore propose the following
topological winding number to characterize the transient

quantized pumping Q∗ = ν with

ν = 1

16π3

∫
dθxdθydφ1dφ2Tr(P†∂φ1 P[P†∂θx P, P†∂θx P]),

where θx and θy are the magnetic fluxes through the x, y
directions of the torus with periodic boundary conditions, φ1

and φ2 are the phase of the drives at frequencies ω1 and ω2,
and P(	θ, 	φ) is the generalized micromotion operator [29].
In the absence of disorder, this object is well defined and
quantized as long as the generalized Floquet eigenstates are
localized in photon space. In the presence of disorder, it is
only clearly defined for finite systems, but may lose quan-
tization as we take L → ∞ due to delocalization. A similar
loss of quantization occurs in the nontopological “crossover”
regime at large Wt , for which we expect that ν is no longer
independent of φ2. A more explicit connection between this
proposed topological invariant and measurable responses such
as edge-state charge pumping (Q) will be a topic for future
research.

Finally, we note that, were the problem localized in both
frequency and position space, it would admit an alternative
four-dimensional topological description. There are fewer ob-
vious candidates for (non-symmetry-protected) topology in
four dimensions, as the winding numbers usually used for Flo-
quet topology are only defined in odd dimensions [44,45]. One
possibility is to look for a nontrivial second Chern number
[46,47]. Whether second Chern insulators can be extended to
a bichromatically driven two-dimensional system is an inter-
esting open question.
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