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Stabilizing confined quasiparticle dynamics in one-dimensional polar lattice gases
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The disorder-free localization that occurred in the study of relaxation dynamics in far-from-equilibrium
quantum systems has been widely explored. Here we investigate the interplay between the dipole-dipole
interaction (DDI) and disorder in the hard-core polar bosons in a one-dimensional lattice. We find that the
localized dynamics will eventually thermalize in the clean gas but can be stabilized with the existence of a small
disorder proportional to the inverse of DDI strength. From the effective dimer Hamiltonian, we show that the
effective second-order hopping of quasiparticles between nearest-neighbor sites is suppressed by the disorder
with strength similar to the effective hopping amplitude. The significant gap between the largest two eigenvalues
of the entanglement spectrum indicates the dynamical confinement. We also find that the disorder related
sample-to-sample fluctuation is suppressed by the DDI. Finally, we extend our research from the uncorrelated
random disorder to the correlated quasiperiodic disorder and from the two-dimer model to the half-filling system,
obtaining similar results.
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I. INTRODUCTION

Recently, exotic phenomena from the studies of relaxation
dynamics in far-from-equilibrium quantum systems have been
unraveled. The dynamical confinement has been shown to
exist in the quantum quench dynamics of lattice models with
the 1/r3 dipolar tail interaction [1–5] and short-range in-
teracting spin chains with both transverse and longitudinal
fields [6–9]. The disorder-free localization (DFL) emergent
from dynamical confinement extends the phenomenology of
disorder-induced many-body localization (MBL) [10–12]. A
finite number of conservation laws lead to the fragmentation
of Hilbert space in DFL which severely constrains the dy-
namics and violates the eigenstate thermalization hypothesis
(ETH) [13], while the emergent of local integrals of motion is
the ingredient of no thermalization in disorder MBL [14,15].
MBL and DFL provide different mechanisms to violate ETH
and localize the quench dynamics of local observables.

The interest in quench dynamics has been roused by break-
through experimental developments in recent years. Isolated
many-body quantum systems can be almost perfectly real-
ized in cold gases and trapped ions [16–19] with naturally
occurring long-range interactions. These experiments unveil
the possibility of simulating a wide variety of quantum many-
body quench dynamics. The extended Hubbard model with
nearest-neighbor interactions has already been realized on
polar lattice gas experiments [20,21]. For the paradigmatic
interactions decaying as a power law 1/r3 with distance r,
this term can be generalized in polar gases with strong dipole-
dipole interactions (DDIs) [22–24], or Rydberg atoms with
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strong van der Waals interactions [25–27]. Such long-range
interactions may host novel properties which are missing in
their short-ranged counterparts [28].

For the quench dynamics of DFL systems, a small effective
second-order hopping or a certain degree of gauge-breaking
errors can create transitions between isolated sectors in the
Hilbert space and finally undermine the quasiparticle confine-
ment [29,30]. At the long-time limit, the quasilocalized state
will eventually thermalize regardless of the error strength. It is
interesting to investigate the stabilizing of the dynamical con-
finement in a polar bosons lattice model with DDI and reveal
the interplay between long-range interactions and quenched
disorders. For a one-dimensional (1D) system, the low-density
filling of the extended Hubbard model corresponds to strong
correlations, which present rich physics in the few-body
problem [3], so we investigate the dynamics of two dimers
(quasiparticles) in the extended boson-Hubbard model. In
this paper, we adopt half-chain entanglement, out-of-time-
ordered correlation (OTOC), inhomogeneity parameter, and
return probability to characterize the dynamical confinement.
All four quantities evince the thermalization of DFL in the
long-time limit for a clean polar gas. However, it is revealed
that a very small disorder can stabilize DFL in the long-time
dynamics, where the disorder induced localization is ignor-
able. We use a dimer approximation to unveil the stabilization.
The disorder strength needed to suppress the effective second-
order hopping of dimers between nearest-neighbor sites is
proportional to the inverse of the DDI strength. The entangle-
ment spectra of long-time dynamical confined states indicate
a significant gap between the largest and the second largest
eigenvalues. We also find that the DDI can reduce sample-to-
sample fluctuations which are usually logarithmically broad
in the disorder induced localization. Finally, we extend our
results from the uncorrelated random disorder to the infinitely
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correlated quasiperiodic disorder saturation, and to the half-
filling case with more quasiparticles dynamically stabilized in
the presence of a very weak disorder.

