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In this paper, we present a theoretical research on the lattice relaxations, phonon properties, and relaxed
electronic structures in magic-angle twisted bilayer graphene (TBG). We construct a continuum elastic model
in order to study the lattice dynamics of magic-angle TBG, where both in-plane and out-of-plane lattice
displacements are taken into account. The fully relaxed lattice structure calculated using such a model is in
quantitative agreement with experimental measurements. Furthermore, we investigate the phonon properties in
magic-angle TBG using the continuum elastic model, where both the in-plane and out-of-plane phonon modes
are included and treated on equal footing. We identify different types of moiré phonons including in-plane
sliding modes, soft out-of-plane flexural modes, as well as out-of-plane breathing modes. The latter two types
of phonon modes exhibit interesting monopolar, dipolar, quadrupolar, and octupolar-type out-of-plane vibration
patterns. Additionally, we explore the impact of the relaxed moiré superlattice structure on the electronic band
structures of magic-angle TBG using an effective continuum model, which shows nearly exact agreement with
those calculated using a microscopic atomistic tight-binding approach. Our paper lays foundation for further
studies on the electron-phonon coupling effects and their interplay with electron-electron interactions
in magic-angle TBG.
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I. INTRODUCTION

Twisted bilayer graphene (TBG) is consisted of two layers
of graphene, which are twisted with respect to each other by
a small angle θ . Recently, a number of remarkable phenom-
ena have been observed in TBG around the magic angle of
approximately 1.05◦, including the correlated insulator states
[1–10], quantum anomalous Hall effect [7,11–17], unconven-
tional superconductivity [2,8–10,18–21], and so on. These
intriguing experimental observations of magic-angle TBG
have stimulated intensive theoretical research. Around magic
angle, there are two topologically nontrivial flat bands for each
valley and spin with narrow bandwidth [22–27]. As a result,
electron-electron (e-e) Coulomb interactions play crucial roles
for the flat-band electrons around the magic angle. A lot of
the intriguing phenomena observed in magic-angle TBG, such
as correlated insulators and quantum anomalous Hall effects,
can be attributed to the interplay between the nontrivial band
topology and the strong e-e Coulomb interactions in the flat
bands [28–56].

However, some other phenomena reported in magic-angle
TBG, such as linear in temperature resistivity [57,58] and
the competition between correlated insulator and supercon-
ductivity [9,10], are relatively less understood. One of the
perspectives is that only considering e-e interactions and
band topology is not enough to explain these puzzling
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experiments. Electron-phonon couplings may play important
roles [59–61]. Especially, recent angle-resolved photoemis-
sion experiments suggest the presence of phonon replicas
of the moiré flat bands in magic-angle TBG [62], which
provides direct experimental evidence of strong electron-
phonon coupling effects in this system. However, from
the theoretical side, in spite of several pioneering studies
[59–61,63–75], understanding of the phononic properties and
electron-phonon couplings remains incomplete. For exam-
ple, despite a few researches based on microscopic atomistic
dynamical matrices [68,73,75], most of the previous studies
based on continuum elastic model only consider the in-plane
lattice displacements [69,70,72,76,77]. It has been shown
that the out-of-plane lattice vibrational degrees of freedom
would give rise to extremely soft flexural phonon modes [73],
which could be the driving force for the peculiar charge order
observed in this system [4,73]. The out-of-plane interlayer
“breathing modes” [78] are directly coupled with electronic
interlayer hopping events, which may have strong effects
on the flat-band electrons in magic-angle TBG. Up to date,
to the best of our knowledge, a continuum elastic model
describing the lattice dynamics of TBG including both the
in-plane and out-of-plane vibrational degrees of freedom, is
still lacking. Compared to calculations based on microscopic
atomistic force constants, the construction of a reliable con-
tinuum elastic model would allow for much more efficient
calculations of structural relaxations, phonons, and effective
electronic band structures (with relaxed lattice structures). It
would also pave the way for further comprehensive studies
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on electron-phonon couplings and their interplay with e-e
interactions.

In this paper, we report such a continuum elastic model for
TBG including both in-plane and out-of-plane lattice degrees
of freedom. Specially, we treat TBG at small twist angles
(with large moiré superlattice constants) as continuum elas-
tic medium. Its low-energy dynamics is fully captured by
a number of elastic parameters such as stiffness constants
and interlayer binding-energy parameters, which are extracted
either from first-principles density functional theory (DFT)
calculations or from experiments. With such a continuum
elastic model, we first perform structural relaxation calcu-
lations for TBG at small twist angles 0.8◦ � θ � 1.5◦. The
fully relaxed moiré superlattice structure calculated using
such a model is in quantitative agreement with experimental
measurements. For example, within the range of twist angles
0.8◦ � θ � 1.5◦, the deviations between the calculated area
ratio of the AA region and the reconstructed rotational angle
at the edge of AA region and the corresponding experimental
measured values [79] are about 20%. The small discrepancy
between theory and experiment may be induced by heteros-
trains and/or twist-angle disorder in the experimental system,
which are not considered in the calculations. With the fully
relaxed superlattice structure, we continue to study the phonon
properties of TBG at the magic angle θ = 1.05◦, where both
in-plane and out-of-plane vibrational modes are taken into
account and are treated on equal footing. We find different
types of moiré phonon modes, which may have important
effects on the electronic properties. This includes gapless in-
plane sliding modes, gapped but extremely soft out-of-plane
flexural modes, as well as out-of-plane interlayer breathing
modes. The in-plane interlayer sliding modes are gapless in
the long-wavelength limit (wavevector q → 0), as they are
considered as a kind of Goldstone modes within the con-
tinuum elastic model framework. These sliding modes are
gapped if a commensurate microscopic atomic superlattice
is considered, with the gap ∼2.7 meV at the magic angle
according to deep-potential molecular dynamics calculations
[73]. The flexural modes are out-of-plane “center-of-mass”
modes, while the out-of-plane breathing modes are antiphase
modes, both of which exhibit interesting monopolar, dipolar,
quadrupolar, and octupolar-type out-of-plane vibration pat-
terns in real space. Additionally, we explore the impact of
the relaxed moiré superlattice structure on the electronic band
structures of magic-angle TBG using an effective continuum
model, which shows nearly exact agreement with those calcu-
lated using a microscopic atomistic tight-binding approach.

This paper is organized as follows. In Sec. II, we introduce
the continuum elastic model and demonstrate how the param-
eters of the model are determined. In Sec. III, we present the
workflow for the lattice relaxation calculations including both
in-plane and out-of-plane lattice distortions and perform the
structural relaxation calculations within a range of twist an-
gles 0.8◦ � θ � 1.5◦. In Sec. IV, we sketch the formalism for
the phonon calculations using the elastic model and present
the phonon spectrum and vibrational modes of different types
of moiré phonons in magic-angle TBG. In Sec. V, we study
the influence of the lattice distortions on the electronic band
structures for magic-angle TBG. A summary and an outlook
are given in Sec. VI.

FIG. 1. (a) Schematic illustration of moiré superlattice of twisted
bilayer graphene in real space. LM

1 and LM
2 are the primitive superlat-

tice vectors. The AA point, AB/BA points, and the saddle point (SP)
are highlighted in the moiré supercell. (b) The moiré Brillouin zone
of TBG with twist angle θ . The two large hexagons with red and blue
colors represent atomic Brillouin zones of the two twisted graphene
monolayers, and the small gray hexagon denotes the Brillouin zone
of the moiré supercell. GM

1 and GM
2 are the primitive reciprocal

vectors of the moiré supercell. (c) −ε as a function of in-plane
displacement vector δ‖ (see text). (d) h−

0 as a function of in-plane
displacement vector δ‖ (see text).

II. CONTINUUM ELASTIC MODEL

We first introduce the lattice geometry of TBG. Two
rigid graphene layers are considered to be stacked to-
gether and are twisted with respect to each other by a
small twist angle θ . The lattice vectors of the single-
layer graphene are a1 = a(1, 0, 0) and a2 = a(1/2,

√
3/2, 0),

with a = 2.46 Å. The corresponding primitive reciprocal
lattice vectors are a∗

1 = (2π/a)(1,−1/
√

3, 0) and a∗
2 =

(2π/a)(0, 2/
√

3, 0). Each graphene layer consists of two sub-
lattices, the positions of which are denoted by τA = (0, 0, 0)
and τB = (a/

√
3)(0,−1, 0). The atomic lattice vectors of

the two layers are defined by a(1)
i = R(−θ/2)ai and a(2)

i =
R(θ/2)ai with i=1, 2, and the corresponding primitive re-
ciprocal lattice vectors are a∗,(1)

i =R(−θ/2)a∗
i and a∗,(2)

i =
R(θ/2)a∗

i , with i=1, 2. Here R(±θ/2) denotes rotation op-
eration counterclockwise/clockwise by θ/2.

In the presence of a small twist, a moiré pattern appears
in real space, as depicted in Fig. 1(a). The primitive lattice
vectors of the moiré supercell are LM

1 = (
√

3/2, 1/2, 0)Ls and
LM

2 = (0, 1, 0)Ls, with the lattice constant Ls =a/(2 sin θ/2).
We highlight several points in the moiré supercell, i.e., the
AA, AB/BA, and saddle point (SP), as schematically shown in
Fig. 1(a). The local stackings around the AA and AB/BA points
resemble those of AA and AB/BA stacked bilayer graphene,
respectively. The AB and BA point is connected by the sad-
dle point, as shown in Fig. 1(a). In Fig. 1(b) we present a
schematic diagram of the moiré Brillouin zone in TBG, where
the high-symmetry points are marked. The reciprocal lattice
vectors are given by GM

1 = ( 4π/(
√

3Ls), 0, 0 ) and GM
2 =

(−2π/(
√

3Ls), 2π/Ls, 0 ). The single-layer graphene’s Dirac
points are located at Kμ =μ( − 4π/(3a), 0, 0 ), where
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μ=±1 represents the ± valley. Under small twist angle, the
Dirac points in the lth layer are rotated by ∓θ/2.

In order to analyze the long-wavelength lattice distortions
in TBG, we adopt a continuum elastic approach, which treats
TBG as a continuum medium instead of an atomic superlat-
tice. This method was first introduced by Nam and Koshino
[76], which only includes in-plane lattice displacements. In
order to perform full lattice relaxation calculations and to
calculate the complete phonon spectrum, here we propose a
generalized continuous elastic model including both in-plane
and out-of-plane displacements. Before discussing the de-
tailed formalism, we first introduce notations for the moiré
superlattice distortions. At position r in the moiré supercell,
the local atomic shift δ(r) is defined as the relative displace-
ment vector from position r in the first layer to its counterpart
in the second layer. With an ideal moiré superlattice formed
by twisting graphene layers, the displacement vector δ0(r) =
R(θ/2) r − R(−θ/2) r. Then, AA point can be defined as the
position at which the displacement vector satisfies δ0(r) = 0;
AB points are identified as the positions at which δ0(r)=
Rn(2π/3)(a1 + a2)/3, with n = 0, 1, 2; BA points are identi-
fied as the positions at which δ0(r)=Rn(2π/3)(2a2 − a1)/3,
with n = 0, 1, 2; and the saddle points (SPs) can be de-
fined as the locations at which δ0(r)=Rn(π/3)a1/2, with
n = 0, 1, . . . , 5. In realistic TBG system, the atomic posi-
tions may deviate from the ideal displacement vectors {δ0(r)}.
Specifically, we introduce lattice distortions both in the in-
plane directions, denoted as u(l )

X (r), and in the out-of-plane
directions, denoted as h(l )

X (r), where l = 1, 2 and X =A, B are
the layer and sublattice indices, respectively. Then the local
atomic displacement vector under lattice distortion is given
by

δ(r)=δ0(r) + u(2)
X (r) − u(1)

X (r) + (
h(2)

X (r) − h(1)
X (r)

)
ẑ. (1)

Since the lattice distortion of interest is a smooth function on
the moiré length scale, which is much greater than atomic
length scale, it is legitimate to omit the sublattice indices in
the lattice distortion, i.e., u(l )

X (r)=u(l )(r) and h(l )
X (r)=h(l )(r).

