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Subdiffusive spin transport in disordered classical Heisenberg chains
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We study the transport and equilibration properties of a classical Heisenberg chain, whose couplings are
random variables drawn from a one-parameter family of power-law distributions. The absence of a scale in
the couplings makes the system deviate substantially from the usual paradigm of diffusive spin hydrodynamics
and exhibit a regime of subdiffusive transport with an exponent changing continuously with the parameter of
the distribution. We propose a solvable phenomenological model that correctly yields the subdiffusive exponent,
thereby linking local fluctuations in the coupling strengths to the long-time, large-distance behavior. It also yields
the finite-time corrections to the asymptotic scaling, which can be important in fitting the numerical data. We
show how such exponents undergo transitions as the distribution of the coupling gets wider, marking the passage
from diffusion to a regime of slow diffusion, and finally to subdiffusion.
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I. INTRODUCTION

Ever since the original recognition that diffusion is absent
in certain random lattices [1], the study of transport in im-
pure materials has been a rich source of surprising, and often
subtle, phenomena. Recently, the study of the mechanism of
equilibration in quantum many-body systems has provided an
additional impetus, carried by experimental advances [2–4] as
well as concomitant conceptual progress [5–7]. The quantum
statistical mechanics of nonequilibrium systems, and of the
process of equilibration itself [8,9], is now reaching the level
of detail that classical ergodic theory has reached more than a
hundred years after the works of Boltzmann [10,11].

It is, in particular, the study of systems with both interac-
tions and disorder that has thrown up many puzzles. This is
subject to formidable technical difficulties, as exact solutions
are generically unavailable, while numerics for quantum sys-
tems is typically restricted to small system sizes and/or short
times. This has led to vigorous debates regarding the nature
and lifetime of possible intermediate-time dynamical regimes
[12–18] (and the role of rare events in their genesis [19,20]),
and how to distinguish them from expected or desired long-
time behavior.
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One aspect of much recent interest relates to the question
of under what conditions, and with what consequences, many-
body systems may exhibit neither diffusive nor localized
behavior; much-explored possibilities relate to subdiffusive
[21–24] or Kardar-Parisi-Zhang [25–29] behaviors.

Here we study a family of disordered, classical chains of
Heisenberg spins. This picks up the aforementioned threads in
the following ways. (i) Such chains are, a priori, generic one-
dimensional many-body systems but (ii) even the clean (i.e.,
without disorder) Heisenberg chain has recently been shown
to be capable of exhibiting extended nondiffusive transport
regimes [30–33]—closing a longstanding debate regarding
the diffusive nature of excitations [34–41]. (iii) It is techni-
cally possible to simulate large system sizes for long times,
and thus there is hope of probing various regimes and their
crossovers, all the more as (iv) the tuning parameter distin-
guishing members of the family of models allows us to access
very different behavioral regimes.

In the following, we show how this family of disordered
Heisenberg chains exhibits a rich set of transport phenomena,
comprising standard diffusion as well as tunable subdiffusion,
but, as established in previous work [42,43], no classical
counterpart of many-body localization. We account for all of
these phenomena with a relatively simple treatment, which
makes transparent the role of extreme-value statistics and rare
phenomena. We also provide detailed insights into the origin
and nature of short- to intermediate-time crossovers and cor-
rections, which can be important in the numerics over a broad
time window.

Atypical rare regions of the system, where, for example,
local couplings are much smaller or much larger than their
typical value, are suspected to play a significant role in achiev-
ing or inhibiting thermalization in classical and quantum
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FIG. 1. Sketch of the spin chain from Eq. (1). The spins Si live on
the sphere S2, and interact via broadly distributed nearest-neighbor
couplings Ji, cf. Eqs. (2). We use periodic boundary conditions.

systems. However, their signature in numerical results is often
obscured and can lead to different, contrasting interpretations
of finite-size and finite-time numerics on account of the very
slow emergence of the true asymptotic behavior. It is therefore
highly desirable to have access to models in which analytical
results sufficiently constrain the data analysis to yield a clear
interpretation of the numerics.

In this paper, we present one such example. Crucially,
our solution of a phenomenological model for transport, in
which the local diffusion coefficient is a broadly distributed
random variable, provides both leading and subleading terms
in the large-time expansion of observables. We show how, in
the absence of such an analytic prediction for the subleading
behavior, slow diffusion could be mistaken for subdiffusion,
the diffusive term achieving dominance for times orders of
magnitude larger than those typically reachable in state-of-
the-art numerics.

The paper is organized as follows. In Sec. II, we intro-
duce the family of models we study. In Sec. III, we present
the numerical results and explain how to pin down the
diffusion/subdiffusion transition from them. In Sec. IV, we
develop an effective model for the dynamics of the Heisenberg
chain, upon which the understanding of the numerical results
is based. Finally, in Sec. V we draw our conclusions. Addi-
tional information regarding the effective model is provided
in Appendices A and B.

II. MODEL

We consider a bond-disordered version of the classical
Heisenberg chain, with the Hamiltonian

H =
L∑

i=1

JiSi · Si+1, (1)

where Si ∈ S2 are classical unit-length spins, and we use
periodic boundary conditions. The random couplings Ji are
independent and identically distributed (i.i.d.), and drawn
from a one-parameter family of power-law distributions. The
probability density function,

pη(J ) = (1 − η)J−η, J ∈ [0, 1] (2)

is controlled by an exponent η ∈ (−∞, 1). A sketch of the
setup is shown in Fig. 1. We show the distributions pη(J ) for
representative values of η in Fig. 2: for η > 0, the probability
density diverges at J = 0; for η < 0, the weight accumu-
lates around J = 1, and approaches the clean model as η →
−∞; precisely at η = 0, the distribution is uniform. Through-
out, units are implicitly defined by the maximum coupling
Jmax = 1.

