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We consider the properties of the random regular graph with node degree d perturbed by chemical potentials
μk for a number of short k-cycles. We analyze both numerically and analytically the phase diagram of the model
in the (μk, d ) plane. The critical curve separating the homogeneous and clusterized phases is found and it is
demonstrated that the clusterized phase itself generically is separated as the function of d into the phase with
ideal clusters and phase with coupled ones when the continuous spectrum gets formed. The eigenstate spatial
structure of the model is investigated and it is found that there are localized scarlike states in the delocalized
part of the spectrum, that are related to the topologically equivalent nodes in the graph. We also reconsider the
localization of the states in the nonperturbative band formed by eigenvalue instantons and find the semi-Poisson
level spacing distribution. The Anderson transition for the case of combined (k-cycle) structural and diagonal
(Anderson) disorders is investigated. It is found that the critical diagonal disorder gets reduced sharply at the
clusterization phase transition but does it unevenly in nonperturbative and mid-spectrum bands, due to the scars,
present in the latter. The applications of our findings to 2d quantum gravity are discussed.
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I. INTRODUCTION

The interplay between the ergodicity and integrability as
well as localization and delocalization is an interesting prob-
lem. The initial one-particle localization in the disordered
system is the well-known starting point [1]. However it has
been recognized more recently that at least two new generic
patterns are possible—delocalized nonergodic phase [2,3] and
many-body localized phase [4,5]. In both cases, there are
specific mechanisms of the ergodicity breaking.

The delocalized nonergodic phase has been found first in
the version of Rosenzweig-Porter model [3] and manifests the
fractality of the corresponding wave functions. The underly-
ing origin of the eigenstate fractality and the very nonergodic
phase is attributed to the emergent miniband structure of the
spectrum.

The combination of interaction and strong enough disorder
amplitudes leads to the many-body localization (MBL) phase
with full ergodicity breaking [4–8]. It is assumed that the
many-body localization in the physical space gets mapped
into the one-particle localization in a Hilbert space [9]. Thus
the Anderson model on random regular graph (RRG) serves
as the toy model for a identification of MBL phase in the
from the Hilbert-space perspective [2,10]. There are many
works, devoted to the Anderson model on RRG, show-
ing that the MBL and RRG problems share similarities in
their static ergodicity-breaking behavior [11–22], dynamical
[23–30] properties, as well as finite-size corrections [31–33],

see Ref. [34] for the recent review. Thus a better understand-
ing of the RRG-like models is relevant for the MBL problem.

Therefore the investigation of the Anderson localization
per se and other possible nontrivial phases in perturbed RRG
is an interesting issue. In particular, RRG provides the suitable
playground for investigation the effect of the structural disor-
der on the localization. To this aim the chemical potentials
for the short cycles can be added and the clusterization phase
transition takes place at some critical values of the chemical
potentials. The clusterization amounts to the controlled struc-
tural disorder for the Anderson problem on the graph.

Note that the exponential random graphs, including RRG,
are the statistical models that are the discrete versions of
the matrix models, when instead of the generic elements of
the matrix there are the bimodal elements of the adjacency
matrix of the graph. The clusterization phase transition in
the exponential random graphs corresponds to the condensa-
tion of eigenvalue instantons, individual eigenvalue instanton
corresponds exactly to a emerging cluster [35]. The effects
of the eigenvalue instantons in the matrix models has been
discussed in the several contexts and they are related to the
creation of the baby Universe in 2d gravity [36,37], ZZ branes
in the Liouville theory and to the partial violation of the
gauge theory in the supersymmetric (SUSY) gauge theories,
see Ref. [38] for the review. However, in the matrix models
only the large N planar limit is analytically tractable and all
nonperturbative instanton effects are suppressed by exp(−N )
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factor. On the other hand, in the RRG ensemble we can model
the nonperturbative effects numerically at finite N in a reason-
ably simple manner. Note also that quite recently the new type
of the eigenvalue holelike instantons have been identified [39]
and we shall argue that there is its clear-cut RRG counterpart.

The underlying mechanisms and examples of one-particle
localization in the Hilbert space are interesting in a context
of the MBL phase of interacting many-body system in the
physical space. The Hilbert-space fragmentation is one of the
mechanisms, considered as the origin of MBL phase. Typi-
cally it is attributed to the hidden symmetry of the many-body
systems or emerging local conservation laws see [40–44].
The formation of the quantum many-body scars (QMBS)
is another mechanism for localization in the Fock space,
see Refs. [45–47] for reviews. The QMBS represents the
nonthermalizing energy state, protected by some emerging
symmetry. There are two types of QMBS states: one family
forms the equally spaced levels and can be related to some
representation of the underlying symmetry group. The second
class corresponds to the isolated QMBS mid-spectrum states,
typically at zero energy E = 0. There can be a few or expo-
nentially many of such states. The most common mechanism
behind an emergence of such states in the mid-spectrum has
been suggested in [48], however it is not the only one, see,
e.g., Refs. [49–56].

In some cases the Hamiltonian of the many-body system
can be mapped into the adjacency matrix of the graph or
ensemble of graphs, the PXP is the simplest example of such
situation. In this case the spectral theory of graphs enters
the game of scar hunting. The exact scars have been found
for E = 0, E = ±√

2 in PXP model [57] and at E = ±√
n

in more general models belonging to this family [58–60].
In Ref. [59], the ensemble of graphs with some parameter,
responsible for the probability to have a link, has been con-
sidered and it has been argued that there is a transition in the
parameter space between the phase with negligible amount
of scars and the scarred phase. The very presence of scars
has been attributed to the probability to realized particular
subgraphs in the ensemble.

In this paper, we investigate the localization properties in
RRG networks, perturbed by the chemical potentials for the
number of short cycles [19–21,61]. These systems can be
considered as the models with large number of conservation
laws—the degree conservation for each node plays such role.
The model undergoes the clusterization phase transition at
the critical chemical potentials for 3-cycles [19] and 4-cycles
[21,61], similar to that of the Hilbert-space fragmentation. It
was found that the spectrum of the graph Laplacian above
the phase transition involves the nonperturbative (side) band,
where the number of the soft modes for each realization equals
to the number of clusters as well as the continuum band.
The localization properties of the clustered phase have been
investigated before in Ref. [20].

The density of states (DOS) in the perturbative (mid-
spectrum) band for high chemical potential of 3-cycles μ3 >

μc(3) and d = 20 does not fit with the Wigner semicircle
and has the triangle shape typical to the scale-free networks
[62]. Moreover it has been checked in Ref. [20] that upon the
randomization procedure which respects the degree conserva-

tion and the fixed number of clusters the triangle shape gets
transformed into the Wigner semicircle. This means that the
clustered phase has a kind of the memory about the initial
state and the states in perturbative (mid-spectrum) band have
to be considered as a sort of nonergodic.

In this study, we reconsider the spectral properties of the
perturbed RRG and extend the analysis for the model with
additional diagonal disorder. Our findings are as follows:

(1) Both analytically and numerically, we find the phase
diagram on the (μk, d ) parameter plane for different k-cycles
and system sizes N and identify the critical curves, separating
the homogeneous, scarred and two clusterized phases (see
Fig. 1).

(2) We find the quantum scar states in the spectrum in
both an unclustered phase, below the clusterization transition,
and in the regime of nonideal interacting clusters. It turns out
that scars get identified as the emerging topologically equiv-
alent nodes (TENs) and are localized at the specific values of
energy.

(3) We reconsider the properties of the nonperturbative
bands formed by clusters and found that level-spacing distri-
bution corresponds to the semi-Poisson statistics.

(4) The Anderson transition for the case of the combined
(structural + diagonal) disorder is analyzed and it is shown
that with clusterization the critical disorder drastically re-
duces, but it does so unevenly for the mid-spectrum band with
TENs and the nonperturbative band.

The quantum scars analogues can be identified in this
model as few states, localized on the RRG, on the background
of the rest metallic states. One of the ways to determine
the former ones is to observe the jumps in the higher-order
inverse participation ratio (IPR), IPRq, q > 2, averaged over
the spectrum, as a function of the k-cycle chemical potential
μk , and these jumps are complemented by the emerging peaks
in the density of states at the center of the perturbative zone. It
turns out that these scarlike states have an interesting origin.
There can be the topologically equivalent nodes (TEN) in
the graph, the measure of equivalence can be different. The
pairs of such TEN form the effective dipoles and the analysis
shows that each such pair supports a scar. Higher topologically
equivalent multipoles of TEN can be formed as well. We argue
that the number of TENs grows with the chemical potential
μk as we increase the number of k-cycles. It is this presence
of TENs, which explains the unexpected triangular shape of
DOS, observed in the clustered phase in Ref. [19]. If we apply
the randomization process [20] to the cluster structure, the
TENs get destroyed. This explains why the Wigner semicircle
in the perturbative band gets restored from the triangle at the
cluster randomization.

In such a way, TENs can be considered as the nuclei of the
clusterization process and the corresponding peak is clearly
seen in DOS before the clusterization transition, see Fig. 1.
In the paper for strong enough μk chemical potential, we
also observe a trivial kind of TENs, being the so-called ideal
clusters. These are the clusters that involve only k-cycles with
no lower cycles and they form an ideal-clustered phase at large
μk and intermediate node degrees d . However, the increasing
the node degree d at fixed chemical potential μk leads to
the interaction between the above ideal clusters and to the
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FIG. 1. Phase diagram in the plane “chemical potential - vertex degree” (μk, d ) for finite-size RRG graphs for N = 256 and k = 3-cycles.
[(a)–(c)] The cluster structure of RRG in (a) unclustered, (b) ideally clustered, and (c) interacting clustered phases. [(d) and (e)] Phase diagram,
with drastic changes (d) in the density of states (DOS) via the Hellinger distance with respect to the ideal cluster, showing the clusterization
transition (purple squares), and (e) in the higher-order fractal dimension D4, sensitive to the scar states, given by the topologically equivalent
nodes (TEN). (f)–(i) show the averaged DOS in each of the four phases: (f) unclustered, (g) TEN-scarred unclustered, (h) ideally clustered,
and (i) interacting clustered phases. The colors of the solid circles in (d) and (e), marking each of four phases, correspond to the colors of the
blocks in (a)–(c) and the DOS in (f)–(i). Solid white μc(N, k, d ), Eq. (26), and dashed black μTEN(N, k, d ), Eq. (34), lines show analytical
estimates for the transition lines between the above phases.

formation of the nonideal clustered phase. The latter phase
is also populated by nontrivial TEN-scarred states.

