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Seeking a many-body mobility edge with matrix product states in a quasiperiodic model
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We investigate the possibility of a many-body mobility edge in the generalized Aubry-André (GAA) model
with interactions using the Shift-Invert Matrix Product States (SIMPS) algorithm [Phys. Rev. Lett. 118, 017201
(2017)]. The noninteracting GAA model is a one-dimensional quasiperiodic model with a self-duality-induced
mobility edge. To search for a many-body mobility edge in the interacting case, we exploit the advantages
of SIMPS that it targets many-body states in an energy-resolved fashion and does not require all many-body
states to be localized for some to converge. Our analysis indicates that the targeted states in the presence of
the single-particle mobility edge match neither “MBL-like” (where MBL denotes many-body localization) fully
converged localized states nor the fully delocalized case in which SIMPS fails to converge. We benchmark the
algorithm’s output both for parameters that give fully converged, “MBL-like” localized states and for delocalized
parameters where SIMPS fails to converge. In the intermediate cases, where the parameters produce a single-
particle mobility edge, we find many-body states that develop entropy oscillations as a function of cut position at
larger bond dimensions. These oscillations at larger bond dimensions, which are also found in the fully localized
benchmark but not the fully delocalized benchmark, occur both at the band edge and center and may indicate
convergence to a nonthermal state (either localized or critical).
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I. INTRODUCTION

Isolated quantum systems are conjectured to equilibrate at
the level of a single eigenstate via subsystem thermalization
in the absence of a bath. This conjecture is known as the
eigenstate thermalization hypothesis (ETH) [1,2]. Over the
past decade, many-body localization (MBL) has emerged as
a candidate phase that maximally violates the ETH, where all
the eigenstates fail to equilibrate at the subsystem level. Many
agree that MBL exists in one dimension with short-range
interactions [3–5], and experiments indicate the existence of
MBL in a number of platforms [6–8]. However, a recent
challenge poses that the localization effects seen in exact-
diagonalization studies may result from finite-size effects
which will be destroyed by quantum chaos at sufficiently large
length scales [9–17], and how to unambiguously quantify
MBL in an experiment is still a work in progress.

A natural question then arises as to whether MBL al-
ways represents the most generic violation to the ETH, where
all eigenstates are nonthermal, or if there can be cases in
which only part of the many-body spectrum will be localized.
Exceptions to this case have been found in the form of quan-
tum many-body scar states where a subextensive number of
area law entangled states [18] were interspersed among an
extensive number of volume law states. A full many-body
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mobility edge with extensive localized and delocalized states
separated by critical energy was originally presented in the
works of Basko, Aleiner, and Altshuler [3], where they found
a possible many-body delocalization phase transition at fi-
nite temperature. Numerical works have observed evidence
for a many-body mobility edge [19–28], although finite-size
effects plague the reliability of these results. However, the
works of De Roeck et al. [29] claim to exclude the possi-
bility of any mobility edge using avalanche arguments. More
recently, experiments have shown evidence for a many-body
mobility edge in a shallow lattice limit of the Aubry-André
model [30,31]. It is an open question if the experimental
observation of a nonergodic phase is an indication of a
more robust violation of the ETH or simply a finite-size and
finite-time effect. The question of the presence or absence of
many-body mobility edges remains unresolved, although the
experimental capability of energy resolution can potentially
offer further advancement [32].

In this paper, we investigate the fate of many-body local-
ization in the presence of a single-particle mobility edge at
large system sizes. We consider the interacting version of the
generalized Aubry-André (GAA) model of Ref. [33], which
possesses a mobility edge protected by self-duality in its
single-particle spectrum. Machine learning methods have in-
dicated the existence of a nonergodic metal in the center of the
many-body spectrum of this model [34]. Recent experiments
have realized the bosonic version of the GAA model in the
synthetic lattices of laser-coupled atomic momentum modes,
and they studied the influence of weak interactions on the
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mobility edge [35]. To address this question at large system
sizes, we use the energy-targeting Shift-Invert Matrix Product
States (SIMPS) algorithm of Yu, Pekker, and Clark [36]. We
show that the SIMPS method should be capable of identify-
ing a many-body mobility edge due to its energy-targeting
nature. We benchmark the properties of the targeted matrix
product state (MPS) in the mobility-edge regime to that of
the convergent fully localized regime and the fully delocalized
regime where the algorithm is expected to fail to converge the
delocalized energy eigenstates.

We find that the single-cut entanglement entropy shows
oscillations in the cut location that appear at higher bond
dimensions. Similar oscillations are typically seen in criti-
cal (logarithmic entanglement scaling) [37] states with open
boundary conditions. This phenomenon is not observed in the
fully delocalized case as benchmarked with SIMPS within the
bond dimensions considered. Where observed, entanglement
oscillations are stronger for the states at the band edge but are
also present near the band center and may indicate conver-
gence to some kind of nonthermal state whose exact nature is
difficult to quantify within our methods.

The remainder of the paper is structured as follows. In
Sec. II, we introduce the GAA model study in this paper,
whose noninteracting version exhibits a single-particle mo-
bility edge protected by self-duality. In Sec. III, we briefly
describe the SIMPS method (relegating a detailed account of
the numerical procedure to Appendix A) and benchmark it
for two cases with clearly localized and thermalized behavior,
respectively. Then in Sec. IV, we compare these benchmarks
to candidate eigenstates produced by SIMPS in the neigh-
borhood of the single-particle mobility edge, and we analyze
the average entanglement scaling. We conclude in Sec. V.
In addition to the details of the algorithm, the Appendixes
contain an analysis of additional data sets (including ones with
greater system size), details of the calculation of the energy
error and single-cut entanglement entropy, and an analysis of
additional characterization by the Uhlmann fidelity.