FIG. 2. (a) Probability density function of the couplings Ji for
representative values of η. (b) Cumulative distribution function of the
inverse couplings R = J−1, showing the fat tails of the distribution
for η > 0. (c) Overview of the dynamical regimes as a function
of η. The point at η = 0 corresponds to logarithmically suppressed
diffusion.

It is, however, the distribution of the inverse couplings
R = J−1 that determines the bare dynamical timescales. Their
probability density,

qη(R) = (1 − η)Rη−2, R ∈ [1,∞), (3)

is fat-tailed: the first moment R diverges for η > 0; the second
moment R2 diverges for η > −1; and so on for the higher
moments (we denote the average over disorder by an over-
line). We will derive the consequences of these divergences in
Sec. IV.

Now, the classical dynamics of the Hamiltonian Eq. (1) is
defined by the fundamental Poisson brackets,{

Sα
i , Sβ

j

} = δi jε
αβγ Sγ

i , (4)

from which one obtains the equations of motion:

∂t Si = (Ji−1Si−1 + JiSi+1) × Si. (5)

These equations are manifestly SO(3) invariant: as in the
clean model, all three components of the magnetization are
conserved.

III. NUMERICAL RESULTS FOR THE DYNAMICS

We study the dynamics of the model Eq. (1) at infinite tem-
perature; in particular, we consider the correlation function of
the spins,

C( j, t ) := 〈S j (t ) · S0(0)〉, (6)

and the associated autocorrelator A(t ) := C(0, t ), averaged
over both realizations of disorder (overline) and a thermal en-
semble of initial states (angular brackets), as described below.
In the long-time limit, we expect to reach a hydrodynamic
regime, wherein the correlation functions of conserved densi-
ties approach an asymptotic scaling form

C(x, t ) ∼ t−αF (x/tα ) (7)

for some universal function F and scaling exponent α. The
latter can also be obtained by fitting the autocorrelator to a
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FIG. 3. Spin dynamics in the slow diffusion regime, shown for η = −0.5. In each panel, the main figure shows the rescaled autocorrelator
A(t ) = C(x = 0, t ) [cf. Eq. (6)]. The insets show the corresponding scaling collapse of the full correlation function C(x, t ). (a) Autocorrelator
and scaling collapse from Eqs. (9), i.e., assuming an asymptotic diffusive behavior with strong, anomalous corrections. (b) Diffusive scaling
without finite-time corrections (i.e., setting λ = 0, a one-parameter fit), showing that the corrections must be accounted for, at least up to the
final time of the simulation, t = 106. (c) Numerical fit with an anomalous (subdiffusive) exponent, i.e., a direct two-parameter fit to Eq. (8).
See main text for additional details.

power law:

A(t ) � κt−α. (8)

However, the asymptotics—while they define the dynamical
exponent—capture only the leading behavior. As we will
show, the finite-time corrections to Eq. (8) can be quite se-
vere, and persist, at least, to late times t = 106 (in units with
Jmax = 1).

To evaluate the correlator Eq. (6) for a given disorder
exponent η, we construct an ensemble of 20 000 initial states
at infinite temperature: each spin is simply, and independently,
drawn from the uniform distribution on the sphere. For each
state in the ensemble, we draw a distinct realization of the
couplings Ji, and numerically integrate the equations of mo-
tion Eq. (5). Snapshots of the state are stored at intervals
of �t = 10, with the correlation function at a given time
difference t calculated by averaging over 1000 consecutive
snapshots. Data shown are for the system size L = 8192 [44].

There are four distinct dynamical regimes. First, in the
clean limit (η → −∞), the spin dynamics is diffusive. Even
in this limit, however, finite-size and finite-time effects are
capable of hiding the asymptotic behavior, and it has taken
modern-day computing resources [30,31,40,41] to resolve the
long-lasting debate on this topic [34–39]. Second, as η be-
comes finite and, in particular, for −1 � η < 0, diffusion
persists at extremely large times, but finite-time corrections
become increasingly severe. This is due to the existence of
local dynamical bottlenecks, which arise from the growing
probability of drawing an arbitrarily small coupling. We refer
to this regime as slow diffusion, and study it in detail in
Sec. III A. Third, at η = 0, the probability density pη(J ) =
1 becomes uniform and the first moment of the inverse
couplings, i.e., R, diverges logarithmically. Accordingly, the
asymptotic spin dynamics shows logarithmically suppressed
diffusion, cf. Sec. III B. Finally, when 0 < η < 1, the spin
dynamics is truly subdiffusive, with an exponent (Hurst index)
α < 1/2, cf. Sec. III C.

In practice, for all the considered cases, the leading cor-
rections to the asymptotics are required to obtain the correct

scaling exponent α from the numerical data. If the corrections
are neglected, one finds an α smaller than the true value. We
first present the numerical results and develop an effective
model which accounts for our observations in Sec. IV.

A. −1 � η < 0: Slow diffusion

We begin with the regime of slow diffusion, observed when
−1 � η < 0. Here, pη(J ) is maximal at J = 1 and vanishes at
J = 0 (cf. Fig. 2).

In this regime, the average bare timescale R remains fi-
nite, so the leading behavior remains diffusive, i.e., α = 1/2.
Higher moments (e.g., R2), however, diverge, giving rise to
strong corrections. Correspondingly, the autocorrelator takes
the form

A(t ) ∼ κ

t1/2(1 + λtγ )
, γ = η

1 − η
< 0, (9)

with κ and λ obtained numerically in a two-parameter fit,
and the scaling function F approaches a Gaussian at late
times. The subleading exponent γ is fixed by the effective
model of Sec. IV. We show the slow-diffusion dynamics for
a representative value η = −0.5 in Fig. 3. We find that the
corrections postulated by Eqs. (9) capture the slow spreading
of the correlations and are necessary to obtain the correct
scaling at finite times.