The rest of this paper is organized as follows: In Sec. II,
we introduce the extended boson-Hubbard model with DDI
and its effective approximation. Section III is devoted to re-
vealing the dynamical confinement stabilized via the existence
of random disorder by four different physical quantities. We
analyze the interplay of DDI and random disorder in Sec. IV
and unveil the same result for the quasiperiodic disorder case
in Sec. V. A brief discussion and conclusion are finally given
in Sec. VI.

II. MODEL

We consider a hard-core polar boson gas in a 1D optical
lattice with long-range DDIs and disordered on-site poten-
tials. The system is described by the extended boson-Hubbard
Hamiltonian [4]:

H = −J
∑

i

(b†
i bi+1 + H.c.) +

∑

i

εini + V
∑

i< j

1

|i − j|3 nin j,

(1)

where bi (b†
i ) is the annihilation (creation) operator of boson

on site i with hard-core condition (b†
i )2 = 0, ni = b†

i bi is the
number operator, J is the hopping amplitude, εi ∈ [−W,W ]
is the uniformly distributed random potential with disorder
strength W , and V is the DDI strength between nearest neigh-
bors. We use exact diagonalization calculation to investigate
the long-time quench dynamics governed by Eq. (1) for a
four-particle problem.

For moderate DDI strength V , two particles locate at two
nearest sites can form a dynamically bound nearest-neighbor
dimer (NND), and the dynamics are dominated by the ef-
fective Hamiltonian defined in the dimer subspace [2]. For
sufficiently large V , all particles are paired in NNDs, and we
can write Eq. (1) into NND bases which reads

Hd = − Jd

∑

l

(D†
i Di+1 + H.c.) +

∑

i

ε′
iNi

+ V
∑

i,l>0

f (l )NiNi+l+2, (2)

where D†
i = b†

i b†
i+1 is the creation operator of an NND at

site i, Ni = D†
i Di is the number operator of NNDs, Jd =

8J2/7V is the effective second-order hopping amplitude,
ε′

i = εi + εi+1, and f (l ) = 2/(l + 2)3 + 1/(l + 1)3 + 1/(l +
3)3 obtained from the DDI between two dimers separated by
distance l . The quasiparticle can move from site i to i + 1 in
a second-order procedure. Let us consider a configuration 110
where 1 stands for occupied boson and 0 for empty site. The
NND can move forward to the right-hand site in the following
procedure 110 → 101 → 011 with amplitude Jd = J2/(V −
V/23) = 8J2/7V [1]. The initial four-boson evolution under
Eq. (1) can be reduced to a two-dimer dynamics described by
the effective Hamiltonian (2).

III. DYNAMICAL CONFINEMENTS

We first consider the long-time dynamics of the Hamil-
tonian (1) with both DDI and disorder. In the clean limit
(W = 0) and sufficiently large V , two dimers initially located
within a critical distance will stay fixed for a certain time
and eventually thermalize due to the effective second-order
hopping [2]. In the following, we consider the system ini-
tially prepared as two dimers separated by four sites and
exactly calculate the time-dependent wave function using
Eq. (1). The initial state reads |ψ0〉 = |· · · 0110000110 · · ·〉 in
the Fock state basis, and the time-dependent wave function is
|ψ (t )〉 = exp(−iHt ) |ψ0〉. We adopt four different quantities,
half-chain entanglement S , OTOC C, inhomogeneity parame-
ter η, and return probability �, to consistently characterize the
localization and dynamical confinement. The open-boundary
condition is assumed in our calculation.

