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Ab initio studies of the impact of the Debye-Waller factor on the structural and dynamical
properties of amorphous semiconductors: The case of a-Si
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This paper presents a first-principles study of the Debye-Waller factor and the Debye temperature for
amorphous silicon (a-Si) from lattice-dynamical calculations and direct molecular-dynamics simulations using
density-functional theory (DFT). The effects of temperature and structural disorder on the intensity of the
diffraction maxima and the vibrational mean-square displacement (MSD) of Si atoms are studied in the harmonic
approximation, with particular emphasis on the bond-length disorder, the presence of coordination defects, and
microvoids in a-Si networks. It has been observed that the MSDs associated with tetrahedrally bonded Si atoms
are considerably lower than their dangling-bond counterparts—originating from isolated and vacancy-induced
clustered defects—and those on the surface of microvoids, leading to an asymmetric non-Gaussian tail in the
distribution of atomic displacements. An examination of the effect of anharmonicity on the MSD at high
temperatures using direct ab initio molecular-dynamics simulations (without the harmonic approximation)
suggests that the vibrational motion in a-Si is practically unaffected by anharmonic effects at temperatures
below 400 K, as far as the present DFT calculations are concerned. The Debye temperature of a-Si is found
to be in the range of 488–541 K from specific-heat and MSD calculations using first-principles lattice-dynamical
calculations in the harmonic approximation, which matches closely with the experimental value of 487–528 K
obtained from specific-heat measurements of a-Si at low temperatures.
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I. INTRODUCTION

The influence of thermal vibrations on the intensity of
diffraction maxima in crystals has been extensively studied
in the literature [1–5]. Following Debye’s original work [1],
where vibrations in crystals were assumed to be independent
of the position of atoms in a lattice, more accurate calculations
by Faxén [2] and Waller [3] showed that thermal vibrations
reduce the intensity of the diffraction maxima but do not
affect the sharpness of the diffraction lines. The missing in-
tensity from the spectra was found to be present in the general
background, which is known as the thermal scattering. The
intensity reduction factor, e−2M , is known as the Debye-Waller
factor [6], where M = 8π2〈u2〉 sin2 θ/λ2 for elemental solids.
The mean-square displacement (MSD) of atoms, 〈u2〉, along
a direction Q, is perpendicular to the reflecting plane and θ

is the glancing angle of incidence with the plane. The vector
Q is given by (k − k0), where k and k0 are the wavevectors
for the scattered and incident beams, respectively. In Bragg
geometry, the scattering angle 2θ is given by the angle be-
tween k and k0, and |k| = |k0| for elastic scattering with
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|Q| = 2|k| sin θ = 4π sin θ/λ, where λ is the wavelength of
the scattering radiation.

The relationship between the Debye-Waller factor and
finite-temperature atomic vibrations in solids was extensively
studied in the last century [1–5,7–12]. However, the great
majority of these studies are primarily focused on elemen-
tal and molecular crystals using a variety of theoretical
methods. Among these methods, the so-called statistical-
moment approach [13], Green function techniques [7,8],
and lattice-dynamical calculations, employing valence force
fields, shell models, and adiabatic bond-charge models [9,10],
are particularly noteworthy. In recent years, the calculation
of the Debye-Waller factor of crystalline materials has been
addressed by using total-energy and forces from density-
functional theory (DFT) [11,12,14]. By contrast, there exist
only few studies that address the effect of the Debye-Waller
factor in the amorphous state, e.g., As, SiO2 and InP [15–17].
Unlike elemental crystals, the MSD of an atom in an amor-
phous solid varies from site to site and depends on the local
topology of the network. As a result, the MSD of amorphous
solids can significantly depend on the structural quality of
the models employed in the calculations. It is therefore ab-
solutely necessary to compute the Debye-Waller factor using
high-quality structural models of amorphous solids obtained
from ab initio density-functional calculations. A number
of material properties, for example, the first sharp diffrac-
tion peak (FSDP) and the principal peak of the diffraction
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intensity spectrum can be affected by the presence of thermal
vibrations. For amorphous materials, these changes are partic-
ularly important as the diffraction data or the structure factor
plays an important role in characterizing the structure of the
materials.

The absence of translational symmetry in amorphous solids
means that the normal modes and frequencies of vibrations
have to be determined in the coordinate space by computing
the environment-dependent atomic force constants without
the benefit of any symmetry considerations. It is therefore
necessary to calculate the Debye-Waller factor of amorphous
solids in real space. Since the MSD of an atom at high
temperatures can be shown to be proportional to the sum
of the inverse square of the normal-mode frequencies in the
harmonic approximation (see Sec. II B), it is also necessary
to employ a reasonably large model of amorphous solids in
an effort to include the contribution of atomic displacements
from low-frequency normal modes of the system. This re-
quirement can pose a major computational impediment to
accurate ab initio calculations of the MSD of atoms in real
space for large models using an extended set of basis functions
[18]. In this paper, we undertake such a task and study the
effect of local disordering and atomic coordination on the
MSD of atoms in amorphous silicon (a-Si). The effect of the
Debye-Waller factor on the intensity of diffraction peaks is
studied, with emphasis on the FSDP and the principal peak
of a-Si. The variation of the MSD of atoms with temperature
in the presence of coordination defects and short-range and
medium-range ordering in a-Si networks is discussed. We also
examine the effect of the temperature-induced anharmonicity
on the vibrational dynamics of Si atoms in a-Si at high temper-
atures and the possible role of low-frequency vibrations on the
molar specific heat of a-Si at low temperatures. Specifically,
the Debye temperature of a-Si is computed using the har-
monic approximation and the results are compared with those
obtained from experiments. This is particularly challenging
for noncrystalline solids using ab initio density-functional cal-
culations in real space. The use of the Debye approximation
entails that one must employ sufficiently large models of a-Si
to compute the low-frequency vibrational modes which play
a major role in the contribution of the specific heat at low
temperatures.

The rest of the paper is arranged as follows. Section II
is devoted to the development of model a-Si networks and
incorporation of defects and extended-range inhomogeneities,
which are followed by quantum-mechanical lattice-dynamical
calculations of the MSD of atoms in real space in the har-
monic approximation, and direct ab initio molecular dynamics
(AIMD) simulations without the use of the harmonic approx-
imation. Section III presents results and discussion, where the
role of short-range ordering and coordination defects on the
MSD of atoms is examined at low and high temperatures.
The Debye temperature and the molar specific heat of a-Si are
calculated and compared with the corresponding experimental
values from the literature. A discussion of the possible role
of the low-frequency vibrations of a-Si and their effects on
the molar specific heat is presented and the effect of anhar-
monicity on the MSD of atoms at high temperatures from
direct AIMD calculations is discussed in this section. This is
followed by the conclusions in Sec. IV.

II. METHOD AND MODELS

In this study, we have used a set of high-quality a-Si
models obtained from a combination of classical and AIMD
simulations. The term “high quality” here refers to the fact
that structural, electronic, and vibrational properties of the
models are in good agreement with experimental data [19] and
that the models are free from any coordination defects for all
model sizes [19,20]. Below, we give a brief description of the
simulation method for model construction, which is followed
by lattice-dynamical calculations of the MSD of atoms in the
harmonic approximation. The calculation of the MSD from
direct AIMD simulations that take into account the volume
expansion of a-Si and the anharmonicity in atomic forces at
high temperatures is also discussed in this section.