It is interesting to point out that it is also possible to fit the
correlations with an anomalous (subdiffusive) exponent, i.e.,
applying a two-parameter fit to Eq. (8) directly. In the slow
diffusion regime, this procedure yields numerical agreement
with the simulation data that is comparable to the diffusion-
with-strong-corrections hypothesis. We stress, however, that
subdiffusion is not the correct asymptotic picture; rather, it
is an artifact of the corrections taking the form of a sum of
(small) power laws. Indeed, at η = −0.5, and for the times
accessible by our numerics, a direct power law fit finds a
subdiffusive exponent α = 0.465. The effective model we
develop in Sec. IV instead predicts the form Eqs. (9) with γ =
−1/3: Plugging in the value of λ found from the fits, it holds
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FIG. 4. Spin dynamics at the slow-diffusion/subdiffusion transition, η = 0. (a) Rescaled autocorrelator (main panel) and scaling collapse
of the correlation function (inset), as predicted by the logarithmic suppression of diffusion, i.e., a two-parameter fit to Eq. (11). (b) Same
data as (a), but fitting with a subdiffusive exponent, i.e., a direct two-parameter fit to Eq. (8). Note that the scaling collapse in the tails of the
correlations is slightly better using the logarithmic suppression, indicating that this is the correct picture.

exactly that

∂ lnA(t )

∂ ln(t )
≈ 0.465 . . . at t = 105. (10)

Thus, while locally, around the largest times we could access,
the effective power-law decay is slower than 1/2, our analyt-
ical understanding predicts that this is but a crossover, and
much longer times (t ≈ 108) are needed for the corrections to
become negligible (say, 1% of the leading term).

B. η = 0: Logarithmically suppressed diffusion

At η = 0, the slow diffusion regime terminates. The distri-
bution of the couplings Ji becomes uniform over [0, 1], and
the corrections to the diffusive behavior are enhanced, funda-
mentally changing the leading asymptotics. In particular, spin
diffusion is now logarithmically suppressed, and one finds

A(t ) ∼ κ ln(λt )

t1/2
, (11)

cf. Sec. IV D.
We show the logarithmically suppressed diffusion in Fig. 4.

While, again, a direct fit to Eq. (8)—i.e., a fit to determine
the subdiffusive exponent—is in good agreement with the
data [Fig. 4(b)], in this case the corresponding scaling col-
lapse is slightly worse in the tails than that provided by the
logarithmic-suppression picture [Fig. 4(a)]. That Eq. (11) fits
both the center (the autocorrelator) and the tails of the corre-
lations is strong evidence in favor of the picture predicted by
the effective model of Sec. IV.

From Fig. 4, one can also appreciate how the scaling func-
tion F is no longer Gaussian and has developed a nonanalytic
feature at the origin—which will become more pronounced in
the subdiffusive regime.

C. η > 0: Subdiffusion

Finally, we turn to the case η > 0. The distribution pη(J )
now diverges at J = 0, which means that a finite fraction
of the bonds become arbitrarily small. This leads to truly
subdiffusive dynamics, with exponent α < 1/2.

However, the fact that corrections in the slow diffusion
regime were strong enough that a naive numerical fit to Eq. (8)
already finds subdiffusion at η < 0 suggests that, again, there
will be strong corrections which hide the correct exponent (the
exponent obtained numerically is continuous as a function of
η). This is indeed the case, and we find

A(t ) ∼ κ

tα (1 + λtγ )
, (12)

cf. Sec. IV D, with

α = 1 − η

2 − η
, γ = 2α − 1 < 0. (13)

We show the subdiffusive dynamics for η = 0.5 in Fig. 5,
again finding that the leading finite-time corrections are re-
quired. As was the case at η = 0, we show that the the form
of A(t ) predicted by the effective model, Eq. (12), collapses
the tails of the correlations slightly better than a direct fit to
Eq. (8) [compare Figs. 5(a) and 5(c)].

As for the scaling function F , it is clear from Fig. 5 that
it is not Gaussian. It appears from the inset scaling collapses
that F approaches a stretched exponential; though we cannot
draw a sharp conclusion on this point since our simulations do
not reach the truly asymptotic regime.

IV. AN EFFECTIVE MODEL FOR SPIN TRANSPORT

Having first presented the numerical data, including, with-
out justification, the forms of the corrections, we now present
a phenomenological model of the spin transport which ex-
plains, at least qualitatively, the results of Sec. III. In
particular, in Sec. IV A we introduce the effective model and
motivate its form. In Sec. IV B, we show how the model
can be solved by means of a transfer-matrix technique. Fi-
nally, in Sec. IV C we extract the asymptotic scaling via
the transfer-matrix trick, while in Sec. IV D we address the
finite-time corrections to the asymptotics. The reader may
refer to Appendix A for another way of solving the effective
model.
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FIG. 5. Subdiffusive spin dynamics in the strongly disordered regime, shown for a representative η = 0.5. Again, each main panel
shows the autocorrelator, while the insets show the scaling collapse of the correlation function. (a) The autocorrelator and scaling collapse
from Eq. (12), i.e., a two-parameter fit with the subdiffusive exponent α = (1 − η)/(2 − η) = 1/3, and with leading corrections included.
(b) Subdiffusion with the same exponent as (a) but without the corrections, i.e., a one-parameter fit setting λ = 0. (c) Scaling with an exponent
obtained numerically without finite-time corrections, i.e., a direct two-parameter fit to Eq. (8). Again, note that the scaling collapse in the tails
is better in (a) than in (c), indicating that the finite-time corrections provide the correct picture.