We also analyze the localization of wave functions in
the nonperturbative cluster band and extend the analysis of
Ref. [20] to the level spacing distribution. It is found that
the wave functions develop more complicated localization
properties. Some analog of the “particle-hole” structure can
be developed. The level statistics is found to be semi-Poisson,
which is also an attribute of several kinds of Bethe-ansatz
integrable models, like the Richardson’s model [63–65].

The RRG with the diagonal disorder is a benchmark
toy model for the Anderson localization in the Fock space
[2,9,10]. We investigate the combined effect of the diagonal
disorder and the Hilbert-space fragmentation, given by the
clusterization at large μk , on the Anderson phase transition.
It is found that the clusterization strongly decreases the crit-
ical diagonal disorder Wcr, when the complete localization
takes place. We also find that the competition between the
TENs and the diagonal disorder, which takes place in the

perturbative band, leads to the nonmonotonic localization
properties. Initially degenerate TENs, forming a flat-band
structure with spread wave functions, first becomes local-
ized at small diagonal disorder, due to lifted degeneracy of
their levels. However, second, as disorder increases, TENs
get destroyed and, thus, delocalized, and only at even higher
disorder all the states in the perturbative band are Anderson
localized. Absence of TENs in the side nonperturbative band
leads to the Anderson localization there at smaller disorder
strength, thus, opening the possibility to realize an effective
mobility edge.

The paper is organized as follows. In Sec. II, we recall
some results concerning the clusterization of exponential ran-
dom graphs and find the phase diagram of the model. In
Sec. III, we investigate the phase diagram, by numerically
finding the nonthermalizing quantum scars, and analytically
explain their position in the spectrum. The scars are identified
with topologically equivalent nodes. In Sec. IV, we investigate
in some details the localization properties in the nonperturba-
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tive band and then in Sec. V consider the Anderson transition
in the model with combined structural and diagonal disor-
der. We show that there is the sharp decrease of the critical
diagonal disorder at the clusterization transition point. The
applications of our findings to the 2d quantum gravity are
present in Sec. VI. The results and open questions are sum-
marized in Conclusion, Sec. VII. In Appendixes we present
the plots of d-dependence of DOS for the μk-perturbed RRG,
with k > 3 and present the example of complex TEN.

II. PHASE DIAGRAM OF THE MODEL

In this section, first, we define the model, Sec. II A,
and consider the phase diagram, extracted from numerics,
Sec. II B. Next, we focus on the clusterization part of the
phase diagram analytically and consider the structure of the
ideal-clustered phase in Sec. II C, and estimate the critical
clusterization line by comparing the pure RRG and ideal-
clustered phases in Sec. II D.

A. Exponential random graphs

Let us recall the Anderson model on exponential random
graphs. We focus at the RRG ensemble, where the degrees of
all nodes are fixed to d and the partition function is considered

Z (μk ) =
∑
RRG

exp

(∑
k

μkMk

)
, (1)

where Mk is the number of the length-k-cycles in the graph
without the back-tracking and μk are the chemical potentials
counting the number of these k-cycles. The leading contri-
bution into the Mk comes from the term TrAk , where A is
the adjacency matrix of the graph. We consider the spinless
fermions on the graph and the graph adjacency matrix A serves
as the Hamiltonian

A�λ = λ�λ. (2)

Further, we focus in (1) on the case of only one nonzero (in
most of the cases positive) chemical potential μk . In order to
sample such μk-weighted RRG numerically, we follow the
standard procedure of Monte Carlo annealing [19] from the
pure RRG, with all μk = 0, via random rewiring process. If
the auxiliary annealing time is large enough, the resulting
RRG samples the distribution, given by (1).

For RRG, the eigenproblem of a Laplacian L = D − A and
the above adjacency matrix have common eigenstates and
related spectra, since a degree matrix D = d · I is proportional
to the identity I . Therefore here and further we focus on the
adjacency matrix problem (unlike mentioned otherwise).

Upon the averaging over the ensemble DOS can be ob-
tained

ρ(λ) = 1

N

〈∑
i

δ(λ − λi )

〉
RRG

, (3)

which in the large N limit at μk = 0 has the Kesten-McKay
form for the adjacency matrix

ρKM(λ) = d
√

[4(d − 1) − λ2]

2π (d2 − λ2)
. (4)

At small chemical potentials, the partition function is domi-
nated by smooth RRG graphs while above some critical values
of the chemical potentials the clustered RRG phase emerges
and the number of clusters is fixed by the node degree d
[19,21]. The structure of the clustered phase depends on the
value of k—for odd cycles we have the ordinary clusters while
for even k the clusters are bipartite. If the additional hard-core
constraint is imposed for the case μ4 �= 0 the bipartite clusters
turn out to be hypercubes [21,61].

The clusterization can be properly probed via the spectral
analysis since it is known from the network theory [35] that
each eigenvalue escaped from the continuum corresponds to
the cluster in the network. Generically escaped eigenvalues
interact with each other and finally upon the averaging over
ensemble form the nonperturbative bands in the spectrum
of the RRG Laplacian. However, different patterns of clus-
terization transition are possible and details depend on the
parameters of the model. Due to the clear-cut spectral identifi-
cation of the clusters and their controllable number, the RRG
ensemble is very suitable for the numerical investigation of the
Hilbert-space fragmentation at finite system sizes N and, more
generally, for the analysis of the nonperturbative phenomena
in the matrix models.

Another general question concerns the localization proper-
ties of the eigenstates of the graph Laplacian in the Anderson
model. The previous studies mainly focused at the dependence
of Anderson localization on RRG on the diagonal disorder,
see Ref. [34] for the review. and not much attention was
paid for the effects of structural disorder. Some partial results
concerning clusterized phase of RRG at the fixed values of
parameters have been reported in Ref. [20]. We shall demon-
strate in our study that there are several localization patterns
and phenomena, when we consider purely only a structural or
a combined, structural and diagonal, disorder.

Let’s emphasize that we do not impose the symmetry pat-
tern underlying fragmentation from the very beginning, the
symmetries are emerging ones. Note also that we do not
take into account the back reaction of the fermions on the
fluctuating RRG ensemble. The back reaction has been taken
into account in [66], when the corresponding matrix model
has been found which, however, can be treated analytically
only at large N , corresponding to the planar approximation
of RRG.

In what follows, we use the following notations. The in-
verse participation ratio IPRq for the ψi eigenstate:

IPRqi =
N∑
n

|ψi(n)|2q (5)

and its average over eigenstates:

IPRq = 1

N

∑
i

IPRqi (6)

IPRq ∼ N−τq , τq = Dq(q − 1), (7)

where Dq are fractal dimensions. For localized states, Dq = 0
and for delocalized states, Dq = 1.

Note that for q > 2 the presence of finite number of local-
ized states will make the IPR to show nonergodic properties.
Indeed, if one assumes N0 states to be localized, IPRqi0 ∼ N0
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(a) (b)

FIG. 2. (a) Adjacency matrix, (b) density of states of the graph
with 4-cycle chemical potential in the ideally clustered phase.

and all the rest states to be ergodic, the mean IPRq, with q > 2
will be dominated by that localized states:

IPRq ∝ 1

N
[N0 · N0 + N · N−(q−1)] ∼ N−1

⇔ Dq = 1

q − 1
. (8)

We will use this later as a probe of few localized states in the
spectrum.

B. Phase diagram of the model

Now, let’s describe the phase structure of the model in
(μk, d ) parameter plane. We combine the evident limits with
the numerical study of DOS at the different parameter regimes
and different values of k.

First, we consider evident limits, having in mind the model
(2), with the only nonzero chemical potential μk > 0 at a
certain k (1). A pure RRG, with all zero μk = 0, is a con-
nected graph, with the distribution of cycle lengths c being
more or less exponential, P0(c) ∼ (d − 1)c, which reaches its
maximum around the doubled RRG diameter [67]

DRRG � 2 ln N

ln(d − 1)
, d > 2 . (9)

Then its matrix structure, Fig. 1(a), contains no clusters, and
the corresponding DOS is continuous, Fig. 1(f), with the only
outlier at λ = d , provided there is the only connected cluster.

In the opposite limit of very large μk → ∞, the situation is
drastically different as in such a case RRG should split into the
disjoint set of identical clusters of size Nk (up to few blocks,
given by the remainder of N modulo Nk), Fig. 1(b) for k = 3
and Fig. 2 for k = 4, each of those, being a d-regular graph,
maximizes the number of k-cycles. Here and further, we will
refer to such a cluster as an ideal one [68]. In this case, the
DOS is highly degenerate, discrete, and it is just given by
the spectrum of any of those ideal clusters, Fig. 1(h), with the
degeneracy, proportional to the number of clusters.

Having so different limiting cases, we expect to see a
certain kind of a clusterization phase transition between them,
which can be unveiled via the DOS profile (if one compares it
with the discrete DOS of the ideal-clustered phase), Fig. 1(d).
The interacting clustered phase has an additional structure in
its DOS: in addition to the discrete ideal-cluster DOS, several
bands get formed and their number depends on the value of
k. The scarred unclustered phase is somehow similar in terms
of DOS: it is characterized by the discrete peaks on top of the

continuous DOS of a pure unclustered phase, but now these
peaks correspond to graph analogues of scars, given by the
so-called topologically equivalent node (TEN) sets. The later
do not form a separate cluster, but have several eigenstates,
compactly localized on TENs.

Surprisingly from numerics we see a much more rich phase
diagram, which shows not two, but four distinct phases: in
addition to the unclustered phase of pure RRG and the ideally
clusterized ones, the interacting-clustered, Figs. 1(c) and 1(i),
and the scarred, Fig. 1(g), phases emerge.

In order to distinct all the four phases, we consider three
complimentary measures:

(1) One is clusterization measure, given by the number
and the structure of clusters in the adjacency matrix, see
panels (a)–(c) in Fig. 1.

(2) Another measure is spectral, namely, the Hellinger dis-
tance between the density of states ρ(λ) and its ideal-cluster
counterpart ρ0(λ)

H2(ρ, ρ0) = 1 −
∫ √

ρ(λ)ρ0(λ)dλ, (10)

which is almost zero in the ideally clustered phase, jumps to a
certain large value in the unclustered phases, and has a certain
(rather small) nonzero value in the interacting clustered phase.