A. Half-chain entanglement

The half-chain entanglement is a commonly used entropy
whose slow-down dynamics and saturated value can reveal
localization properties of the system [13,31–33]. We can
express quantum states under the bases of two subsystems
|ψ (t )〉 = ∑

i j δi j (t ) |ψA
i 〉 ⊗ |ψB

j 〉, where |ψA
i 〉 (|ψB

j 〉) is the
subspace basis of the left (right) half chain. The reduced
density matrix element of the left subsystem is then obtained
as ρA

ii′ (t ) = ∑
j δi j (t )δ∗

i′ j (t ), and the half-chain entanglement
per site is defined as the von Neumann entropy of the reduced
density matrix

S (t ) = − 1

LA
TrρA(t ) ln(ρA(t )). (3)

One can use the reduced density matrix of the right half chain
to obtain the same entanglement because ρB shares the same
spectrum as ρA.

We consider a chain length L = 16 with a bipartition of
equal half LA = LB = L/2 to calculate S . Hamiltonian (1) is
exactly diagonalized to obtain the long-time many-body wave
function |ψ (t )〉. In Fig. 1(a), we present the saturated value
of S after the quench dynamics which is averaged from time
interval t ∈ [106, 108] as a function of DDI V and disorder
W . For W �= 0, 100 random disorder configurations are used.
The initial state |ψ0〉 is a product state with vanishing entan-
glement, and for a well-confined dynamics, the entanglement
should be close to zero. We can observe in Fig. 1(a) that
when W = 0, the saturated value of S is significantly different
from zero for any V . Only in those regions with moderate V
and nonvanishing W does S remain close to zero. We further
display the growth of half-chain entanglement S for L = 20
in Fig. 2 with several typical values of V and W . The smallest
V = 0.01 rather than 0 is due to the fact that noninteracting
systems cannot produce any entanglement for the product
state |ψ0〉. For the clean limit W = 0 in Fig. 2(a), S tends
to finite value for all values of DDI V . For V = 40, S re-
mains close to zero for a certain time because the dimer-dimer
cluster is dynamically confined. When the system begins to
thermalize due to the center-of-mass motion of the dimer-
dimer cluster at t ≈ 102, the entanglement grows steeply.
The dimers begin to move at t ∼ 1/JD ∼ V , and the rapid
growth of the entanglement starts earlier for smaller values
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FIG. 1. Long-time saturated values of (a) half-chain entangle-
ment S, (b) OTOC C, (c) inhomogeneity parameter η, and (d) return
probability � plotted in the V -W plane. All data are averaged from
time interval t ∈ [106, 108] and 100 disorder realizations. The chain
length is L = 16.

of V . For a weak disorder W = 0.1 in Fig. 2(b), the saturated
value of entanglement for V = 40 decreases significantly and
the system shows a well-confined dynamics, where a fixed
distance between dimers is rigidly formed under the interplay
of dipolar interaction and weak disorder. The saturated values
for other values of V are similar to the clean limit case, and
the timescale for the rapid growth is not changed. In these
cases, the particles can move as freely as the clean ones. When
increasing disorder W to 5 in Fig. 2(c), the disorder-induced
localization comes into play for all values of V . Especially
when V = 40, S ≈ 0 in the entire time interval which reveals
the perfect dynamical confinement.

B. Out-of-time-ordered correlation

OTOC characterizes the delocalization or scrambling of
quantum information, whereby it describes the process of an
initially localized state spreading over all degrees of freedom
in a quantum many-body system [34–37]. OTOC has been
related to entanglement and can serve as an experimentally
accessible entanglement witness [38,39]. OTOC can also be
used as an order parameter to characterize the localization-
delocalization transition in disordered many-body systems
[35,40,41]. The OTOC arises from the squared commutator
of two commuting local operators V̂ and Ŵ :

C(t ) = 1
2 〈[V̂ (t ),Ŵ ]†[V̂ (t ),Ŵ ]〉

= 1
2 [〈Ŵ †V̂ †(t )V̂ (t )Ŵ 〉 + 〈V̂ †(t )Ŵ †ŴV̂ (t )〉
− 〈V̂ †(t )Ŵ †V̂ (t )Ŵ 〉 − 〈Ŵ †V̂ †(t )ŴV̂ (t )〉]. (4)

For Hermitian and unitary local operators, the OTOC can be
simplified as [42]

C(t ) = 1 − Re〈V̂ †(t )Ŵ †V̂ (t )Ŵ 〉. (5)

For confined dynamics, information spreading is suppressed
and those two local operators commute at different times,
which leads to the vanishment of OTOCs.