A. Motivation for the effective model

To access the late-time behavior of the spin-spin cor-
relations, we set ourselves on a hydrodynamic scale, and
linearize the microscopic dynamics while accounting for the
local exchange of energy and spin. By rotational invariance,
we consider only the magnetization density along one axis:
while one could write hydrodynamic equations that couple
the local magnetization components along all three axes in
an SO(3)-symmetric fashion, we will show that the simplest
ansatz of totally decoupled components is sufficient to explain
our numerical findings.

Let us denote the magnetization at the coarse-grained site
x by mx(t ). We retain a discretized lattice even on the hydro-
dynamic scale, because this way it is easier to account for
the strong, fat-tailed disorder of Eqs. (2). The disorder in the
couplings Jx suggests that the local diffusion coefficient Dx

will vary similarly, giving rise to a local diffusion equation:

∂t mx = Dx−1mx−1 + Dxmx+1 − (Dx + Dx−1)mx. (14)

We argue that this is the correct lattice discretization of the
diffusion equation, since it comes from enforcing Kirchhoff’s
law at each site, i.e., the inflow and outflow of magnetization
at each site cancel out. In turn, this fact implies that the
constant vector mx ≡ m is a stable solution of Eq. (14), and
that the magnetization is locally conserved.

The local, random diffusion coefficients Dx have some
unknown distribution function, depending on the underlying
Ji’s. Interpreting Eq. (14) as a coarse graining of Eq. (5), the
distribution of the Dx’s should be obtained, in principle, via
some renormalization procedure (mayhaps akin to the strong-
disorder renormalization group used for quantum disordered
spin chains [45–49]). For our purposes, however, it suffices to
assume that 1/Dx has the same fat tails as 1/Ji. We thus as-
sume, for simplicity, that Dx has the same probability density
function as in Eqs. (2):

pη(D) = (1 − η)D−η, D ∈ [0, 1]. (15)

Using a different distribution that shares the same tails
leads to equivalent results, as will become clear from the
extreme-value analysis below. We have, here, implicitly
rescaled the units of time by setting the maximum possible
value Dmax = 1.

In the following, we solve the dynamics described by
Eq. (14). Before doing so, however, some comments are in
order. First, we stress that Eq. (14) was already known to
approximate the dynamics of the classical Heisenberg model
near zero temperature [50–52]. Indeed, a spin-wave expan-
sion of the equations of motion Eq. (5) leads to a copy of
Eq. (14), if the interactions among spin waves are neglected.
Our contribution is to show that this linearized equation is also
capable of describing the dynamical scaling of space and time
at infinite temperature.

Second, we remind the reader that Eq. (14) has been the
subject of a vast literature, pioneered by Dyson [53] (see also
Refs. [50–52]), and sometimes goes by the name of random
barrier model. The long-time behavior of mx(t ) can be ob-
tained by various methods: an integral equation that leads to
the exact solution [53–55], small-disorder expansions [56,57],
an effective-medium theory [50], and renormalization-group
approaches [58–61]. Here, we solve the model by yet an-
other technique—a series expansion of a transfer-matrix
representation—for two reasons: First, we find it faster, and
more transparent from a physical standpoint; second, it al-
lows us to access the subleading terms, which, as noted in
Sec. III, must be taken into account. In the following sections,
we describe in detail the transfer-matrix method, and then
extract the scaling in the different dynamical regimes. We
benchmark our solution against the integral equation method
in Appendix A.

B. Transfer matrix representation and solution in the clean case

The exact solution of Eq. (14) can be obtained only nu-
merically, owing to the random nature of the Dx’s. However,
the dynamical behavior of the solution can be accessed with
a clever transfer-matrix trick, borrowed from the problem of
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Anderson localization [62,63]. Let us first pass to the Fourier
transform in time, m̃x(ω) = ∫

dt e−iωt mx(t ), which yields

iωm̃x(ω) = Dx−1m̃x−1(ω) + Dxm̃x+1(ω)

− (Dx−1 + Dx )m̃x(ω). (16)

We now rewrite this equation in transfer matrix form(
m̃x+1

m̃x

)
=

(
Dx−1+Dx+iω

Dx
−Dx−1

Dx

1 0

)(
m̃x

m̃x−1

)
, (17)

which can be recast in a more compact notation,

Mx+1 = Tx(ω)Mx, (18)

where we have introduced the vector of the two magnetiza-
tions Mx, and the 2 × 2 transfer matrix Tx(ω). Iterating, one
finds

Mx+1 = Tx(ω)Tx−1(ω) · · · T1(ω)M1, (19)

which expresses mx+1 for any x in terms of m0 and m1.
Equation (19) does not admit a solution any more than the

original form, but it does bring the problem into the realm
of products of random matrices—a classic topic in statistical
physics dating back to the works of Furstenberg and Kesten
[64,65]. Now, to get an idea of the nature of the product, let us
consider the clean case:

T =
(

2 + iω
D −1

1 0

)
. (20)

Even though T is not Hermitian, it is diagonalizable and has
eigenvalues

λ1,2 = 2D + iω ± √
4iDω − ω2

2D
. (21)

Notice that, since det(T ) = 1, it holds that λ1 = 1/λ2; we
choose the labels such that |λ1| � 1 � |λ2|. Now, an n-fold
application of T to a generic vector corresponds (approxi-
mately) to a rotation plus an enlargement by a factor |λ1|. This
represents a vector localized away from the left boundary—
ideally, on the right boundary. By, instead, fine-tuning the
initial vector to the right eigenvector corresponding to λ2, one
finds a vector localized on the left boundary, which corre-
sponds to the propagation of a disturbance created on the site
y = 0.