(3) The third measure is the fractal dimension, Eq. (7), of
the high-order IPRq>2, Eq. (5), averaged over the spectrum,
Eq. (6), which is sensitive to the emergence of localized
(scarlike) states in the spectrum, given by the topologically-
equivalent node (TEN) sets. This measure distinguishes the
unclustered pure and scarred phases, Fig. 1(e).

Analysing the numerical data for 3-, 4-, 5-, and 6-cycles
(see Figs. 1 and 10–12) with help of the above measures,
we confirm the universality of the above phase diagram for
different k lengths of the cycles and the RRG system sizes
N . For even k, the cluster structure has an additional bipartite
property.

d dependence of the clusterization transition μc is always
monotonically decaying, while the transition between unclus-
tered pure and TEN-scarred phases, μTEN, is only slightly
growing with d and, thus, crosses μc at a certain d = d∗.
This d∗ is quite close to the one of the ideal-to-interacting
clustered transition d = dm and we conjecture that they should
coincide for large enough N . Both transition lines go up with
increasing N . Numerically we distinguish ideal and interact-
ing clustered phases only quantitatively, as in both phases the
clustered part is dominant both in the DOS and in the IPR
measures. In addition, one should take into account the fact
that the annealing time, used by the algorithm to reach the
equilibrium, Eq. (1) with a new chemical potential, μk > 0,
after quench from μk = 0, may be big or even diverging with
the system size. This makes the interacting clustered phase to
be similar to classical and quantum spin glasses. In this sense,
the critical line, separating the above clustered phases, as well
as the annealing time (possibly diverging in the interacting
phase), are not defined numerically and we can only guess
whether these two phases are separated by a phase transition
or by a crossover.

In order to estimate the critical lines μc(N, k, d ) and
μTEN(N, k, d ), we focus on the limiting cases of pure RRGs
and ideal clusters. As we have mentioned above, in pure RRG
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the distribution of cycle lengths c is more or less exponential,
and, thus, the number of cycles at c = k is small for k �
DRRG, k � DRRG and most of the cycles are of the length of the
doubled diameter k � DRRG, Eq. (9). This means that the pure
RRG looks like a (d − 1)-degree tree, but with d branches
going from a root. As we will see in the next subsection, the
structure of the ideal graph for k-cycles is very similar.

Another important point, learned from the numerical sim-
ulation, is that the peaks in DOS in the scarred unclustered
phase are followed by the larger values of IPRq>2, signify-
ing the emergence of certain localized eigenstates. They get
identified with TENs and their positions correspond to the
spectrum of the emerging clusters. That is why we are tempted
to say that TENs are the precursors and nuclei of the clusters.

C. Structure of ideal cluster of k-cycles

The ideal cluster of k-cycles is the cluster, where all small-
est (principle) cycles are of the length k. As we will see below,
not all the parameter pairs (k, d ) allow such graphs to exist.

Before we consider a generic case of k, let’s remind what
we know about the structure of ideal clusters for k = 3 and 4
at fixed d .

(1) For k = 3, the ideal cluster is a complete graph of d +
1 vertices, see Fig. 1(b).

(2) For k = 4, the ideal cluster is a complete bipartite
graph of 2d vertices, see Fig. 2.

Another simple limiting case for any k is d = 2: in this
situation the ideal cluster is just given by a single k-cycle.

For any k-cycle ideal cluster we should consider separately
odd k = 2n + 1 and even k = 2n + 2 cases. Following the fact
that all the principle (smallest) cycles are of the length k and
the vertex degree is d , in both cases one should start with the
tree of n generations, with d branches of the first generation
and the branching number (d − 1) for the rest 2nd, . . . , nth
generations. Up to now, this construction contains no loops,
but the shortest paths between the root and the leaves are of
the length

n = [(k − 1)/2], (11)

i.e., the distance between two leaves from different first-
generation branches is 2n. The difference between even and
odd k now is in the connection of leaves.

(1) For k = 2n + 1 in the ideal cluster, one should connect
the leaves from different first-generation branches with each
other in order to make the links between n paths. There is a
way to do it. The size of such cluster will be given by the
number of vertices in the above tree, i.e.,

Nk=2n+1 = 1 + d ·
n−1∑
l=0

(d − 1)l

= 1 + d

d − 2
[(d − 1)n − 1]. (12)

In this case, the number of k-cycles in each cluster can be
counted using the above construction. Indeed, for each of Nk

vertices, chosen as a root, one should choose a path from the
root to one of d (d − 1)n−1 leaves of nth generation plus one
of d − 1 links from this leaf to another one. Then the shortest
way back to the root on the tree is certain, as the tree has

no loops. In such a way, we double count each cycle with
a fixed root, because both of two tree branches have been
counted separately. In addition, we counted k times each cycle
by choosing the root on it. As a result,

Ncyc,k=2n+1 = Nk
d (d − 1)n

2k
. (13)

This formula still has some issues, e.g., for k = 5 and d =
5m − 1 as the number of cycles in the cluster is not an integer,
meaning that there is no ideal cluster for such parameters and
some of the principle cycles are of the length, smaller than k.

Thus, in the entire d-regular graph of N vertices the maxi-
mal number of cycles is given by NNcyc,k/Nk .

(2) For k = 2n + 2 in the ideal cluster one should add
another layer of vertices and connect them to the leaves.
Counting the number of outgoing edges from the Nleaves =
d (d − 1)n−1 leaves as Nedges = (d − 1)Nleaves = d (d − 1)n

and using the regularity of the graph, one will immediately
find the number of added vertices as

Nadd = Nedges/d = (d − 1)n , (14)

leading to the following number of vertices in the even cluster

Nk=2n+2 = Nk=2n+1 + Nadd

= 2

d − 2
[(d − 1)n+1 − 1]. (15)

In terms of the number of k-cycles, this k-even case shows
similar results with respect to the odd one. Indeed, by choos-
ing the one of d (d − 1)n−1 leaves of the nth generation, one
can choose the connection to one of d − 1 vertices of the ad-
ditional layer and from it back to one of d − 1 nth-generation
leaves, connected to it. As a result, this gives

Ncyc,k=2n+2 = Nk
d (d − 1)n+1

2k
, (16)

which can be generally written for even and odd k as

Ncyc,k = Nk
d (d − 1)[k/2]]

2k
, (17)

Like in the k-odd case, not all pairs of (k, d ) give the integer
result for (16), e.g., for n = 5 and d = 5m ± 2 there is no ideal
ten cluster: in this case, the cluster, maximizing the number of
k-cycles, should contain some (principle) cycles of the length,
smaller than k.

Now, knowing the structure of the ideal cluster, it is
straightforward to find DOS of the RRG in the ideal-clustered
phase. Indeed, for k = 3 the (d + 1) × (d + 1) adjacency ma-
trix is given by

A3 = |1〉〈1| − I , (18)

where |1〉〈1| is the rank-one matrix, a projector to a vector
of ones |1〉. Thus the eigenvalues of A3 are given by λN = d ,
corresponding to the eigenvector, equal to the above vector of
ones |1〉, and d-degenerate eigenvalue λ = −1, given by the
set of eigenvectors, orthogonal to |1〉.

For k = 4, the ideal cluster is a complete bipartite graph

A4 = σx ⊗ |1〉〈1| , (19)

where σx is a Pauli 2 × 2 matrix, acting in the space of parti-
tions, while all the nodes of different partitions are completely

094203-6



ANATOMY OF THE FRAGMENTED HILBERT SPACE: … PHYSICAL REVIEW B 108, 094203 (2023)

connected to each other. This matrix has symmetric and
antisymmetric solutions |±〉 ∼ (1; ±1)T ⊗ |1〉, correspond-
ing to λ± = ±d , and the rest 2(d − 2) eigenstates form a
complete basis in the space orthogonal to them, with 2(d −
2)-degenerate eigenvalue λ = 0. The spectra of other k-ideal
clusters can be also calculated straightforwardly, at least nu-
merically for not very large Nk .

D. Estimate of the clusterization transition

Focusing on large N , k, and d further we neglect both the
cases of nonideal clusters and a possible incommensurability
of N with respect to Nk , considering everything in the contin-
uous case. Thus we assume for simplicity we assume that the
number of graph vertices N is a integer multiplier of Nk and
the number of cycles Ncyc,k , Eq. (17) is also integer.

In this section, we estimate the critical chemical potential
of clusterization from the straightforward combinatorics by
comparing a pure RRG at μk = 0 with the fully clustered one.
The entropic factor of number of pure RRG graphs with the
fixed number of vertices N and the vertex degree d is given by
the following formula for d � 3 and N � d [69]:

NRRG = (dN − 1)!!e−(d2−1)/4

(d!)N

= (dN )!e−(d2−1)/4

2dN/2(dN/2)!(d!)N ∼
(

eN

d

)dN/2

. (20)

In the last equality, we have used the Stirling formula.
At large enough chemical potentials of k-cycles all the

RRG are represented by the set of l = N/Nk ideal clusters
of size Nk . Thus the number of these clustered RRG can be
estimated as

NcRRG = N!

Ml
k

∼
(

N

M

)N

, (21)

where Mk is the number of indistinguishable ideal clusters,
that one can made out of Nk vertices. For the cases of k = 3
and 4, on which we will focus in our analytical consideration
further

Mk =
{

(d + 1)!, k = 3

(d!)2, k = 4
, (22)

thus, M in Eq. (21), found using the Stirling formula, is given
by

M =
{

(d + 1) · [2π (d + 1)]
1

2(d+1) , k = 3
d · [2πd]

1
2d , k = 4

. (23)

At the same time, the number of cycles in the graph grows
linearly with N as (17) as

lNcyc,k = N
Ncyc,k

Nk
≡ N

d (d − 1)[k/2]

2k
, (24)

leading to the exponential factor eμk lNcyc,k .

Comparing the overall free energy factors of two cases one
can estimate (from below) the critical chemical potential μc

NRRG � NcRRG · eμcNcyc,k l

⇔ d

2
ln

(
eN

d

)
= ln

(
N

M

)
+ μc

Ncyc,k

Nk
, (25)

where the last equality is obtained by taking the logarithm
and dividing by N . As a result, this critical chemical potential
value takes the form

μc(N, k, d ) � k
(d − 2) ln N + 2 ln M − d ln(d/e)

d (d − 1)[k/2]
, (26)

which at large enough N grows logarithmically with N .
Note that the above estimate should be a lower bound for

the clustering transition as we compare the ideal-clustered
phase only with the pure RRG at μk = 0, neglecting other
possible contributions at finite μk > 0. Nevertheless, this
estimate give a reasonable quantitative agreement with the
numerics, see the solid red line in Fig. 1(d).