A. Generation of a-Si models

The simulation method employed here consists of two
steps. In the first step, several 500-atom and two 2000-atom
defect-free configurations, confined in a cubic simulation cell
with the experimental mass density of a-Si of 2.28 g cm−3

[21], were produced using the modified Stillinger-Weber
(SW) potential [22] via classical MD simulations. The sim-
ulations were performed in canonical ensembles with a time
step of 1 fs, and the temperature of the system was maintained
by a chain of Nosé-Hoover thermostats [23,24]. The second
step involved thermalization of the resulting classical models
at 300 K using AIMD simulations. The AIMD runs were
conducted for 5 ps using the density-functional code SIESTA

[25] by employing a set of double-zeta (DZ) basis functions
[18]. The use of the DZ basis functions is necessary for the
calculation of the mean-square displacement (MSD) and the
low-frequency vibrational modes of atoms, which were found
to be dependent on the choice of the basis functions. The
total energy and forces were computed by solving the Kohn-
Sham equation in the self-consistent field approximation, and
the exchange-correlation contribution to the total energy was
obtained by using the generalized gradient approximation
(GGA). The resulting configurations from the AIMD runs
were further relaxed geometrically via the limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm [26] to obtain
a set of final structures for studying the Debye-Waller factor
in a-Si. A detailed discussion of the method employed here
and the validation of the resulting models can be found in
Ref. [27]. For the calculation of the MSD of the (approxi-
mate) tetrahedral sites in a-Si, we have used two independent
500-atom models of a-Si with no coordination defects in the
networks.

In order to examine the effect of coordination defects and
extended-range inhomogeneities on the Debye-Waller fac-
tor of a-Si, we have also studied a few defective models
with dangling bonds and voids. Specifically, we have used
five independent 500-atom configurations with 2–3 at. % of
dangling bonds and two additional independent 500-atom
configurations with no coordination defects but a pair of
spherical voids of radius 4 Å to generate robust MSD statis-
tics. The dangling bonds (DB) studied in this work are of
two types. The first type of DBs are vacancy-induced, which
can be produced by removing a tetrahedrally bonded Si atom
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from a 100% defect-free a-Si network. The removal of a
tetrahedrally bonded atom creates four neighboring dangling
bonds (DB) at the vacancy site. Several such quartets of DBs
were introduced in the network and the resulting network was
annealed at 300 K (and 600 K) for a time period of 5 ps,
followed by ab initio total-energy relaxation of the networks
using SIESTA. Care was taken to ensure that at least 2–3 at. %
of the total DBs persist in the final relaxed configurations. The
second type of DBs studied here are sparsely distributed in the
network, with no neighboring DBs in the vicinity of 10 Å.
Since direct MD simulations cannot produce these isolated
DBs in a controlled manner, we have employed an accelerated
metadynamics simulation method to generate these models.
Metadynamics simulations of a-Si [28] can produce config-
urations with a given concentration of n-fold-coordinated Si
atoms, with n = 2–5, for generating a sparsely distributed DBs
in the networks. A description of the method in the context
of simulating a-Si models via metadynamics simulations was
discussed by three of us in Ref. [28]. The configurations
obtained from metadynamics simulations were thermalized at
300 K (and 600 K) for 5 ps, followed by ab initio total-energy
relaxation. Likewise, two independent 100% defect-free 500-
atom a-Si models were used to produce models with a pair of
spherical voids of diameter 8 Å by thermalizing and relaxing
the configurations. To ensure that the inclusion of voids is
more or less consistent with the volume fraction of voids,
0.1%–0.8%, observed in experiments [29,30], we restricted
ourselves to add only two voids. The voids were created in
such a way that the center-to-center distance between the
voids was 10 Å. This distance remained more or less the
same after total-energy relaxation but the shape of the voids
changed a little due to the movement of the atoms on the
surface of the voids [31]. The relaxed configurations were
used to study the effect of voids on the MSD of Si atoms.
Finally, there may exist in a-Si a different type of inhomo-
geneities in the form of distorted nanometer-size crystalline
grains, which are also known as paracrystals [32]. This gives
rise to the so-called paracrystalline model of a-Si [33]. Since
the paracrystalline model is characterized by the presence
of small crystalline grains dispersed in a continuous random
network (CRN), it seems plausible that the displacement of
the atoms in the paracrystalline region would be intermediate
between crystalline and amorphous values. We have not stud-
ied the paracrystalline inhomogeneities in this work.

B. Debye-Waller factor from lattice-dynamical calculations

To study the temperature dependence of the MSD of atoms
in a vibrating solid, we have taken two distinct approaches.
The first approach involves lattice-dynamical calculations in
the harmonic approximation, whereas the second approach
relies on direct AIMD simulations in canonical and micro-
canonical ensembles. The latter enables us to include some
aspects of temperature-induced anharmonic effects that can
appear at high temperatures. Assuming that uiα (t ) is the dis-
placement of atom i along the α direction, where α = (x, y, z),
the potential energy of the vibrating system can be written as a
Taylor expansion about the equilibrium positions of the atoms.
Neglecting the cubic and higher-order terms for small atomic
displacements and noting that the linear terms vanish at the

equilibrium position, the equations of motion can be written
as

miüiα (t ) = −
∑

jβ

Kiα, jβ u jβ. (1)

The coefficient Kiα, jβ is an element of the force-constant ma-
trix and it denotes the magnitude of the force acting on the ith
atom along the α direction when the jth atom is displaced by
a unit distance along the β direction. Substituting vi = √

miui,
and assuming the solution of (1) to be simple harmonic,
v(t ) = v0 exp(−ıωt ), the system of linear equations in (1) can
be expressed in a matrix form

D − ω2I = 0. (2)

Here, D is a real symmetric 3N × 3N matrix, which is known
as the mass-adjusted force-constant matrix or the dynamical
matrix, Diα, jβ = Kiα, jβ/

√
mimj , and I is the identity matrix.