The long-time dynamics corresponds to small values of ω,
for which

λ1,2 = 1 ±
√

iω

D
+ iω

2D
+ · · · . (22)

Therefore, for a disturbance localized on y = 0, one finds

m̃y(ω) � (1 −
√

iω/D + · · · )y = e−y
√

iω/D, (23)

while the other eigenvalue corresponds to a disturbance local-
ized at y → ∞,

m̃y(ω) � (1 +
√

iω/D + · · · )y = e+y
√

iω/D. (24)

Above, we have set the values of the initial seed to M1 ≈ 1.
The dispersion relation y2 ∼ Dt is immediately apparent from

Eqs. (23) and (24), since y and ω appear only in the combina-
tion yω1/2 ∼ y/t1/2. Then, selecting the decaying exponential,
the inverse transform is

my(t ) ≈
∫ +∞

−∞

dω

2π
e−√

iω/Dy+iωt . (25)

If both y and t are large, this integral is dominated by the
saddle point,

0 = ∂

∂ω

(
−

√
iω

D
y + iωt

)
⇒ ω = −i

y2

4Dt2
, (26)

and, substituting this back in, one finds

my(t ) ∼ e− y2

4Dt , (27)

i.e., diffusive behavior y2 ≈ 2Dt . Note also that the gaussian
tails of diffusion are correctly reproduced.

Let us now see how one can get the same results by
expanding the product Tx(ω)Tx−1(ω) · · · T1(ω) in powers of
ω. This will be useful for the disordered case, as the eigen-
value of the product of the random transfer matrices cannot
be obtained from the eigenvalues of the separate Tx’s. We
consider the action of Tx(ω)Tx−1(ω) · · · T1(ω) on the trial
vector M1 = (1, 1)T , which represents a good starting guess
for a long-wavelength vector. Order by order in ω, one finds
(reintroducing the index on D for future reference, although
Dx ≡ D in the clean case)

m̃y+1(ω) = 1 + iω
∑
x1�y

x1

Dx1

+ (iω)2
∑

x1<x2�y

x1(x2 − x1)

Dx1 Dx2

+ (iω)3
∑

x1<x2<x3�y

x1(x2 − x1)(x3 − x2)

Dx1 Dx2 Dx3

+ · · · .

(28)

The terms in the expression above are reminiscent of the
locator expansion, which is a useful tool when studying the
physics of localization [1,66,67].

The sums over x1, x2, . . . in Eq. (28), when the uniform D
is factored out, reduce to∑

x1<···<xn�y

x1(x2 − x1) · · · (xn − xn−1) = (y + n)!

(2n)!(y − n)!
. (29)

The first terms in the large-y expansion read

(y + n)!

(2n)!(y − n)!
= y2n

(2n)!

(
1 + n

y
+ · · ·

)
. (30)

Thus, in the limit of large y, one finds the approximate solution

m̃y(ω) ≈
∞∑

n=0

(iω)n

Dn

y2n

(2n)!
= cosh

(√
iω

D
y

)

= 1

2

(
e
√

iω
D y + e−

√
iω
D y

)
, (31)

the two terms corresponding exactly to the two eigenvalues of
the transfer matrix. Again, selecting the decaying exponential
and inverting the Fourier transform yields the diffusion profile
and the Brownian dispersion relation.

To summarize, one can obtain the dispersion relation from
the dependence of the series Eq. (28) on the combination
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of ω and y, while access to the functional form requires the
coefficients of the series.

Crucially, this solution strategy can be transposed to the
disordered case, as we now move to show in the following
sections.

C. Scaling in the disordered model

We now use the transfer-matrix method to solve the dis-
ordered chain, in which the Dx’s are i.i.d. random variables
distributed according to pη(D). Note that, if the average 1/D
exists (i.e., η < 0), then my behaves diffusively, with an ef-
fective diffusion coefficient De f f = (1/D)−1. We stress that
the effective diffusion coefficient is not given by D, since the
resistances ∼1/Dx are additive but the conductances ∼Dx are
not [68].

The only case we need to treat, therefore, is when the
moment 1/D is infinite, i.e., η � 0. We will focus, however,
on η > 0, leaving the limiting case η = 0 to Sec. IV D.

When η > 0, one must retain the explicit sums in Eq. (28).
Now, since 1/Dx has a fat-tailed distribution, the (finite) sums
are dominated by the maximum—in particular,∑

xi−1�xi

xi−1

Dxi−1

� max
xi−1<xi

xi−1

Dxi−1

. (32)

For η > 0, the numerator is irrelevant—it is just a random
number uniformly distributed in [0, xi], which we write as cixi

with ci ∈ [0, 1]. Thus, simplifying further, one has∑
xi−1�xi

xi−1

Dxi−1

� cixi max
xi−1<xi

1

Dxi−1

. (33)

The maximum, over a large number of instances xi, of the i.i.d.
random variables 1/Dxi−1 is a random variable of typical value
x1/(1−η)

i  xi, owing to η > 0. Consequently, the whole sum
is approximately ∑

xi−1�xi

xi−1

Dxi−1

� bix
1+ 1

1−η

i , (34)

where bi is another random variable of O(1). Therefore,∑
x1�y

x1

Dx1

� b(1)y1+ 1
1−η , (35)

∑
x1<x2�y

x1(x2 − x1)

Dx1 Dx2

� b(2)y2+2 1
1−η , (36)

and so on.
We have now all the tools to evaluate the random series,

Eq. (28):

m̃y(ω) = 1 + iωb(1)y1+ 1
1−η [1 + o(y0)]

+ (iω)2b(2)y2+2 1
1−η [1 + o(y0)]

+ (iω)3b(3)y3+3 1
1−η [1 + o(y0)] + · · ·

= fη
(
ωy

2−η

1−η

)
[1 + o(y0)]. (37)

The neglected terms of o(y0) represent finite-time corrections,
and they will be the object of the next section. The functional
form of fη(x) cannot be evaluated at this coarse level of

calculation, since it requires knowledge of the coefficients
b(n) at every order: For example, in the clean case one has
b(n) = 1/(2n)!, and thus it simplifies to fη(x) = cosh(

√
ix)

when η → −∞.
Even if fη is left undetermined, the dispersion relation is

found from the scaling

t ∼ ω−1 ∼ y(2−η)/(1−η) (38)

or, equivalently,

y ∼ t (1−η)/(2−η). (39)

We conclude that, in the region 0 < η < 1, the scaling is
subdiffusive, with an exponent (Hurst index)

α = 1 − η

2 − η
<

1

2
. (40)

This is exactly the subdiffusive exponent used in Sec. III C
[see Eq. (12), in particular] to fit the numerical data.