We choose two local operators as NND number operators
of the initial state |ψ0〉, V̂ = nini+1 and Ŵ = ni+l+1ni+l+2 in
our following study. In Fig. 1(b), we plot the saturated value
of OTOC C as a function of DDI V and disorder W . Similar
to the half-chain entanglement, OTOC remains close to zero
in regions where V is moderate and W is not zero. We also
show the long-time dynamics of C for L = 20 in Fig. 3 with all
parameters the same as in Fig. 2. The clean limit in Fig. 3(a)
indicates that the system finally thermalizes for a long enough
time t . When V = 40 (green solid lines), the dynamics show
well and perfect confinement for very small disorder W = 0.1
[Fig. 3(b)] and large disorder W = 5 [Fig. 3(c)], respectively.
The localization properties induced by disorders appear for
small V when W = 5, but the localization is not evident when
disorder strength W = 0.1. OTOC characterizes the propa-
gation of localized information and can serve as measurable
entanglement witness [38,39]. The behavior of OTOC thus
can interpreted in the same way as entanglement.

C. Inhomogeneity parameter

The inhomogeneity parameter, similar to the imbalance for
half-filling systems, characterizes the localization of particles
[2,4]. The inhomogeneity parameter η is defined in such a way
that η = 1 for the initial state and η = 0 when density waves
are uniformly distributed in the whole system:

η(t ) = N0(t )L−1
0 − NbL−1

1 − NbL−1
, (6)

where Nb = 4 is the total boson number, L0 = 4 is the length
of the occupied sites in the initial state, and N0(t ) is the total
particle number on the initially occupied sites after evolution
time t .

We plot the saturated value of the inhomogeneity param-
eter η averaged over the long-time dynamics interval t ∈
[106, 108] in the V -W plane in Fig. 1(c). When both V and W
are small, η is close to zero, which means the system becomes
homogeneous and thermalized after long-time dynamics. For
moderate V but vanishing W , this system is delocalized due
to weak second-order coupling between Fock states. When
W > 0, this region shows localization with inhomogeneity
parameter η ≈ 1. In Fig. 4, the decreasing of η is presented
for L = 20 systems with several typical values of interaction
and disorder strength. Regarding the clean gas in Fig. 4(a), the
system can stay for longer periods of time in inhomogeneous
with larger DDI V before delocalization. η is a direct indicator
for the localization of particles, and the localization time of
the rigidly formed dimer clusters can be directly seen from the
plateau of η before a steep decrease. For a very small disorder
W = 0.1 in Fig. 4(b), the green solid curve indicates inhomo-
geneity of the long-time dynamics and a long-lived memory of
the initial condition for large V = 40. The interplay of dipolar
interaction and weak disorder prevent the center-of-mass mo-
tion of the dimer cluster, and no significant decrease occurs.
Plateaus of the other three curves still dwindle quickly similar
to the clean ones, where the disorder-induced localization is
not evident and the disorder effect cannot prevent particles
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FIG. 2. Long-time growth of half-chain entanglement S displayed as a function of evolution time t . V = 0.01 for black dotted lines, V = 5
for red dashed lines, V = 10 for blue dot-dashed lines, and V = 40 for green solid lines. Disorder strengths are (a) W = 0, (b) W = 0.1, and
(c) W = 5. Faded colors indicate the standard error between different samples. The chain length is L = 20, and 100 disorder realizations are
averaged for W �= 0 curves.

from moving. For W = 5 in Fig. 4(c), disorder-induced lo-
calization takes into place and the saturated values of η for
V = 0.01, 5, 10 improve significantly compared with those
values in Fig. 4(b). The interplay of DDI V and disorder W
leads to inhomogeneity and thus makes dynamical confine-
ment perfect.