II. THE GENERALIZED AUBRY-ANDRÉ MODEL

A. The noninteracting case

The generalized Aubry-André model (GAA) [33] we con-
sider is defined, in the noninteracting case, by the Hamiltonian

H0 = t
L−1∑
n=1

(ψ†
n ψn+1 + ψ

†
n+1ψn)

+ 2λ

L∑
n=1

cos(2πbn + φ)

1 − α cos(2πbn + φ)
ψ†

n ψn, (1)

which becomes the standard Aubry-André model when α=0,
with the phase φ determining a family of “disorder realiza-
tions.” We also use the standard choice of b as the inverse
golden ratio 2

1+√
5
. When t > 0 and |α| < 1, this has been

determined to be self-dual for energies

αE = 2(t − λ). (2)

FIG. 1. The spectrum and inverse participation ratio (IPR) of
the noninteracting generalized Aubry-André model at α = 0.3
with various λ and any t > 0, obtained by diagonalizing single-
particle Hamiltonians. For the length, we use a Fibonacci number
N = F16 = 987, which allows us to use periodic boundary condi-
tions and minimize boundary effects with the frequency b = F15/F16

approximating the inverse golden ratio. The distinction between de-
localized (IPR ∼ 1/N) and localized (IPR > 1/N , increasing to 1)
behavior on either side of the self-dual line αE = 2(t − λ) (green) is
clear. Disorder strengths λ studied herein in the interacting case are
marked in black.

One may diagnose localization in this model on either side of
this self-dual line, e.g., by using the inverse participation ratio
(IPR), as shown in Fig. 1. For a single-particle state |ψ〉 with
wave function ψi, the inverse participation ratio is defined as

IPR =
∑L

i=1 |ψi|4( ∑L
i=1 |ψi|2

)2 . (3)

When excitations are localized (to a region that does not
scale with system size), IPR ∼ O(1), whereas thermalization
implies IPR ∼ O(1/L). As predicted by self-duality, there is
a mobility edge for nonzero α at E = 2

α
(t − λ).

B. The interacting model

Later works considering an interacting version of this
model [20,38,39], constructed with the simple addition of a
four-fermion term

H = H0 + V
∑

n

ψ†
n ψnψ

†
n+1ψn+1, (4)

have analyzed it with exact diagonalization for small sizes and
low filling factors.

The main goal of this work is to expand the system size
substantially using the SIMPS method [36]. The tradeoff for
large system sizes is that the finite bond dimension cuts off
the entanglement of the state. If the many-body state ob-
tained by SIMPS is localized, then the entanglement does not
scale with the cut size and is unaffected by the increasing
bond dimension. However, a thermalized state should have
volume-law entanglement scaling: in particular, the half-cut
entanglement entropy should be asymptotically proportional
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FIG. 2. A violin plot displaying the distribution of energy errors
at several system sizes and disorder strengths λ, given bond dimen-
sion χ = 10; tests sample the full range of the energy spectrum.
One can tell that the distributions are qualitatively different among
the lowest three system sizes, whereas they are qualitatively simi-
lar for L = 64 and 128. (Meanwhile, a quantitative comparison is
complicated by a need to account for both extrinsic scaling of E and
exponential suppression of level spacing.)

to the system size. Since the bond dimension of an MPS
is exactly the Schmidt rank across a given cut, the single-
cut entanglement entropy of an MPS with (maximal) bond
dimension χ is limited to precisely log χ , making the bond
dimension of an adequate MPS representation exponential
in the system size as a function of the cut size. Thus we
trade system-size limitations suffered in exact diagonalization
methods with finite-entanglement limitations due to limited
bond dimension. The advantage of this tradeoff is that we can
benchmark states against fully localized and fully delocalized
systems in terms of how their properties scale with the bond
dimension while making finite-size effects negligible.

C. Model parameters

The systems we will be primarily considering will have
an interaction strength V/t = 1 and a mobility-edge param-
eter α = 0.3. We enforce particle-number conservation as
a global U (1) symmetry in order to restrict to half-filling.
In preliminary studies we have varied the system size: with
half-integer disorder strengths λ = {0.5, 1, 1.5, 2, 2.5, 3, 3.5},
six disorder realizations φ = πn/3, and system sizes L =
{16, 32, 64, 128}, we used bond-dimension χ = 10 SIMPS to
probe the system at equally spaced test energies encompassing
the entire spectrum. As shown in Figs. 2 and 3, these studies
have demonstrated to our satisfaction that finite-size effects
are sufficiently small for system sizes of order L � 64. In
Appendix C 2, we additionally compare data obtained from

FIG. 3. Entropy distribution for several values of the disorder
strength λ, given various system sizes with bond dimension χ = 10.
We find that, for a given λ, the behavior at different system sizes has
few qualitative differences; we may find some for the thermalizing
regime (here λ = 0.5 and 1) between L = 16 and 32 and between
L = 32 and 64, but only a modest and expected difference in the
location of the median between L = 64 and 128. This helps us
demonstrate that finite-size effects are minimal (particularly in com-
parison to finite-entanglement effects) by the time we reach L = 64.

the primary studies (described below)—in particular those
with smaller bond dimensions—with tests run using the same
parameters but larger bond dimensions, and we determine that
we do not see a significant qualitative difference. Finally, we
note that even the longest-lived boundary effects seen in this
work, as found, e.g., in Sec III B, do not penetrate beyond a
distance from the boundary of � ∼ 15. Thus, for the primary
studies discussed herein, we select a fixed size L = 64.

We choose sample “disorder strengths” λ of
0.5,1.2,1.5,3.5. As illustrated in Fig. 1, these are, respectively,
well before, intersecting, just beyond, and well beyond the
single-particle mobility edge. The intention behind these
choices is as follows:

(i) λ = 0.5 should be well within the thermalizing phase
and therefore should provide a benchmark for SIMPS output
in this paradigm (i.e., when eigenstates are volume-law and
therefore unrepresentable as MPS).

(ii) λ = 3.5 should be well within the localized phase
and therefore should provide a benchmark for SIMPS output
in this paradigm (when eigenstates should be easily repre-
sentable with MPS).