D. Finite-time corrections to the scaling

As can be seen from the numerical data of Sec. III, sizable
corrections to the asymptotic scaling persist until very long
times in the bond-disordered Heisenberg chain, Eq. (1). This
feature is shared by the phenomenological model, Eq. (14), as
we now show. We will split the discussion for the regimes
of diffusion, slow diffusion, and subdiffusion; the loga-
rithmically suppressed diffusion will follow as a limiting
case.

a. Diffusion. To set the stage, let us first address the finite-
time corrections in the clean case Dx ≡ D (i.e., η → −∞).
The same features are shared by the whole region −∞ < η <

−1, as will become clear. Retaining the first-order corrections
in Eq. (30), one can resum the series in Eq. (28) to

m̃y+1(ω) = cosh

(√
iω

D
y

)
+ 1

2

√
iω

D
sinh

(√
iω

D
y

)
+ · · · .

(41)

The second term, upon taking the inverse Fourier transform,
is dominated by the same saddle as the first, and one finds

my+1(t ) = e− y2

4Dt

(
1

2
+ y

8Dt
+ · · ·

)
. (42)

Again, the overall constant needs to be fixed by normalization,
since the initial guess for m was not normalized. What counts
for our purposes is the relative size of the first two terms: using
y ∼ t1/2 from the scaling, the second term is seen to be of
order t−1/2 with respect to the first.

Upon reintroducing the disorder, finding the explicit first-
order corrections to Eq. (37) is more difficult, and a careful
study of the random sums in Eq. (28) at all orders of ω is
needed. Indeed, m̃y(ω) is itself a random variable, and the
large-space and long-time behavior of my(t ) should be in-
spected by considering not only the average, my(t ), but also
its moments—or, equivalently, the average of quantities such
as ln my(t ). For this reason, we find it convenient to pass to the
logarithm at the level of the Fourier transform:
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ln m̃y+1(ω) = iω
∑
x1�y

x1

Dx1

+ (iω)2

⎡⎣∑
x1�y

x2
1

D2
x1

+2
∑

x1<x2�y

x2
1

Dx1 Dx2

⎤⎦ + · · · .

(43)

The equation above has the useful property that, at each order
ωn, there is one term ∝ 1/Dn

x1
, followed by less singular terms

1/Dn−1
x1

Dx2 , 1/Dn−2
x1

Dx2 Dx3 , and so on. When the moment
1/Dn does not exist, but all the moments 1/Dm with m < n
exist (i.e., for η � −n + 1), an anomalous contribution to
m̃y(ω) appears—influencing the finite-time dynamics at order
ωn. As long as η < −1, both the terms of order ω and ω2 are
regular, and thus we expect moderately long times to suffice
to make diffusion manifest. On the other hand, when η crosses
−1, the first correction O(ω2) gains an anomalous power, and
signatures of slow diffusion are found. We detail this fact in
the next paragraph.

b. Slow diffusion. Let us focus again on Eq. (43). By us-
ing the same analysis as Sec. IV C for the sums of random
variables, one finds, in the region −1 � η < 0,∑

x1�y

x1

Dx1

∼ 1/D y2, (44)

∑
x1�y

x2
1

D2
x1

∼ y2(2−η)/(1−η), (45)

∑
x1<x2�y

x2
1

Dx1 Dx2

∼ 1/D
2
y4, (46)

and similarly for higher moments. By looking at the expres-
sion above, one recognizes that the terms Eqs. (44) and (46)
combine to form a regular function of ωy2. Indeed, similarly
to the subdiffusive case [see Eq. (37)], one can group terms
and find

ln m̃y+1(ω) = ln fη(ωy2) + c(1)ω2y2(2−η)/(1−η) + · · · , (47)

with c(1) being a constant of O(1). This has to be interpreted in
the same way as an anomalous scaling of the free energy at a
critical point: the analytic part is represented by the first term
and it is followed by a series of anomalous corrections, begin-
ning with ω2y2(2−η)/(1−η) ∼ tη/(1−η) (having used the scaling
of the dominant term y2 ∼ t).

We remark that the subleading terms are very important
when one wants to extract the scaling exponents from the
numerics, as we already showed in Sec. III. If they are not
properly accounted for, the errors are rather large and the
determination of the onset of subdiffusion is misplaced. The
reason is that the subleading term tη/(1−η) has to be much
smaller than unity if one wants to extract the leading exponent
1/2 with some accuracy: this requires extremely long times
for |η| < 1, and is a major source of obfuscation in the analy-
sis of numerical data as shown in the previous sections.

c. Subdiffusion. We now consider the case η > 0, where
not even the first moment of the random variable 1/D ex-
ists. Extreme-value statistics tells us that all the sums in
Eqs. (28) or (43) become anomalous, giving rise to the ex-
pression in Eq. (37). Here, we argue that the corrections left

out in Eq. (37) involve regular powers of y, as we illustrate
with a very simple example. Consider the first-order term
iω

∑
x1�y x1/Dx1 . Let us split the sum according to whether

Dx1 > D� or Dx1 < D�, where the value D� is fixed so the
probability D < D� is p = 1/2 (any other finite value of p
would lead to the same conclusion). Then, one recognizes that
the random variable

ψ :=
∑
x1�y

x1

Dx1

(48)

has a broad probability distribution peaked at a value ψ ∼
y(2−η)/(1−η), but with nonzero weight down to ψ ∼ y2: this
latter value comes from the regular sum of the terms involving
Dx1 > D�, while the former represents the anomalous contri-
bution of the very small instances Dx1 < D�. So, with a slight
abuse of notation, one can say that∑

x1�y

x1

Dx1

∼ y(2−η)/(1−η) + cy2, (49)

in the sense that all functions of this random variable may be
expanded, at large y, in these two (leading and subleading)
terms.