The eigenvalues and the normalized eigenvectors of D give
the squared frequencies (ω2) and the polarization vectors (ê)
of the atoms for the normal modes, respectively. For a system
in stable mechanical equilibrium, all the eigenvalues of D are
positive. The atomic displacement at site i is obtained from a
linear combination of the normal modes

uiα (t ) = 1√
mi

∑
n

A0(n) êiα (n) e−ıωnt (α = x, y, z). (3)

In Eq. (3), A0(n) is the vibrational amplitude for the nth nor-
mal mode, which may include a phase factor, and êiα (n) are
the three polarization vectors of atom i, for α = (x, y, z), as-
sociated with the mode n. The value of A0(n) is indeterminate
from Eq. (2), but it can be obtained by calculating the average
kinetic/potential energy of the system in thermal equilibrium.
Assuming T is the average kinetic energy, we have

T =
〈∑

i,α

1

2
miu̇

2
i,α

〉
=

〈∑
n

1

2
ω2

nA2
0(n)

〉
=

∑
n

1

2
〈En〉, (4)

where the last step in Eq. (4) follows from the noninteract-
ing nature of the normal modes obtained in the harmonic
approximation. A similar calculation shows that the average
potential energy, V , of the system is also given by Eq. (4).
Since the normal modes can be treated as a set of independent
harmonic oscillators, the average energy 〈En〉 for each mode in
thermal equilibrium at temperature T is given by the quantum-
mechanical expression

〈En〉 = h̄ωn

[
1

2
+ 1

exp (h̄ωn/kBT ) − 1

]
(5)

and the MSD follows from Eqs. (3)–(5)

u2
iα (T ) =

∑
n

〈En〉
miω2

n

|êiα (n)|2 (6)

=
∑

n

h̄ |êiα (n)|2
miωn

[
1

2
+ 1

exp(h̄ωn/kBT ) − 1

]
. (7)

The MSD, 〈u2〉, can be readily obtained from averaging over
all atoms and coordinate directions and the Debye-Waller
factor follows from

M = 8π2 sin2 θ

λ2
〈u2〉, (8)
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where λ and 2θ are the wavelength of the scattering radiation
and the angle of scattering, respectively.

At high temperatures, when h̄ωn/kBT � 1, one obtains the
classical expression of the MSD by substituting 〈En〉 ≈ kBT
in Eq. (6). The first term in Eq. (7) gives the contribution
to the MSD from the zero-point motion (ZPM) of atoms,
which leads to weak inelastic scattering, even at absolute zero
temperature [34]. The effect of thermal vibrations of atoms
is reflected in the second term. The computation of the MSD
in the lattice-dynamical approach can now be summarized as
follows. (i) Thermalize the models at each temperature of in-
terest for 5 ps, followed by ab initio total-energy optimization
to prepare the system for the calculation of the D matrices; (ii)
Construct the D matrices numerically in the harmonic approx-
imation using ab initio forces, by displacing each atom, say
by 0.005 Å, along the six coordinate directions (±x, ±y, and
±z); (iii) Diagonalize D to obtain the squared frequencies and
the polarization vectors of the atoms for each mode, and cal-
culate the MSD from Eq. (7). To produce good statistics, the
results in Sec. III A were obtained from defect-free networks
by averaging over two independent configurations, whereas
those in Sec. III B are obtained from five to ten independent
configurations with 2%–3% dangling bonds in the network.

C. Debye-Waller factor from direct AIMD simulations

The lattice-dynamical approach presented earlier does not
include any anharmonic effects and it is suitable for tempera-
tures well below the Debye temperature of solids. The effects
of anharmonicity on the vibrational dynamics of atoms in a-Si
can be studied via direct AIMD simulations in canonical and
microcanonical ensembles. In this approach, the system is first
equilibrated at a given temperature in canonical ensembles
so that the vibrational dynamics of the atoms are reflective
of any temperature-induced structural changes that may take
place in the system. Once the system is in equilibrium at a
given temperature in canonical ensembles, it is then allowed
to evolve in microcanonical ensembles. The use of micro-
canonical ensembles maintains the hamiltonian structure of
the dynamics and conserves the total energy of the system
in the absence of any thermostatting mechanism. Since the
use of constant-volume NVE ensembles can partly restrict the
system to include the effect of anharmonicity due to thermal
expansion, the volume of the system before the NVE runs was
adjusted on an ad hoc basis for each temperature as

V (T ) = V (T0)[1 + γ (T − T0)]3, (9)

where γ is the coefficient of linear expansion of a-Si, V (T ) is
the volume of the system at temperature T , and T0 = 300 K.
For annealed samples of a-Si, the experimental value of γ is
of the order of 4 × 10−6 K−1[35]. This value leads to a change
of volume of about 0.36% at 600 K from the original volume
at T0 = 300 K. Thus it is unlikely that a change of temperature
from 300 to 600 K would induce a notable change of MSD
values due to the volume expansion of the solid.

The MSDs of the atoms were calculated from equilibrium
microcanonical trajectories, and averaging the results over
time and independent configurations during microcanonical

2.12 2.16 2.2 2.24 2.28 2.32
0

0.01

0.02

0.03

0.04

0.05

0.06

u2
 (

Å
2 )

a-Si (500-atom)

T = 300 K
T = 600 K

FIG. 1. The MSD, 〈u2〉, of Si atoms in a-Si with its density in the
harmonic approximation from lattice-dynamical calculations. The
MSD values can be seen to be practically independent of the density
at 300 (blue) and 600 K (red).

runs. The MSD of atom i at temperature T can be written as〈
u2

i (T )
〉 = 〈〈(

ri(t, T ) − r0
i (T )

)2〉
t

〉
config, (10)

where ri(t ) is the position of atom i at time t and the symbol
〈. . .〉X denotes averaging with respect to a variable X . Since
the approach involves conducting long AIMD simulations in
canonical and microcanonical ensembles, using double-zeta
(DZ) basis functions for several independent configurations
and temperatures, it becomes computationally prohibitive for
large system sizes. We shall see later in Sec. III E that the use
of extended or DZ basis functions is of paramount importance
to accurately calculate the MSD and the molar specific heat
of a-Si. We have therefore restricted our simulations to three
216-atom models of a-Si for the calculation of the MSD.
The canonical and microcanonical runs were conducted for
a time period of 10 ps each, with a time step of 1 fs, and the
atomic trajectories were collected by evolving the system for
an additional 10-ps microcanonical run beyond equilibration.
The MSDs of the atoms were then calculated from Eq. (10)
for three independent configurations at several temperatures
in the range from 300 to 600 K.

III. RESULTS AND DISCUSSION

A. Temperature dependence of the Debye-Waller factor in a-Si

In discussing our results, we begin with the varia-
tion of the MSD of atoms with the density of model
a-Si networks. Since the density of a-Si samples can de-
pend on preparation methods and experimental conditions,
which may affect the local structure of a-Si and hence
local atomic force constants, it is important to examine
whether the vibrational motion of Si atoms is sensi-
tive to the density of a-Si in the temperature range of
300–600 K. Figure 1 shows the variation, or the lack thereof,
of the MSD, 〈u2〉, of atoms with the density of a-Si at 300
and 600 K. The data correspond to the average values ob-
tained from two independent 500-atom model configurations.
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) = 0.01834

FIG. 2. A comparison of the distributions of u2
i of atoms in a low-

density model (blue) and a high-density model (red) of a-Si at 300 K
obtained from two independent models with no coordination defects.
The MSD values for the distributions are indicated as dashed vertical
lines.

The results suggest that the MSD is almost independent of
the density of a-Si within the range of 2.14–2.30 g cm−3.
This observation is not surprising, noting that the models
studied in this work have no coordination defects and that a
small variation of the density—obtained via a homogeneous
scale transformation of atomic distances, followed by ther-
malization at 300 K (and 600 K) for 5 ps and total-energy
optimization—from 2.3 to 2.14 g cm−3 affects atomic dis-
tances by a linear scale factor of s = 1.024. Assuming that
the system behaves as a harmonic solid, it can be shown
that the MSD remains practically unchanged in the long-
wavelength limit under a scale transformation from r → sr
in the nearest-neighbor approximation between atoms [36].
However, a small change of the MSD may result from the
high-frequency modes and the deviation from the nearest-
neighbor approximation of the atomic force constants. This is
apparent from the results shown in Fig. 2, where a small shift
of the MSD is found to lie well within one standard deviation
of the distribution. It may be noted that the results presented
in Fig. 1 for 300 K have been explicitly verified for the
two terminal densities of 2.14 and 2.3 g cm−3 by generating
two independent models from random configurations (without
using a scale transformation) and computing the MSD of the
atoms for the resulting a-Si models.