(iii) λ = 1.2 and 1.5, meanwhile, provide candidates for a
mobility edge, wherein results can be compared to the above
benchmarks to determine whether a given energy range corre-
sponds to the localized or thermalized phase.

094201-3



POMATA, GANESHAN, AND WEI PHYSICAL REVIEW B 108, 094201 (2023)

Finally, we select 12 disorder realizations via phases φ =
πn/6. In each system, for each of the bond dimensions 10, 14,
20, 25, and 30, we sample 99 target energies equally spaced
within each of two energy ranges, determined as follows. We
can readily approximate the minimum and maximum energies
Emin and Emax given half-filling and fixed t, λ,V, α, b, φ, and
L, Emin being the ground-state energy of H and −Emax being
the ground-state energy of −H . Then the energy densities
Emin/L and Emax/L will have minimal dependence on φ and
L, so, fixing t,V, α, b, we can define an energy density above
the ground state,

ε ≡ E − Emin

L
, (5)

which specifies E for a given L and λ and which has

0 � ε � εmax ≡ (Emax − Emin)/L.

We use “lower” and “middle” energy ranges:
(i) 0.1εmax < ε < 0.15εmax (a target energy density of

εm = (0.1 + 0.0005m)εmax for m = 1, 2, . . . , 99).
(ii) 0.45εmax < ε < 0.5εmax (a target energy density of

εm = (0.4 + 0.0005m)εmax for m = 1, 2, . . . , 99).
Note that, for each energy range and each value used of the

“disorder” strength λ and the bond dimension χ , we have a
sample size of 1188 states.

III. THE NUMERICAL METHOD

Friesdorf et al. [40] have shown that matrix product states
can efficiently represent excited eigenstates of localized sys-
tems and are therefore an effective means of nonperturbatively
analyzing localized systems at large system sizes. To extract
MPS approximations of eigenstates, we use the SIMPS algo-
rithm [36], which we outline in detail in Appendix A. SIMPS
and other MPS algorithms can only attempt to diagonalize
a system under the assumption that it is localized, meaning
that they will otherwise give “false positives” of relatively
low-entanglement states which are not approximations of any
eigenstates and are instead linear combinations of states with
similar entropies. Indeed, if we assume a typical energy spac-
ing, at a typical energy E , of s ∼ 2−LE (where L is the
system size), an equal combination of n adjacent states would
have energy variance on the order of 
E2/E2 ∼ n2

12 2−2L [see
Eq. (A1) in Appendix A]. At a system size L = 64, such
a combination could still have energy error below machine
precision if it consisted of 233 distinct eigenstates. However,
our intuition and the benchmarks we use suggest this is not
the case, e.g., a low-energy-error superposition like that would
still have comparably high entropy and thus could not be
replicated as an MPS.

We note that, in the similar case of MPS approximations to
critical ground states, there exist well-established scaling rela-
tions [41,42]. These relations include the asymptotic behavior
of the correlation length with respect to (a) the single-cut
entanglement entropy, (b) the bond dimension, and (c) the
energy error relative to the true ground state. Such a relation,
applied to excited states of disordered ergodic systems, would
be necessary in order to distinguish with any certainty the
phases we hope to observe. In the absence of such an asymp-
totic description, we attempt to extract empirical relationships

FIG. 4. A violin plot representing the distribution of energy error
for various disorder strengths; the area of a shape in a given re-
gion approximates the frequency of samples within the 1188 sample
states, and lines are placed at the medians. In all cases, the error
substantially decreases with bond dimension; however, the errors
at λ = 0.5 and 3.5 are, for all bond dimensions, at substantially
different scales. The energy errors for λ = 1.2 and 1.5, meanwhile,
only approach either scale at high bond dimension, when the λ = 1.5
low-energy case begins to overlap low-bond-dimension results from
the localized case.

and benchmarks with respect to fully localized and fully de-
localized cases which can help separate localized and ergodic
phases.

A. Benchmark I: SIMPS applied to a fully localized
many-body system

We begin by applying SIMPS to the disorder strength
λ = 3.5, that is, we tune the system to be far into the region
corresponding to single-particle localization. In Fig. 4, we
see that the states we find given these parameters have very
low energy variance 
E2. In fact, for high bond dimensions
χ > 20, 
E2 appears to saturate at about 10−10, of order
comparable to the tolerance of the subroutines of our SIMPS
implementation. We then consider entanglement entropy, as in
Fig. 5. We see, first, that as a function of bond dimension the
entropy has also largely saturated by χ = 30 (in fact, in the
entropy histograms discussed in Appendix D 2 we find that
the entropy distribution has largely converged with respect
to bond dimensions). Indeed, the movement we see before
that point is likely attributable to a reduction of bias against
higher-entropy states. Moreover, we observe that neither the
single-cut entropy nor the bond-dimension corrections to it
grow significantly as we move into the bulk of the system,
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FIG. 5. Single-cut entropy by cut location (i.e., distance from
the nearest end point) for strong disorder, λ = 3.5, at L = 64. The
entropy has evidently saturated by χ = 30 for the different cuts and
energies under consideration, and it remains low moving into the
bulk, as is generally expected for the area-law behavior of localized
states.

ruling out the possibility that our evidence of localization can
be viewed primarily as a finite-size effect.

We also point out a distinct feature in the single-cut entropy
displayed in Fig. 5, namely the highly discrete, oscillatory
behavior as the cut size l varies. This feature is absent in the
weak-disorder case, e.g., λ = 0.5 in Fig. 6.

B. Benchmark II: SIMPS applied to a fully delocalized system

The SIMPS algorithm naturally fails with any finite bond
dimension for the fully delocalized case due to volume law en-
tanglement scaling. Nonetheless, we can quantify this failure
in the form of energy variance and entanglement scaling with
bond dimension. Within our model, the “disorder” strength
λ = 0.5 (and other parameters as above) corresponds to full
delocalization in the single-particle case. We find in Fig. 4
for the system size L = 64 that the energy errors are very
large, eclipsing the values that would be predicted by naively
combining the cutoff error and density of states. The impli-
cation of this is promising: even as the system size becomes
large, the algorithm cannot produce pseudo-eigenstates of the
delocalized system which exploit tight energy spacings to
exhibit small energy error.