In our model, the impact of stretches and curvatures are
taken into account in the elastic energy UE =∫ d2r VE . The
elastic-energy density is given by [80,81]

VE =
2∑

l=1

1

2

{
(λ + μ)

(
u(l )

xx + u(l )
yy

)2
+μ

[(
u(l )

xx − u(l )
yy

)2 + 4
(
u(l )

xy

)2]
+ κ

[(
∂2

∂x2
+ ∂2

∂y2

)
h(l )

]2
}

. (2)

Here, λ ≈ 3.25 eV/Å2 and μ ≈ 9.57 eV/Å2 are the Lamé
factors, κ =1.6 eV is the curvature modulus [81]. u(l )

αβ (α,

β = x, y) is the strain tensor defined as [80]

u(l )
xx = ∂u(l )

x

∂x
+ 1

2

(
∂h(l )

∂x

)2

, u(l )
yy = ∂u(l )

y

∂y
+ 1

2

(
∂h(l )

∂y

)2

,

u(l )
xy = 1

2

(
∂u(l )

x

∂y
+ ∂u(l )

y

∂x

)
+ 1

2

∂h(l )

∂x

∂h(l )

∂y
. (3)

We continue to discuss the binding energy. Typically the
binding energy is only dependent on the relative distortions
between the two layers. We can make a linear combination
of the lattice distortions: h± = h(2) ± h(1), u± = u(2) ± u(1),
here the “−” sign represents the relative distortions and the
“+” sign represents the center-of-mass distortions for the two
layers. In general, the binding energy is a functional of both
in-plane distortion u−(r) and out-of-plane distortion h−(r).
Here, we assume that the binding-energy density can be writ-
ten in a separable-variable-like form, i.e.,

VB(u−(r), h−(r)) = ε(u−(r)) H (h−(r)), (4)

where ε(u−(r)) only depends on in-plane relative distor-
tion u−(r), and H (h−(r)) is only explicitly dependent on
the out-of-plane relative distortion h−(r). We further assume
that H (h−(r)) takes the form of Lennard-Jones potential
[82], where h−

0 (u−(r)) is the reference equilibrium inter-
layer distance at position r, which also depends on the
in-plane local atomic distortion δ0(r) + u−(r). Therefore, the
Lennard-Jones type potential H (h−(r)) is implicitly depen-
dent on in-plane lattice distortions through h−

0 (u−(r)). Then
the binding energy is given by UB =∫ d2rVB(u−(r), h−(r)),
where

VB(u−(r), h−(r))

= ε(u−(r))

[(
h−

0 (u−(r))
h−(r)

)12

− 2

(
h−

0 (u−(r))
h−(r)

)6
]

≈ ε(u−(r))

[
−1 + 36

(
h−(r) − h−

0 (u−(r))
h−

0 (u−(r))

)2
]
. (5)

We can evaluate both ε(u−(r)) and h−
0 (u−(r)) from first-

principles density functional theory (DFT) calculations. To be
specific, at position r in the moiré supercell, the local lattice
structure can be viewed as bilayer graphene with a relative
shift vector with respect to AA stacking, and in the meanwhile
the local frames of the two layers are also rotated with respect
to each other by an angle θ . When the twist angle θ is small,
we can neglect the small rotation of the local frame and depict
the local lattice structure at position r by a relative shift δ(r).
Then, we start with two rigid graphene layers and apply a
small in-plane shift to one layer. With a fixed in-plane shift
vector for the untwisted bilayer graphene, we utilize Vienna
Ab initio Simulation Package (VASP) [83–86] with PBE func-
tional [87] to relax the interlayer distance. With the relaxed
interlayer distance, we further calculate the total energy of
the untwisted bilayer graphene system. The binding energy
is obtained by subtracting the total energy of two isolated
graphene monolayers (with infinite interlayer distance) from
that of the coupled bilayer graphene with relaxed interlayer
distance and fixed in-plane shift δ‖. In Figs. 1(c) and 1(d) we
present −ε(δ‖) and h−

0 (δ‖) as a function of in-plane displace-
ment vector δ‖, which are subtracted from DFT calculations.

Both ε(δ‖(r)) and h−
0 (δ‖(r)) can be expanded in terms of

Fourier series,

ε(δ‖(r)) =
∑

m

εmeia∗
m·δ‖ , (6)

h−
0 (δ‖(r)) =

∑
m

h−
0,meia∗

m·δ‖ , (7)
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TABLE I. Fourier components of −εm and h−
0,m. (m1, m2) rep-

resents the Fourier component with the wavevector at a∗
m =m1a∗

1 +
m2a∗

2.

(0,0) (1,0) (2,1) (2,0)

−εm (meV Å−2) –7.924 0.4635 –0.0595 –0.0182
h−

0,m (Å) 3.433 0.0343 –0.0010 –0.0014

where a∗
m =m1a∗

1 + m2a∗
2 denotes the reciprocal lattice vectors

of monolayer graphene. We note that

a∗
m · δ‖(r)=a∗

m · (δ0(r) + u−(r))=Gm · r + a∗
m · u−(r), (8)

where Gm =m1GM
1 + m2GM

2 is the moiré reciprocal lattice
vector. With Eq. (8) we can map ε(δ‖(r)) and h−

0 (δ‖(r))
to a point r in the moiré supercell. The AA region of the
moiré supercell has weaker binding-energy density and a
larger interlayer distance, and the AB/BA region has stronger
binding-energy density and a smaller interlayer distance. In
Table I, we list several leading-order Fourier coefficients −εm

and h−
0,m. In the following calculations, ε(δ‖(r)) and h−

0 (δ‖(r))
will be Fourier expanded up to the cutoff vector (Gmax) of
the reciprocal space, with |Gmax| = mmax

1 GM
1 + mmax

2 GM
2 , and

|mmax
1,2 | = 6.
It is worthwhile to note again that the separable-variable-

like form of the binding energy Eq. (5) is an approximation.
We have explicitly checked the validity of such an approxi-
mation by calculating the second-order expansion coefficients
of (h−(r) − h−

0 (r)) as a function of in-plane shift δ‖, which
is presented in Appendix A. It turns out that Eq. (5)
is a fairly good approximation to the interlayer binding
energy.

III. LATTICE RELAXATIONS

A. Model and formalism

In our model, the total energy U =UE + UB is a functional
of the lattice distortions. We can minimize the total energy
with respect to the lattice distortions by solving the Euler-
Lagrange equation,

δU

δ f
−
∑

α

∂

∂α

δU

δ fα
+
∑
α,β

∂2

∂α∂β

δU

δ fα,β

= 0, (9)

with

fα = ∂ f

∂α
, (10)

fα,β = ∂2 f

∂α∂β
, (11)

where α, β =x, y and f =u±
x , u±

y , h±. We define the Fourier
transformation of lattice distortions

u±(r) =
∑
Gm

u±
Gm

eiGm·r, h±(r) =
∑
Gm

h±
Gm

eiGm·r, (12)

where Gm =m1GM
1 + m2GM

2 is the moiré reciprocal lattice
vector. Then we can solve the Euler-Lagrange equations in
reciprocal space and obtain the relaxed moiré superlattice
structure with long-wavelength lattice distortions. Further-
more, we assume that the center-of-mass component of
out-of-plane distortion vanishes in the relaxed structure, i.e.,
h+(r) = 0. This is an excellent approximation since nonzero
h+(r) means that there are center-of-mass ripples in the TBG
system, which typically occurs as thermal excitation effects
and/or strain effects. At zero temperature and in the absence
of strain, it is legitimate to set h+(r) = 0. Then, the Euler-
Lagrange equations in the reciprocal space are given by

[
(λ + 2μ)G2

m,x + μG2
m,y (λ + μ)Gm,xGm,y

(λ + μ)Gm,xGm,y (λ + 2μ)G2
m,y + μG2

m,x

][
u−

Gm,x

u−
Gm,y

]
= −2

[
FGm,x

FGm,y

]
,

[
(λ + 2μ)G2

m,x + μG2
m,y (λ + μ)Gm,xGm,y

(λ + μ)Gm,xGm,y (λ + 2μ)G2
m,y + μG2

m,x

][
u+

Gm,x

u+
Gm,y

]
=
[

Mx

My

]
,

∂V

∂h− − ∂

∂x

∂V

∂ ∂h−
∂x

− ∂

∂y

∂V

∂ ∂h−
∂y

+ ∂2

∂x2

∂V

∂ ∂2h−
∂x2

+ ∂2

∂y2

∂V

∂ ∂2h−
∂y2

= 0, (13)

where V is the energy density, the integral of which is
the total elastic and binding energy, i.e., U = UE + UB =∫ 2 dr V (r). FGm,α (with α=x, y) is the Fourier coefficient
of ∂V/∂u−

α =∑Gm
FGm,α eiGm·r. Mx,y are to the third-order

terms of moiré reciprocal vectors, which originate from the
h(l ) dependence of the strain tensor as expressed in Eq. (3).
The detailed expressions of FGm,α and Mα , as well as the
detailed formalism of lattice relaxations are presented in
Appendix B.

It is important to note that FGm,α is a function of
both u− and h−. For fixed {h−(r)}, u−(r) can be solved
iteratively. Likewise, for fixed {u−(r)}, u+(r), and h−(r) can

be solved iteratively as well. Thus, we can divide the full
Euler-Lagrange equations into two subsets of equations. In
one subset, u+

Gm,α
and h−

Gm
are kept fixed, and {u−

Gm,α
} are

treated as variables. In the other subset, {u−
Gm,α} are kept fixed,

whereas u+
Gm,α

and h−
Gm

are treated as variables and solved
iteratively. Thus, we outline the workflow for solving the
coupled Euler-Lagrange equations as follows:

(i) Setting initial h−(r)=h−
0 (r) and initial u+(r) = 0, we

first iteratively solve the first subset of Lagrange equations of
u−, until a converged solution is obtained.

(ii) Treating the converged solution of {u−(r)} from the
previous step as fixed parameters, we solve the other subset
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FIG. 2. (a) The real-space distribution of out-of-plane relative
distortion h−(r) of magic-angle TBG. The colorbar represents the
value of h−(r). (b) The real-space distribution of the in-plane rel-
ative distortion u−(r) of magic-angle TBG. The arrows denote the
directions of u−(r), and the colorbar represents the amplitudes of
u−(r). (c) The reconstruction rotation angle at the edge of the AA
region θAA

R as a function of twist angle θ . (d) The area ratio of the
AA region as a function of twist angle θ . The red dots represent data
from Refs. [79,88–106].

of Lagrange equations for u+
Gm,α

and h−
Gm

iteratively, until
convergence is reached.

(iii) We repeat step (i) with fixed u+(r) and h−(r)
obtained from step (ii), and continue to solve these equa-
tions until all components of the lattice distortions are
converged.

B. Results

The Euler-Lagrange equations are solved numerically in
reciprocal space with a 13×13 mesh. In Fig. 2(a), we display
the real-space distribution of interlayer distance of magic-
angle TBG (with θ =1.05◦). The interlayer distance exhibits
a maximum value of 3.617 Å at the AA point and a minimum
value of 3.335 Å at the AB/BA point. The domain wall be-
tween the AB and BA regions is also clearly seen. Prior to
presenting further results of lattice relaxations, the AA region
should be defined more explicitly and precisely: Here we
define AA region as the region within which the amplitude
of the in-plane local shift is smaller than

√
3a/6 ≈ 0.71 Å.

In Fig. 2(b), we present the in-plane relative distortions of
magic-angle TBG. The color coding represent the amplitudes
of the local in-plane distortion fields, while the directions
of the distortion fields are depicted by the black arrows. A
rotational distortion field circling around the AA region is
obtained. As a result, the area of AA region is decreased
while that of the AB/BA region is increased, minimizing the
total energy of TBG. The maximal amplitude of the in-plane
relative displacement is about 0.32 Å. At AB/BA point and SP,
the relative in-plane distortions vanish and the lattice remains
undistorted. Besides, the in-plane center-of-mass distortion
of magic-angle TBG is 103 times smaller than the in-plane
relative distortion (see Fig. 6 in Appendix C), which can be
neglected. Moreover, in order to investigate the variation of

lattice distortions at different twist angles, we perform the
lattice relaxation calculations with the twist angle ranging
from θ =0.76◦ to θ =1.54◦. The rotational distortion field at
some given position r in the relaxed superlattice structure can
be characterized by a reconstruction rotation angle θR. At the
edge of AA region, the reconstruction rotation angle is denoted
as θAA

R . In Fig. 2(c), we plot θAA
R as a function of twist angle

θ . We see that θAA
R increases approximately linearly with the

decrease of θ . We also evaluate the area ratio of AA region
in the fully relaxed moiré supercell and plot it as a function
of twist angle θ in Fig. 2(d). Clearly the area ratio of AA
region is also increased with the decrease of θ . Both of the two
results indicate that the lattice relaxation effects become more
pronounced when the twist angle decreases. Our results show
decent consistency with the corresponding experimental data
[79], marked as red dots in Figs. 2(c) and 2(d). We see that the
discrepancy between the calculated values and the experimen-
tal measured ones is on of the order of 20%. However, we also
note that heterostrain and twist-angle disorder are present in
the realistic device of TBG reported in Ref. [79], which leads
to an additional rotational angle ∼0.15◦ at AB/BA and SP po-
sitions [79]. While our structural relaxation calculations start
from an ideal unstrained moiré superlattice, which naturally
results in vanishing θR at AB/BA and SP positions. There-
fore, the 20% discrepancy between theory and experiment
may originate from the heterostrain in the device reported
in Ref. [79]. Moreover, necessary smoothing of the experi-
mental data may also lead to discrepancy between theory and
experiment [79].

In the presence of the substrate of BN layers, the substrate
may flatten the graphene layer right on top of the BN layer,
thus may enhance the curvature of the next graphene layer in
order to maintain the optimal distribution of relative interlayer
distance. This would give rise to a nonzero center-of-mass
component of out-of-plane distortions (h+). For the case of
BN-encapsulated TBG, the encapsulation may suppress the
relative out-of-plane interlayer distortion (h−) in TBG, which
would change the in-plane distortions in order to optimize
the elastic and binding energy. Previous studies show that
the amplitudes of the rotational in-plane distortion fields cir-
cling around the AA region would be increased due to the
encapsulation [107].