D. Return probability

Return probability determines the global property of time
evolution which is widely used in the investigation of quench
dynamics [43–47]. Return probability is defined as the mod-
ulus squared of the overlap between the initial state |ψ0〉 and
the evolution wave function |ψ (t )〉 at time t :

�(t ) = | 〈ψ0|ψ (t )〉 |2 = | 〈ψ0|e−iHt |ψ0〉 |2. (7)

In the quench dynamics of thermalized systems, when the
initial state is not close to any eigenstate of the Hamil-
tonian, this quantity is expected to tend to zero quickly
in an exponential form e−L f (t ) with L being the system
size. � can be considered as the probability to find the
evolved system staying in the initial state after time t
and can be used to characterize localization and confined
dynamics.

We show the saturated value of the return probability �

averaged over long-time interval as a function of V and W in
Fig. 1(d). Similar to the previously studied three quantities,
� indicates that there is a small probability to find the initial
state after a long-time evolution when both V and W are small,
while the dynamics localized for moderate V and nonzero W .

The long-time dynamics of the return probability � is plotted
in Fig. 5 for L = 20 sites with other parameters the same
as in Fig. 2. Green solid curves in Figs. 5(a) and 5(b) both
show a certain time of confined dynamics when t < 102 with
� close to one, but for W = 0 the return probability suffers
a steep reduction when the center-of-mass motion plays the
role at t ∼ 1/JD. The slow drop of � before t ∼ 1/JD lies
in the fact that dimers are not bound rigidly to the original
place but have a small probability to spread to their nearest
neighbors. The localization property induced by disorder is
ignorable for W = 0.1 in Fig. 5(b) but noticeable in Fig. 5(c)
when V = 0.01, 5, 10. Meanwhile, we can also observe the
disorder-stabilized high return probability for V = 40 in the
long-time limit.

IV. INTERPLAY BETWEEN DIPOLE-DIPOLE
INTERACTION AND DISORDER

In this section, we further investigate in detail the interplay
between DDI and disorder in the extended boson-Hubbard
model. In the previous section, we have already revealed
the long-time stabilized dynamical confinements with a very
small disorder. This phenomenon can be interpreted by the ap-
proximated dimer Hamiltonian where all particles are paired
in NNDs. We also discuss the entanglement spectrum of
confined and unconfined wave functions whose properties
are distinct. The sample-to-sample fluctuations for various
disorders and interactions are revealed at the end of this
section.

FIG. 3. Long-time development of OTOC C presented as a function of time t . V = 0.01 for black dotted lines, V = 5 for red dashed lines,
V = 10 for blue dot-dashed lines, and V = 40 for green solid lines. Disorder strength are (a) W = 0, (b) W = 0.1, and (c) W = 5. Faded colors
is the standard error between different disorder samples. The chain length is L = 20, and 100 disorder realizations are averaged for W �= 0
data
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FIG. 4. Long-time dynamics of inhomogeneity parameter η. V = 0.01 for black dotted lines, V = 5 for red dashed lines, V = 10 for blue
dot-dashed lines, and V = 40 for green solid lines. Disorder strengths are (a) W = 0, (b) W = 0.1, and (c) W = 5. Faded colors represent the
standard error between different disorder configurations. The chain length is L = 20, and 100 disorder realizations are averaged for W �= 0
curves.

A. Dynamically bound dimers under weak disorder

For moderate to strong DDI, the dynamics of the ini-
tial state |ψ0〉 under the extended boson-Hubbard model (1)
can be approximated by the dimer extended boson-Hubbard
Hamiltonian (2) where two neighboring particles pair to an
NND and the quasiparticle NND can only move to a neighbor
site via a second-order hopping process with amplitude Jd =
8J2/7V . In the clean limit, due to this small second-order hop-
ping, the confined NNDs will eventually begin to spread over
the whole system and thermalize after long-time dynamics.
The initial state |ψ0〉 is effectively two NNDs separated by five
sites under the dimer bases. We exactly evaluate this initial
state using Hamiltonian (2) and investigate the saturated value
of the inhomogeneity parameter η as functions of disorder
W . For small disorder varying from 0 to 0.1, we display
the saturation η for V varying from 30 to 60 in Fig. 6(a).
As we can see, η increases rapidly and saturates for a very
small disorder W , which is comparable to the second-order
hopping amplitude Jd ∼ 1/V . Due to disorder fluctuations, η

curves are not smooth enough to do numerical derivatives with
respect to W . Thus, we define the turning disorder strength
Wc as the value where η(Wc) = 0.9η(W → ∞), and depict
the relation between Wc and V in Fig. 6(b). It is clear that
Wc ∼ 1/V scales linearly as a function of 1/V similarly to
Jd . From this respect, the well-confined dynamics induced by
disorder are related to the small second-order hopping, while a
very small disorder is enough to localize quasiparticle NNDs
with a small hopping amplitude Jd .