FIG. 6. Single-cut entropy by cut location for weak disorder,
λ = 0.5, at L = 64. While there are signs of convergence (to volume-
law behavior) very close to the boundary, as seen in greater detail in
Fig. 8, in general the entropy is high and failing to converge. Also
notably, it peaks near the boundary, at a location � ∼ 5 that grows
with the bond dimension, and then falls to a bulk value, suggesting
a higher-order artifact of finite-entanglement scaling beyond simply
limiting the entropy.

In Fig. 6, we find rapid growth of entanglement entropy
as we move up to five sites into the bulk of the system;
notably, while a failure to converge is apparent away from the
boundary, near the boundary we see convergence to something
resembling a volume law. The full entanglement distribution
is given in Appendix D 2. Farther away from the boundary,
we see the entanglement entropy fall again before settling
into asymptotic behavior; this is evidently an artifact of finite
entanglement given that the peak moves away from the edge
as we increase the bond dimension.

We emphasize that in the weak-disorder regime studied in
this section, the single-cut entropy versus the cut size l is
smooth, in contrast to the previous larger disorder strength
case with λ = 3.5, where there were distinct, highly discrete
oscillations.

IV. EVALUATING CANDIDATE DISORDER STRENGTHS
FOR A MOBILITY EDGE

Now we present the main results of this paper. In the
presence of the single-particle mobility edge, the localization
properties of the many-body interacting states can in principle
have four outcomes: (i) all many-body states are localized; (ii)
the many-body spectrum has a mobility edge; (iii) all many-
body states are delocalized; and (iv) the spectrum contains
nonergodic extended states (the exotic case). Even though the
SIMPS algorithm cannot unambiguously discriminate among
all four of these scenarios, it can locate the existence of
localized states in the many-body spectrum in an energy-
resolved way. Thus we can address the question of whether
the many-body spectrum contains any localized states when
the single-particle spectrum possesses a mobility edge within
numerically accessible bond dimensions.

We consider the disorder strengths λ = 1.2, for which a full
single-particle band is delocalized, and λ = 1.5, which is fully
localized (but with longer localization length in bands closer
to the critical line of the mobility edge than in benchmark
I, λ = 3.5), as shown in Fig. 1. In Fig. 4 we have seen that
the energy error in either case does not truly match either the
localizing or the thermalizing case, and it is not clear from a
qualitative analysis which comparison is stronger. We also see
evidence in Fig. 7 that the states in the middle of the spectrum,
where we see convergence toward volume-law entropy scaling
up to � � 4, are more delocalized than those near the edge of
the band, where we only see a hint of entropy scaling with cut
size.

In Fig. 8, we plot entanglement entropy versus bond di-
mension at small cut sizes (� = 2, 3, 4, 5) averaged over the
energy windows selected near the band edge and center (the
full distribution of entanglement entropy for this case is ex-
plored in Appendix D 2). Within the bond dimensions we
have used, we only observe saturation of entanglement en-
tropy with bond dimension (as occurs in benchmark I) in the
band-edge case of λ = 1.5. In the absence of such saturation,
we can still use the dependence of entanglement on both cut
sizes (i.e., for single cuts, the distance between the cut and the
boundary) and bond dimension.

For the case of λ = 1.2, we see in Fig. 7 that the average
entropy at both the band center and the band edge seems to
contain features from both benchmark I (the fully localized
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FIG. 7. Single-cut entropy by cut location for disorder strengths
λ = 1.2 (top) and λ = 1.5 (bottom) both at L = 64. Convergence
within the bulk by χ = 30 is apparent only in the lower energy range
with λ = 1.5. In the higher energy range, meanwhile, we observe for
both λ convergence towards the boundary to apparently volume-law
behavior as well as a clear peak in the entropy at � ∼ 5, as is also
seen with λ = 0.5 in Fig. 6. The substantial oscillations seen in the
entropy here, including an observed falloff between the first and
second sites seen for smaller bond-dimension in the cases nearer the
band edge, are discussed in more depth in Appendix B.

case) and II (the fully delocalized case). However, with the
increasing bond dimensions it seems to develop more features
of the localized state. For small bond dimensions, the entan-
glement curves are somewhat smooth for both energy ranges
we have probed. But as the bond dimension increases, the
converged curves begin to exhibit highly discrete oscillation,
similar to the regime of large disorder strength. Such oscil-
lation in the entanglement entropy was observed previously
in the ground state of the XXZ spin chain [37] for open
boundary conditions, and identified as a dimerization process
universal in ground states of models with a Luttinger liquid
description. We suspect that the presence of oscillations due
to open boundary conditions may indicate the beginning of
the convergence of the SIMPS algorithm toward capturing a
faithful MPS representation. Note that the success of SIMPS
at a finite bond dimension itself is evidence of the nonthermal
nature of the state. On the contrary, for a thermal or a fully de-
localized state, one would expect these oscillations to develop
only at bond dimensions of the order χ ∼ 2L/2.