IV. PHONONS IN TBG

A. Model and formalism

With the converged lattice distortions characterized by
{u±(r), h±(r)} as discussed in the previous subsection, we
proceed to investigate the phonon properties in TBG using
the continuum elastic model introduced in Sec. II. To start
with, we introduce a time-dependent displacement field near
the equilibrium position,

u±(r, t ) = u±
c (r) + δu±(r, t ),

h±(r, t ) = h±
c (r) + δh±(r, t ), (14)

where {u±
c (r)} and {h±

c (r)} are the converged lattice dis-
placement fields obtained from the structural relaxation
calculations. We define the Fourier transformations of the
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displacement fields as follows:

δu±(r, t ) = e−iωt
∑

q

δu±
q eiq·r,

δh±(r, t ) = e−iωt
∑

q

δh±
q eiq·r, (15)

where ω is the frequency of displacement fields. Then
we expand the time-dependent elastic energy and bind-

ing energy to the second order of δu±(r, t ) and δh±(r, t ),
from which the dynamical matrix can be constructed. The
derivations of the dynamical matrix are straightforward but
tedious. The details of the derivations are presented in
Appendix D.

After carefully evaluating the second-order functional
derivatives of the total energy with respect to the displacement
fields, we obtain the equations of motions for the displacement
fields in Fourier space as follows:

ρω2

4
δũG+q = Ũ1,(2)

E ,G,qδũG+q +
∑
G′

Ũ2,(2)
E ,G,G′,qδũG′+q +

∑
G′

Ũ(2)
B,G,G′δũG′+q (16)

where ρ = 7.61×10−7 kg/m2 is the mass density of monolayer graphene. Note that the wavevector q in Eq. (15) has been written
as the sum of the wavevector within moiré Brillouin zone and a moiré reciprocal vector G, i.e., q → q + G, so that q in Eq. (16)
denotes the wavevector within moiré Brillouin zone. G (G′) =m1 (m′

1) GM
1 + m2 (m′

2) GM
2 represents the reciprocal moiré lattice

vector. The generalized displacement vector δũG+q in Eq. (16) is defined as

δũG+q = [δu+
G+q,x δu+

G+q,y δh+
G+q δu−

G+q,x δu−
G+q,y δh−

G+q

]T
, (17)

including both the relative and the center-of-mass vibrational modes in all three spatial directions. Ũ1,(2)
E ,G,q represents the force

constant contributed by the leading (second-order) terms of the elastic energy with respect to the moiré reciprocal vectors (see
Appendix D), which can be written as a block diagonal matrix,

Ũ1,(2)
E ,G,q = 1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(λ + 2μ)G̃2
x + μG̃2

y (λ + μ)G̃xG̃y 0 0 0 0

(λ + μ)G̃xG̃y (λ + 2μ)G̃2
y + μG̃2

x 0 0 0 0

0 0 κ
(
G̃2

x + G̃2
y

)2
0 0 0

0 0 0 (λ + 2μ)G̃2
x + μG̃2

y (λ + μ)G̃xG̃y 0
0 0 0 (λ + μ)G̃xG̃y (λ + 2μ)G̃2

y + μG̃2
x 0

0 0 0 0 0 κ
(
G̃2

x + G̃2
y

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(18)

where G̃=G + q. Ũ2,(2)
E ,G,G′,q is the force constant contributed by the third-order terms (with respect to moiré reciprocal vectors) of

the elastic energy. Despite its higher-order nature, the Ũ2,(2)
E ,G,G′,q term couples all components of the displacement fields together,

giving rise to fruitful phononic properties in TBG, which will be discussed in detail in Sec. IV B. Ũ(2)
B,G,G′ is the force constant

contributed by the binding energy. The binding energy is a functional of the relative displacements, which only couples the δh−
and δu− displacement fields, and can be expressed in the following matrix form

Ũ(2)
B,G,G′ = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 V (2)

B,uu,G−G′,xx V (2)
B,uu,G−G′,xy V (2)

B,uh,G−G′,x

0 0 0 V (2)
B,uu,G−G′,xy V (2)

B,uu,G−G′,yy V (2)
B,uh,G−G′,y

0 0 0 V (2)
B,uh,G−G′,x V (2)

B,uh,G−G′,y V (2)
B,hh,G−G′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (19)

The explicit expressions of all the force-constant matrix ele-
ments in Eq. (16) can be found in Appendix D. We can solve
the eigenvalues and eigenfunctions of the dynamical matrix
to obtain the phonon frequencies and the vibrational modes at
certain moiré wavevector q. We note that In Ref. [69], part of
the phonon modes of TBG have been calculated based on an
elastic model, which only includes the in-plane displacement
fields. Here we present an elastic model in which both in-plane
and out-of-plane displacements have been taken into account
and are treated on equal footing. With such a model, we can
capture all the essential features of the low-frequency phonon

modes with a much lower computational cost compared to
direct molecular dynamics simulations [68,73], which will be
discussed in detail in Sec. IV B.

B. Results

We numerically solve the equation of motion for the
displacement fields to obtain the phonon properties of
magic-angle TBG with θ = 1.05◦. For each moiré phonon
wavevector, the displacement field is expanded by a plane-
wave basis set on a 13×13 mesh in reciprocal space, so that
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FIG. 3. The phonon band structures of magic-angle TBG (θ =1.05◦) calculated with the continuum elastic model (a) in the low-frequency
regime from 0 to 1.2 THz, (c) a zoom-in view near the  point, and (d) in the (relatively) high-frequency regime from 1.8 to 2.8 THz.
(b) The phonon band structure of magic-angle TBG calculated with the DPMD method [73]. (e) The center-of-mass vibrational patterns
of four out-of-plane flexural (h+) phonon modes at  point with frequencies ∼0.027 THz, highlighted as a gray dot in (c). The colorbar
represents the renormalized amplitudes of the out-of-plane center-of-mass vibrations. (f) The real-space vibrational patterns of the two gapless
sliding (u−) modes at  point, highlighted as a red dot in (c). (g) The real-space vibrational patterns of four interlayer breathing (h−) phonon
modes at  point with the frequencies ∼2 THz. The colorbar in (f) and (g) represents the renormalized amplitudes of the relative out-of-plane
displacements. The arrows in (f) and (g) represents the directions of the relative in-plane vibrations. The ratios between the average amplitudes
of the relative in-plane vibrations and the maximal amplitudes of the out-of-plane vibrations are marked as A= |u−|/|h−|max in the insets of (f)
and (g).

the total number of basis functions is 13×13×3×2 = 1014,
which is more than 30 times smaller than that of atomistic
molecular dynamics simulations. Nevertheless, we can still
capture all the key properties of low-frequency phonons ac-
curately.

In Figs. 3(a), 3(c), and 3(d), we present the projected
phonon band structure calculated with the continuum elastic
model. The green lines denote phonon modes with dominant
h− components, and the red lines represent phonon modes
with dominant u− components. Both of them are relative
vibration modes between the two layers. The gray lines show
the phonon band structures with dominant h+ modes, and the
blue lines show the phonon band structure with dominant u+
modes, representing the center-of-mass vibrations. As a com-
parison, we also present the phonon band structures calculated
with the deep potential molecular dynamics (DPMD) method

[73] in Fig. 3(b). We see that, except for two in-plane rela-
tive sliding modes, the results from continuum elastic model
are in very well agreement with the DPMD results. More
specifically, in Fig. 3(c), we obtain three acoustic phonon
modes (two u+ modes marked by blue lines and one h+ mode
marked by gray lines), two gapless interlayer sliding modes
(u− modes marked by red lines), and a plethora of h+, u−, and
h− optical phonon modes. We note that although the sliding
modes have a tiny gap of about 0.003 THz at  point from our
elastic model calculations [see Fig. 3(c)], they are expected
to be gapless since in the continuum model treatment, the
ground-state energy is invariant under arbitrary continuous
interlayer shift, thus these sliding modes are gapless Gold-
stone modes. In the inset of Fig. 3(c), we present the gap of
the sliding modes at  point as a function of mmax, which
indeed extrapolates to zero for mmax � 7. In realistic situation,
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TBG is an superlattice consisted of carbon atoms located
at discrete positions. If the relative in-plane shift vector is
incommensurate with graphene’s lattice vector, the ground-
state energy of the system would be changed. This would
lead to gapped interlayer sliding modes with the gap about
0.65 THz at  point, as calculated from DPMD approach
[73]. In Fig. 3(d), we present the phonon band structures
in the (relatively) high-frequency regime, which are mostly
consisted of h− modes. The h− optical modes are nearly
dispersionless and have a large band gap of about 2 THz. As
∂2V/∂ (h−)2 (V denotes interlayer binding energy) is much
larger than the other components of force constants, it costs
much more energy to change the interlayer distance. This re-
sults in the “hard” interlayer breathing (h−) modes with a large
gap.

In Fig. 3(e), we present the real-space vibrational patterns
of several optical h+ modes at  point with frequency of about
0.027 THz [gray point in Fig. 3(c)]. The colorbar denotes
the amplitude of normalized center-of-mass out-of-plane vi-
bration (h+), where the opposite signs represent opposite
vibrational directions. We obtain several “flexural” moiré
phonon modes exhibiting monopolar, dipolar, quadrupolar,
and octupolar vibrational patterns, which are consistent with
those reported in Ref. [73]. At finite temperatures, these
extremely low-frequency flexural modes may be thermally
excited, leading to out-of-plane distortion patterns such as
ripples and wrinkles etc. The center-of-mass in-plane vibra-
tions (u+) lead to two gapless acoustic phonons, but have
negligible contributions to optical phonon modes, which do
not deserve further discussions. In Fig. 3(f), we plot the real-
space vibrational patterns of the two interlayer sliding modes
at  point [red point in Fig. 3(c)]. Since the out-of-plane
and in-plane displacements are coupled together in our elastic
model, the sliding modes involve both in-plane and out-of-
plane vibrational components. We denote the maximal value
of the out-of-plane vibration component of the sliding mode
by |h−|max. The arrows in Fig. 3(f) denote the vectors of
relative in-plane vibrations, with the average amplitude |u−|.
In the inset of Fig. 3(f) we list the ratio between the average
in-plane amplitude and the maximal out-of-plane amplitude of
the sliding modes, denoted by A=|u−|/|h−|max. We see that
A ≈ 2 for both gapless sliding modes. The colorbar in Fig. 3(f)
represents the relative out-of-plane vibration (h−) component,
with the maximal amplitude normalized to 1. In Fig. 3(g), we
present the vibrational patterns of interlayer breathing modes
(h− modes) at  point, which also exhibit the monopolar,
dipolar, the quadrupolar, and octupolar vibrational patterns.
Again, since the in-plane and out-of-plane vibrational compo-
nents are coupled together in our elastic model, the interlayer
breathing modes are not 100% contributed by the relative out-
of-plane components, there are also small amount of mixtures
of the relative in-plane components. The colorbar in Fig. 3(g)
represents the relative out-of-plane vibration with the maxi-
mal amplitude normalized to 1, i.e., |h−|max = 1. The arrows
in Fig. 3(g) represent the directions of the relative in-plane
components, with their average amplitudes denoted by |u−|.
The in-plane amplitudes turn out to be much smaller than the
out-of-plane ones for these breathing modes, with the average
ratio A = |u−|/|h−|max listed in the insets of Fig. 3(g), with
A ∼ 5% for the dipolar and octupolar-type breathing modes.

The in-plane components for the monopolar and quadrupolar
breathing modes are negligible (<1%).

Our results are in good agreement with those calculated
by the DPMD method [73]. The main difference between
our results and the ones from the DPMD calculations are the
gaps of the sliding modes [see Figs. 3(a) and 3(b)], which
has been explained above. The monopolar-type, dipolar-type,
quadrupolar-type, and octupolar-type out-of-plane vibration
patterns for the out-of-plane flexural modes are identified
by both methods with similar frequencies ∼0.03–0.1 THz.
Besides, we present more results about the interlayer sliding
modes and out-of-plane breathing modes with various vibra-
tional patterns. Our model provides an efficient approach to
capture the essential features of the moiré phonons in TBG.
In particular, the low-frequency flexural, sliding, and breath-
ing modes discussed above may play important roles in the
electron-phonon coupling effects in magic-angle TBG.