B. Entanglement spectrum

The perfect dynamical confinement induced by the inter-
play between disorder and DDI can also be revealed from
the viewpoint of the entanglement spectrum. In this sec-
tion, we analyze the steady state |ψ (∞)〉 of the system
with V = 40 after long-time evolution. Schmidt decomposi-
tion of the steady state reads |ψ (∞)〉 = ∑

i j δi j (∞) |ψA
i 〉 ⊗

|ψB
j 〉, from which we can define the reduced density ma-

trix ρA
ii′ (∞) = ∑

j δi j (∞)δ∗
i′ j (∞). It can be diagonalized as

ρA = λk |ψA
k 〉 〈ψA

k | to obtain the entanglement spectrum λk .
In numerical calculations, we use t = 106 to approximate an
infinite time. For W = 0, the steady state is not dynamically
confined and the first few values in the entanglement spec-
trum are about the same order of magnitude. We depict the
first ten largest λk in Fig. 7(e) with red cycles labeled line,
and the corresponding density distributions of the four states
with largest λk are presented in Figs. 7(a)–7(d), respectively.
For a large DDI, although not confined due to the effective
second-order coupling and center-of-mass motion, the state is
kept in a paired NND basis where particles prefer to be in
neighboring sites. While for a small disorder W = 0.1, the
entanglement spectrum begins to separate in Fig. 7(e) with
black squares labeled curve, and the density distribution of the
largest eigenstate is the same as in Fig. 7(a), which means the
steady state is close to the initial state. For W = 1 in Fig. 7(e)
with blue diamond labeled line, the gap between the first and
second largest λk is even larger than that for W = 0.1 and the
dynamics are perfectly confined. To generalize the spectrum

FIG. 5. Long-time evolution of return probability � as a function of time t . V = 0.01 for black dotted lines, V = 5 for red dashed lines,
V = 10 for blue dot-dashed lines, and V = 40 for green solid lines. Disorder strength are (a) W = 0, (b) W = 0.1, and (c) W = 5. Faded colors
are the standard error. The chain length is L = 20, and 100 disorder realizations are averaged for W �= 0 lines.
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FIG. 6. (a) Long-time saturated values of inhomogeneity param-
eter η plotted as functions of disorder W . (b) The scaling of turning
disorder strength Wc as a function of 1/V . Data are averaged from
time interval t ∈ [106, 108] and 100 disorder realizations. Dynamics
are exactly calculated using Hamiltonian (2), and NND chain length
is L = 35.

gap, we show the entanglement spectra of 103 different dis-
order realizations for W = 1 in Fig. 7(f). There is a distinct
region between the largest λk and the bulk spectrum, where
only little points can be observed.

C. Sample-to-sample fluctuations

In the study of disorder-induced localization, the aver-
age value of a physical quantity remains constant while the
distribution of that quantity is largely dominated by sample-
to-sample fluctuations [48–52]. In the interplay of disorder
and DDI, two types of localization mechanism may impact
fluctuations differently. We further investigate the sample-to-
sample fluctuation of the inhomogeneity parameter η. The
effective exponent of η in the long-time limit is given by

β f = ∂ log10 η(t )

∂ log10 t

∣∣∣∣
t→∞

, (8)

which characterize the dynamics of η for an individual disor-
der configuration. In numerical calculations, t = 106 is used
to approach the long-time limit. We present the probability
distribution P(β f ) in Fig. 8(a) for W = 5 and various V , and
in Fig. 8(b) for V = 40 and several W . It is clearly illustrated
by the blue cross labeled line in Fig. 8(a) that, for strong dis-
order W = 5 and small DDI V = 5, the distribution is broad
for the disorder-dominated localization. The distribution of
P(β f ) shrinks when increasing V , and the DDI-dominated
confinements have much smaller sample-to-sample fluctua-