In the lattice-dynamical approach, the dependence of the
MSD on temperature is generally studied in the harmonic
approximation. Elementary calculations in section IIB show
that, for small oscillations in the classical limit, the con-
tribution to the MSD from thermal vibrations is directly
proportional to the temperature of the system. Figure 3 shows
the variation of the MSD, 〈u2〉, with temperature for model
a-Si networks with a density of 2.28 g cm−3. The contribu-
tions to 〈u2〉 from the zero-point motion (ZPM) and thermal
vibrations of the atoms are shown separately in the figure.
The MSD values due to thermal vibrations can be seen to
increase linearly with temperature in Fig. 3, an observation

300 350 400 450 500 550 600
T (K)

0

0.01

0.02

0.03

0.04

u2
 (

Å
2 )

a-Si (500)
c-Si (512)
a-Si (500), ZPM
c-Si (512), ZPM

FIG. 3. The variation of the MSD, 〈u2〉, with temperature in
the harmonic approximation for a-Si and diamond-structure c-Si.
The contribution to the MSD from the zero-point motion (ZPM) of
the atoms is explicitly shown as horizontal lines.

which is consistent with the theoretical results obtained from
the harmonic approximation in the temperature range of 300–
600 K. The linear behavior also signifies that the normal-mode
frequencies themselves are practically independent of the tem-
perature in the range of 300–600 K. For comparison, the
MSD values for diamond-structure c-Si are also presented in
Fig. 3. A somewhat higher value of 〈u2〉 in a-Si compared
to c-Si can be attributed to the disorder associated with the
local tetrahedral environment of a-Si. In a-Si, the atoms are
bonded to four neighboring atoms in an approximate tetra-
hedral arrangement, which is characterized by the disorder in
the bond-angle and bond-length distributions. The presence of
disorder reduces the strength of Si–Si bonds in the amorphous
phase. This is in contrast to c-Si, where Si atoms are strongly
bonded to each other in an ideal tetrahedral arrangement.
This strong and compact ideal tetrahedral bonding results
in slightly stiffened atomic force constants (and relatively
high values for normal-mode frequencies in the harmonic
approximation) compared to its amorphous counterpart. Thus,
following Eq. (6), the MSD of Si atoms in a-Si can be
expected to be somewhat larger than that in c-Si when an
identical thermal perturbation is applied to excite the system.

The temperature dependence of the Debye-Waller factor,
e−2M , is plotted in Fig. 4 for Q = 1.99 and 3.6 Å−1. These
two values of Q correspond to the position of the FSDP
and the principal peak in the static structure factor, S(Q), of
a-Si, respectively. The position and height of the FSDP can
be obtained by computing S(Q) as a Fourier sine transform
of the reduced pair-correlation function, G(r), by invoking
the isotropic nature of the system—which most disordered
materials satisfy—and removing the strong peak near Q = 0
that does not provide any structural information [37]. These
considerations lead to the following expression of the struc-
ture factor

S(Q) = 1 + 1

Q

∫ ∞

0
G(r) sin Qr dr.
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FIG. 4. The variation of the Debye-Waller factor of a-Si, e−2M ,
with temperature for Q = 1.99 (blue circles) and 3.6 Å−1 (red
triangles). The results are obtained by using λ = 1.54 Å, which
corresponds to Cu Kα X radiation. The Q values chosen correspond to
the FSDP (1.99 Å−1) and the principal peak (3.6 Å−1) in the structure
factor of a-Si.

For computational purposes, the upper limit of the integral
above is replaced by a suitable cutoff distance Rc, which is
often chosen to be half of the cubic simulation cell length,
and G(r) = 4πρ r [g(r) − 1]. The quantities g(r) and ρ stand
for the pair-correlation function and the number density of
atoms in a model, respectively. Since the wavevector transfer
|Q| = 4π sin(θ )/λ, the value of the Debye-Waller factor at
different temperatures for the two peaks can be readily cal-
culated for a given scattering wavelength λ. Figure 4 shows
a plot of e−2M versus T for Cu Kα x radiation with λ =
1.54 Å. The results suggest that the intensity of the principal
peak in a-Si is considerably affected by thermal motion of the
atoms in solids, even at 300 K. The intensity of the FSDP at
300 K, however, is reduced by a factor of about 0.94, leading
to small inelastic scattering at 300 K. The missing intensity
can be found to be present in the background, which originates
from thermal scattering. These results are quite important
in comparing the static structure factor obtained from the
atomic coordinates of a computer model to the experimental
structure-factor data at room temperature, as the former does
not include any temperature-induced changes in the computed
data.

We now examine the role of short-range ordering on the
MSD of atoms in amorphous Si networks. Unlike elemental
crystals, where one expects a narrow distribution of u2

i , in-
duced by thermal vibrations of atoms in an identical atomic
environment, the squared displacement (SD) of an atom in
amorphous networks varies from site to site, and it largely
depends on the local atomic coordination and the disorder
associated with bond lengths and bond angles. Figure 5 shows
the distributions of atomic displacements, P(u2

i ) versus u2
i ,

in a-Si at temperatures 300 and 600 K, along with their
crystalline counterparts. The results correspond to the average
values of u2

i obtained from two independent defect-free con-
figurations of 500 atoms. Owing to the crystalline symmetry
of atomic positions, the distributions for c-Si in Fig. 5 are
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FIG. 5. The distributions of local squared displacements, u2
i , for

a-Si at 300 (blue) and 600 K (red). The solid lines (blue and red)
indicate a Gaussian fit of the data. The corresponding results for
diamond-structure c-Si are also shown in the plot (as green and black
lines), which are truncated for visual clarity and comparison. The
results for a-Si correspond to 100% defect-free networks.

found to be rather narrow and with a root-mean-square width
that increases with the temperature of the system. The heights
of these distributions are intentionally truncated at a value of
0.1 for clarity of presentation and comparison. By contrast,
the distributions for a-Si appear almost Gaussian for small
atomic displacements, except for a weak non-Gaussian tail for
high values of u2

i . For crystals, the Gaussian shape of P(u2
i )

readily follows from lattice-dynamical considerations and it
can be shown analytically [38] that the Fourier transform of
P(u2

i ) is directly related to the temperature factor of an atom.
However, the presence of local atomic ordering/disordering
in amorphous networks can considerably influence the other-
wise random thermal motion of atoms, leading to a notable
deviation from an ideal Gaussian behavior arising from a set
of highly disordered sites. We shall see soon that this non-
Gaussian behavior of P(u2

i ) is significantly enhanced in the
presence of coordination defects and other inhomogeneities
in the network.