III. QUANTUM SCARS IN THE SPECTRUM
AND TOPOLOGICAL EQUIVALENT NODES (TEN)

In this section, we demonstrate that there are interesting
quantum-scar localized states in the spectrum of perturbed
RRG ensemble and describe their properties. They have some
underlying symmetry origin, but situation differs considerably
from the approach of [40], when the scars also emerge from
the representation group of a certain symmetry. In that case,
the symmetry is built-in into the Hamiltonian, while in our
case it is a sort of induced upon perturbation.

In Sec. III A, we define our TEN-scar states and provide
a numerical evidence of them. In the next subsections we
consider analytically the origin of TENs and their spectral
locations. We start with the unclustered phase and simple mul-
tipole TENs at λ = −1 for k = 3 (λ = 0 for k = 4), Sec. III B,
followed by the estimate of the TEN-scar transition in the
unclustered phase, Sec. III C. And then switch to more com-
plicated structure of interacting TEN clusters, leading to the
emergence an additional TEN band around λ = −1 for k = 3,
Sec. III D, and peaks at λ = 0,±√

n for k = 4, 6, Sec. III E.

A. On the definition and identification of TENs

The scar states are roughly speaking localized at the nodes
that are similarly connected to the environment - the notion
TEN follows from this property. The number of nodes the
scar is localized at can be different and we will find dipole
and multipole scars at several nodes. The definition for the
multipole scars is relatively simple, however, there are more
complicated “scar subgraph,” when it is difficult to formulate
universally. We shall present below the detailed analysis of the
simple scar multipoles. The examples of more complicated
“scar subgraph,” when only the necessary condition for TEN
can be rigorously formulated, is given in Appendix B.

Simple multipole TENs are defined as the set of nodes, for
which all the connections to the nodes, outside the set, are
common (and identical) for all set nodes. Note that in such
a case, the internal connections within the node set can be
arbitrary.
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(a) (b)

FIG. 3. Fractal dimension Dq (IPRq ∼ N−(q−1)Dq ) vs the chem-
ical potential μk for N = 256, k = 3, and d = 3, plotted (a) for
different q (color symbols) and (b) for different realizations of the
sample the jump in D4 appears at slightly different μk . The vertical
lines show the transitions of first scar emergence, μTEN, and the
clusterization, μc.

Let us explain how scars can be identified numerically in
a simple manner. Take a closer look at the μ-dependence of
the higher-order IPRq>2, see Fig. 1(e). In Fig. 3, we show a
cross-section of the above diagram at a certain d: IPRq>2 has a
jump discontinuity at an emergence of the first scar. That jump
appears due to a special (localized) state which dominates
the average IPRq value, see Eq. (8), and the amplitude of it
drastically increases with q.

It is that state which is located at the center of the mid-
spectrum perturbative zone at the eigenvalue λ = −1 for
k = 3, where the DOS peak appears at larger μ, Fig. 4.
The eigenvector of that state has only two nonzero elements,
equal by absolute value and opposite in sign. All neighbors
of the nonzero vertices are common, that leads to indistin-
guishability of the nodes for the external network and such
configuration bears the name of the topologically equivalent
nodes (TEN). Such topological property gives the localization
and the nodes form an effective dipole.

Creation of the TEN is natural for a network, with large
enough triangle chemical potential, μ3, in a clustered phase.
Indeed, a pair of connected nodes and each of their common
neighbors form a triangle. Because of clustering, the number
of possible common neighbors is limited since cluster size is
approximately ∼(d + 1). However, as we see from Fig. 1 the

(a) (b)

FIG. 4. (a) Evidence of TEN emergence in the density of states
(color histograms) and energy-resolved IPR4 (symbols) for k = 3-
cycles. State before (after) jump discontinuity vs μk is marked by
blue (orange) color. The amplitude of the local maximum at λ = −1
of both DOS and IPR4 after the jump drastically increases. (b) Dipole
TEN nodes (red squares) with the nearest neighbors (blue circles),
that form a DOS peak at λ = −1. Edge, connecting TEN nodes is
highlighted in magenta. Note that only a part of the graph, i.e., TEN
nodes and their neighbors, are shown.

(a) (b)

FIG. 5. (a) Evidence of TEN emergence in the density of states
(color histograms) and energy-resolved IPR4 (symbols) for k = 4-
cycles at λ = 0. The notations are the same as in Fig. 4. (b) Dipole
TEN nodes (red squares) with the nearest neighbors (blue circles),
that form a DOS peak at λ = 0. Note that only a part of the graph,
i.e., TEN nodes and their neighbors, are shown.

first TENs emerge even before the clusterization transition and
work as nuclei and precursors of these clusters.

The larger the chemical potential μk is taken, the more
the number of dipole state increases. In addition to the above
dipolar states, states with the larger number of nodes in TEN-
cluster form. Among them, there are simple multipoles and
more complex states.

Similar TENs exist also in k = 4-cycles. Clustered phase
for a graph with 4-cycle chemical potential μ4 tends to be
bipartite and DOS becomes symmetric with respect to λ = 0.
The first emerging TENs, appearing before the clusterization,
at λ = 0 do not obey this bipartite symmetry, Fig. 5, but in
terms of the spectrum provide the basis for its appearance at
higher μ4. Indeed, being a dipole (multipole) in one partition
of a graph which is about to become bipartite, these TEN
nodes are disconnected from each other, having instead all
d common neighbors in the other partition. Thus the TEN
eigenstate, localized compactly on the TEN nodes, lives only
in the one partition.

Next, at larger μ4 and d values in the interacting clustered
phase, other TEN complexes emerge symmetrically in the
spectrum, see them at λ = ±1 in Fig. 6. The most significant
peaks in DOS appear to be at λ = ±√

n for even cycles. These

(a) (b)

FIG. 6. (a) Evidence of additional TEN emergence at λ = ±1,
±√

7, ±√
8 (vertical dashed lines) in the density of states (color

histograms) and energy-resolved IPR4 (symbols) for k = 4-cycles.
The notations are the same as in Fig. 4. (b) Two coupled TEN sets
(red squares), with the nearest neighbors (blue circles), that form a
DOS peak at λ = ±1. Edges, connecting TEN sets are highlighted in
magenta. Note that only a part of the graph, i.e., TEN nodes and their
neighbors, are shown.
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peaks correspond to the interacting simple TEN dipoles (mul-
tipoles), with a certain inter-TEN edge structure, see Fig. 6(b).

Above, we have presented some examples of a successful
scar hunting in RRG, perturbed by μ3 and μ4. The same
procedure allows to identify scars for higher cycles as well,
see Appendix A. The case of TENs in the interacting clustered
phase has been considered above, however the inspection of
peaks in the nonclusterized phase at small chemical potentials
also recovers their scar nature.

B. Origin of first TEN formation in 3- and 4-cycles

Focusing on the k = 3- and k = 4-cycle cases, we remem-
ber that from the numerics there was the difference between
that cases. Indeed, the first 3-cycle TENs emerge at λ = −1,
while for the 4-cycle case it, first, happens at λ = 0. What is
the difference between these cases?

Let’s consider the simplest TEN multipole of n nodes,
where all the nodes, l = 1, . . . , n, in the TEN set are topo-
logically equivalent not only to the external nodes, but also
between each other. As each pair of TEN nodes is connected
(or not) to all the rest of the nodes in the network identically,
we have only two options within the set:

(1) either all of TEN nodes are connected to each other
(2) or all of them are disconnected.
In the former case, we get the following equations:

λψl =
n∑

l ′=1

ψl ′ − ψl + S , 1 � l � n , (27)

where ψl are the wave-function components on the TEN
set, φi are the ones on the common neighboring nodes, and
S = ∑d−n

i=1 φi. Summing over l the above equations, we im-
mediately obtain

S = (λ − n + 1)b , (28)
where

b = 1

n

n∑
l=1

ψl . (29)

Taking into account the fact that in the equations for the
neighboring nodes φi the TEN-set ones are always coming
as n · b, one can straightforwardly get that for all the TEN
modes with b = 0 the coupling to the nodes outside the cluster
is zero, S = 0.

Taking this condition S = b = 0 into account, one immedi-
ately obtains the solution at λ = −1 from (27). Therefore we
have n − 1 TEN modes (ψ1, . . . , ψn) at λ = −1, which are
orthogonal to the vector of unities:

〈1|b〉 =
n∑

l=1

ψl = 0 . (30)

Here we used the fact that for TEN the coefficients ψl>n ≡ 0.

In the latter opposite case of all disconnected states, they
form the degenerate states at λ = 0 since

λψl = S , 1 � l � n , (31)

where S = ∑d
i=1 φi. Indeed, the summation over all l gives

S = λb and the condition (30) emerges in this case as well,
leading to n − 1 TEN modes at λ = 0.

It is clear that in the case of positive chemical potential μ3

of three cycles the formation of links between TEN-set nodes
is preferable since it increases the number of triangles. That is
why the states of the first type at λ = −1 get emerged as we
have observed in the simulations.

Similarly in the case of k = 4, the preferred state is to have
TEN nodes, completely disconnected from each other and
connected only to the common neighbors, as this increases the
number of 4-cycles. Such a reasoning explains the emergence
of λ = 0 degenerate states in the case of k = 4.

C. Estimate of the TEN-scarred transition

Now, knowing the origin of the first TEN states, we are
ready to estimate the chemical potential μTEN, when they first
emerge, see Fig. 1(e).

Let’s, first, focus on the case of k = 3-cycles, where the
first TEN appears, as soon as one of the neighbors j of a
certain node i connects to all the same d − 1 other neighbors
of i. In such a way, the number of k = 3-cycles increases
by d − 1, while the number of such RRG with the only
TEN can be estimated in the similar way as in (20) [69].
Up to an exponential prefactor e−(d2−1)/4, expression (20) can
be calculated from a straightforward construction (see, e.g.,
Sec. 9.1 of Ref. [70]): for the d-regular graph, we consider
a N × d table, containing d times every number from 1 to
N . Then (up to the self-loops and repeated edges, taken into
account by the exponential prefactor e−(d2−1)/4), the number
of RRG realizations is given by the number of node pairs
(i.e., edges), chosen from that table (dN − 1)!!, factorized
by the permutation of within each of N sets of d equal
numbers, (d!)N .