V. CONCLUSIONS

We have observed what appears to be a compelling dis-
tinction between thermalized and localized behavior in an
interacting quasiperiodic system at a reasonably large sys-
tem size L = 64. In particular, we find that we can extract
“good” eigenstates with low entropy when the strength of
the quasiperiodic “disorder” is high; conversely, when it is
low, we only find eigenstates of poor quality (as measured

FIG. 8. Average single-cut entanglement entropy, together with
the standard error of the mean, as a function of the bond dimension
χ for several small cuts in the various cases considered. We expect
to see logarithmic growth with eventual convergence either to a con-
stant value (in the localized, area-law case) or a value proportional
to the distance from the boundary (in the delocalized, volume-law
case). The asymptotic behavior generally anticipated in the bulk is
logarithmic growth if the entropy is volume-law and convergence if
it is area-law; near the boundary, in the volume-law case, we expect
convergence to a value determined by that volume law.

by the energy error) whose entanglement entropy moreover
increases substantially with bond dimension in accordance
with a volume law. When we compare these two cases with
intermediate cases selected for the possibility of seeing a mo-
bility edge, we find at the disorder strength λ = 1.5 evidence
broadly consistent with the claim that localization is present
for lower energies but not for energies towards the middle of
the spectrum. The case for delocalization is weaker at λ = 1.5,
but in both cases we cannot make conclusive inferences from
the data taken.

In addition to studying the same systems at larger bond
dimension, we could seek precise criteria for distinguishing
states close to and far from true eigenstates. In the absence
of such a criterion, we are unable to say for certain when
the apparent saturation of entropy actually corresponds to
having found true localized states. It would be further useful to
establish a rigorous theoretical relationship between the bond
dimension and entropy for MPS approximating extended ex-
cited states akin to the finite-entanglement scaling relationship
found for critical systems in [41]. We leave this effort for
future work.

It may also be worthwhile in future work to modify the nu-
merical techniques in order to study bond-dimension scaling.
For example, it may be useful to take a candidate eigenstate
from a lower bond dimension as an initial state (rather than a
random state) in order to see how robust that state is. It may
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similarly be useful to track failure of convergence instead of
simply designating a maximum number of iterations and not
distinguishing between “convergence” from the two stopping
criteria. Meanwhile, it may improve efficiency to allow bond
dimension to vary within a system (so that one may effectively
save resources on “weak” bonds).

Note added. After our initial submission of this work, there
were subsequent developments that indicate that well-studied
localization transitions do not exist at the expected param-
eters [13–17]. In particular, in the random-field Heisenberg
model, a standard workhorse for studying MBL, the critical
disorder strength once expected to be around W = 3 may
instead be as high as Wc ∼ 20 [15,16]. Our results do not
directly address these questions. We focused instead on de-
veloping systematic matrix product methods to investigate
aspects of localization transitions and, in particular, the pos-
sible existence of a many-body mobility edge in the GAA
model.
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APPENDIX A: THE SIMPS ALGORITHM

To perform the SIMPS algorithm, as with other DMRG-
based MPS algorithms, we begin by expressing the Hamilto-
nian as an automaton-style matrix product operator, formed in
this case from the Jordan-Wigner transform of the fermionic
Hamiltonian, expressed in terms of operator-valued matrices
as

On =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
σ− 0 0 0 0
σ+ 0 0 0 0√
V

2 σz 0 0 0 0
Wn
2 σz − E01 σzσ+ σ−σz

√
V

2 σz 1

⎞
⎟⎟⎟⎟⎟⎠,

Wn = 2λ
cos(2πbn + ψ )

1 − α cos(2πbn + φ)
,

with boundary vectors vL = (0, 0, 0, 0, 1) and vR =
(1, 0, 0, 0, 0).

To find an eigenstate, perform the following steps:
(i) Start with an initial matrix-product ansatz |ψ0〉 and a

target energy E0, incorporated into the MPO as above.

FIG. 9. The tensor equation underlying the SIMPS algorithm
developed by Yu, Pekker, and Clark [36]: for O = H − E0, update
|ψi+1〉 by solving for the light-blue tensor T (and then decompose T
using SVD). The purpose of this is to optimize 〈ψi+1|O†|ψi〉 subject
to the constraint 〈ψi+1|O†O|ψi+1〉 = 1, but with a Lagrange multi-
plier, absorbed into T , that can be solved for with normalization.

(ii) Given an iteration |ψi〉, optimize the next iteration
|ψi+1〉 as follows:

(iii) |ψi+1〉 may be initialized randomly, but following a
suggestion by Clark [43], we have initialized it with |ψi〉.

(iv) Site-by-site, optimize |ψi+1〉 to satisfy (H − E0)
|ψi+1〉 = ψi: that is, apply the shifted and inverted Hamilto-
nian.

(v) To do so, we represent this equation as the max-
imization of 〈ψi+1|(H − E0)|ψi〉, subject to the constraint
〈ψi+1|(H − E0)2|ψi+1〉 = ‖ψi‖2, which will be uniquely sat-
isfied by (H − E0)−1ψi.

(vi) This is done, site-by-site, by solving the diagrammatic
equation in Fig. 9 for individual tensors. We note that we find
it preferable to update two sites at once (i.e., the tensor being
optimized consists of the contraction of tensors at two sites),
especially when enforcing charge/fermion-number conserva-
tion, in order to speed up convergence. The resulting two-site
tensor is then split via SVD to update the MPS.

(vii) This may be repeated until |ψi+1〉 has converged;
alternatively, when initializing ψi+1 with ψi, very few sweeps
(optimizing the tensors at each site) may be conducted per
iteration, as the goal of convergence is the eigenvalue equa-
tion ψ ∝ (H − E0)ψ , which should be more accurate after
each sweep.

(viii) Repeat until the energy has converged, or until a
maximum number of iterations has been reached.