The origin of the non-Gaussian tail, associated with high
u2

i values, in defect-free a-Si networks can be traced back to
a few clusters of Si atoms, which are sporadically distributed
in the network. These atoms vibrate with relatively high am-
plitudes compared to the rest of the atoms in the network.
This is illustrated in Fig. 6, using a 500-atom model of a-Si at
300 K. Silicon atoms that are associated with high u2

i values,
with u2

i > 0.0195 Å2, are shown in red color. This translates
into a value of the atomic displacement, which is about 6%
of the average Si–Si bond length of 2.36 Å. An examination
of the sites with high u2

i values reveals that these sites are
characterized by the presence of long Si–Si bonds, the length
of which is about 2%–5% larger than the average bond length
of 2.36 Å. This affects the nearest-neighbor force constants
(K) between Si atoms with longer bond lengths and results in
a reduction of some normal mode frequencies (as ω2 typically
decreases with decreasing K), leading to a larger value of u2

i
for these sites from Eq. (6) upon thermal excitation.
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FIG. 6. A 500-atom model of a-Si showing several Si atoms with
a large value of u2

i at 300 K. Silicon atoms with top 10% of u2
i values

are shown in red color with a slightly larger radius. The rest of the
atoms are shown in yellow color.

B. Effects of defects and inhomogeneities on the MSD

Turning now to discuss the role of structural defects on the
MSD and individual squared displacements, we examine the
effect of threefold-coordinated atoms, or dangling bonds, and
extended inhomogeneities, such as voids, on the vibrational
MSD of atoms. To this end, we have studied two types of
dangling bonds. The first type of DBs are vacancy induced,
which were produced by removing a tetrahedrally bonded Si
atom, whereas the second type of DBs are sparsely distributed
in the network. The creation of these DBs is discussed in
Sec. II A. In the following, we shall refer to these dangling
bonds as clustered and isolated DBs, respectively. The results
of our calculations, which are presented in Figs. 7–10, enable
us to make the following remarks.
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FIG. 7. A comparison of the distributions of u2
i for the tetrahedral

sites (black and green lines) of 100% defect-free a-Si networks
and the clustered DBs (filled blue and red) at 300 and 600 K. The
distributions are normalized to an integrated value of 10−2.
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FIG. 8. A color map showing the contribution to u2
i at clustered

DB sites (left) and tetrahedral sites (right) from the first eighty
normal modes (indexed along the Y axis) at 300 K, distributed in the
frequency range of 0 and 110 cm−1. The abundance of red speckles
in the left panel indicates a large contribution at the DB sites from
the low-frequency modes. The rightmost vertical bar indicates the
percentage contribution of u2

i (ν j ) to the total u2
i from ν j . The results

correspond to 65 DB sites and tetrahedral sites (indexed along the X
axis) selected from the same models.

First, a comparison of u2
i values obtained for the tetrahedral

sites with no defects and clustered DB sites (in Fig. 7) shows
that atomic displacements of the DB atoms are notably larger
than their tetrahedral counterpart by a factor of two or more.
Second, a small number of DB atoms can be seen to have u2

i
values larger than 0.05 Å2 at 300 K, and 0.1 Å2 at 600 K. This
indicates substantial local movement of some atoms near the
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FIG. 9. A color map showing the contribution to u2
i at isolated

DB sites (left) and tetrahedral sites (right) from individual low-
frequency normal modes at 300 K. The left panel is awash with
red speckles indicating a high contribution from the low-frequency
in the range of 0–110 cm−1 modes at the DB sites. The results
correspond to 65 DB sites (left) and tetrahedral sites (right) from
the same models.
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FIG. 10. The distributions of u2
i for clustered (red) and isolated

(green) DBs in a-Si networks at 300 K. The results correspond to the
data obtained from 65 DBs from two sets of five independent 500-
atom models. The results for the tetrahedral sites (black) are from two
100% defect-free a-Si networks. The distributions are normalized to
an integrated value of 0.01.

defective sites and the subsequent healing (or reconstruction)
of a dangling bond to form a tetrahedrally bonded Si atom.
Indeed, it was observed that a considerable number of clus-
tered DBs introduced in the network reorganized themselves
to form stable tetrahedral bonding following thermalization
and structural relaxation. Third, a relatively large value of u2

i
at the DB sites can be partly attributed to the presence of
reduced atomic coordination, which renders the atoms more
susceptible to move. A normal-mode analysis reveals that a
few low-energy modes contribute considerably to u2

i of the
DBs compared to the tetrahedral sites. This is evident from
Fig. 8, where a color-map representation of u2

i (ν j )—the con-
tribution to u2

i at the DB site i from the normal mode ν j—is
presented against the normal-mode frequencies (along the Y
axis) and atomic sites (along the X axis). The left panel in
Fig. 8 corresponds to the results obtained for the clustered
DBs at 300 K, whereas the right panel shows the same for
an identical number of tetrahedrally bonded atoms. Atomic
indices of sixty-five clustered/tetrahedral sites are indicated
along the abscissa, whereas the first eighty low-frequency
normal modes are indicated along the ordinate. The color in
the plot is indicative of the partial contribution of u2

i (ν j ) (in
percent) to the total MSD of atom i. The significant presence
of red speckles in the left panel is indicative of high contribu-
tions arising from a few tens of low-frequency normal modes
at the clustered DB sites. The vertical indices along the Y axis
correspond to the frequency range of 0 to 110 cm−1 for j = 1
to 80. A similar observation applies to Fig. 9 where the results
for the isolated DBs are presented.

The distributions of u2
i obtained for the clustered and iso-

lated DBs are found to be quite different from each other.
This is evident from Fig. 10, where the distributions resulting
from the clustered (filled red) and isolated (filled green) DBs
at 300 K are plotted. The fine structure in the distribution
for the latter is reflective of the degree of sparsity and the
disorder associated with the isolated DBs in the network. The

FIG. 11. The MSDs of Si atoms obtained from 500-atom models
of a-Si in the presence of two voids of diameter 8 Å (red diamonds) at
300, 450, and 600 K. The corresponding values of the MSD without
voids (blue circles) are also shown in the plot for comparison.

first green peak in Fig. 10 indicates the presence of several
truly isolated DBs in the network. The subsequent green peaks
are reflective of a somewhat lesser degree of sparsity of the
remaining isolated DBs in the network. An analysis of the
distribution of the isolated DBs in the networks shows that
almost half of the 65 DBs are sparsely distributed in the
network with an average separation distance of 10.3 Å, and a
good majority of these sites contribute to the first (green) peak.

Likewise, the effect of microvoids on the MSD of atoms
can be studied by introducing a couple of voids in the network.
Figure 11 shows the MSD at 300, 450, and 600 K, before and
after introducing two voids of diameter 8 Å in two 500-atom
models of a-Si. The plots in Fig. 11 show that the MSD has
considerably increased due to the presence of several defective
atoms on the surface of the voids. The presence of local
disorder and reduced coordination considerably weakens the
effective force constants between neighboring atoms that lead
to an increase of the MSD of the atoms on the surface of the
voids. It may be noted that the presence of too many voids
can modify the network structure of a-Si and the resulting
MSD obtained therefrom. In the event the voids coalesce or
the surfaces of the voids come too close to each other, the
displacement of the atoms in the overlapping region of the
surfaces can be affected, due to the reconstruction of the void
surfaces and the reduced atomic coordination on the surface
of the void. This can lead to a change of the MSD value de-
pending upon the degree of the overlap, number of voids, etc.