In the case of the first TEN for k = 3, we should slightly
modify the above procedure. First, like in the pure RRG case,
let’s choose all d neighbours for a certain node i, which gives
us (dN − 1)!!/(dN − 2d − 1)!! variants. Then we choose one
of its d neighbors j and (d − 1)! possibilities to connect it to
the same d − 1 neighbors of i. The latter gives the factor of d!.
Then, the rest (dN − 4d ) edges can be taken randomly, like in
the pure RRG case, giving (dN − 4d − 1)!!/(d!)N . The only
thing which one should take into account is that the neighbors
i and j can be, in general, taken out of N (N − 1)/2 variants
but not only being the first and the second. Summarizing all
these estimates, one should have the number of RRG with a
single TEN in k = 3, given by

NRRG,TEN = (dN − 1)!!(dN − 4d − 1)!!N (N − 1)

(dN − 2d − 1)!!(d!)N−12

= NRRG
d!N (N − 1)

2(dN − 2d − 1)(dN − 2d − 3) · . . . · (dN − 4d + 1)
� NRRG

√
πd/2

Nd−2ed
. (32)
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The latter approximate equality assumes N � 1 and uses the
Stirling formula. Note that, like Eq. (20), here we know this
number up to an exponential factor of some polynomial of d ,
due to the self-loops and repeated edges.

As a result, comparing

NRRG = NRRG,TENeμTEN (d−1) (33)

one obtains

μTEN,3 = 1

d − 1
[(d − 2) ln N + d − ln

√
πd/2 − P(d )],

(34)

where the unknown polynomial P(d ) appears due to the un-
known exponential in d prefactor from Eq. (32). In order to
estimate it we fit it as P(d ) � 4(d − 2) from the data at one
system size N = 512 and show the result for the other one,
N = 256 in Figs. 1(d) and 1(e).

The case of k = 4-cycles is pretty similar, but now, accord-
ing to Sec. III B, the first TEN set is given by two disconnected
nodes with all d common neighbors. Surprisingly, following
the same above procedure one obtains the same expression for
NRRG,TEN as in Eq. (32), while the number of created 4-cycles
is given by d (d − 1)/2, leading to

μTEN,4 = 2

d (d − 1)
[(d − 2) ln N + d − ln

√
πd/2 − P′(d )],

(35)
where P′(d ) may be in principle different from the above
P(d ).

Here one should notice that both estimates (34) and (35) are
valid until μTEN,k < μc(N, k, d ), Eq. (26). Indeed, as soon as
we assume the emergence of the first TENs to be on the back-
ground of a pure RRG, the latter should be unclustered. Thus,
at μTEN,k = μc(N, k, d ) something dramatic should happen.
As soon as the clusterization happens before the emergence of
the first “simple” TENs, such a process should involve some
nonideal or interacting clusters. This is what we, indeed, see
from our phase diagram in Fig. 1.

In addition, surprisingly, in both cases of k = 3 and 4, the
intersection of μTEN,k and μc(N, k, d ) gives

d = 3 + O

(
1

ln N

)
, (36)

thus, only at d = 3 in the thermodynamic limit one can see
the effects of TENs in the unclustered phase.

In the case of interacting clustering phase, we still see the
peaks at the energy λ = −1 (λ = 0) for k = 3(k = 4)-cycles,
but they are supplemented by some nontrivial bands of states.
For k = 3, it is some kind of the triangular-shaped DOS, see
Fig. 4, while for k = 4 and k = 6, the additional peaks appear
at λ = ±√

n. In the next two subsections we show the origin
of these phenomena.

D. Band formation of TENs

If the nodes 1 � l � n of the TEN-cluster are topologically
equivalent only with respect to the outer nodes j > n and
wave functions are localized at nodes l , the condition (30)
gets emerged as well. Indeed, for any adjacency matrix All ′ ,

1 � l, l ′ � n within the TEN set of nodes one has

λψl =
n∑

l ′=1

All ′ψl ′ + S , 1 � l � n . (37)

Note that here

S =
d−dn∑
i=1

φi (38)

is the sum over the same amount of external nodes φi, i.e.,
for the regular graph with the degree d , the internal adjacency
matrix also represents a regular graph, with a certain degree
dn, i.e., ∑

l

All ′ = dn . (39)

Let’s focus, first, on the RRG case for All ′ , i.e., when
Eq. (39) is valid. (This does not mean that the entire graph
is regular, but just all the TEN-cluster nodes have the same
degree dn.) Summing Eq. (37) over all 1 � l � n and taking
into account (39), one immediately obtains that S again de-
pends only on the sum (29), appearing in all equations for φi

S = (λ − dn)b . (40)

Following the same procedure as in Sec. III B, one can show
that all the n − 1 modes in the cluster, obeying the condition
b = 0, Eq. (30), are TENs, i.e., they are decoupled from the
rest of the nodes, S = 0.

The spectrum of these TENs then is given by the spectrum
of the n × n (random) regular graph All ′ with the degree dn,
except for the only eigenstate, with b �= 0 and λ = dn, which
is symmetric with respect to the internal node permutations
(ψ1, . . . , ψn) ∝ (1, . . . , 1).

As a result, such additional TENs with the internal struc-
ture of the node set probably form a triangular-shaped DOS in
the interacting clusterized phase.

E. Origin of TEN at λ = ±√
n for bipartite 4- and 6-cycles

For even cycles, it is numerically observed that the system
turns to be bipartite at μ > μc(N, k, d ). However, in addition
to the standard TEN states at λ = 0, in the interacting clus-
tered phase there appear also rather strong peaks at λ = ±√

n,
see Fig. 12 in Appendix A.

In order to uncover the origin of such state, we consider
two sets of nodes (ψ1, . . . , ψn) and (ϕ1, . . . , ϕm) from dif-
ferent bipartite components, that form TENs. Without loss of
generality here we consider n � m.

Again we assume that each set is topologically equivalent
to all the outer nodes (excluding the bipartite partners). Taking
into account the bipartite character of the graph and putting a
certain adjacency matrix Al j between ψl and c j modes, one
can obtain the following equations:

λψl =
m∑

j=1

Al jϕ j + Sb, (41)

λϕ j =
n∑

l=1

AT
jlψl + Sc, (42)
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where Sb,c are the couplings to outer nodes with respect to two
above sets and, thus, Al j is regular in both indices, i.e.,∑

l

Al j = dm ,
∑

j

Al j = dn , dm · m = dn · n . (43)

Note that, as we have positive chemical potential of even
cycles, like in Sec. III B, the most probable case is when all
ψl are coupled to all ϕ j , i.e., dm = n and dn = m.

Introducing again the variables

b = 1

n

n∑
l=1

ψl , c = 1

m

m∑
j=1

ϕ j (44)

and using the same trick of summation of the equations (41),
(42) over indices l and j, respectively, one can obtain with
help of (43) the following equations for Sb,c:

Sb = λb − dmc , Sc = λc − dnb . (45)

In order to have TEN, one should have Sb = Sc = 0 from the
equations for ψl and ϕ j and b = c = 0 from the equations for
nodes, hidden in Sb and Sc.

As a result, for any TEN of this bipartite kind, from b =
c = 0 one immediately obtains from (45) Sb = Sc = 0.

Returning back to the equations (41) and (42), similarly
to the previous section, we should find the (left and right)
eigenstates of the internal adjacency matrix Al j , consistent
with the condition b = c = 0.

By substituting the expression of ϕ j from (42) to (41), one
can straightforwardly obtain that the eigenvalues are given by
the solution of the following problem

λ2ψl =
∑

l ′
Bll ′ψl ′ , (46)

where

Bll ′=
∑

j

Al jA
T
jl ′ , Bll =

∑
j

Al j = dn,
∑

l

Bll ′ = dn · dm.

(47)

In the second equality we used the fact that Al j = AT
jl and can

take only two values 0 and 1.
For the most frequent case of all-to-all coupling Al j =

1, dn = m, dm = n, one immediately obtain the n + m − 2
standard independent TENs of either of two types at λ = 0,
considered in Sec. III B:

b = 0, ϕ j = 0, (48)

c = 0, ψl = 0. (49)

For the simple case of n = 2 and dm = 1 � n, see the
example in Fig. 6 for dn = dm = 1, m = n = 2, one can
immediately find from b = 0 that ψ2 = −ψ1 and the equa-
tion (46) has the only solution

λ2 = B11 − B12 = 2B11 −
∑

l

Bll ′ = dn · (2 − dm) = dn ,

(50)

with a certain integer dn � m.
Larger n will give more opportunities and will form the

band around peaks at λ = ±√
dn.

IV. LOCALIZATION PROPERTIES
OF NONPERTURBATIVE BAND

It has been argued in Ref. [20] that in the nonperturbative
side-band of the Erdos-Renyi model, perturbed by μk , with
the constraint of fixed initial vertex degrees, the eigenvalues
obey almost the Poisson statistics. Based on that, it has been
conjectured that these states are localized. In this Section,
we investigate this point more carefully in the correspond-
ing interacting clustered phase of the μk-perturbed RRG by
analyzing the level spacing distinction (LS), the fractal dimen-
sion, and IPR. It turns out that the spectrum in nonperturbative
side-band obeys the semi-Poisson statistics. LS determine
statistic of spacing between two adjacent energy levels

si = Ei+1 − Ei, (51)

where Ei are energy levels after unfolding. Energy levels after
unfolding

Ei = CDF(λi)N (52)

have been calculated from the raw spectrum λi, 1 � i � N ,
using the standard calculation of a cumulative distribution
function (CDF), given by a fraction of eigenvalues smaller
than λ, averaged over an ensemble of n graph realizations,
λ

( j)
i , 1 � j � n:

CDF(λ) = #
(
λ

( j)
i < λ

)
nN

. (53)

Semi-Poisson is interpolation between the GOE dis-
tribution and the Poisson distribution [71]. Generalized
semi-Poisson distribution

P(s) = C1(γ , α)sαe−C2(γ ,α)s2−γ

, (54)

where

C2(γ , α) =
(

�
(

2+α
2−γ

)
�

(
1+α
2−γ

)
)2−γ

, (55)

C1(γ , α) = (2 − γ )C
1+a
2−γ

2

�
(

1+α
2−γ

) . (56)

The Poisson statistic corresponds to α = 0 and γ = 1, the
Wigner-Dyson distribution to α = 1 and γ = 0. In Fig. 7,
the level statistics in the interacting clustered phase is shown
both for the mid-spectral ignoring TEN states and side bands.
While the mid-spectral band shows Wigner-Dyson statistics,
semi-Poisson one with α = 1 and γ = 1 appears in the side
band.