A careful treatment of the random sums thus leads to
two families of terms: those involving regular powers of y,
and those involving anomalous powers. These two families
receive contributions from all orders in ω, and a resummation
of all the terms is beyond the scope of this paper. We will
content ourselves with the following simple scaling analysis:
the combination of ω and y which appears is

ω(y(2−η)/(1−η) + cy2) ∼ 1, (50)

from which it follows that

y ∼ tα (1 + c′t2α−1), (51)

which is the form of the autocorrelator Eq. (12) used to fit the
numerical data. The constants c and c′ cannot be fixed at this
rough level of calculation; thus, in Sec. III, some fitting was
still required.

d. Logarithmically suppressed diffusion. We finally
consider how logarithmically suppressed diffusion emerges.
Being the limiting case between subdiffusion and slow
diffusion, it can be understood from both sides. From the
slow-diffusion side, one can see that the corrections to
the asymptotic (diffusive) scaling tend to become of the
same order of the leading term as η → 0−: this is because
(2 − η)/(1 − η) → 2, and the two terms on the right-hand
side of Eq. (47) coalesce, forming a logarithm. The same
happens from the subdiffusive side, where the dominant term
is now y(2−η)/(1−η), while the corrections are given by y2: the
mechanism is the same, though the role of the two terms is
exchanged. We point out that this coalescence of power laws
can be understood from a complementary perspective via the
integral-equation solution, see App. A.

V. CONCLUSIONS

We have shown that the dynamics of a classical Heisen-
berg chain with broadly distributed couplings Ji, specifically
pη(J ) ∼ J−η, goes through various dynamical phases as η

is increased from very negative to its maximum achievable
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value, η = 1. For η < −1, the correlation functions are dif-
fusive (data not presented, though see, e.g., the Supplemental
Material of Ref. [31]). For −1 < η < 0, we have shown that,
while the asymptotic behavior is still diffusive, there are
strong finite-time corrections which can be mistaken as signs
of subdiffusive transport. True subdiffusion sets in only when
η > 0, with the subdiffusive exponent matching the analytic
prediction of a phenomenological model in which a local
diffusion coefficient is assumed to be a random variable, also
broadly distributed, with the same exponent η as the local
couplings J .

We point out that the quantum version of the model con-
sidered here Eq. (1) was the subject of recent works [69,70],
in which it was argued that a regime intermediate between
many-body localization and thermalization persists in the
thermodynamic limit. Such a regime is found in a range of
parameters equivalent to our 0 � η < 1, i.e., when the classi-
cal model shows subdiffusive transport. It may be interesting
to consider whether a semiclassical treatment of the quantum
model could link these findings.

Our paper, we believe, settles the question about the on-
set of diffusion and subdiffusion in classical Heisenberg
chains with random couplings, in part already considered in
Refs. [38,40]. It also presents yet another cautionary tale for
efforts to extract potentially anomalous dynamical exponents
and identify possible dynamical phase transitions based on
short-time, small-system numerics. Indeed, the discrepancy
between exponents obtained from different but, visually, sim-
ilarly good fits on system sizes of several thousand spins at
times of a million J−1

max, gives a quantitative indication of just
how challenging it is to estimate systematic error bars.

To conclude, leaving aside the considerations of a largely
technical nature, the family of models we have studied pro-
vides a window on the physics of how rare (or not-so-rare)
local fluctuations manifest themselves at long length- and
timescales. Our paper, in this sense, is a classical counter-
part to the strong-disorder renormalization group treatments
[45–49] which have been so influential for the study of quan-
tum models in the last few decades. The question of which
regimes still await discovery, in addition to those found and
referenced in this paper, strikes us as a subject of study likely
to hold more than one surprise in store.
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APPENDIX A: INTEGRAL EQUATION SOLUTION
OF THE EFFECTIVE MODEL

In this Appendix, we solve the effective model, Eq. (14),
taking inspiration from the calculations of Ref. [54], but
employing a simpler strategy. We start by rewriting Eq. (14)
as

∂t mx(t ) = −(Hm)x(t ), (A1)

where

H =
∑

x

[(Dx + Dx−1)|x〉〈x| − Dx(|x + 1〉〈x| + H.c.)],

(A2)

and the state |x〉 represents a particle located at position x
on the chain. We now introduce the diagonal element of the
resolvent of H , namely,

G00 := 〈0| 1

ω − H
|0〉. (A3)

Notice that here the frequency ω is obtained via a Laplace
transform instead of a Fourier transform, so there is an imagi-
nary unit of difference with respect to Sec. IV.

Using standard methods for tridiagonal matrices—or,
equivalently, a locator expansion [1,66,67]—Eq. (A3) can be
recast in the form

G00(ω) = 1

G+ + G− + ω
, (A4)

with the random variables Dx to the right of site 0 appearing
in

G+ = 1

D−1
1 + 1

ω+ 1
D2+...

, (A5)

and those to the left appearing in

G− = 1

D−1
0 + 1

ω+ 1
D−1+...