V. ELECTRONIC BAND STRUCTURE

A. Model and Formalism

In this section, we study the influence of the lattice dis-
tortions on the electronic band structures. Inspired by the
treatment of in-plane lattice distortion effects on electronic
structures in TBG reported in Ref. [70], we start our discus-
sions with the Slater-Koster tight-binding model for graphene
introduced in Ref. [108]. The hopping amplitude between two
pz orbitals at different sites is expressed as [108]

−T (d) = Vσ

(
d · ẑ

d

)
+ Vπ

[
1 −

(
d · ẑ

d

)2
]
, (20)

where Vσ = V 0
σ e−(|d|−dc )/δ0 and Vπ = V 0

π e−(|d|−a0 )/δ0 . d =
(dx, dy, dz ) is the displacement vector between the two
sites. dc = 3.35 Å is the interlayer distance of Bernal bi-
layer graphene. a0 = a/

√
3 = 1.42 Å is the distance between

two nearest-neighbor carbon atoms in monolayer graphene.
δ0 = 0.184a. V 0

σ = 0.48 eV, and V 0
π = −2.7 eV. We consider

the Wannier function localized at position R(l )
X + u(l )

X (R) +
h(l )

X (R) ẑ, where R(l )
X = RX + τ (l )

z ẑ is the position of a given
carbon atom in the undistorted lth graphene monolayer (l =
1, 2). RX and τ (l )

z denote the in-plane and out-of-plane com-
ponents of R(l )

X , with RX = R + τX . Here τX denotes the
in-plane position within graphene’s primitive cell of sublattice
X (X = A, B), and R denotes the lattice vector of monolayer
graphene. u(l )

X (RX ) and h(l )
X (RX ) characterize the in-plane and

out-of-plane lattice distortions of a carbon atom in the lth
layer belonging to X sublattice. The Fourier transform of the
real-space hopping amplitude is defined as

t (q) = 1

S0d0

∫
d3r T (r)e−iq·r. (21)

The Bloch state of layer l , sublattice X , is defined as

|k, X, l〉 = 1√
N

∑
R∈R(l )

X

eik·(R+τX )
∣∣R(l )

X + u(l )
X + h(l )

X ẑ
〉
, (22)

where k is the two-dimensional Bloch wave vector and N
is the number of single-layer graphene primitive cells in the
system.
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1. Interlayer Hamiltonian

The interlayer hopping from site R(2)
X ′ to site R(1)

X is 〈R(2)
X ′ |U |R(1)

X 〉 = −T (R(1)
X − R(2)

X ′ ), where the expression of T (R) is given
in Eq. (20). Then the interlayer hopping matrix element in the Bloch basis is expressed as

〈k′, X ′, 2|U |k, X, 1〉 = − 1

N

∑
R∈R(1)

X

∑
R′∈R(2)

X ′

S0d0

(2π )3

∫
d3 p t (p) ei ( (k−p‖ )·(R+τX )−p‖·u(1)

X ) e−i pz (τ (1)
z +h(1)

X )

× e−i ( (k′−p‖ )·(R′+τX ′ )−p‖·u(2)
X ′ ) ei pz (τ (2)

z +h(2)
X ′ ), (23)

where S0 is the area of the graphene’s primitive cell, and d0 is the average interlayer distance of the relaxed lattice structure of
TBG, which can be extracted from structural relaxation calculations as explained in Sec. III A. p‖ and pz denote the in-plane and
out-of-plane components of a three dimensional wavevector p, respectively. t (p) is the Fourier transformation of the Slater-Koster
hopping amplitude, which is expressed in Eq. (21).

We further perform the Fourier transformation to both in-plane and out-of-plane lattice distortions of layer l and sublattice X ,

u(l )
X (RX ) =

∑
Gm

eiGm·(R+τX )u(l )
Gm,X , h(l )

X (RX ) =
∑
Gm

eiGm·(R+τX )h(l )
Gm,X , (24)

where τX denotes the in-plane atomic position of sublattice X within graphene’s primitive cell. Then, the exponentials of the
lattice displacement fields can be expanded into Taylor series,

eip‖·u(l )
X (RX ) =

∏
Gm

∑
n

1

n!

(
iq‖ · u(l )

X,Gm

)n
ei n Gm·(R+τX ), ei pzh(l )

X (RX ) =
∏
Gm

∑
nh

1

nh!

(
i pzh

(l )
X,Gm

)nh ei nh Gm·(R+τX ). (25)

The summation over lattice vectors R, R′ in Eq. (23) can be eliminated using the identity
∑

R eip·R(l )
X = N

∑
g eig(l )·τ (l )

X ei pzτ
(l )
z δp‖,g(l ) ,

where g(l ) = m1a∗,(l )
1 + m2a∗,(l )

2 is the atomic reciprocal lattice vector in the lth layer. As a result, we obtain the following
interlayer hopping matrix element:

〈k′, X ′, 2|U |k, X, 1〉 =
∑

g(1),g(2)

∑
n1,n′

1...

∑
nh,1,n′

h,1...

γ (Q) e−i(g(1)·τ (1)
X −g(2)·τ (2)

X ′ )δk+g(1)+n1G1+nh,1Gh
1+... , k′+g(2)−n′

1G1−n′
h,1Gh

1+···, (26)

where Q = Q‖ + pzẑ, and

Q‖ = k + g(1) + n1G1 + nh,1Gh
1 + n2G2 + nh,2Gh

2 + · · · = k′ + g(2) − n′
1G1 − n′

h,1Gh
1 − n′

2G2 − n′
h,2Gh

2 + · · · , (27)

where {G1, G2, Gh
1, Gh

2, . . .} are moiré reciprocal vectors. The effective interlayer hopping amplitude γ (Q) is given by

γ (Q‖ + pzez ) ≈ − d0

2π

∫
d pz t (Q) ei pzd0

[
iQ‖ · u−

G1
/2
]n1+n′

1

n1!n′
1!

[
iQ‖ · u−

G2
/2
]n2+n′

2

n2!n′
2!

· · · ×
[
i pzh

−
Gh

1
/2
]nh,1+n′

h,1

nh,1!n′
h,1!

[
i pzh

−
Gh

2
/2
]nh,2+n′

h,2

nh,2!n′
h,2!

· · · e−i(G1·τX )n1 e−i(G1·τX ′ )n′
1 · · · × e−i(Gh

1 ·τX )nh,1 e−i(Gh
1 ·τX ′ )n′

h,1 . . . (28)

When going from Eq. (23) to Eqs. (26) and (28), we have dropped the effects of the in-plane center-of-mass displacements u+,
which turns out to be three orders of magnitudes smaller than the relative displacement fields u− according to our structural
relaxation calculations (see Sec. III B for details). We note that the phase factor in Eq. (28) exp(−iG · τX ) ∼ exp(−iθ ) ≈ 1 for
small twist angle θ , which can be dropped if we are interested in small angle TBG, e.g., when θ is around the magic angle.

The interlayer hopping amplitude t (Q) varies on the length scale of 1/a in reciprocal space, while the Fourier transformed
displacement field decays quickly on the scale of 1/Ls. Thus, to the leading-order approximation, it is legitimate to assume
Q‖ ≈ k + g(1) = k′ + g(2). Since we are interested in the low-energy Dirac electrons around K and K′ points, one can further
set k and k′ to the Dirac points in atomic Brillouin zone. This would give rise to three pairs of reciprocal vectors {(g(2)

j , g(1)
j )}

( j = 1, 2, 3) satisfying the condition k + g(1) = k′ + g(2) [22,70,109]. It is convenient to define Qμ
1 = Kμ, Qμ

2 = Kμ + μa∗
1, and

Qμ
3 = Kμ + μ(a∗

1 + a∗
2 ), where μ = ± is the valley index, and K−(K+) = K(K′). Then the interlayer hopping matrix element

can be approximated as

〈k′, X ′, 2|U |k, X, 1〉 =
3∑

j=1

∑
n1,nh,1,...

∑
n′

1,n
′
h,1...

γ (Q j + pzez )M j
X ′X δk′,k+G j+(n1+n′

1 )G1+(nh,1+n′
h,1 )Gh

1+..., (29)

where G1 = 0, G2 = μGM
1 , G3 = μ(GM

1 + GM
2 ). M j

X ′X is given by

M1 =
[

1 1
1 1

]
, M2 =

[
1 ω−μ

ωμ 1

]
, M3 =

[
1 ωμ

ω−μ 1

]
, (30)

where ω = ei2π/3.
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Taking use of the identity δk′,k+q = (1/S)
∫

d2r ei(k+q−k′ )·r, the interlayer hopping matrix element can be expressed in real-
space representation as

〈k′, X ′, l ′|U |k, X, l〉 =1

S

∫
d2r ei(k−k′ )·r UX ′X (r) (31)

where the “moiré potential” with relaxed lattice structure is given by [70]

UX ′X (r) = −
3∑

j=1

d0

2π

∫ ∞

−∞
d pz M j

X ′X ei(Q j ·u−(r)+G j ·r+ pz (d0+h−(r))) t (Q j + pzez ). (32)

The integration over pz in Eq. (28) can be carried out analytically using the trick of integration by parts. We first consider
the terms with nh,1 + n′

h,1 = 0, nh,2 + n′
h,2 = 0, . . . , i.e., the effects from the out-of-plane distortions are completely neglected.

Taking the approximation Q‖ ≈ Q j , the integration over pz leads to

− d0

2π

∫
d pz t (Q j + pzez )ei pzd0 ≈ 0.101 eV, (33)

where d0 = 3.3869 Å is the average interlayer distance of the fully relaxed lattice structure. Then, we consider the first-order
effects from out-of-plane distortions. Specifically, for certain moiré reciprocal lattice vector Gh

m1
, we have nh,m1 + n′

h,m1
= 1 and

nh,m + n′
h,m = 0 with m �=m1. The integration over pz for such first-order term can also be done analytically,

− d0

2π

∫
d pz t (Q j + pzez )ei pzd0 × [i pzh

−
Gh

m1

] ≈ −0.248h−
Gh

m1

eV. (34)

We also consider the second-order effects to the interlayer hopping from out-of-plane lattice distortions. For some moiré
reciprocal lattice vectors Gh

m1
and Gh

m2
, we have nh,m1 + n′

h,m1
= 1, nh,m2 + n′

h,m2
= 1, and nh,m + n′

h,m = 0 with m �=m1, m2 and
m1 �=m2, which leads to

− d0

2π

∫
d pz t (Q j + pzez )ei pzd0 × (ipzh

−
Gh

m1

)× (ipzh
−
Gh

m2

) ≈ 0.508 h−
Gh

m1

h−
Gh

m2

eV. (35)

The detailed derivations of Eqs. (33)–(35) are presented in Appendix F. Finally we obtain the following expression for the
effective interlayer hopping amplitude:

γ (Q‖ + pzez ) ≈ +t0(Q j ) ×
[
iQ j · u−

G1
/2
]n1+n′

1

n1!n′
1!

×
[
iQ j · u−

G2
/2
]n2+n′

2

n2!n′
2!

× · · ·

− t1(Q j )h
−
Gh

1
×
[
iQ j · u−

G1
/2
]n1+n′

1

n1!n′
1!

×
[
iQ j · u−

G2
/2
]n2+n′

2

n2!n′
2!

× · · ·

+ t2(Q j )h
−
Gh

1
h−

Gh
2
×
[
iQ j · u−

G1
/2
]n1+n′

1

n1!n′
1!

×
[
iQ j · u−

G2
/2
]n2+n′

2

n2!n′
2!

× · · · + · · · (36)

where t0(Q j )≈0.101 eV, t1(Q j )≈0.248 eV/Å and t2(Q j )≈0.508 eV/Å2.

In Eq. (29), the interlayer hopping matrix element has
been simplified in such a way that the wavevector depen-
dence of the effective hopping amplitude has been omitted,
i.e., γ (Q‖ + pzẑ) ≈ γ (Q j + pzẑ) ( j = 1, 2, 3). As will be
shown in Sec. V B, such a simplified treatment to the ef-
fective interlayer hopping can already capture the essential
features of the low-energy band structures of magic-angle
TBG, such as the significant reduction of the flat band-
width and the dramatically enhanced gaps between flat
bands and the remote bands [see Fig. 4(a)]. However,
there is still non-negligible discrepancy compared to the
band structures directly calculated from atomistic Slater-
Koster tight-binding model with fully relaxed lattice structure
(see Sec. V B), which comes from the wavevector depen-
dence of interlayer hopping γ (Q) as well as the O(k2)
terms of the intralayer Hamiltonian. Both of the high-

order terms would lead to particle-hole asymmetry in the
electronic band structures, which will be discussed as fol-
lows.

Following the hierarchy shown in Eq. (36), we first
consider the k dependence of the bare interlayer hopping am-
plitude t0 without any lattice relaxation effects, i.e., Q‖ = k +
g(1) = k′ + g(2). Specifically, an analytic expression t0(q) =
t0
0 exp (−α(|q|d⊥)γ ) is adopted from Refs. [110,111], where

d⊥ = 3.3869 Å. t0
0 = 1 eV, α = 0.1565, and γ = 1.5313.