C. Debye temperature of a-Si from the MSD of atoms

Having discussed the variation of the MSD of atoms with
temperature in the presence of disorder and defects, we now
obtain estimates of the Debye temperature, �d , and compare
the results with those from experiments. To this end, we
first note the following assumption about the definition of
the Debye temperature for amorphous solids. In experiments,
the Debye temperature of crystalline solids is generally de-
termined by comparing the measured specific-heat data at
low temperatures (typically below 30 K) with the expres-
sion for the specific heat, Cv = aT + bT 3, in the Debye
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TABLE I. Debye temperature (�d ) of a-Si estimated from the
mean-square displacement (MSD) of atoms at the temperature range
of 10–50 K. 〈�d 〉 indicates the average Debye temperature for this
range.

T 〈u2 〉 �d (T ) 〈�d〉 �d (Expt.) �d (Elastic)
(K) (Å2) xD (K) (K) (K) (K)

10 0.00725 53.632 536.31
30 0.00730 18.092 542.76 541.5 487± 5a 430–470b

50 0.00752 10.903 545.17 528± 20c

aFrom Ref. [40].
bFrom Ref. [43].
cFrom Ref. [41].

approximation, where the coefficient b involves the De-
bye temperature �d . At sufficiently low temperatures, the
contribution to Cv originates from the (distribution of)
low-frequency vibrational modes in crystals, which can be
adequately represented by a quadratic function of the fre-
quency. This results in a T 3 dependence of the specific heat
in crystals. As a result, one can justify the use of the Debye
approximation and the resulting Debye temperature as a phys-
ical parameter for crystalline solids. For amorphous solids,
however, the above reasoning is weakened by the presence
of excess low-frequency vibrations (near 1–2 THz) in many
systems, leading to a vibrational density of states that may
not be well represented by a quadratic function of frequency
in the low-frequency region. This can affect the temperature
dependence of the specific heat of amorphous solids. It has
been shown [39] that for a number of glassy systems, the
coefficient b can be greater than the Debye coefficient bd even
if the T 3 dependence of the specific heat is assumed to hold at
low temperatures. Since the experimental values of �d of a-Si
reported in the literature [40,41] are obtained by assuming
b = bd , we shall make the same assumption to calculate �d

for the purpose of comparison.
To calculate a theoretical estimate of the Debye temper-

ature of a-Si, we adopt here two distinct approaches. The
first approach involves the use of the computed values of the
MSDs at low temperatures by comparing with those obtained
from the Debye theory. This can be achieved by writing the
expression for the MSD at temperature T in the Debye ap-
proximation [38]

u2
d (T ) = 9h̄2

mkBT

(
1

4xd
+ 1

x3
d

∫ xd

0

x dx

ex − 1

)
, (11)

where xd = hνd/kBT = �d/T and νd is the Debye frequency.
In our approach, we proceed to calculate �d from Eq. (11)
by replacing u2

d (T ) with 〈u2(T )〉. To ensure that the Debye
approximation remains valid, we limit ourselves to 〈u2(T )〉
values obtained at low temperatures of up to 50 K from
two 500-atom models. The Debye temperature is obtained
numerically by computing the value of xd for which Eq. (11),
with u2

d (T ) → 〈u2(T )〉, is satisfied at temperatures of 10, 30,
and 50 K, and the average value of xd and �d are computed
from the results. Table I lists the results from our calcula-
tions. The estimated value of the average Debye temperature,
〈�d〉, and the corresponding value of the average Debye fre-

quency, νd , for a-Si are found to be 541.5±4 K and 11.3 THz,
respectively, over a temperature range of 10–50 K. We should
mention that the absence of low-frequency vibrational modes
in small 500-atom a-Si models may underestimate the MSD
values at low temperatures due to the inverse-square depen-
dence of the MSD on the frequency [cf. Eq. (6)]. Since the xd

value in Eq. (11) is found to decrease with an increasing value
of 〈u2(T )〉 [42], the value of �d obtained here from 500-atom
models provides an upper bound of the Debye temperature of
a-Si.

The computed values of �d obtained from the MSDs at
three different temperatures are presented in Table I. These
values are found to be considerably higher than the theoret-
ical value of 430–470 K obtained by Feldman et al [43].
The latter employed 216-atom models of a-Si and classical
potentials to compute the elastic constants of a-Si and hence
the Debye temperature. The difference between these two sets
of values is not unexpected as the computation of �d from
different theoretical approaches may vary notably, depending
upon model sizes, the structural quality of models, and the
accuracy of total-energy and forces used in the calculations.
On the other hand, experimental values of �d , obtained from
specific-heat measurements of a-Si at low temperatures in the
Debye approximation, suggest that �d varies from 487±5 K
[40] to 528±20 K [41]. The value obtained from the inversion
of Eq. (11) is quite close to that of Mertig et al. [41] but
notably higher than that observed by Zink et al. [40] recently.
In the next section, we shall further address this issue by
calculating the specific heat of a-Si at low temperatures and
obtaining a value of �d from the Debye approximation for
amorphous solids.

D. Debye temperature of a-Si from specific-heat calculations

The quantum-mechanical calculation of the molar specific
heat (Cv) of a-Si is rather straightforward and has been re-
ported by a number of workers in recent years [44–46]. In ab
initio lattice-dynamical calculations in the harmonic approxi-
mation, Cv can be obtained from

Cv

3R
= 1

3N

3N∑
i=1

kb x2
i exi

(exi − 1)2
, where xi = h̄ωi

kbT
, (12)

and the corresponding Debye expression is given by[
Cv

3R

]
d

= 3

x3
d

∫ xd

0

x4ex dx

(ex − 1)2
with xd = �d/T . (13)

However, the calculation of the Debye temperature from
a Cv-versus-T plot for small models of a-Si is highly non-
trivial as it requires the calculation of Cv values at very low
temperatures for which the major contribution to Cv comes
from the low-frequency vibrational modes. Since these low-
frequency modes (with h̄ω ≈ kbT for T = 10–30 K) cannot
be realized/formed in small finite-size models and the full
self-consistent field density-functional calculation of the vi-
brational modes for large models using extended basis states is
computationally intractable, it is extremely difficult to obtain
a realistic estimate of �d from small models in ab initio
calculations. Below, we illustrate this point by studying results
from 500-atom and 2000-atom a-Si models.
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FIG. 12. The temperature dependence of the molar specific heat,
Cv , of a-Si from the Debye approximation (green line and red cir-
cles), and ab initio lattice-dynamical calculations (blue line) using
500-atom a-Si models. The results for the Debye approximation are
obtained by using the experimental values of �d = 528 K and 487 K,
whereas the average value of �d , 541.5 K (from Table I), is used for
scaling the X axis to present the results from the lattice-dynamical
calculations.