In the original work of Yu, Pekker, and Clark [36], the
authors claim that SIMPS is “sampling states at a given en-
tanglement with the same frequency as ED and hence there
is no systemic bias.” This would be quite remarkable, given
the general expectation that entropy may diverge approaching
a transition—in particular, for any bond dimension χ there
should be truly localized states with entanglement entropy
at some cut in excess of the maximum log χ . (In fact, in a
good approximation of a physical state, it may be expected
that the entropy ceiling should be even less than that abso-
lute maximum, as was shown, for example, for infinite MPS
approximations for ground states of critical spin chains by
Pollmann et al. [41].) Although they acknowledge a “failure
of SIMPS to find high-quality eigenstates in [the] near-ergodic
and ergodic regime,” they do not explain why there should
be a hard boundary between regimes near to and far from
ergodicity. Moreover, in the data they provide as evidence for
this claim (their Fig. S2), the divergence of the proportion
of SIMPS states from that of ED states at higher entangle-
ment entropy seems apparent (if small), and likely statistically
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FIG. 10. A replication of the test run by Yu, Pekker, and Clark to
eliminate entropy bias of the SIMPS algorithm from consideration.
The disordered Heisenberg model, with disorder strength W = 8, is
analyzed for 101 disorder realizations on a 10-site spin chain. Each of
the 2L eigenstates is extracted via exact diagonalization; then SIMPS,
with bond dimension χ = 12, is used for 2L equally spaced target en-
ergies, with postprocessing to remove duplicates (if |〈ψi|ψ j〉| > 0.3,
we exclude the state with greater 
E 2). This produces 103 424 states
via exact diagonalization and 45 917 states via SIMPS. The latter
is about three times as many states as in the original test, which
explains the difference in noise in that case. As with the original
visualization, SIMPS yields significantly fewer states at nearly all
entropy ranges, the exceptions being the particularly small ones
(S � 0.2) and the “resonance” peak at S = log 2, with the differ-
ence in frequency being visibly greater at, e.g., S ∼ 1 compared to
S ∼ 0.5.

significant. To confirm statistical significance, we replicate the
test they use to produce these data as faithfully as possible,
yielding data that clearly replicate the major features of this
figure, particularly a divergence between sampling rates at
higher entropies, in Fig. 10.

In addition to favoring true low-entropy eigenstates, we
have noted that the SIMPS algorithm will produce “false”
eigenstates when no low-entropy eigenstates are available,
as is evidenced by the fact that the algorithm produces any
states at all within the presumed ergodic regime. To attempt
to constrain the false eigenstates we observe, we may try to
approximate a worst-case scenario by supposing that there
exist n consecutive eigenstates, of some separation s: that is,
taking the crudest possible approximation, the energies take
the form Ek = E0 + ks. Then the energy variance would be


E2 ≡ 〈H2〉 − 〈H〉2 = 〈(H − E0)2〉 − 〈H − E0〉2

=
n−1∑
k=0

s2k2

n
−

(
n−1∑
k=0

sk

n

)2

= n(n − 1)

12
s2. (A1)

We do not presuppose the order of magnitude of n, as the
possible entropy reduction from such a combination is highly
dependent on the nature of the eigenstates themselves. We
may, however, presume that the worst-case energy spacing s

is of the order 2−L, such that


E2 ∼ n2

12

L2

22L
. (A2)

For the system sizes under consideration this is well be-
low machine precision; it will likely be necessary to include
further assumptions, e.g., from the random matrix theory for-
mulation of ETH, in order to find a reasonable lower bound.

APPENDIX B: ENTROPY OSCILLATIONS

A characteristic effect seen in the localized regime (and
even at higher bond dimensions) is the oscillation of single-cut
entanglement entropy as a function of cut location; this effect
is most clearly seen in Fig. 5 but is also visible in Fig. 7
at higher bond dimensions. The more detailed histograms in
Figs. 11 and 12 show peaks in the entanglement entropy which
seem less prominent across even-numbered cuts and in more
thermalized conditions. We confirm in Fig. 13 that these peaks
are not spurious by analyzing a collection of systems at size
L = 12 with exact diagonalization; this additionally lets us
conclude with high confidence that the typical location of the
peaks is at S = ln 2. We may understand these entropy peaks
as indicating the presence of a dimer: taking a pair of qubits in
the “single-occupancy” subspace span{|01〉, |10〉}, uniformly
distributed over the Bloch sphere, define a random variable
Sdimer to be the entanglement entropy between them. Then
the various histograms under consideration are, for the most
part, qualitatively consistent with drawing the entropy from
S1 + Sdimer with probability pdimer and S0 with probability
1 − pdimer, given a pair of well-behaved, unimodal random
variables S0 and S1.

It is worth noting as well that such entropy oscillations
are often seen in models of spinless fermion chains with
tight-binding couplings or (equivalently, under the Jordan-
Wigner transformation) Heisenberg-like antiferromagnetic
spin chains when open boundary conditions break translation
symmetry [37,44,45]. In particular, Laflorencie et al. [37] have
identified this effect as a dimerization process universal in
ground states of models with a Luttinger liquid description
(such as the critical XXZ chain), determining that the alternat-
ing parts of the energy and entropy, EA and SA, respectively,
should have proportional universal contributions, which may
be expressed as

SA(�, L) ∝ EA(�, L) ∼
[

L

π
sin

(
π�

L

)]−K

for the �th cut of a length-L chain in a system with Luttinger
parameter K .

APPENDIX C: ADDITIONAL DATA SETS

In addition to the data set described and referenced in
the main text, we have two additional data sets that we will
reference on occasion in these Appendixes. As in the main
text, each uses the Hamiltonian defined by Eqs. (1) and (4),
with α = 0.3, t = V = 1, and b = 2

1+√
5
, and with protection

of U (1) symmetry to restrict to half-filling.
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FIG. 11. Histograms of single-cut entanglement entropy by cut position, corresponding to the data in Fig. 8 of the main text.
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FIG. 12. Histograms of single-cut entanglement entropy by cut position, corresponding to the data in Fig. 17 of the main text, as well as
(e) histograms of half-cut entanglement entropy (i.e., � = 32 for L = 64).
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FIG. 13. A histogram of all single-cut entropies, for all states, of
12-site systems with λ = 2, given 1920 “disorder realizations” (i.e.,
phases φ). This demonstrates a very clear resonance peak at S = ln 2,
marked by the dotted line.