Then, t0(Q j ) is substituted by t0(Q j + k̄) in Eq. (36), where
k̄ measures the deviation of the electron’s wavevector with
respect to the Dirac point. Second, we consider the k de-
pendence for the t0 term in Eq. (36) including the first-order
in-plane relaxation effects. Specifically, for certain moiré
reciprocal lattice vector Gm1 , we have nm1 + n′

m1
= 1 and

nm + n′
m = 0 with m �=m1, i.e., Q‖ = k + g(1) + nm1 Gm1 =
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FIG. 4. The electronic band structures of magic-angle TBG
(θ = 1.05◦). (a) The band structures calculated by the effective con-
tinuum model, where the red dashed lines denote the energy bands
with an ideal moiré superlattice, and the blue solid lines represent the
energy bands with fully relaxed lattice structure with k-independent
interlayer coupling. (b) The band structure with fully relaxed lattice
structure, where the red lines are the energy bands calculated by the
atomistic Slater-Koster tight-binding model, and the blue lines are
the energy bands calculated by the effective continuum model taking
into account the k-dependent interlayer coupling and the k2 terms in
the intralayer Hamiltonian.

k′ + g(2) − n′
m1

Gm1 . This term is thus expressed as t0(Q j +
k̄ + nm1 Gm1 )i(Q j + k̄ + nm1 Gm1 ) · u−

G1
, which have k depen-

dence in both t0 and Q‖. Third, we consider the k dependence
for the t1 in Eq. (36) including the leading-order out-of-
plane corrugation effects, with nh,m1 + n′

h,m1
= 1 and nh,m +

n′
h,m = 0, m �=m1. We take a linear function t1(q) = t0

1 + t1
1 |q|

to fit the wavevector dependence of t1(q) near K± point,
where t0

1 = −1.0235 eV and t1
1 = 0.4531 eV Å. As a result,

we substitute constant t1(Q j ) by t1(Q j + k + nhm1
Gh

m1
).

Besides, the high-order k dependence in the intralayer
hopping amplitude would break the particle-hole symmetry
as well. We start with the tight-binding Hamiltonian of the
single-layer graphene introduced above. We can expand the
Hamiltonian near Kμ (μ = ±) point,

H (l )(k) = −h̄ vF
[
k̄x μσx + k̄yσy + mα

(
k̄2

x − k̄2
y

)
σx

− 2mα k̄xk̄y μσy + mβ

(
k̄2

x + k̄2
y

)
σ0
]
, (37)

where k̄ = k − Kμ, mα = 0.4563 Å and mβ = 0.2345 Å.

2. Intralayer Hamiltonian

The lattice distortions also have significant influences on
the intralayer hopping terms of TBG. Microscopically, the
strain field would change the position of each carbon atom and
affect the in-plane hopping amplitudes. In order to treat both
in-plane and out-of-plane lattice distortions on equal footing,
here we introduce a three dimensional strain tensor û, which
is expressed as

û =
⎡
⎣uxx uxy uhx

uxy uyy uhy

uhx uhy uhh

⎤
⎦, (38)

where ui j = (∂ui/∂r j + ∂u j/∂ri )/2, i, j = x, y, and
uhi = ∂h/∂ri, i = x, y. We consider the hopping events
between B and A sublattices, which are connected to each
other by the three first neighbor vectors r0

1 = (0, a0, 0),
r0

2 = (
√

3/2,−1/2, 0)a0, and r0
3 = (−√

3/2,−1/2, 0)a0

with a0 = a/
√

3, with the hopping amplitude given by
Eq. (20). The three vectors pointing from B sublattice to A
sublattice undergoes small shifts from r0

i to ri = (1 + û)r0
i

(i = 1, 2, 3). As a result, the hopping amplitudes change from
t (r0

i ) to t (ri ) for i = 1, 2, 3. We have carefully derived the
differences for the three nearest-neighbor-hopping amplitudes
δti = t (ri ) − t (r0

i ), and the detailed expressions are given in
Appendix F. Then we consider the monolayer graphene
Hamiltonian in reciprocal space,

H0(k) =
[

0 g(k, û)
g∗(k, û) 0

]
, (39)

where g(k, û) =∑3
i=1 t (ri )eik·ri . We can expand g(k) near

the Kμ point, with Kμ = μ(−4π/3a, 0, 0) with μ = ±.
Then we have g(k̄, û) = −h̄vF [μ(k̄x + μAxe/h̄) − i(k̄y +
μAye/h̄)], with k = k − Kμ. In other words, the strain field
acts as a pseudo vector potential coupled with low-energy
Dirac electrons [112]. Including effects of both in-plane and
out-of-plane lattice distortions, the pseudo vector potential
induced by strain in the lth layer graphene A(l ) = [A(l )

x , A(l )
y ]

is expressed by

A(l )
x = βγ0

ev

⎡
⎣3

4

(
∂u(l )

x

∂x
− ∂u(l )

y

∂y

)
+ 3

32

⎛
⎝(1 − 3β )

(
∂u(l )

x

∂x

)2

− (4 + 4β )

(
∂u(l )

x

∂y
+ ∂u(l )

y

∂x

)2

− (2 + 2β )
∂u(l )

x

∂x

∂u(l )
y

∂y

+(1 + 5β )

(
∂u(l )

y

∂y

)2
⎞
⎠
⎤
⎦+

(
μ

βγ0

ev

3

8
+ μ

M

ev

3

4

)[(
∂h(l )

∂x

)2

−
(

∂h(l )

∂y

)2
]
,
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A(l )
y = βγ0

ev

[
−3

4

(
∂u(l )

x

∂y
+ ∂u(l )

y

∂x

)
+ 3

16

(
(1 + 3β )

∂u(l )
x

∂x

(
∂u(l )

x

∂y
+ ∂u(l )

y

∂x

)
− (1 − β )

(
∂u(l )

x

∂y
+ ∂u(l )

y

∂x

)
∂u(l )

y

∂y

)]

−
(

μ
βγ0

ev

3

4
+ μ

M

ev

3

2

)
∂h(l )

∂x

∂h(l )

∂y
, (40)

where M = −V 0
π + V 0

σ e−(a0−d0 )/r0 ≈36 eV, β = a0/r0 ≈3.14,
and γ0 = |V 0

π | = 2.7 eV. v in the above equation is just the
Fermi velocity vF . Thus, the intralayer Hamiltonian of valley
μ for the lth layer is given by

Hμ,(l )(k) = −h̄vF

(
k + μ

e

h̄
A(l ) − Kμ,(l )

)
· (μσx, σy), (41)

where σx and σy are Pauli matrices defined in the sublattice
space and Kμ,(l ) is the Dirac point in the lth layer from valley
μ. The total Hamiltonian of TBG for μ valley is given by

H =
[

Hμ,(1) U †

U Hμ,(2)

]
, (42)

where the interlayer coupling U has been discussed in the
previous subsection.

B. Results

In this subsection, we present the effects of the lattice dis-
tortions on the electronic band structure of magic-angle TBG
using both the effective continuum model and the atomistic
tight-binding model. To be specific, the effective continuum
model Eq. (42) is expanded in reciprocal space with a 7×7
mesh. As discussed in Sec. V A, the interlayer Hamiltonian
matrix element is expanded as a power series of lattice dis-
tortion u±

Gm
and h±

Gm
. The cutoff of the expansion is set at the

third order of the product of u±
Gm

and h±
Gm

. For the intralayer
Hamiltonian, strain couples to Dirac electrons as a pseudo
vector potential A as expressed in Eqs. (40).

In Fig. 4(a), we present the band structure calculated by
the effective continuum model with k-independent interlayer
coupling as given by Eq. (29), and the k2 terms in the in-
tralayer Hamiltonian are also neglected. The red dashed lines
in Fig. 4(a) denote the energy bands of magic-angle TBG
(θ = 1.05◦) without lattice relaxation effects. Although two
flat bands (per spin per valley) with bandwidth ∼15 meV
are obtained, we note that there is no band gap between the
flat bands and the remote bands for magic-angle TBG with
an ideal moiré superlattice. Including the lattice relaxation
effects would open up a gap ∼20 meV between the flat bands
and the remote energy bands, as shown by the blue lines in
Fig. 4(a).

In Fig. 4(b), we compare the band structures calculated
using both the effective continuum model and the atomistic
tight-binding model. The red lines represent the band structure
calculated by the tight-binding model [Eq. (20)] with the fully
relaxed lattice structure; while the blue lines denote the energy
band structures calculated by the effective continuum model
including both k-dependent interlayer hopping terms and the
k2 terms in the intralayer hopping terms. These two terms
would strongly break particle-hole symmetry in the electronic
band structures, consistent with the results reported in litera-

tures [70,111,113,114]. The band structure calculated by the
continuum model is in perfect agreement with that calculated
by the tight-binding approach as shown in Fig. 4(b).

VI. SUMMARY AND OUTLOOK

To summarize, we have employed a continuum elastic
model to describe the lattice dynamics of twisted bilayer
graphene. Based on this model, we have calculated the lattice
distortions, phonon properties, and effective electronic band
structures with the fully relaxed lattice structure for TBG. We
have introduced a workflow for the structural relaxation cal-
culations of TBG, in which both the in-plane and out-of-plane
lattice distortions are taken into account and are treated on
equal footing. The calculated lattice distortions show pleasant
agreement with the experimental findings. Moreover, We have
studied the phonon properties in magic-angle TBG based on
the elastic model. Our results are in good agreement with
those obtained from the DPMD method, despite a much lower
computational cost. These results indicate that our continuum
elastic model is reliable, accurate, and computational efficient.
Finally, we evaluate the influence of the lattice distortions
on the electronic band structures for magic-angle TBG. We
find that the lattice distortions would open a gap between the
flat bands and remote bands, and strongly break particle-hole
symmetry of the flat band dispersion. Moreover, the electronic
band structure calculated using the continuum model is in
perfect agreement with that calculated using the tight-binding
approach.

Previous studies already revealed that the coupling
strengths between the flat band electrons and moiré phonons
are considerable in magic-angle TBG, which may give
rise to fruitful physics including charge order [68,73], lin-
ear in temperature resistivity [61,67], and superconductivity
[59,60,71,115]. In our framework, it is straightforward to
evaluate the electron-phonon coupling effects by introducing
the phonon excitations into the effective continuum model.
More importantly, in our framework both the in-plane and
out-of-plane moiré phonon modes are taken into account in
an unbiased manner. On the one hand, it is expected that
the relative in-plane and out-of-plane phonon modes would
be strongly coupled to the flat-band electrons in magic-angle
TBG via the interlayer hopping terms. On the other hand,
although all the moiré phonon modes reported in this paper
would be coupled with electrons through the intralayer Hamil-
tonian, they are of higher order compared to the intervalley,
intralayer electron-phonon couplings mediated by the optical
phonons at atomic K/K′ points [115]. However, given that
there are plenty of soft optical moiré phonons with frequen-
cies ∼0.01–0.1 THz, the relatively weak intravalley, intralayer
electron-phonon couplings may still have significant contribu-
tions to the phonon self energies. Our paper paves the way for
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further comprehensive studies of electron-phonon coupling
effects and their interplay with e-e interactions in magic-angle
TBG.
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APPENDIX A: SEPARATION OF VARIABLES
IN THE BINDING ENERGY

In order to validate the separation-of-variables treatment
to the binding energy as expressed in Eq. (4), we explicitly
calculate the second-order expansion coefficients of the inter-
layer binding energy with respect to the interlayer distance
(h−(r) − h−0(r)) [see Eq. (5)] based on first principles den-
sity functional theory. In our model, this expansion coefficient
is taken to be 36, adopted from Lennard-Jones potential. We
would like to inspect how this coefficient varies with respect
to in-plane interlayer shift vector δ‖. More specifically, with
fixed δ‖ between two graphene monolayers (without twist
angle), we vary the interlayer distance near the equilibrium
value. Then, we fit the binding energy to a polynomial func-
tion of the interlayer distance for each δ‖, and determine
the expansion coefficients of the second-order term. Figure 5
presents the second-order expansion coefficient as a function
of the in-plane shift vector, which mimics the distribution
of the second-order expansion coefficients at different loca-
tions within the moiré supercell. The expansion coefficient
has a maximal value ∼50 near the AA point, while remains
as a constant ∼32 in the other regions. The average value
of the second-order coefficient is estimated to be about 34,
which is very close to 36 used in our model. Certainly, it
would be more accurate if one could also take into account
the real-space variation of the second-order coefficients, but
this would lead to an unmanageable number of terms when
taking derivatives of the elastic energy in the Euler-Lagrange

FIG. 5. The second-order expansion coefficients of (h−(r) −
h−

0 (r)) in Eq. (5) as a function of the in-plane displacement
vector δ‖.

equations. Hence, we choose to use a constant value of 36
(adopted from Lennard-Jones potential) for the second-order
expansion coefficient in our model.