Usually the semi-Poisson distribution, with α = 1 and
γ = 1, appears as a result of some constraint [71] or Bethe-
ansatz integrability [63]: indeed, if εi, 0 � i � N are Poisson
distributed random numbers, then (εi−1 + εi )/2 sample the
semi-Poisson distribution.

As soon as the nonperturbative side-band in the clustered
phases of the perturbed RRG is composed out of the homoge-
neous modes on each of the separate clusters, all such modes
in the ideal clustered phase are degenerate at the cluster size
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(a) (b)

FIG. 7. Level spacing distribution for RRG in clustered phase
for k = 3, d = 20, N = 256 separately for (a) the perturbative mid-
spectrum band ignoring TEN states and (b) the nonperturbative
side-band. Red dashed, blue dotted, and green solid lines show
Wigner-Dyson (α = 1, γ = 0), Poisson (α = 0, γ = 1), and semi-
Poisson (α = 1, γ = 1) distributions, Eq. (55), respectively. Level
spacing is calculated for the unfolded spectrum, Eq. (52), using 500
random realizations.

λ = Nk , see Eqs. (12) and (15). With increasing d the RRG un-
dergoes the transition to the interacting clustered phase, where
the above clusters are not disjoint anymore: they interact with
each other, lifting the degeneracy of the nonperturbative side
band.

Interaction between clusters is given by the edges between
nodes of different clusters. Internally each of nonideal clusters
in this phase is similar to the TEN set and therefore is almost
a regular graph with the degree d − d0, which fluctuates from
cluster to cluster. Thus each node of it is connected randomly
on average to the 〈d0〉 other clusters. In the same way, each
of the homogeneous cluster modes (that were at λ = Nk in the
ideal clustered phase) is connected on average to Nk · 〈d0〉 of
other cluster modes. As soon as the number of clusters N/Nk

is less compared to Nk · 〈d0〉, i.e., at

〈d0〉 � N

N2
k

, (57)

all such modes are almost all-to-all coupled, like in the
Bethe-ansatz integrable Richardson’s model [63,64]. Fluctu-
ations in d0 shift the cluster mode energy with respect to
Nk and then play a role of the effective Poisson disorder
potential εi. Thus effectively the structure of the nonper-
turbative side-band, formed by the cluster modes, mimics
the one of the Richardson model. In the latter, from the
Bethe-ansatz solution it is known that the eigenvalues are
squeezed between the diagonal potential values εi−1 < λi <

εi, sorted over their values, and the all-to-all coupling pushes
λi away from ε j . In a strong coupling limit, this leads to λi �
(εi + εi−1)/2, confirming the semi-Poisson nature of the level
statistics.

Due to the cluster interaction, the eigenfunctions are
delocalized between clusters. In order to recognize the delo-
calization pattern we consider the support of wave functions,
corresponding to all states in the nonperturbative band, see
Fig. 8, for a certain typical realization. Hence in some sense,
we could speak about two types of eigenvalue instantons. Note
that the negative eigenvalue instantons have been recently
found in the matrix models [39].

For RRG we have the homogeneous state at λ = d , and
all other states in nonperturbative band are orthogonal to it.
The rest of the states are different bound states of weakly
connected “cluster particles” and “cluster holes.” There is one
state localized at the single cluster and has the structure of the
“Particle-hole dipole.”

FIG. 8. Eigenstate distributions for state in nonperturbative band in the interacting clusterized phase for k = 3, d = 20, and N = 256.
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(c)(a) (b)

FIG. 9. The evolution of energy-resolved fractal dimension for RRG N = 1024, d = 20 in the interacting clusterized phase with diagonal
disorder W , plotted vs [(a) and (b)] eigenenergies for μ3 = 2 for different W ranges, as well as (c) the average fractal dimension versus the
chemical potential μ3. Each point of a color plot is averaged over 20 [(a) and (b)] or five (c) structural and five [(a)–(c)] disorder realizations.

V. ANDERSON TRANSITION WITH THE DIAGONAL
DISORDER IN THE μk-PERTURBED RRG

In this section, we consider the simulation of the μk-
perturbed RRG, supplemented with the i.i.d. random diagonal
disorder εi of the amplitude W/2 of the homogeneous distribu-
tion, |εi| < W/2. In the conventional framework, one studies
Anderson transition for noninteracting spinless fermions hop-
ping over RRG with connectivity d = 3 in a diagonal disorder
described by Hamiltonian

H =
∑
i, j

Ai j (c
+
i c j + cic

+
j ) +

N∑
i=1

εic
+
i ci, (58)

where the first sum, representing nearest-neighbor hopping
between RRG nodes, is written in term of the adjacency
matrix, while the second sum, running over all N nodes,
represents the potential disorder. The pure RRG ensemble
undergoes the Anderson localization transition at Wc = 18.16
for d = 3 [2,13,15,34]. For larger d the critical disorder is
usually estimated as

Wc(d ) � d ln d . (59)

Now we perturb RRG with a finite chemical potential μk

and focus on k = 3. The procedure goes as follows: first, we
fix the value of μ3 and the structure of the graph and then
investigate the eigenstate localization properties via fractal
dimensions over the spectrum for different values of diagonal
disorder strength W . No full back reaction of the disorder
on the graph architecture is considered. As soon as chemical
potential is strong enough, μ3 > μc(3), RRG undergoes the
clusterization transition. We focus on the case of N = 1024,
d = 20, where the clusterization phase transition occurs ap-
proximately at μ3 = 1.30.

There are three features found for the case of such com-
bined disorder.

(1) The first question concerns the position of the An-
derson transition Wc at (μ3,W ) parameter space. From the
Fig. 9(c), one can see that critical value of disorder, where the
Anderson localization of all spectrum at d = 20 takes place
gets significantly reduced in the clustered phase, compared to
Wc ≈ 45, Eq. (59) in the unclustered phase.

This reduction of Wc is consistent with the structure of
the interacting clusters, considered in Sec. IV. Indeed, in the

clustered phase each node in a certain cluster is coupled to
d0 � d nodes, from other clusters. Thus effectively the graph
degree is reduced, leading, according to the formula (59), to
the reduction of Wc.

(2) In addition to the first item, at intermediate disorders,
the structure of modes in the perturbative mid-spectrum band
is quite peculiar. At small, but finite disorder W � 1 it shows
it shows quick localization close to λ = −1, followed by
the maximum in the fractal dimension at intermediate dis-
order, W � 10 and the localization afterwards, W � 15, see
Figs. 9(a) and 9(b).

The origin of this peculiar W -dependence is determined
by the underlying TENs. Indeed, at small disorder the mode
structure resembles their TEN structure of W = 0. Indeed,
there are degenerate TENs at λ = −1, see Sec. III B, and the
triangle TEN band around it, Sec. III D.

Being degenerate at W = 0, both these types of TENs can-
not be distinguished by numerical simulations and, thus, form
any superposition within the degenerate manifold. To separate
TEN states, the results for W = 0 have been calculated with a
tiny disorder, of W = 10−5. Small disorder, first, lifts these de-
generacies and makes wave functions TEN-localized already
in the zeroth order in small W . As the number of degenerate
TENs is largest at λ = −1, this part of the spectrum shows
the maximal delocalization-to-localization effect at small
disorder.

Next, at intermediate disorder values, TEN modes at differ-
ent energies get hybridized by the diagonal disorder, W � 2,
and then gradually lose their TEN structure, W � 10. The
competition between TEN- and Anderson localization makes
fractal dimension, first, to grow and then decay to zero, when
Anderson wins, W � 15.

(3) Finally, the simulation shows, see Fig. 9, that in the
clustered phase, the states in the perturbative mid-spectrum
band get localized at smaller critical disorder Wc,1, compared
to the ones in the nonperturbative side-band Wc,2 > Wc,1. So,
there is an intermediate regime Wc,1 < W < Wc,2, where the
states in the mid-spectrum zone are already localized, while
the nonperturbative side-band ones are delocalized, hence
there is an effective mobility edge. This can be also explained
both by the initial more localized TEN structure in the mid-
spectrum band and by the larger effective degree of the cluster
mode graph, deff � Nk〈d0〉, see Sec. IV, with respect to the
mid-spectrum.
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VI. PERTURBED RRG FROM 2D QUANTUM
GRAVITY PERSPECTIVE

In this section, we focus on the second face of RRG as
the tool for the summation over the triangulations of surfaces
or therefore over 2d metrics hence being the discrete model
of 2d quantum gravity. The summation over triangulations
can be mapped to d = 3-degree RRG ensemble which finally
gets mimicked by the perturbation theory in Hermitian matrix
model with the cubic potential [72–74]. We shall question if
our findings concerning the clusterization of perturbed RRG
and TENs have the clear-cut interpretation in the 2d quantum
gravity.

A. Eigenvalue instantons and anti-instantons at finite
N and dual gravity configurations

General 2d gravity perspective relevant for our study looks
as follows. At large N it is possible to consider the effective
2d gravity coupled to some matter whose propagator is fixed
by the graph Laplacian. For the massless spinless fermions at
the fluctuating surface the c = −2 theory emerges at the crit-
icality [72,75,76], while for the massive spinless fermion the
interpolation between c = 0 and c = −2 in the large N limit is
possible [66]. From the 2d gravity viewpoint in this study we
considered discrete pure gravity interacting with two different
matter. There is one type of matter with large mass m which
we have integrated out yielding the massive determinant. The
ln det(A − m2) = Tr ln(A − m2) term in the effective action
is expanded in inverse powers of m2 yielding the chemical
potentials for the cycles μk . We have truncated the series and
take into account the short cycles only. Since we analyzed
the ground state of the partition function with nonvanishing
chemical potential we could claim that the back reaction of
the heavy matter on 2d gravity is taken into account. After de-
riving the saddle point configuration we consider the massless
matter propagating in the background of emerging geometry.

It is worth making the following remark. The matrix model
combinatorics tells that the factor 1

N counts the genus of the
Riemann surface hence at large N we consider the planar
RRG ensemble. Usually the canonical ensemble in 2d quan-
tum gravity is considered, so that we introduce the chemical
potential for the number of nodes which has the physical
interpretation of 2d cosmological constant β. Contrary, in the
RRG ensemble the microcanonical ensemble is considered
with the fixed number of nodes. They are related via the
Laplace transform.