1. Exploratory trials

We began by testing a wide range of disorder strengths
across the spectrum. For disorder strengths λ in 0.5, 1.0, 1.5,
2.0, 2.5, 3.0, and 3.5 (that is, the half-integers between 0 and

FIG. 14. The distribution of energy errors at several (smaller)
bond dimensions, given system size L = 128, for tests sampling the
full spectra of systems with λ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5}.

FIG. 15. A violin plot displaying the distribution of energy er-
rors, in the systems under consideration within the main text but
for a greater selection of system sizes: for χ ∈ {10, 14, 20}, the
systems are analyzed at L = 128, and for χ ∈ {10, 14}, the systems
are analyzed at L = 256. Note that the L = 64 data are contained
within Fig. 4 of the main text. This plot demonstrates that, with these
parameters, system size does not affect the quality of states within
the sizes considered.

4), we took 24 disorder realizations [that is, values of φ in (1)].
With bond dimension χ = 10, we analyzed systems of size
L = 16, 32, 64, 128; we additionally applied bond dimensions
χ = 6 and 14 to systems of size L = 128. In each case, we
selected 400 target energies that encompass the full energy
spectrum (noting that this means we would see, and reject,
a number of copies of the states with lowest and highest
energy). We have used this data set to produce Figs. 2, 14,
and 3. In the latter, we also have a subset of those conditions,
namely χ = 10 and 14 for L = 128, with λ = 1.2.

2. Comparison of system sizes

By examining the system at smaller length scales, we
have been able to conclude that at least the most dramatic
finite-size effects do not persist into the system size where
the main trials were conducted. We have additionally taken
the parameters for the “intermediate regime” under primary
consideration, λ = 1.2 and 1.5, with energy density 0.1εmax <

ε < 0.15εmax and 0.45εmax < ε < 0.5εmax, and then extracted
candidate eigenstates as in the main trials with the larger
system sizes L = 128 (for χ = 10, 14, and 20) and L = 256
(for χ = 10 and 20). In Fig. 15, we examine the energy error
from these trials and find that it does not vary substantially
when we increase system size. We have also been able to use
the single-cut entanglement entropy to observe the boundary
effects, seeing in Figs. 6 and 7 that even the most persistent
boundary effects do not appear to persist far enough into
the bulk to make a significant difference in the cases being
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FIG. 16. Histograms of single-cut entanglement entropy in different regimes, plotted for different cut locations (from � = 2 to 6) and bond
dimensions and compared across lengths.

considered. In Fig. 16 we take a closer look by comparing
entropy histograms at various cuts across system sizes, finding
that there is little consistent variation as we increase system

size (and that what variation there is is not monotonic, as the
L = 256 graphs tend to seem closer to the L = 64 graphs than
to the L = 128 ones).
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FIG. 17. Average single-cut entanglement entropy, together with
the standard error of the mean, as a function of the bond dimension
χ for several larger cuts (as in Fig. 8 of the main text but with the
subsequent four cuts).

APPENDIX D: REVIEW OF DIAGNOSTIC METRICS

In the main text, we have relied primarily on two metrics,
namely energy error and single-cut entanglement entropy, to
evaluate the goodness and behavior of candidate eigenstates.
Here we review these metrics, including more detailed plots
summarizing entanglement-entropy distributions, and then we
discuss several additional metrics not utilized in the main text.

1. Energy error

We have presented our primary results on the energy error
in Fig. 4; we show additional results for larger system sizes in
Fig. 15. We here note briefly how it is calculated. In particular,
it emerges fairly easily from SIMPS calculation: contracting
the transfer matrices used to obtain the left-hand side of Fig. 9
gives 〈(H − E0)2〉, and 〈H − E0〉 (which does not come pre-
calculated) is easily computed through the simpler contraction
of the right-hand side of the same (replacing |ψi〉 with |ψi+1〉).

In Figs. 2 and 14, we introduce an additional set of
simulations, in which we sampled the entire spectrum for
a substantial number of “disorder” strengths λ, with bond
dimensions among {6, 10, 14} and lengths (for χ = 10; oth-
erwise L = 128) in {16, 32, 64, 128}, to examine how our
results scale with bond dimension and with system size.

2. Single-cut entanglement entropy

By keeping the MPS in (bi)canonical form, we are able
to extract entanglement entropies directly from the Schmidt
coefficients which are stored as part of the ansatz. We have
explored how average entropies, at given distances from the
boundary, scale with the bond dimension χ in Figs. 5–8 of the
main text. In particular, in Fig. 8, we examined the entropy
scaling at several specific cuts; we repeat this further into the

FIG. 18. Scatter plot of energy error vs energy wandering, to
attempt to determine whether a relation exists between the quality
of states and how far from the target energy the algorithm must
“wander” to find it.

bulk in Fig. 17, and then go deeper by examining the corre-
sponding entropy distributions in each case in Figs. 11 and 12,
respectively. Similar entropy distributions are examined in
Fig. 16, comparing entropy histograms at different system
sizes to investigate whether boundary effects show system-
size dependence at the primary length L = 64 considered. In
Fig. 3, we take a different approach and examine the entropy
distribution for all cuts at various λ, L, and χ . One feature
that is clearly visible in many of these histograms is a peak
at S = ln 2, corresponding to dimers or two-site resonances.
We confirm that this is not a numerical artifact using exact
diagonalization in Fig. 13.

3. Energy wandering

Another quantity we may use to diagnose the goodness of
states is the so-called “energy wandering,” the difference be-
tween the energy of a state and the target energy used to obtain
it. The idea behind using this is to determine whether or not
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FIG. 19. Violin plots of Uhlmann fidelities among systems with various disorder strengths and at different energy ranges, for segments of
width (a) 3, (b) 5, and (c) 8. All fidelities calculated are between states with the same disorder strength and disorder sample, bond dimension,
and energy range. All segments of the given length within the 64-site chain are considered.

approximate eigenstates of adequate quality are sufficiently
common. In Fig. 18 we compare the distribution of values of
‖E − E0‖ with that of 
E2.