APPENDIX B: DETAILS IN LATTICE
RELAXATION CALCULATIONS

In the present model, the total energy U = UE + UB is a
functional of lattice distortions. We can minimize the total
energy with respect to the lattice distortions by solving the
Euler-Lagrange equation,

δU

δ f
−
∑

α

∂

∂α

δU

δ fα
+
∑
α,β

∂2

∂α∂β

δU

δ fα,β

= 0, (B1)

with

fα = ∂ f

∂α
, fα,β = ∂2 f

∂α∂β
, (B2)

where α, β = x, y and f = u±
x , u±

y , h±. The interlayer binding
energy is given by Eq. (5). We consider the impact of stretches
and curvatures into account in our model. Then, the elastic
energy is given by

UE =
2∑

l=1

∫
d2r

1

2

{
(λ + μ)

(
u(l )

xx + u(l )
yy

)2 + μ
[(

u(l )
xx − u(l )

yy

)2 + 4
(
u(l )

xy

)2]+ κ

[(
∂2

∂x2
+ ∂2

∂y2

)
h(l )

]2}

=
2∑

l=1

∫
d2r

1

2

{
κ

[(
∂2

∂x2
+ ∂2

∂y2

)
h(l )

]2

+ (λ + μ)

[(
∂u(l )

x

∂x

)2

+
(

∂u(l )
y

∂y

)2

+ 2
∂u(l )

x

∂x

∂u(l )
y

∂y
+ ∂u(l )

x

∂x

(
∂h(l )

∂x

)2

+ ∂u(l )
y

∂y

(
∂h(l )

∂y

)2

+ ∂u(l )
y

∂y

(
∂h(l )

∂x

)2

+ ∂u(l )
x

∂x

(
∂h(l )

∂y

)2

+ 1

4

(
∂h(l )

∂x

)4

+ 1

4

(
∂h(l )

∂y

)4

+ 1

2

(
∂h(l )

∂x

)2(
∂h(l )

∂y

)2]

+ (μ)

[(
∂u(l )

x

∂x

)2

+
(

∂u(l )
y

∂y

)2

− 2
∂u(l )

x

∂x

∂u(l )
y

∂y
+ ∂u(l )

x

∂x

(
∂h(l )

∂x

)2

+ ∂u(l )
y

∂y

(
∂h(l )

∂y

)2
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− ∂u(l )
y

∂y

(
∂h(l )

∂x

)2

− ∂u(l )
x

∂x

(
∂h(l )

∂y

)2

+ 1

4

(
∂h(l )

∂x

)4

+ 1

4

(
∂h(l )

∂y

)4

− 1

2

(
∂h(l )

∂x

)2(
∂h(l )

∂y

)2

+
(

∂u(l )
x

∂y
+ ∂u(l )

y

∂x

)2

+ 2

(
∂u(l )

x

∂y
+ ∂u(l )

y

∂x

)
∂h(l )

∂x

∂h(l )

∂y
+
(

∂h(l )

∂x

)2(
∂h(l )

∂y

)2]}
, (B3)

where, λ ≈ 3.25 eV/Å2 and μ ≈ 9.57 eV/Å2 are the Lamé factors, κ = 1.6 eV is the curvature modulus [81].
Before we construct the Euler-Lagrange equation, we evaluate the partial derivatives given in Eq. (B2),

∂V

∂
∂u−

x
∂x

=
∑

l

∂V

∂ ∂u(l )
x

∂x

∂
∂u(l )

x
∂x

∂
∂u−

x
∂x

= 1

2

{
(λ + μ)

[
2
∂u(2)

x

∂x
+ 2

∂u(2)
y

∂y
+
(

∂h(2)

∂x

)2

+
(

∂h(2)

∂y

)2
]

+μ

[
2
∂u(2)

x

∂x
− 2

∂u(2)
y

∂y
+
(

∂h(2)

∂x

)2

−
(

∂h(2)

∂y

)2
]}

× 1

2

+ 1

2

{
(λ + μ)

[
2
∂u(1)

x

∂x
+ 2

∂u(1)
y

∂y
+
(

∂h(1)

∂x

)2

+
(

∂h(1)

∂y

)2
]

+μ

[
2
∂u(1)

x

∂x
− 2

∂u(1)
y

∂y
+
(

∂h(1)

∂x

)2

−
(

∂h(1)

∂y

)2
]}

× −1

2

= 1

2

{
(λ + μ)

[
∂u−

x

∂x
+ ∂u−

y

∂y
+ 1

2

∂h+

∂x

∂h−

∂x
+ 1

2

∂h+

∂y

∂h−

∂y

]

+μ

[
∂u−

x

∂x
− ∂u−

y

∂y
+ 1

2

∂h+

∂x

∂h−

∂x
− 1

2

∂h+

∂y

∂h−

∂y

]}
,

∂V

∂
∂u−

y

∂y

= 1

2

{
(λ + μ)

[
∂u−

x

∂x
+ ∂u−

y

∂y
+ 1

2

∂h+

∂x

∂h−

∂x
+ 1

2

∂h+

∂y

∂h−

∂y

]

+μ

[
−∂u−

x

∂x
+ ∂u−

y

∂y
− 1

2

∂h+

∂x

∂h−

∂x
+ 1

2

∂h+

∂y

∂h−

∂y

]}
,

∂V

∂
∂u−

x
∂y

= ∂V

∂
∂u−

y

∂x

= 1

2

{
μ

[
∂u−

x

∂y
+ ∂u−

y

∂x
+ 1

2

∂h+

∂x

∂h−

∂y
+ 1

2

∂h−

∂x

∂h+

∂y

]}

∂V

∂
∂u+

x
∂x

= 1

2

{
(λ + μ)

[
∂u+

x

∂x
+ ∂u+

y

∂y
+ 1

4

(
∂h+

∂x

)2

+ 1

4

(
∂h−

∂x

)2

+ 1

4

(
∂h+

∂y

)2

+ 1

4

(
∂h−

∂y

)2
]

+μ

[
∂u+

x

∂x
− ∂u+

y

∂y
+ 1

4

(
∂h+

∂x

)2

+ 1

4

(
∂h−

∂x

)2

− 1

4

(
∂h+

∂y

)2

− 1

4

(
∂h−

∂y

)2
]}

,

∂V

∂
∂u+

y

∂y

= 1

2

{
(λ + μ)

[
∂u+

x

∂x
+ ∂u+

y

∂y
+ 1

4

(
∂h+

∂x

)2

+ 1

4

(
∂h−

∂x

)2

+ 1

4

(
∂h+

∂y

)2

+ 1

4

(
∂h−

∂y

)2
]

+μ

[
−∂u+

x

∂x
+ ∂u+

y

∂y
− 1

4

(
∂h+

∂x

)2

− 1

4

(
∂h−

∂x

)2

+ 1

4

(
∂h+

∂y

)2

+ 1

4

(
∂h−

∂y

)2
]}

,

∂V

∂
∂u+

x
∂y

= ∂V

∂
∂u+

y

∂x

= 1

2

{
μ

[
∂u+

x

∂y
+ ∂u+

y

∂x
+ 1

2

∂h+

∂x

∂h+

∂y
+ 1

2

∂h−

∂x

∂h−

∂y

]}
,

∂V

∂ ∂h−
∂x

= 1

2

{
(λ + μ)

[
1

2

(
∂h+

∂x

∂u−
x

∂x
+ ∂h−

∂x

∂u+
x

∂x

)
+ 1

2

(
∂h+

∂x

∂u−
y

∂y
+ ∂h−

∂x

∂u+
y

∂y

)

+1

8

((
∂h−

∂x

)3

+ 3

(
∂h+

∂x

)2
∂h−

∂x

)
+ 1

8

(
∂h−

∂x

(
∂h−

∂y

)2

+ ∂h−

∂x

(
∂h+

∂y

)2

+ 2
∂h+

∂x

∂h−

∂y

∂h+

∂y

)]
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+ μ

[
1

2

(
∂h+

∂x

∂u−
x

∂x
+ ∂h−

∂x

∂u+
x

∂x

)
− 1

2

(
∂h+

∂x

∂u−
y

∂y
+ ∂h−

∂x

∂u+
y

∂y

)

+ 1

8

((
∂h−

∂x

)3

+ 3

(
∂h+

∂x

)2
∂h−

∂x

)
− 1

8

(
∂h−

∂x

(
∂h−

∂y

)2

+ ∂h−

∂x

(
∂h+

∂y

)2

+ 2
∂h+

∂x

∂h−

∂y

∂h+

∂y

)

+ 1

2

(
∂u+

x

∂y

∂h−

∂y
+ ∂u−

x

∂y

∂h+

∂y

)
+ 1

2

(
∂u+

y

∂x

∂h−

∂y
+ ∂u−

y

∂x

∂h+

∂y

)

+1

4

(
∂h−

∂x

(
∂h−

∂y

)2

+ ∂h−

∂x

(
∂h+

∂y

)2

+ 2
∂h+

∂x

∂h+

∂y

∂h−

∂y

)]}
,

∂V

∂ ∂h+
∂x

= 1

2

{
(λ + μ)

[
1

2

(
∂h+

∂x

∂u+
x

∂x
+ ∂h−

∂x

∂u−
x

∂x

)
+ 1

2

(
∂h+

∂x

∂u+
y

∂y
+ ∂h−

∂x

∂u−
y

∂y

)

+1

8

((
∂h+

∂x

)3

+ 3

(
∂h−

∂x

)2
∂h+

∂x

)
+ 1

8

(
∂h+

∂x

(
∂h+

∂y

)2

+ ∂h+

∂x

(
∂h−

∂y

)2

+ 2
∂h−

∂x

∂h−

∂y

∂h+

∂y

)]

+ μ

[
1

2

(
∂h+

∂x

∂u+
x

∂x
+ ∂h−

∂x

∂u−
x

∂x

)
− 1

2

(
∂h+

∂x

∂u+
y

∂y
+ ∂h−

∂x

∂u−
y

∂y

)

+ 1

8

((
∂h+

∂x

)3

+ 3

(
∂h−

∂x

)2
∂h+

∂x

)
− 1

8

(
∂h+

∂x

(
∂h+

∂y

)2

+ ∂h+

∂x

(
∂h−

∂y

)2

+ 2
∂h−

∂x

∂h−

∂y

∂h+

∂y

)

+ 1

2

(
∂u+

x

∂y

∂h+

∂y
+ ∂u−

x

∂y

∂h−

∂y

)
+ 1

2

(
∂u+

y

∂x

∂h+

∂y
+ ∂u−

y

∂x

∂h−

∂y

)

+1

4

(
∂h+

∂x

(
∂h+

∂y

)2

+ ∂h+

∂x

(
∂h−

∂y

)2

+ 2
∂h−

∂x

∂h−

∂y

∂h+

∂y

)]}
,

∂V

∂ ∂h±
∂y

= (. . . x ↔ y . . . ),

∂V

∂ ∂2h±
∂x2

= ∂V

∂ ∂2h±
∂y2

= κ

2

(
∂2

∂x2
+ ∂2

∂y2

)
h±. (B4)

We also assume that the center-of-mass component of out-of-plane distortion vanishes in the relaxed structure, i.e., h+(r) = 0.
This is an excellent approximation since nonzero h+(r) means that there are center-of-mass ripples in the TBG system, which
typically occurs as thermal excitation effects and/or strain effects. At zero temperature and in the absence of external strain, it is
legitimate to set h+(r) = 0.

Then, we can construct the Euler-Lagrange equations. We start with functions of the in-plane relative distortion u−,

∂V

∂u−
x

− ∂

∂x

∂V

∂
∂u−

x
∂x

− ∂

∂y

∂V

∂
∂u−

x
∂y

= 0,
∂V

∂u−
y

− ∂

∂x

∂V

∂
∂u−

y

∂x

− ∂

∂y

∂V

∂
∂u−

y

∂y

= 0, (B5)

where

∂V

∂u−
x

=
∑

m

ei(Gm·r+a∗
m·u− )ia∗

m,x

{
εa∗

m

[
−1 + 36

(
h− − h−

0

h−
0

)2
]

+ ε(r)72
h− − h−

0

h−
0

(−1)
h−

(h−
0 )2

h−
0,a∗

m

}
,

− ∂

∂x

∂V

∂
∂u−

x
∂x

= −1

2

{
(λ + μ)

[
∂2u−

x

∂x2
+ ∂2u−

y

∂x∂y

]
+ μ

[
∂2u−

x

∂x2
− ∂2u−

y

∂x∂y

]}
,

− ∂

∂y

∂V

∂
∂u−

x
∂y

= −1

2

{
μ

[
∂2u−

x

∂y2
+ ∂2u−

y

∂x∂y

]}
,

∂V

∂u−
y

=
∑

m

ei(Gm·r+a∗
m·u− )ia∗

m,y

{
εa∗

m

[
−1 + 36

(
h− − h−

0

h−
0

)2
]

+ ε(r)72
h− − h−

0

h−
0

(−1)
h−

(h−
0 )2

h−
0,a∗

m

}
,
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− ∂

∂y

∂V

∂
∂u−

y

∂y

= −1

2

{
(λ + μ)

[
∂2u−

y

∂y2
+ ∂2u−

x

∂y∂x

]
+ μ

[
∂2u−

y

∂y2
− ∂2u−

x

∂y∂x

]}
,

− ∂

∂x

∂V

∂
∂u−

y

∂x

= −1

2

{
μ

[
∂2u−

y

∂x2
+ ∂2u−

x

∂y∂x

]}
. (B6)

Then, we introduce the following Fourier transformation:

u−(r) =
∑

m

u−
Gm

eiGm·r.