The results from Eqs. (12) and (13) are plotted in
Figs. 12–14 as a function of 1/xd and T , respectively. An
analysis of the plots leads to the following observations:

(1) A small change of �d , and hence xd , has very little to
no effect on Cv versus T/�d plots. This is not unexpected in
view of the integral nature of Eq. (13) and it is reflected in
Fig. 12, where �d = 487 and 528 K were used to obtain Cv in
the Debye approximation, leading to almost identical values
of Cv . It is evident from Fig. 12 that the Debye approximation
considerably overestimates the value of Cv in a-Si—compared
to that from ab initio lattice-dynamical calculations—above a
certain temperature Tc (∼92 K) and slightly underestimates
it below Tc. Figure 13 zooms in on the low-temperature
region of Cv , which clearly indicates that the crossover tem-
perature Tc is in the vicinity of 0.17�d or about 92 K for
�d = 541.5 K;

(2) The linear variation of Cv with T in the low-temperature
region of 40–80 K (i.e., x−1

d ≈ 0.07 to 0.15) in Fig. 13
markedly deviates from the Debye-T 3 law at low tem-
peratures. A linear behavior of Cv is well-known in the
experimental literature of noncrystalline solids, including for
a-SiO2, a-Se [40,47,48], and dilute magnetic alloys [49], at
temperatures of up to 10 K. However, this behavior is often
attributed to the presence of tunneling modes in two-level
systems (TLS) [50] at very low temperatures or due to the
presence of vibrational modes in reduced dimensions, where
the presence of ordered/disordered parallel atomic chains
(e.g., in Se/a-Se) can lead to a linear behavior over a certain
range of temperature. By contrast, the linear variation of Cv

observed here in Fig. 13 for a-Si, which is evident in both
experimental and theoretical results, appears at considerably
higher temperatures of 40–80 K than 10 K. This observation is
quite remarkable as we are not aware of any earlier theoretical
works on a-Si that demonstrate this experimentally observed
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FIG. 13. Low-temperature behavior of Cv in a-Si from the Debye
approximation (red line), ab initio lattice-dynamical (LD) calcula-
tions (blue line), and experiments [41] (black line) in the region of
20–135 K. An approximate linear behavior of Cv can be seen to
appear in the vicinity of 60 K in both experimental and theoretical
results, which corresponds to a frequency value of about 1.25 THz
(for �d = 541.5 K).

linear behavior of Cv with T/�d at temperatures of up
to 80 K;

(3) The peak positions in the experimental and computed
data for Cv/T 3 versus T plots in Fig. 14 are found to be at
28–30 K and 33–35 K, respectively. A small rightward shift
of the computed peak for the 500-atom model with respect to
its experimental counterpart plausibly arises from the absence
of some low-frequency vibrational modes in the model. This
also explains a considerable reduction of Cv values at low
temperatures (below 50 K); the system needs a relatively less
amount of energy to excite the few low-frequency modes that
are present in small 500-atom models.

In view of the preceding observation, it is appropri-
ate to conclude that the Cv values obtained from small
computer-generated models cannot accurately reproduce the
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FIG. 14. Comparisons of the specific heat, Cv , of a-Si at low
temperatures from experimental data (green [40] and orange [41])
and the present study, using 500-atom (black) and 2000-atom (blue)
models. The computed values of Cv are obtained from using the
double-zeta (DZ) basis functions and the GGA in ab initio lattice-
dynamical calculations.
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experimental Cv data of a-Si below 50 K, and hence the Debye
temperature which is obtained from the low-temperature Cv

data in the Debye approximation. This is evident in Fig. 14,
where the results from the lattice-dynamical calculations for
500-atom and 2000-atom a-Si models are compared with
experimental data. The difference between the experimental
and theoretical values of Cv below 50 K is considerable for
500-atom models but the results improved significantly as
the model size increases to 2000 atoms. Finkemeier and von
Niessen [51] have shown using classical calculations that the
size of a-Si models should be of the order of a few tens of
thousands of atoms in order to produce the so-called excess
low-frequency modes near 1 THz [52]. This possibly explains
the observed deviation of theoretical Cv values from experi-
mental data in the region of 20–40 K in Fig. 14 for 2000-atom
models. A comparison of the experimental data by Zink et al.
[40] with those from 2000-atom models in the temperature
range of 10 K to 20 K suggests that the theoretical value of the
coefficient b (≈0.58) is quite close to the experimental value
of 0.6, leading to a theoretical value of the Debye temperature
of 488 K.

E. Effects of anharmonicity on the MSD at high temperatures

We now briefly discuss the effects of anharmonicity on
the MSD of atoms in a-Si at high temperatures. It goes
without saying that the temperature-induced anharmonic ef-
fects at high temperatures can be truly taken into account by
including thermal expansion of solids in simulations. Since
the AIMD simulations presented in section II C were con-
ducted in canonical and microcanonical ensembles, where the
volume expansion of a-Si was taken into account on an ad
hoc basis, it is not possible to accurately address the role of
anharmonicity on the MSD of atoms. Nonetheless, the results
from direct AIMD simulations should provide a glimpse of the
anharmonic effects on the MSD at high temperatures, as the
volume-expansion factor, ∼(1 + 3γ�T ), in Eq. (9) turns out
to be very small and of the order of 1.0036 for �T = 300 K
and γ = 4 × 10−6 K−1 [35]. Thus, if we make allowances for
not including such a small change of volume of the system, we
should be able to observe the effects of temperature-induced
anharmonicity in the potential, if present, on the MSD of
atoms at high temperatures obtained from the direct AIMD
results.

Figure 15 shows the results obtained from 216-atom mod-
els of a-Si using direct AIMD simulations in NVT and NVE
ensembles, along with the results from lattice-dynamical cal-
culations for an identical 216-atom model in the harmonic
approximation. The results enable us to make the follow-
ing remarks. First, a comparison of 〈u2〉 obtained from the
lattice-dynamical calculations with those from direct AIMD
simulations suggests that anharmonicity does not play a sig-
nificant role at temperatures below 450 K. A small difference
between two sets of data below 450 K can be attributed to
the use of the phonon distribution function, 1/[exp(x) − 1]
with x = h̄ω/kBT , in the lattice-dynamical calculations. This
is apparent from the plot shown as an inset in Fig. 15, where
the lattice-dynamical results are re-calculated in the classical
limit using the value of 〈En〉 = kBT in Eq. (6). Since the
AIMD simulations are conducted by integrating the classical
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FIG. 15. A comparison of 〈u2〉 obtained from 216-atom models
of a-Si using lattice-dynamical calculations (blue) and direct AIMD
simulations (red). The inset shows the lattice-dynamical results ob-
tained by using the classical expression of energy, 〈En〉 = kBT , in
Eq. (6).

equations of motion, the results obtained from equilibrium
atomic trajectories using Eq. (10) are reflective of the clas-
sical equipartition theorem. Consequently, the direct AIMD
results are somewhat underestimated in the temperature range
of 300–400 K. Second, the deviation at high temperatures,
above 450 K, is likely to originate from anharmonic effects
in the dynamics. This is partly due to large thermal vibrations,
which can affect the linear dependence of the forces on atomic
displacements, and in part due to disorder in the amorphous
network affecting force constants between neighboring atoms.
Since the experimental value of the Debye temperature in a-Si
is about 487–528 K, one may assume that the MSD of atoms
can be calculated fairly accurately in the classical limit from
the direct AIMD trajectories at temperatures above 450 K.
Lastly, the use of the volume-expansion factor of (1 + 3γ�T )
in our direct AIMD simulations does not yield any noticeable
changes of the MSD of atoms, even at 600 K. This observation
is consistent with the results observed in Fig. 1. It is therefore
reasonable to conclude that the observed deviation of the
direct AIMD results from its lattice-dynamical counterpart at
temperatures above 450 K can only result from the presence
of a weak anharmonic part in the Si-Si potential at high tem-
peratures of up to 600 K.