There is the critical value βc when the partition function is
dominated by large area (number of nodes) and the continuum
limit is available. The critical exponents can be evaluated from
the critical behavior of the partition function

Z (β ) =
∑
RRG

exp(−β(Area)). (60)

It is useful to introduce the variable g = exp(−β ), then in
the planar limit the nonanalytic part of the canonical partition
function behaves at g → gc as

Z (g) ∝ (gc − g)2−γ (61)

On the other hand, the leading nonanalytic part of micro-
canonical partition function at fixed number of nodes behaves

at large area as

Z0(A) ∝ (Area)γ−3 (62)

where the critical exponent γ = 1
2 in the planar limit can

be evaluated via the matrix model or Liouville theory, see
Ref. [77] for the review.

The focus of our study is the account of the nonperturbative
effects which in the large N matrix model are typically sup-
pressed by exp(−N ) factor. Since we consider the numerical
simulations at finite N , such nonperturbative instanton which
corresponds to the eigenvalue tunneling in the spectrum can
be clearly identified and analyzed. The most natural interpre-
tation of the eigenvalue instanton in our setting is the creation
of the baby Universe as initially suggested in [37]. Our ideal
clusterization corresponds to the creation of the finite number
of noninteracting baby Universes when all degrees of freedom
inside them are frozen and we see just a few peaks in the DOS.
If the clusterization is nonideal the baby Universes start to
interact and the internal modes inside them get exited yielding
several continuum bands clearly seen in the numerical simu-
lations.

For the odd-k-cycles, we create the usual clusters while
for even cycles they are bipartite. Hence instead of the
eigenvalue instanton we could a bit loosely speak about
the instanton-anti-instanton pair with total vanishing “en-
ergy.” This situation strongly resembles the one considered
in Ref. [39] where the anti-instantons in the matrix models
are clearly identified. The bipartite cluster can be considered
as a “hole” in the graph. It seems that the wormhole gravity
interpretation of the bipartite cluster is also consistent. This
can be seen most clearly if we look at the complimentary
graph for the bipartite cluster when we have the trumpetlike
configuration for the bipartite cluster. Remark that the clusters
corresponding to the negative energy isolated eigenvalues can
be induced if we consider negative chemical potential μ3 [78]
that is different sign of the energy in the Hamiltonian of
perturbed RRG. In such case we would have anti-instantons
without instantons. However this interpretation certainly re-
quires further analysis.

Note that some care is required in relation between the
“RRG matrix model” for summation over triangulations with
bimodal matrix elements and the Hermitian matrix ensemble.
The latter presumably can be interpreted as the holographic
dual of 2d gravity with the random Hermitian matrix inter-
preted as the random Hamiltonian in the boundary theory.
Such viewpoint has been recently advocated in the context of
the matrix model for the Jackiw-Teitelboim 2d gravity [79].

In general the matrix model canonical partition function
reads as

Z (tk ) =
∫

dX exp

(∑
k

tkTr X k

)
(63)

for potential V (X ) = ∑
k tkTr X k where the integration over

the different matrix ensembles can be done. Two comments
concerning the matrix model approach at large N are in order.
First, the spectral density and all interesting correlators in this
limit can be read off from the spectral curve

y2(x) = (V ′(x))2 + f (x) (64)
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when the polynomial function f (x) has subleading power
compared with the first term. It is clear that the genus of the
spectral curve depends on the potential and increases with its
power. A slightly different form of the spectral curve reads as

y(x) = V ′
eff (x) (65)

where Veff (x) is the effective potential for the eigenvalues
which is constant at the cuts where the spectral density is
supported. For the one-cut solution with support [a, b] the
spectral curve reads as

y(x) = F (x)
√

(x − a)(b − x) (66)

with polynomial F (x) called moment function and the condi-
tion F (x∗) = 0 defines the extrema of Veff (x).

The second point to be mentioned concerns the eigenvalue
instantons that are exact counterparts of the clusters in RRG.
The eigenvalue instanton corresponds to the tunneling of the
individual eigenvalue from the end of the cut to the nearby
extremum x∗ of the Veff (x). The action on the eigenvalue
instanton is

Sins =
∫ x∗

a
y(x)dx = Veff (x∗) − Veff (a). (67)

The instantons are exponentially suppressed at large N as
exp(−1/gs) = exp(−N ) where gs = 1

N is the string coupling
constant. Multiple eigenvalue instantons can interact and fill
the second nonperturbative band.

For the pure three-degree RRG canonical ensemble the
potential in the Hermitian matrix model is cubic [72–74]

VRRG(g) = N (−Tr X 2 + gTr X 3), (68)

where g = exp(−β ). If we add the mass m spinless fermion
interacting with random geometry it induces the Tr ln(A −
(m2 − 3) potential in the canonical partition function of three-
degree RRG and the corresponding potential in the Hermitian
matrix model reads as follows [66]

VRRG+m(g, m) = N

(
−Tr X 2 + c

m2

g2
(1 −

√
1 − 4gX )3

)
(69)

with fixed constant c.
To approach our numerical results it would be useful to get

carefully the similar matrix model for the exponential random
graph for μk-perturbed RRG without planar approximation.
The power of leading term in the potential Tr X k in such
matrix model certainly is determined by the length of the
cycles in perturbed RRG but the careful analysis is required
to determine the subleading terms. Our numerics confirms that
the number of bands where the DOS has support is defined by
k is in agreement with expectations. It would be very interest-
ing to compare the eigenvalue instantons and anti-instantons
in such matrix model with the eigenvalue instantons and anti-
instantons in the perturbed RRG ensemble we have discussed
numerically in this study.

B. Gravitational scar states and singular triangulations

The second natural question concerns the gravity interpre-
tation of the scar states we have found for perturbed RRG.
To start with let us mention that recently the scar states have

been found for probe at the vicinity of the AdS black hole [80].
The scars correspond to the classically stable orbits around the
black holes. They are not absolutely stable since there is grav-
itational emission and quantum tunneling which amount to
the thermalization at very large times. Hence the authors used
the term perturbative scars for these states. Holographically,
these orbits correspond to the states involving double twist
operators in the boundary theory and their weak instability
corresponds to the small imaginary parts in the corresponding
Green’s functions.

In our framework we have a discrete version of 2d quantum
gravity interacting with matter hence one could look for some
analog of the gravitational scars for the probe around the
particular “local gravitational state.” First question concerns
the “local” analog of black hole in our case. Fortunately we
know what pattern of triangulation the TEN-scar states corre-
spond to. The simplest dipole TEN corresponds to the singular
triangulation when det A = 0 and therefore we have no inverse
matrix. The rank of adjacency matrix for this special trian-
gulation decreases and since the rank of the corresponding
matrix is related to the genus of the triangulated surface and
the number of boundaries (or punctures) [81] we could claim
that TEN corresponds to the peculiar singular point on the
surface or the hole. This TEN plays the role of the local defect
of the geometry in the discrete case.

Instead of the search of the classical stable orbits around
black hole in the continuous case we solve the matrix
Schrödinger equation for the particle propagating on this
graph. The scar state corresponds to the particle, localized
say at dipole TEN pair. The particle, localized at a TEN set,
can be considered as the discrete analog of the stable probe
orbit around the black hole in [80]. Such gravitational scars
can exist in the perturbed RRG in the unclustered phase if
μ3 > μTEN(3) hence the scars are not related to the clusters
directly. However as we have discussed above, TENs tend to
be the precursor and nuclei of the emerging ideal cluster which
can be seen either at the level of spectrum or directly in the
Monte Carlo rewiring process. Since such cluster corresponds
to the eigenvalue instanton we could claim that gravitational
scars play the role of the precursor and nuclei for the creation
of the baby Universe.

Another attempt to identify holographic scars has been
performed in Ref. [82]. In that paper, it was assumed that the
proper representations of the Virasoro algebra or the Virasoro
co-adjoint orbits at the semiclassical level do the job. This is
parallel to the approach to 2d gravity via the Liouville theory
and the Teichmuller moduli space. Instead of summation over
triangulations the integration over the moduli space is per-
formed. The relation between two approaches is well-known
in terms of the matrix models since there is an equivalence
between the large N matrix model with the cubic potential,
triangulating the surfaces, and the Kontsevich finite N ma-
trix model in external field, triangulating the moduli space.
It would be interesting to recognize TENs precisely in the
language of the moduli space.

To complete this section let us mention one possible anal-
ogy. The Monte Carlo process indicates the spin glasslike
structure at the intermediate stages and the very clustered
phase has a lot in common with the one-step replica sym-
metry breaking. Such underlying spin-glass pattern implies
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the presence of multiple metastable states that provide the
playground for the possible false vacuum decay processes. It
is well-known that the false vacuum decay in 1 + 1 theory
goes through the formation of the bounce configuration at
the Euclidean space. The radius of the bounce configuration
is derived as the saddle point solution when the pressure
term due to energy density difference and the surface tension
compete. The boundary of the bounce is the circle trajectory
of the kink-antikink pair on the Euclidean plane.

As we have mentioned above, TENs are the nuclei of the
cluster formation, hence let us speculate that the TEN dipole
serves as analog of the kink-antikink pair for the bounce
configuration. By definition, the nodes in TEN dipole interact
with the environment identically as expected for kink-antikink
pair. The cluster is built on the top of the TEN dipole and
the region inside the cluster is enriched with the triangles (for
μ3 �= 0) hence we have the desired pressure term proportional
to μ3, extending the analogy. The most subtle point concerns
the analog of the tension term which should compete with the
pressure to determine the size of the cluster. Presumably this
term is effectively generated by the degree conservation rule,
since the size of the cluster knows about the node degree. It
would be interesting to check the validity of this speculation.

VII. CONCLUSION

In this study, we have investigated the phase diagram and
localization properties of the d-degree RRG ensemble of
size N , perturbed by the chemical potential μk of the short
k-cycles, in the (μk, d, N ) space. It is found that the DOS
exhibits four regimes with different clusterization and local-
ization patterns. In particular, the phase with ideal clusters
gets identified by highly degenerate spectrum, while at larger
degrees there emerges the phase with interacting nonideal
clusters. For some values of (N, k, d ), the phase of ideal
clusters can be absent at all. The clusterization phase tran-
sition at finite N is of the first order and the number of the
corresponding cycles serves as the order parameter.