FIG. 7. (a)–(d) Density distribution 〈nj〉 of the largest four eigen-
states of the reduced density matrix with W = 0. (e) Ten largest
eigenvalues λk of the reduced density matrix in descending order
for a single disorder realization with W = 0, 0.1, 1, respectively. (f)
Distribution of entanglement spectrum for disorder W = 1 and 103

disorder realizations. Reduced density matrices are calculated from
long-time evolution t = 106, V = 40, and the system size is L = 16.
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FIG. 8. Probability distribution P(β f ) of the effective exponent
of η in the long-time limit for (a) W = 5 with V = 40 (red cycles),
V = 20 (black diamonds), V = 5 (blue crosses), and (b) V = 40
with W = 5 (red cycles), W = 1 (black diamonds), W = 0.1 (blue
crosses). The system size is L = 16, and 104 disorder samples are
used.

tions. In Fig. 8(b), we show the probability distribution P(β f )
for V = 40 dominated dynamical confinements with small
W = 0.1 to large W = 5 disorders. The bandwidth does not
increase significantly, which reveals the stability of dynamical
confinements with the existence of disorder. The sample-to-
sample fluctuations between different disorder configurations
for small V s are times larger than V = 40 when W = 5, which
explains the quite large standard errors of mean values for
those black, blue, and red curves shown in Figs. 2(c), 3(c),
4(c), and 5(c).

V. QUASIPERIODIC DISORDER AND HALF-FILLING
CASES

This section is devoted to extrapolating our results to sys-
tems with correlated disorders and more particles. We first
show that the dynamically stabilized dimers can still be held
with the interplay between quasiperiodic disorder effect and
dipolar interaction. Then, we extend our two-dimer systems
to the half-filling ones and reveal the stabilized quasiparticles
in the presence of a very weak disorder.

The quenched disorder uniformly distributed between
[−W,W ] is an uncorrelated disorder, and in this section we
further consider correlated disorders. The quasiperiodic dis-
order is a long-range correlated disorder that can also induce
localization of dynamics. In Hamiltonian (1), the quasiperi-
odic on-site potential εi = W cos(2παi + ϕ) is used instead of
the random εi. W is the quasiperiodic disorder strength, α =
(
√

5 − 1)/2 is an irrational number close to the golden ratio,
and ϕ is an offset phase randomly chosen in range [0, 2π )
for sampling when the system’s size is finite. Using the same
parameters as in Figs. 2–5, we plot the dynamics of half-chain
entanglement, OTOC, inhomogeneity parameter, and return
probability for the typical case where W = 0.1 in Fig. 9.
Those green solid lines indicate that the small quasiperiodic
disorder can also stabilize the confined quasiparticle dynamics
for large DDI V = 40. Other curves reveal that the disorder-
induced localization is ignorable if V is not strong enough.
This typical behavior is similar to the random disorder, which
extends our result from the uncorrelated disorder to the corre-
lated disorder situation.
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FIG. 9. Long-time dynamics of (a) half-chain entanglement S,
(b) OTOC C, (c) inhomogeneity parameter η, and (d) return proba-
bility � for V = 0.01 (black dotted curve), V = 5 (red dashed curve),
V = 10 (blue dot-dashed curve), and V = 40 (green solid curve).
Faded color is the standard error between different offset phase ϕ.
Data are averaged from 100 disorder realizations, and the system
length is L = 20 with W = 0.1.

Then we consider the half-filling case with the system size
L = 16 and the initial state containing Nb = 8 bosons. The
initial state has four dimers and is equally separated, which
reads |ψh

0 〉 = |1100110011001100〉 in the Fock state basis. In
this initial state, the distance between dimers is smaller com-
pared with the previous configuration, where we use a smaller
V = 20 dipolar interaction strength. Despite being smaller,
this interaction strength is sufficient to observe the confined
dynamics. In Fig. 10, we plot the long-time evolution of
density distribution 〈n j〉 and half-chain entanglement S . For
the clean system in Fig. 10(a), the density distribution reveals
the confined dimers for a long period up to t ≈ 107 before the
quasiparticles begin to move. In Fig. 10(b), we can see that
a very small disorder W = 0.01 can significantly stabilize the
confined dimers and the quasiparticles localized at their initial
position for all the periods studied. Such a small disorder is
not sufficient to induce localization if no dimer is present.