We end this section with a brief discussion of the depen-
dence of the MSD of atoms and the specific heat Cv on the size
of the basis functions and the nature of exchange-correlation
(XC) approximations. Since vibrational excitations in solids
typically involve energies of a few tens of meV, it is crucially
important to calculate the elements of the dynamical matrix
as accurately as possible by using an extended set of basis
functions and a suitable XC functional appropriate for the
system to be studied. To examine this issue, the MSDs of
atoms in a-Si were calculated using both single-zeta (SZ)
and double-zeta (DZ) basis functions (from SIESTA), and the
local density approximation (LDA) of the XC functional and
its generalized-gradient counterpart (GGA). The results of
these calculations are shown in Fig. 16. It is evident from
the plots that the use of SZ basis functions produces a some-
what larger value of 〈u2〉 at all temperatures compared to
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FIG. 16. The dependence of the MSD, 〈u2〉, on the single-zeta
(SZ) and double-zeta (DZ) basis functions and the exchange-
correlation (XC) approximations (LDA and GGA) used in the DFT
calculations in this study. The data correspond to the average val-
ues obtained at each temperature from two independent 500-atom
configurations.

its DZ counterparts for identical models. By contrast, the
XC approximation has little or no effect on 〈u2〉 values for
a given basis set. Likewise, the computed values of Cv are
also found to be affected by the size of the basis functions
used in the ab initio calculation of the vibrational frequency
spectrum. This is apparent in Fig. 17, where the results for Cv

obtained from using SZ and DZ basis functions in SIESTA are
presented for the 500-atom and 2000-atom models using the
generalized gradient approximation. The results from Figs. 16
and 17 are not surprising and they are a reflection of the fact
that the accuracy of the total force acting on an atom—and
hence the elements of the dynamical matrix that are obtained
from numerical derivatives of atomic forces with respect to
atomic displacements—depends on the size of the basis func-
tions used in the calculations. In view of these findings, one
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FIG. 17. The dependence of the specific heat, Cv , on the SZ (red)
and DZ (black) basis functions for 500-atom models. Experimental
data (green) and those from 2000-atom models (blue) using DZ basis
functions are also included for comparison. The results are obtained
by averaging over two independent configurations for each system
size.

may conclude that first-principles calculations of vibrational
properties of amorphous silicon should be studied using an
extended set of basis functions, whenever possible. Unfortu-
nately, this requirement can considerably hinder our ability to
carry out ab initio calculations of amorphous solids for large
systems by constraining the size of the systems.

IV. CONCLUSIONS

In this paper, we have studied the impact of the Debye-
Waller factor on the structural and dynamical properties of
a-Si using quantum-mechanical lattice-dynamical calcula-
tions in the harmonic approximation and from direct AIMD
simulations. The quantitative effects of thermal vibrations on
the intensity of the first two diffraction maxima, also known
as the first sharp diffraction peak (FSDP) and the principal
peak, are obtained by computing the MSD of atoms at 300 and
600 K. The computed Debye-Waller factor at 300 K suggests
that the intensities of the FSDP and the principal peak are
reduced by a factor of 0.94 and 0.8, respectively, for Cu Kα

X radiation. This observation is quite important and useful
in comparing the room-temperature experimental structure-
factor data of a-Si with those from static model calculations,
which do not account for thermal vibrations of atoms. The
term static models here refer to atomic configurations ob-
tained from thermalization at a given temperature, which is
followed by total-energy relaxation.

The squared displacement (SD) of atoms in the amorphous
environment of silicon is found to vary from site to site and
that it considerably depends on the degree of disorder in the
local atomic environment, atomic connectivity, and the coor-
dination number of atoms. In particular, it has been observed
that while the distribution of the local SDs from tetrahedral
sites exhibits a nearly Gaussian behavior, the presence of
dangling bonds, defects, inhomogeneities, and a few highly
disordered sites (involving long Si-Si bonds) in amorphous
networks can lead to a highly stretched asymmetric non-
Gaussian tail in the distribution. This non-Gaussian behavior
is distinctly different from that in elemental crystals, where
thermal vibrations of atoms in an ordered atomic environ-
ment give rise to a Gaussian distribution in the harmonic
approximation.

The accuracy of the MSD values from lattice-dynamical
calculations is examined by computing the MSD from direct
AIMD calculations. The latter incorporates any anharmonicity
that may be present in the atomic potential at temperature
of up to 600 K. The average Debye temperature, estimated
from the MSD of Si atoms in the Debye approximation, is
found to be 541.5 K in the temperature range of 10–50 K,
which is somewhat larger than the experimental value of �d

of 487–528 K obtained from specific-heat measurements at
low temperatures. This observed deviation can be attributed
to the absence of very low-frequency vibrational modes in
small 500-atom models, which underestimate the MSD of
atoms and overestimate �d in the Debye approximation via
the inversion of Eq. (11). However, a direct determination of
�d from specific-heat calculations using 2000-atom models
of a-Si is found to be 488 K. This value agrees very well with
the experimental value of the Debye temperature of 487 K,
reported by Zink et al. [40], but it is somewhat smaller than the
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value of 528 K obtained by Mertig et al. [41] A comparison
of Cv from theory and experiments shows that the values ob-
tained from the lattice-dynamical calculations match closely
with those from experiments at temperatures above 40 K, but
small deviations exist below 40 K.

A review of experimental specific-heat data and theoretical
values obtained from varying model sizes leads to the surmise
that the absence of a small number of excess vibrational
modes (relative to the Debye model) near 1 THz could be
partly responsible for the deviation at low temperatures below
40 K. This statement appears to be vindicated in our study by
investigating a fourfold increase of the system size from 500
to 2000 atoms. However, a definitive answer to this surmise is
outside the scope of the present study as it requires accurate
calculations of the vibrational spectra using larger a-Si models
in order to examine the vibrational modes near the 1-THz
region. Such calculations are prohibitively difficult from an ab
initio density-functional point of view due to the requirement
of using an extended basis set to construct the force-constant

matrix of a-Si models involving several thousands of atoms in
the self-consistent field approximation. The effects of anhar-
monicity on the atomic dynamics in a-Si have been studied
by computing the MSD from the equilibrium trajectories of Si
atoms obtained from direct AIMD simulations in microcanon-
ical and canonical ensembles. Comparisons of results from
the direct AIMD and lattice-dynamical calculations show a
small anharmonicity-induced increase of the MSD values at
temperatures above 450 K. This suggests that the harmonic
approximation works very well below 400 K, which is lower
than the Debye temperature of 487–541 K for a-Si.
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