∑
m′

ei(Gm·r+a∗
m′ ·u− )ia∗

m′,α

{
εa∗

m′

[
−1 + 36

(
h− − h−

0

h−
0

)2
]

+ ε(r)72
h− − h−

0

h−
0

(−1)
h−

(h−
0 )2

h−
0,a∗

m′

}

=
∑

m

FGm,αeiGm·r, (B7)

where α = x, y, a∗
m = m1a∗

1 + m2a∗
2 is the reciprocal lattice vectors of monolayer graphene and Gm = m1GM

1 + m2GM
2 is the

moiré reciprocal lattice vector. We can write Eq. (B5) into a matrix form as follows:[
(λ + 2μ)G2

m,x + μG2
m,y (λ + μ)Gm,xGm,y

(λ + μ)Gm,xGm,y (λ + 2μ)G2
m,y + μG2

m,x

][
u−

Gm,x

u−
Gm,y

]
= −2

[
FGm,x

FGm,y

]
. (B8)

It is important to note that FGm,α is a function of both u− and h−. For fixed {h−(r)}, u− can be solved iteratively.
The Euler-Lagrange equations of center-of-mass in-plane distortion u+ are given by

∂V

∂u+
x

− ∂

∂x

∂V

∂
∂u+

x
∂x

− ∂

∂y

∂V

∂
∂u+

x
∂y

= 0,
∂V

∂u+
y

− ∂

∂x

∂V

∂
∂u+

y

∂x

− ∂

∂y

∂V

∂
∂u+

y

∂y

= 0, (B9)

where

∂V

∂u+
x

= 0,

− ∂

∂x

∂V

∂
∂u+

x
∂x

= −1

2

{
(λ + μ)

[
∂2u+

x

∂x2
+ ∂2u+

y

∂x∂y
+ 1

2

∂h−

∂x

∂2h−

∂x2
+ 1

2

∂h−

∂y

∂2h−

∂x∂y

]

+μ

[
∂2u+

x

∂x2
− ∂2u+

y

∂x∂y
+ 1

2

∂h−

∂x

∂2h−

∂x2
− 1

2

∂h−

∂y

∂2h−

∂x∂y

]}
,

− ∂

∂y

∂V

∂
∂u+

x
∂y

= −1

2

{
μ

[
∂2u−

x

∂y2
+ ∂2u−

y

∂x∂y
+ 1

2

∂2h−

∂x∂y

∂h−

∂y
+ 1

2

∂h−

∂x

∂2h−

∂y2

]}
,

∂V

∂u+
y

= 0,

− ∂

∂y

∂V

∂
∂u+

y

∂y

= −1

2

{
(λ + μ)

[
∂2u+

y

∂y2
+ ∂2u+

x

∂y∂x
+ 1

2

∂h−

∂y

∂2h−

∂y2
+ 1

2

∂h−

∂x

∂2h−

∂y∂x

]

+μ

[
∂2u+

y

∂y2
− ∂2u+

x

∂y∂x
+ 1

2

∂h−

∂y

∂2h−

∂y2
− 1

2

∂h−

∂x

∂2h−

∂y∂x

]}
,

− ∂

∂x

∂V

∂
∂u+

y

∂x

= −1

2

{
μ

[
∂2u−

y

∂x2
+ ∂2u−

x

∂y∂x
+ 1

2

∂2h−

∂y∂x

∂h−

∂x
+ 1

2

∂h−

∂y

∂2h−

∂x2

]}
. (B10)

We introduce the Fourier transformation for the lattice distortion,

u+(r) =
∑

m

u+
Gm

eiGm·r, h−(r) =
∑

m

h−
Gm

eiGm·r. (B11)
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Then, the Euler-Lagrange equations of u+ in reciprocal space is given by[
(λ + 2μ)G2

m,x + μG2
m,y (λ + μ)Gm,xGm,y

(λ + μ)Gm,xGm,y (λ + 2μ)G2
m,y + μG2

m,x

][
u+

Gm,x

u+
Gm,y

]
=
[

Mx

My

]
, (B12)

where

Mx = 1

2

∑
P1,P2

h−
P1

h−
P2

{
(λ + μ) ∗ i

[−P1,xP2
2,x − P1,yP2,xP2,y

]
+μ ∗ i

[−P1,xP2
2,x + P1,yP2,xP2,y − P1,xP1,yP2,y − P1,xP2

2,y

]}
δP1+P2,Gm ,

My = 1

2

∑
P1,P2

h−
P1

h−
P2

{
(λ + μ) ∗ i

[−P1,yP2
2,y − P1,xP2,yP2,x

]
+ μ ∗ i

[−P1,yP2
2,y + P1,xP2,yP2,x − P1,yP1,xP2,x − P1,yP2

2,x

]}
δP1+P2,Gm . (B13)

Here P1, P2 = m1GM
1 + m2GM

2 is the moiré reciprocal lattice vector. We note that Mα is a function of h−. As a result, u+ can be
solved directly for fixed {h−(r)},

The Euler-Lagrange equation of the out-of-plane relative distortions is given by

∂V

∂h− − ∂

∂x

∂V

∂ ∂h−
∂x

− ∂

∂y

∂V

∂ ∂h−
∂y

+ ∂2

∂x2

∂V

∂ ∂2h−
∂x2

+ ∂2

∂y2

∂V

∂ ∂2h−
∂y2

= 0, (B14)

where

∂V

∂h− = ε(r)72
h− − h−

0(
h−

0

)2 ,

− ∂

∂x

∂V

∂ ∂h−
∂x

= −1

2

{
(λ + μ)

[
1

2

(
∂2h−

∂x2

∂u+
x

∂x
+ ∂h−

∂x

∂2u+
x

∂x2

)
+ 1

2

(
∂2h−

∂x2

∂u+
y

∂y
+ ∂h−

∂x

∂2u+
y

∂y2

)

+1

8

(
3

(
∂h−

∂x

)2
∂2h−

∂x2
+ 1

8

(
∂2h−

∂x2

(
∂h−

∂y

)2

+ 2
∂h−

∂x

∂h−

∂y

∂2h−

∂x∂y

))]

+ μ

[
1

2

(
∂2h−

∂x2

∂u+
x

∂x
+ ∂h−

∂x

∂2u+
x

∂x2

)
− 1

2

(
∂2h−

∂x2

∂u+
y

∂y
+ ∂h−

∂x

∂2u+
y

∂y2

)

+ 1

8

(
3

(
∂h−

∂x

)2
∂2h−

∂x2
− 1

8

(
∂2h−

∂x2

(
∂h−

∂y

)2

+ 2
∂h−

∂x

∂h−

∂y

∂2h−

∂x∂y

))

+ 1

2

(
∂2u+

x

∂x∂y

∂h−

∂y
+ ∂u+

x

∂y

∂2h−

∂x∂y

)
+ 1

2

(
∂2u+

y

∂x2

∂h−

∂y
+ ∂u+

y

∂x

∂2h−

∂x∂y

)

+1

4

(
∂2h−

∂x2

(
∂h−

∂y

)2

+ 2
∂h−

∂x

∂h−

∂y

∂2h−

∂x∂y

)]}
,

− ∂

∂y

∂V

∂ ∂h−
∂y

= −1

2

{
(λ + μ)

[
1

2

(
∂2h−

∂y2

∂u+
y

∂y
+ ∂h−

∂y

∂2u+
y

∂y2

)
+ 1

2

(
∂2h−

∂y2

∂u+
x

∂x
+ ∂h−

∂y

∂2u+
x

∂x2

)

+1

8

(
3

(
∂h−

∂y

)2
∂2h−

∂y2
+ 1

8

(
∂2h−

∂y2

(
∂h−

∂x

)2

+ 2
∂h−

∂y

∂h−

∂x

∂2h−

∂y∂x

))]

+ μ

[
1

2

(
∂2h−

∂y2

∂u+
y

∂y
+ ∂h−

∂y

∂2u+
y

∂y2

)
− 1

2

(
∂2h−

∂y2

∂u+
x

∂x
+ ∂h−

∂y

∂2u+
x

∂x2

)

+ 1

8

(
3

(
∂h−

∂y

)2
∂2h−

∂y2
− 1

8

(
∂2h−

∂y2

(
∂h−

∂x

)2

+ 2
∂h−

∂y

∂h−

∂x

∂2h−

∂y∂x

))

+ 1

2

(
∂2u+

y

∂y∂x

∂h−

∂x
+ ∂u+

y

∂x

∂2h−

∂y∂x

)
+ 1

2

(
∂2u+

x

∂y2

∂h−

∂x
+ ∂u+

x

∂y

∂2h−

∂y∂x

)
+1

4

(
∂2h−

∂y2

(
∂h−

∂x

)2

+ 2
∂h−

∂y

∂h−

∂x

∂2h−

∂y∂x

)]}
,
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+ ∂2

∂x2

∂V

∂ ∂2h−
∂x2

= 1

2
κ

(
∂4

∂x4
+ ∂4

∂x2∂y2

)
h−,

+ ∂2

∂y2

∂V

∂ ∂2h−
∂y2

= 1

2
κ

(
∂4

∂x2∂y2
+ ∂4

∂y4

)
h−. (B15)

In order to derive the Euler-Lagrange equations in reciprocal space, we introduce the following Fourier transformations:

u+(r) =
∑

m

u+
Gm

eiGm·r, h−(r) =
∑

m

h−
Gm

eiGm·r,
ε(r)

(h−
0 )2

=
∑

m

gGm eiGm·r,
ε(r)

h−
0

=
∑

m

fGm eiGm·r. (B16)

Then, we can express the partial derivatives in reciprocal space,

∂V

∂h− = 72

⎡
⎣∑

m,m′
gGm′ h

−
Gm

ei(Gm′ +Gm )·r −
∑

m′
fGm′ e

iGm′ ·r

⎤
⎦,

− ∂

∂x

∂V

∂ ∂h−
∂x

= −1

2

∑
m,m′

{
(λ + μ)

i

2

[
h−

Gm
u+

Gm′ ,x

(−G2
m,xGm′,x − Gm,xG2

m′,x
) + h−

Gm
u+

Gm′ ,y

(−G2
m,xGm′,y − Gm,xGm′,xGm′,y

)]

+ μ
i

2

[
h−

Gm
u+

Gm′ ,x

(− G2
m,xGm′,x − Gm,xG2

m′,x
)− h−

Gm
u+

Gm′ ,y

(− G2
m,xGm′,y − Gm,xGm′,xGm′,y

)
+ h−

Gm
u+

Gm′ ,x(−Gm,yGm′,xGm′,y − Gm,xGm,yGm′,y)

+ hGm u+
Gm′ ,y

(−Gm,yG2
m′,x − Gm,xGm,yGm′,x

)]}
ei(Gm+Gm′ )·r,

− ∂

∂y

∂V

∂ ∂h−
∂y

= (. . . x ↔ y . . . ),

+ ∂2

∂x2

∂V

∂ ∂2h−
∂x2

= κ

2

∑
m

h−
Gm

(
G4

m,x + G2
m,xG2

m,y

)
eiGm·r,

+ ∂2

∂y2

∂V

∂ ∂2h−
∂y2

= κ

2

∑
m

h−
Gm

(
G2

m,xG2
m,y + G4

m,y

)
eiGm·r. (B17)

We want to note that Eqs. (B17) and (B9) can be solved
iteratively for fixed {u−(r)}. Thus, we can divide the full
Euler-Lagrange equations into two sets of equations and solve
the coupled equations following the work flow introduced in
Sec. III A.

APPENDIX C: IN-PLANE CENTER-OF-MASS
DISTORTION OF MAGIC-ANGLE TBG

We present the real-space distribution of the in-plane
center-of-mass distortions of magic-angle TBG in Fig. 6. The
colorbar represents the amplitudes of local in-plane center-of-
mass distortions (u+) of magic-angle TBG. The directions of
the distortion fields are depicted by the arrows. The maximal
amplitude of the in-plane center-of-mass distortion is about
10−4 Å, which can be neglected.