We have found the families of the quantum scar states,
localized at the fixed values of energy. The quantum scar
states are identified in the nonclustered phase close to the
clusterization transition, as well as in the phase of nonideal
interacting clusters. In the nonclustered phase the crossover
between the scarless and scarful phases has been found both
numerically and estimated analytically in the (μ3, d ) and
(μ4, d ) parameter planes. These scar states are localized at
the particular subgraphs of RRG which we identified as TEN
dipoles and multipoles, however the most general scar states
are still to be formulated. Presumably, these are related to the
particular representations of the group attributed to the graph.
Remarkably, it turns out that the fragmentation and scarring
are related phenomena. Namely, the scars are the precursors
and the nuclei for the clusters formation.

Since the RRG ensemble is simultaneously the model for
the 2d quantum gravity, all questions discussed in this study
can be rephrased into the gravitational language. It would
be very interesting to investigate carefully the gravitational
meaning of the scar states we have found. At the simplest
level, we have argued that the scar dipoles correspond to the
singular triangulations which, on the other hand, correspond

to the presence of the puncture or the boundary at the surface.
Certainly, this issue is more involved and presumably the
scar states can be related to the representation of the cluster
algebras, corresponding to the triangulations of the surfaces.

The adding of the diagonal disorder provides an even more
complicated phase structure in the (μ3,W )) plane. The An-
derson localization transition occurs at W = Wc at small μ3

in the unclustered phase and Wc gets reduced by the order
of magnitude at μ3 > μc(3) when the clusterization phase
transition occurs. Interestingly, in the later regime in the clus-
terized phase, there is the range of disorder strength Wc,1 <

W < Wc,2, where an effective mobility edge gets emerged:
the states in the perturbative mid-spectrum band are already
localized, while the ones in the nonperturbative side band still
show delocalization.

There are several questions that deserve further studies.
First, it would be interesting to relate our findings to the
behavior of the many-body system in the physical state, mod-
elled by the single-particle dynamics on RRG. The diagonal
disorder on RRG is the standard framework for this, while
the chemical potentials for short cycles correspond to account
of the higher resonances [83]. Combination of the structural
and diagonal disorder we have discussed could provide addi-
tional viewpoints concerning the tricritical point suggested in
Refs. [16,30,33].

The interplay of our findings with matrix models is
twofold. First, we have a perfect playground for the numerical
investigation of the nonperturbative phenomena at finite N
in RRG, considered as the version of the matrix model. The
interaction of the eigenvalue instantons in the matrix models
is precisely mapped into interaction of clusters in clusterized
phase of RRG and we hope to discuss these issues in more
details in a separate study. In particular, it would be interest-
ing to investigate numerically the properties of the “holes”
in the graph, that correspond to the anti-instantons in the
matrix models. We plan to investigate the case of negative
chemical potentials that induce the formation of eigenvalue
anti-instantons-holes elsewhere.

Another issue which certainly is worth to investigate con-
cerns the clusterization transition in the 2d quantum gravity
interacting with massive matter as the function of mass. To
fully clarify this issue, it is desirable to perform the numerical
simulations for the massive particle on RRG, that is RRG
with the measure Tr ln(A(G) + m2) for graph G without the
expansion of the determinant at large m2 which produces the
chemical potentials for the short cycles. Instead of solution
of the matrix model corresponding to this setup found in
Ref. [66] beyond the planar limit we could perform numerical
simulations with this measure for the finite N RRG ensemble
at arbitrary m.

We could also try to link two faces of perturbed RRG
together. That is 2d quantum gravity supplemented with the
particular perturbation and the model of Hilbert space of the
interacting many-body system, supplemented by the chem-
ical potentials for higher resonances. In this language, the
critical phenomena in the Hilbert space acquire the gravita-
tional flavor. The simplest question concerns the real space
interpretation of the critical exponent of the RRG partition
function in the thermodynamic limit. Analysis of the fractal
dimensions of eigenfunctions of the probe at RRG is the
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standard observable which gets translated into the behavior
in the physical space. However, more complicated correlators
of vertex operators can be discussed in the 2d quantum grav-
ity and their properties could provide the additional insights
concerning the properties of the system in the physical space.
Such perspective has been discussed for the Dirac operator
in the gauge field with the diagonal disorder in [84], where
the fractal dimension of the zero modes was linked with the
conformal dimensions of particular operators in the Liouville
theory. It would be also interesting to interpret the genus,
counting in RRG in the physical many-body system.

We have observed that for μk-perturbed RRG for even-
k-cycles the bipartiteness has been restored in the clustered
phase and the spectrum of adjacency matrix is symmetric with
respect to λ = 0. This suggests the interesting analogy with
the chirality in the fermionic systems and the corresponding
symmetry of the Dirac operator. Having in mind some well
established properties of the Dirac operator spectrum in QCD,
we could look for the similar results, like Casher-Banks re-
lation [85], in the perturbed RRG context. In the instanton
liquid model [86] the restoration of the chiral symmetry at the

deconfinement phase transition presumably is accomplished
with the formation of the instanton clusters [87]. This resem-
bles our restoration of the bipartiteness via clusterization. We
plan to discuss this analogy elsewhere.

It would be also interesting to investigate the effects of the
clusterization in the partially disordered RRG ensemble [88].
In that case, there is the critical ratio of the number of dirty
and clean nodes, when the delocalized part of the spectrum
exists even at arbitrarily large value of the partial disorder
amplitude W . The clusterization and TEN modes are expected
to influence this behavior.
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APPENDIX A: DOS FOR THE DIFFERENT CYCLES

In this Appendix, we collect the plots in Figs. 10–12 of the DOS for the μk-deformed RRG which were used in the derivation
of the numerical critical curve μc(k, d, N ).
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1. 4-cycles

(h) (i)(f) (g)

(d) (e)

(c)(a) (b)

FIG. 10. Phase diagram in the plane “chemical potential - vertex degree” (μk, d ) for finite-size RRG graphs for N = 256 and k = 4-cycles,
similar to Fig. 1. [(a)–(c)] The cluster structure of RRG in (a) unclustered; (b) ideally clustered, and (c) interacting clustered phases. In the
case of even k the graph is bipartite in the clustered phase. [(d) and (e)] Phase diagram, with drastic changes (d) in the density of states (DOS)
via the Hellinger distance with respect to the ideal cluster, showing the clustering transition (purple squares), and (e) in the higher-order fractal
dimension D4, sensitive to the scar states, given by the topologically equivalent nodes (TEN). (f)–(i) show the averaged DOS in each of the four
phases: (f) unclustered, (g) TEN-scarred unclustered, (h) ideally clustered, and (i) interacting clustered phases. The colors of the solid circles
in [(d) and (e)], marking each of four phases, correspond to the colors of the blocks in (a)–(c) and the DOS in (f)–(i). Solid white μc(N, k, d ),
Eq. (26), and dashed black μTEN(N, k, d ), Eq. (34), lines show analytical estimates for the transition lines between the above phases.
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2. 5-cycles

(f) (g)

(d) (e)

(c)(a) (b)

FIG. 11. The cluster structure and the averaged DOS for finite-size RRG graphs for N = 256 and k = 5-cycles, similar to Fig. 1. [(a)–(c)]
The cluster structure of RRG in (a) unclustered; (b) ideally clustered, and (c) interacting clustered phases. (d)–(g) show the averaged DOS in
each of the four phases: (d) unclustered, (e) TEN-scarred unclustered, (f) ideally clustered, and (g) interacting clustered phases.
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3. 6-cycles

(f) (g)

(d) (e)

(c)(a) (b)

FIG. 12. The cluster structure and the averaged DOS for finite-size RRG graphs for N = 256 and k = 6-cycles, similar to Fig. 1. (a)-(c)
The cluster structure of RRG in (a) unclustered; (b) ideally clustered, and (c) interacting clustered phases. In the case of even k, the graph is
bipartite. (d)–(g) show the averaged DOS in each of the four phases: (d) unclustered, (e) TEN-scarred unclustered, (f) ideally clustered, and
(g) interacting clustered phases. The vertical dashed lines correspond to (f) the nontrivial eigenstates of the ideal cluster, (g) to ±√

n TEN-scar
states, discussed in Sec. III E.

APPENDIX B: EXAMPLE OF MORE GENERIC SCAR COMPLEX

In this Appendix, we comment on more general TEN complex—subgraph which supports nonthermalizing state. In fact, we
have no desired generic definition yet and restrict ourselves by an example. Let’s analyze the example which shows the possible
nontrivial structure of TEN (see Fig. 13). The equation for nodes, where the eigenvector is localized, reads as

g1 + b2 + b3 + b4 + b5 + y1 = λb1

g1 + b1 + b3 + b4 + b5 + y1 = λb2

g1 + b1 + b2 + b4 + b5 + y1 = λb3

g1 + b1 + b2 + b3 + b5 + y1 = λb4
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FIG. 13. Example. Eigenvector is nonzero on squared nodes. Green and red nodes are denoted all common neighbors for all connected
squared nodes. Eigenvector on yellow nodes equals zero, but these nodes are connected to a nonzero subsets, and with their support, all squared
nodes form TEN.

g1 + b1 + b2 + b3 + b4 + y2 = λb5

r1 + m1 + m2 + y1 = λm1

r1 + m1 + m2 + y2 = λm2 (B1)

Firstly, nodes b1, b2, b3, and b4 form the topological equivalent quadruple. The first four equations in (B1) give three degenerate
states with λ = −1, with the only condition

∑4
l=1 bl = 0. Secondly, nodes b1, b2, b3, b4, b5, m1, and m2 form a more complex

system that gives one more degenerate state with λ = −1. The example shows that nodes do not have to be connected to each
other to be part of TEN.

We present conditions, that might be part of generic definition of complex TENs.
(1) TEN cluster should not have external nodes, coupled with the only internal cluster node. For vertex set I = {i1, ...ik}

general TEN complex must obey ∑
m∈I

AIm +
∑
m/∈I

AIm>1

AIm =
∑
i∈I

di. (B2)

(2) Internal structure of TEN subgraph must lead to same eigenvalue for different connected components.
(3) Topological equivalence to external nodes. The rank of submatrix of the adjacency matrix with elements corresponding

to edges from TEN nodes to external nodes must be less than number of nodes in TEN cluster, rank(AIm) < k, m /∈ I .
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