FIG. 10. Long-time dynamics of the density distribution 〈nj〉 for
half-filling systems (a) without disorders and (b) with very weak
disorders W = 0.01. (c) Evolution of half-chain entanglement S for
W = 0 (black dashed curve), and W = 0.01 (red solid curve). Faded
color is the standard error between different disorder configurations.
Data are averaged from 100 disorder realizations, and the system
length is L = 16 with V = 20.

Figure 10(c) shows the growth of half-chain entanglement
for W = 0 and W = 0.01. For the clean system, the entan-
glement encounters a steep increasing period corresponding
to the moving of quasiparticles at t ≈ 107. For the stabilized
confinement case (W = 0.01), the entanglement saturates to
a value smaller than that of the system with W = 0. Our
results suggest that the stabilizing mechanism induced by the
interplay between disorder and dipolar interaction holds for
systems with more particles.

VI. DISCUSSION AND CONCLUSION

Before concluding, we emphasize the importance of inves-
tigating the interplay between dipolar interaction and disorder.
Long-range interactions naturally occur in recent experimen-
tal quantum many-body systems such as cold gases, trapped
ions, and engineered Rydberg atoms [16–19,53]. On-site po-
tentials with disorders or quasiperiodic disorders can also
be implemented due to recent developments in MBL ex-
periments [54,55]. Thus, the intriguing interplay between
interaction- and disorder-induced quasiparticle localization
is within the near-future quench dynamics in experiments.
On the other hand, our findings provide a feasible tech-
nique in those long-range interacting systems to preserve
the initially prepared quantum states for as long as possi-
ble. By introducing disorder on purpose, these systems can
achieve longer decoherent time and realize more quantum
tasks.

To summarize, we have explored the confined quasiparticle
dynamics of the polar boson gas in a 1D lattice with both
DDI and disorder. Several physical characteristics, such as
the half-chain entanglement, the OTOC, the inhomogeneity
parameter, and the return probability, have been numerically
calculated. In the clean limit, four quantities evinced the ther-
malization of the system in the long-time limit. It was found
that a small disorder, which is proportional to the inverse of
DDI strength and comparable to the effective second-order
hopping of dimers between nearest-neighbor sites, can sta-
bilize the dynamical confinement. The entanglement spectra
of perfect confined states indicated a significant gap be-
tween the first two largest eigenvalues. We have also unveiled
that the DDI can reduce sample-to-sample fluctuations. Fi-
nally, the correlated quasiperiodic disorder and half-filling
systems have been considered and similar findings have been
established.
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APPENDIX: NUMERICAL METHOD

There are many approximation methods to calculate
the time-dependent wave function |ψ (t )〉 = exp(−iHt ) |ψ0〉
such as the Krylov-subspace approach, Chebyshev polyno-
mial approach, and tensor network base methods like the
time-evolution block-decimation (TEBD) method and time-
dependent variational principle (TDVP) method. Typically,
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these methods can evaluate time-dependent wave functions
flexibly for a moderately long time from t ≈ 103 to t ≈
104. However, we need to access physical properties of
our systems with evolution times up to t = 1012, where the
full exact diagonalization is the only appropriate method.
The Hamiltonian matrix H is represented under the Fock
state basis with U(1) symmetry where the boson particle
number is conserved. To calculate the time-dependent wave

function, we first full diagonalize H = ∑
i Ei |ψi〉 〈ψi| where

Ei and |ψi〉 are ith eigenenergy and eigenfunction, respec-
tively. The time-dependent wave function then reads |ψ (t )〉 =∑

i e−iEit 〈ψi|ψ0〉 |ψi〉. For any time t and disorder realization
d , we calculate |ψ (t )〉d and its physical quantity 〈O(t )〉d . All
quantities are averaged over 100 disorder realizations with
their mean values plotted as lines and standard errors of the
mean values plotted as the error bars.
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