. (A6)

Now, G± are themselves random variables, and their distribu-
tion can be found in an iterative way. In fact, the relation

G±,x = 1

D−1
x + 1/(ω + G±,x−1)

(A7)

is a sort of recursion equation familiar from the theory of
Anderson localization [66,67,71] and that of spin glasses
[72–74]. The limiting distribution of G must be invariant
under the iteration

f (g) =
∫

dg′ f (g′)
∫

dD ρ(D)

× δ[g − (D−1 + (ω + g)−1)−1]. (A8)

The scaling form at small ω can be recovered by looking at
the first moment g = ∫

dgg f (g),

g =
∫

dg′ f (g′)
∫

dD ρ(D)[D−1 + (ω + g)−1]−1

=
∫

dg′ f (g′)(ω + g′)F (ω + g′), (A9)

where

F (s) =
∫

dD ρ(D)
1

1 + s/D

= (1 − η)
∫ ∞

1
dR R−2+η 1

1 + sR
, (A10)

having passed to the variable R := 1/D. Notice that F (0) = 1,
but one also needs the corrections at small s = ω + g′. Going
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FIG. 6. Bromwich contour for the inversion of the Mellin trans-
form, Eq. (A11). The poles at integer values (black crosses) are
responsible for a regular scaling of time and space, while the pole
at s = η − 1 (red dot) is responsible for subdiffusion when η > 0,
and for the anomalous corrections to diffusion when −1 < η < 0.

to the Mellin transform, one can write

F (s) =
∫
B

dz

2π i

πs−z

sin πz

1 − η

z + 1 − η
, (A11)

where B is the Bromwich path from −i∞ to +i∞ with
0 < Re(z) < 1, see Fig. 6. The function F (s) in the com-
plex s plane contains poles at all the integers s ∈ Z and at
s = η − 1 < 0, see again Fig. 6. To find the small-s behavior,
one can move the contour to the left, picking up as many poles
as terms required. For η > 0, one finds

F (s) = 1 − π (1 − η)

sin π (1 − η)
s1−η + O(s). (A12)

Inserting the relation above in Eq. (A9), we have

g =
∫

dg′ f (g′)(ω + g′)
[

1 − π (1 − η)

sin π (1 − η)
(ω + g′)1−η

]
= ω + g − π (1 − η)

sin π (1 − η)
(ω + g)2−η, (A13)

FIG. 7. Slow diffusion in the effective model at η = −0.5, ob-
tained by directly simulating Eq. (14). The leading and subleading
terms predicted by the transfer matrix solution, and used to fit the
spin correlations in the main text for the same value of η (Fig. 3),
provide an excellent fit to the data.

FIG. 8. Subdiffusion in the effective model at η = 0.5, obtained
by directly simulating Eq. (14). Similarly to the case of slow-
diffusion (Fig. 7), the transfer-matrix solution, which describes the
spin correlations at the same η (cf. Fig. 5), is in agreement with the
effective model’s numerics.

with the promised small s corrections. Neglecting, self-
consistently, ω with respect to g, one obtains

ω = π (1 − η)

sin π (1 − η)
g2−η, (A14)

and so

g2−η ∼ ω. (A15)

Analogously, for all n � 2 one can prove that gn−η/gn−2 ∼
ω. Therefore, the typical value of g ∼ ω1/(2−η) which, when
inserted in Eq. (A4), gives

A(t ) ∼
∫

dω
eiωt

ω
1

2−η + O(ω)
∼ t− 1−η

2−η . (A16)

This is consistent with the result obtained in the main text.
From the Mellin transform formalism, one can also get a

complementary understanding of the subleading terms. Look-
ing at Eq. (A11) or Fig. 6, one can see that the function
F (s) receives contributions from two kinds of poles: those at
integer values and an anomalous pole at s = η − 1. This last
pole moves as the disorder strength η is tuned, and, depending
on the relative position of the anomalous pole s = η − 1 and
the pole at s = −1, the asymptotic behavior changes from
diffusion to subdiffusion: indeed, it is the first pole to the left
of s = 0 that determines the asymptotics. One can see that the
two poles coalesce precisely at η = 0, in accordance with the
power series treatment of Sec. IV.

The poles at s = −2, s = −3, etc., represent subleading
corrections to the scaling of g with respect to ω. When −1 <

η < 0, i.e., in the slow diffusion regime, all such poles are
subleading; the anomalous pole is the first to be encountered
to the left of s = −1, and thus provides the leading finite-time
corrections to the asymptotic scaling. When, instead, η < −1,
it is the pole at s = −2 that dominates the corrections, and
standard diffusion is recovered to a very good approximation.
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FIG. 9. Logarithmically suppressed diffusion at η = 0 in the
effective model Eq. (14).

APPENDIX B: NUMERICS OF THE EFFECTIVE MODEL

As a further consistency check that our effective model
accurately captures the phenomenology of the disordered

Heisenberg chains Eq. (1), and that our transfer-matrix ap-
proach is correct, we directly simulate Eq. (14). We take a
finite system with sites x ∈ [−L/2, L/2) ∩ Z, L = 8192, and
the initial conditions mx = δx,0. The results are averaged over
20 000 realizations of the random coefficients Dx. We expect
the spreading of the magnetization profile mx(t ) under this
setup to mimic the spin correlations of Eq. (1).

We show convincingly in Fig. 7 that the slow-diffusion
regime (−1 < η < 0) falls within these expectations, with
the leading and subleading terms from the transfer matrix
solution Eq. (47) providing an excellent fit to the autocor-
relator, and a scaling collapse over three decades of time.
We find that the subdiffusive regime η > 0 evinces a simi-
larly good agreement, shown in Fig. 8, using the leading and
subleading terms found in Eq. (51). Finally, the transition
point η = 0, as displayed in Fig. 9, shows good agreement
with the autocorrelator, and a decent scaling collapse. We
note that the size of the parameter λ ≈ 107 does not im-
ply a poorly converged fit, since the combination κ ln λ ≈
0.433 entails a perfectly reasonable, additive, subleading
correction.
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