4. Uhlmann fidelities

Inspired by, and using methods based on, Ref. [46], we
compute Uhlmann fidelities: if the reduced density matrix of
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FIG. 20. Violin plots of (inverse) localization lengths among sys-
tems with various disorder strengths and at different energy ranges,
taking a weighted average of the (inverse) lengths for each state
analyzed.

an eigenstate ψi on a segment A is ρi,A = trA|ψi〉〈ψi|, then the
Uhlmann fidelity between ψi and ψ j on A is

F = tr
√√

ρi,Aρ j,A
√

ρi,A. (D1)

Ideally, the following holds true:
(i) In the localized case, the distribution of these quantities

will be determined by so-called “l-bits”: if ψi and ψ j differ
on an l-bit whose support is within A, then F = 0; if they
agree on all l-bits mostly supported within A, then F ∼ 1;
and intermediate values will only occur when there are l-bits
on which ψi and ψ j differ that have significant support both
inside and outside of A.

(ii) In the fully ergodic regime, where ρi,A should be fully
determined by the energy [as trA exp (−β(Ei )H ), with β(Ei )
the inverse-temperature corresponding to Ei], we expect a less
discrete distribution of F , with values continuously dependent
on the energy difference and stochastically dependent on the
choice of region A.

In Fig. 19, we examine the distribution of Uhlmann fi-
delities in various systems considered, for various sizes of
region A. We see that the typical behavior, in the localized
case, is a bimodal distribution with one narrow peak at 0
corresponding to cases differing on l-bits supported in A and
another narrow peak at 1 corresponding to cases agreeing on
l-bits overlapping A, with the former shrinking and the latter
growing both as the size of A increases (so that F = 1 would
require agreement on more l-bits) and as we move to the
higher-energy band, which we expect to have larger localiza-
tion length. In the delocalized case, meanwhile, we see a broad
unimodal distribution whose peak, in addition to lowering as
the size of A and the energy of the band increase, raises as the
bond dimension increases, suggesting an increase in similarity
as the accuracy improves. (It is not truly unimodal, however;
a small peak at F = 0 which narrows with increasing bond
dimension suggests that the pseudo-eigenstates obtained in
this case do sometimes have features that resemble l-bits.)

In analyzing the λ = 1.2 and 1.5 cases, we find the
following:

(i) For the most part, the distribution in the higher-energy
band is closer to a unimodal distribution like the one seen
in the delocalized case; in (a) a second peak close to F = 1
in the width-3 distribution exists but grows less distinct with
increasing bond dimension.

(ii) The distribution in the lower-energy band is more con-
sistently bimodal, although with lower maxima at nonzero
fidelity.

(iii) In particular, as bond dimension increases, the distri-
butions in the higher-energy band appear to converge towards
a unimodal distribution; this seems to be the case, though it is
less clear, for the lower-energy band when λ = 1.2. However,
for the lower-energy band with λ = 1.5, we see apparent
convergence toward a bimodal distribution in (a) and (b).

FIG. 21. Violin plots of the many-body inverse participation ratio for states in the main data sets.
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5. Localization lengths

We follow [47,48] by using two measures of entanglement
between two qubits, namely negativity and concurrence, to at-
tempt to estimate the localization length, which should diverge
approaching a localization transition or mobility edge. In par-
ticular, given concurrence values Ci, j or negativity values Ni, j

between two sites of a given state, we fit the nontrivial values
to (see Eqs. (21) and (22) of [48])

Ci,i±n = kC±
i exp

(−n/ζC±
i

)
,

Ni,i±n = kN±
i exp

(−n/ζ N±
i

)
. (D2)

In Fig. 20, we take, for each state, an average of all these
1/ζC±

i and, separately, 1/ζ N±
i , weighted by 1

σ1/ζ
. While this

confirms some basic expectations—the localization lengths
of eigenstates with λ = 3.5 tend to be much smaller, and
for both types of entanglement the lengths are greater in the
middle band than in the lower band—at other times the results
are unexpected or even self-contradictory, for example when
the typical localization length appears to decrease with bond
dimension and when it is lower for λ = 1.2 and 1.5 than for
λ = 0.5. We must therefore conclude that we will not be able
to perform much meaningful analysis on these data.

6. Inverse participation ratio

In analysis performed following the initial submission of
this work, we apply the many-body generalization of the in-
verse participation ratio (3), which has been defined [49,50]
for a system with N fermionic orbitals of which Nf = νN are
occupied,

I = 1

1 − ν

(
1

Nf

∑
i

〈n̂i〉2 − ν

)
, (D3)

where n̂i is the number operator for the ith orbital. This en-
sures that this many-body inverse participation ratio (MIPR),
I, interpolates between I = 0 in the ideal thermalized case
where all sites have equal filling, 〈n̂i〉 = ν, and I = 1 in the
ideal localized case when filling is deterministic, 〈n̂i〉 = 1 with
probability ν and 〈n̂i〉 = 0 with probability 1 − ν.

FIG. 22. Violin plots comparing many-body inverse participation
ratio across system sizes.

Here each site hosts one orbital, N = L, and half-filling or
ν = 1/2 makes

I = −1 + 4

L

∑
i

〈n̂i〉2.

In Fig. 21 we examine the distribution of the MIPR in
states obtained for the main data set. In the localized bench-
mark (λ = 3.5) we find that the MIPR is large and does
not vary substantially with bond dimension, whereas in the
thermalized benchmark (λ = 0.5) we find the MIPR to be
small and consistently decreasing with bond dimension. For
the mobility-edge candidate regime, we find an intermediate
MIPR that is roughly constant with bond dimension for the
lower-energy regime and decreasing with bond dimension for
the higher-energy regime, suggesting that both λ = 1.2 and
1.5 remain compatible with a many-body mobility edge.

In Fig. 22 we use the MIPR to compare the main data set
with states obtained in larger systems (i.e., those analyzed in
Fig. 15), finding that the distributions tighten but otherwise
remain qualitatively similar.
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