APPENDIX D: DETAILED FORMALISM
FOR PHONON CALCULATIONS

After evaluating the converged lattice displacement fields
from the structural relaxation calculation, we study the
phonon properties in magic-angle TBG using the continuum
model. With the converged lattice distortion characterized by
{u±(r), h±(r)}, we introduce the time-dependent displace-

ment field near the equilibrium position,

u±(r, t ) = u±
c (r) + δu±(r, t ),

h±(r, t ) = h±
c (r) + δh±(r, t ), (D1)

FIG. 6. The real-space distribution of the in-plane center-of-
mass distortion of magic-angle TBG. The colorbar represents the
amplitudes of local in-plane center-of-mass distortion. The arrows
represent the directions of the distortion fields.
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where u±
c (r) and h±

c (r) are the converged lattice distortions, δu±(r, t ) and δh±(r, t ) are the time-dependent perturbative
excitations near equilibrium positions. We expand the binding energy to the second order of δu±(r, t ) and δh±(r, t ),

UB = U (0)
B + 1

2

[∫
d2rV (2)

B,uuδu−(r, t )δu−(r, t ) +
∫

d2rV (2)
B,hhδh−(r, t )δh−(r, t )

+
∫

d2rV (2)
B,uhδu−(r, t )δh−(r, t ) +

∫
d2rV (2)

B,huδu−(r, t )δh−(r, t )

]
, (D2)

where V (2)
B,i , i = uu, hh, uh, hu, represents the second-order functional derivatives of the binding-energy density with respect to

the different components of displacement fields, which can be expressed as

(
V (2)

B,uu

)
α,β

= ∂2VB

∂uα∂uβ

=
∑

m

εa∗
m
ei(Gm·r+a∗

m·u− )ia∗
m,αia∗

m,β

[
−1 + 36

(
h− − h−

0

h−
0

)2
]

+ ε(r)72

[
(−1)

h−

(h−
0 )2

∑
m′

h0,a∗
m′ e

i(Gm′ ·r+a∗
m′ ·u− )ia∗

m′,β

][
(−1)

h−

(h−
0 )2

∑
m

h0,a∗
m
ei(Gm·r+a∗

m·u− )ia∗
m,α

]

+ 2
∑

m

εa∗
m
ei(Gm·r+a∗

m·u− )ia∗
m,α

[
72

h− − h−
0

h−
0

(−1)
h−

(h−
0 )2

∑
m′

h0,a∗
m′ e

i(Gm′ ·r+a∗
m′ ·u− )ia∗

m′

]

+ ε(r)72
h− − h−

0

h−
0

(−1)
(−2)h−

(h−
0 )3

[∑
m′

h0,a∗
m′ e

i(Gm′ ·r+a∗
m′ ·u− )

][∑
m

h0,a∗
m
ei(Gm·r+a∗

m·u− )

]

+ ε(r)72
h− − h−

0

h−
0

(−1)
h−

(h−
0 )2

∑
m

h0,a∗
m
ei(Gm·r+a∗

m·u− )ia∗
m,αia∗

m,β ,

V (2)
B,uh = ∂2VB

∂uα∂h− =
∑

m

ei(Gm·r+a∗
m·u− )ia∗

m,α

{
εa∗

m
72

h− − h−
0

(h−
0 )2

+ ε(r)72

[ −h−

(h−
0 )3

+ −(h− − h−
0 )

(h−
0 )3

]}
,

V (2)
B,hh = ∂2VB

∂ (h−)2
= ε(r)

72

(h−
0 )2

, (D3)

where α, β = x, y. We introduce the following Fourier transformation:

u±
c (r) =

∑
m

u±
c,Gm

eiGm·r, δu±(r, t ) = e−iωt
∑

q

δu±
q eiq·r,

h±
c (r) =

∑
m

h±
c,Gm

eiGm·r, δh±(r, t ) = e−iωt
∑

q

δh±
q eiq·r,

V (2)
B,i =

∑
m

V (2)
B,i,Gm

eiGm·r, (D4)

where i = uu, hh, uh, hu, Gm = m1GM
1 + m2GM

2 is the reciprocal lattice vectors. Then, we can express the binding energy in
reciprocal space, given by U (2)

B =∑G,G′,q δũ†
G′+qŨ(2)

B,G,G′δũG+q, where G, G′ = m1GM
1 + m2GM

2 are the moiré reciprocal lattice
vector and q is the wavevector within moiré Brillouin zone. The binding energy is a functional of relative displacements, which
couples the δu− and δh− vibration. The force constant contributed by the binding energy in the matrix form is given by

Ũ(2)
B,G,G′ = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 V (2)

B,uu,G−G′,xx V (2)
B,uu,G−G′,xy V (2)

B,uh,G−G′,x

0 0 0 V (2)
B,uu,G−G′,xy V (2)

B,uu,G−G′,yy V (2)
B,uh,G−G′,y

0 0 0 V (2)
B,uh,G−G′,x V (2)

B,uh,G−G′,y V (2)
B,hh,G−G′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (D5)

with the generalized displacement vector δũG+q defined as

δũG+q = [δu+
G+q,x δu+

G+q,y δh+
G+q δu−

G+q,x δu−
G+q,y δh−

G+q]T. (D6)
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Before we derive the force constant contributed by the elastic energy, we divide the elastic energy into three terms according
to the energy hierarchy. UE = U 1

E + U 2
E + U 3

E , where

U 1
E =

∫
d2r

κ

4

[(
∂2

∂x2
+ ∂2

∂y2

)
h+
]2

+
[(

∂2

∂x2
+ ∂2

∂y2

)
h−
]2

+ λ + μ

4

⎡
⎣(∂u+

x

∂x

)2

+
(

∂u−
x

∂x

)2

+
(

∂u+
y

∂y

)2

+
(

∂u−
y

∂y

)2

+ 2

(
∂u+

x

∂x

∂u+
y

∂y
+ ∂u−

x

∂x

∂u−
y

∂y

)⎤⎦

+ μ

4

⎡
⎣(∂u+

x

∂x

)2

+
(

∂u−
x

∂x

)2

+
(

∂u+
y

∂y

)2

+
(

∂u−
y

∂y

)2

− 2

(
∂u+

x

∂x

∂u+
y

∂y
+ ∂u−

x

∂x

∂u−
y

∂y

)⎤⎦

+ μ

4

⎡
⎣(∂u+

x

∂y

)2

+
(

∂u−
x

∂y

)2

+
(

∂u+
y

∂x

)2

+
(

∂u−
y

∂x

)2

+ 2

(
∂u+

x

∂y

∂u+
y

∂x
+ ∂u−

x

∂y

∂u−
y

∂x

)⎤⎦,

U 2
E =

∫
d2r

λ + μ

8

[
∂u+

x

∂x

(
∂h+

∂x

)2

+ ∂u+
x

∂x

(
∂h−

∂x

)2

+ 2
∂u−

x

∂x

∂h+

∂x

∂h−

∂x
+ ∂u+

y

∂y

(
∂h+

∂y

)2

+ ∂u+
y

∂y

(
∂h−

∂y

)2

+ 2
∂u−

y

∂y

∂h+

∂y

∂h−

∂y

+∂u+
y

∂y

(
∂h+

∂x

)2

+ ∂u+
y

∂y

(
∂h−

∂x

)2

+ 2
∂u−

y

∂y

∂h+

∂x

∂h−

∂x
+ ∂u+

x

∂x

(
∂h+

∂y

)2

+ ∂u+
x

∂x

(
∂h−

∂y

)2

+ 2
∂u−

x

∂x

∂h+

∂y

∂h−

∂y

]

+ μ

8

[
∂u+

x

∂x

(
∂h+

∂x

)2

+ ∂u+
x

∂x

(
∂h−

∂x

)2

+ 2
∂u−

x

∂x

∂h+

∂x

∂h−

∂x
+ ∂u+

y

∂y

(
∂h+

∂y

)2

+ ∂u+
y

∂y

(
∂h−

∂y

)2

+ 2
∂u−

y

∂y

∂h+

∂y

∂h−

∂y

−∂u+
y

∂y

(
∂h+

∂x

)2

− ∂u+
y

∂y

(
∂h−

∂x

)2

− 2
∂u−

y

∂y

∂h+

∂x

∂h−

∂x
− ∂u+

x

∂x

(
∂h+

∂y

)2

− ∂u+
x

∂x

(
∂h−

∂y

)2

− 2
∂u−

x

∂x

∂h+

∂y

∂h−

∂y

]

+ μ

8
2

[
∂u+

x

∂y

∂h+

∂x

∂h+

∂y
+ ∂u+

x

∂y

∂h−

∂x

∂h−

∂y
+ ∂u−

x

∂y

∂h+

∂x

∂h−

∂y
+ ∂u−

x

∂y

∂h−

∂x

∂h+

∂y

+ ∂u+
y

∂x

∂h+

∂x

∂h+

∂y
+ ∂u+

y

∂x

∂h−

∂x

∂h−

∂y
+ ∂u−

y

∂x

∂h+

∂x

∂h−

∂y
+ ∂u−

y

∂x

∂h−

∂x

∂h+

∂y

]
,

U 3
E =

∫
d2r

λ + μ

16

{
1

4

[(
∂h+

∂x

)4

+ 6

(
∂h+

∂x

)2(
∂h−

∂x

)2

+
(

∂h−

∂x

)4
]

+ 1

4

[(
∂h+

∂y

)4

+ 6

(
∂h+

∂y

)2(
∂h−

∂y

)2

+
(

∂h−

∂y

)4
]

+ 1

2

[(
∂h−

∂x

)2(
∂h−

∂y

)2

+
(

∂h+

∂x

)2(
∂h−

∂y

)2

+
(

∂h−

∂x

)2(
∂h+

∂y

)2

+
(

∂h+

∂x

)2(
∂h+

∂y

)2

+ 4

(
∂h−

∂x

)(
∂h+

∂x

)(
∂h−

∂y

)(
∂h+

∂y

)]}

+ λ + μ

16

{
1

4

[(
∂h+

∂x

)4

+ 6

(
∂h+

∂x

)2(
∂h−

∂x

)2

+
(

∂h−

∂x

)4
]

+ 1

4

[(
∂h+

∂y

)4

+ 6

(
∂h+

∂y

)2(
∂h−

∂y

)2

+
(

∂h−

∂y

)4
]

− 1

2

[(
∂h−

∂x

)2(
∂h−

∂y

)2

+
(

∂h+

∂x

)2(
∂h−

∂y

)2

+
(

∂h−

∂x

)2(
∂h+

∂y

)2

+
(

∂h+

∂x

)2(
∂h+

∂y

)2

+4

(
∂h−

∂x

)(
∂h+

∂x

)(
∂h−

∂y

)(
∂h+

∂y

)]}
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+ μ

16

[(
∂h−

∂x

)2(
∂h−

∂y

)2

+
(

∂h+

∂x

)2(
∂h−

∂y

)2

+
(

∂h−

∂x

)2(
∂h+

∂y

)2

+
(

∂h+

∂x

)2(
∂h+

∂y

)2

+4

(
∂h−

∂x

)(
∂h+

∂x

)(
∂h−

∂y

)(
∂h+

∂y

)]
. (D7)

We introduce a the time-dependent perturbative vibration to the elastic energy. Besides, we assume that the out-of-plane
component of the center-of-mass distortion vanishes, i.e., h+(r) = 0. Then, we expand the elastic energy to the second order of
δu±(r, t ) and δh±(r, t ),

U 1
E = U 1,(0)

E + U 1,(2)
E , U 2

E = U 2,(0)
E + U 2,(2)

E , (D8)

where

U 1,(2)
E =

∫
d2r

κ

4

{[(
∂2

∂x2
+ ∂2

∂y2

)
δh+
]2

+
[(

∂2

∂x2
+ ∂2

∂y2

)
δh−
]2
}

+ λ + μ

4

⎡
⎣(∂δu+

x

∂x

)2

+
(

∂δu−
x

∂x

)2

+
(

∂δu+
y

∂y

)2

+
(

∂δu−
y

∂y

)2

+ 2

(
∂δu+

x

∂x

∂δu+
y

∂y
+ ∂δu−

x

∂x

∂δu−
y

∂y

)⎤⎦

+ μ

4

⎡
⎣(∂δu+

x

∂x

)2

+
(

∂δu−
x

∂x

)2

+
(

∂δu+
y

∂y

)2

+
(

∂δu−
y

∂y

)2

− 2

(
∂δu+

x

∂x

∂δu+
y

∂y
+ ∂δu−

x

∂x

∂δu−
y

∂y

)⎤⎦

+ μ

4

⎡
⎣(∂δu+

x

∂y

)2

+
(

∂δu−
x

∂y

)2

+
(

∂δu+
y

∂x

)2

+
(

∂δu−
y

∂x

)2

+ 2

(
∂δu+

x

∂y

∂δu+
y

∂x
+ ∂δu−

x

∂y

∂δu−
y

∂x

)⎤⎦,

U 2,(2)
E =

∫
d2r

λ + μ

8

[
∂u+

c,x

∂x

(
∂δh+

∂x

)2

+ 2
∂δu+

x

∂x

∂h−
c

∂x

∂δh−

∂x
+ ∂u+

c,x

∂x

(
∂δh−

∂x

)2

+ 2

(
∂δu−

x

∂x

∂h−
c

∂x

∂δh+

∂x
+ ∂u−

c,x

∂x

∂δh−

∂x

∂δh+

∂x

)

+ ∂u+
c,y

∂y

(
∂δh+

∂y

)2

+ 2
∂δu+

y

∂y

∂h−
c

∂y

∂δh−

∂y
+ ∂u+

c,y

∂y

(
∂δh−

∂y

)2

+ 2

(
∂δu−

y

∂y

∂h−
c

∂y

∂δh+

∂y
+ ∂u−

c,y

∂y

∂δh−

∂y

∂δh+

∂y

)

+ ∂u+
c,y

∂y

(
∂δh+

∂x

)2

+ 2
∂δu+

y

∂y

∂h−
c

∂x

∂δh−

∂x
+ ∂u+

c,y

∂y

(
∂δh−

∂x

)2

+ 2

(
∂δu−

y

∂y

∂h−
c

∂x

∂δh+

∂x
+ ∂u−

c,y

∂y

∂δh−

∂x

∂δh+

∂x

)

+ ∂u+
c,x

∂x

(
∂δh+

∂y

)2

+ 2
∂δu+

x

∂x

∂h−
c

∂y

∂δh−

∂y
+ ∂u+

c,x

∂x

(
∂δh−

∂y

)2

+ 2

(
∂δu−

x

∂x

∂h−
c

∂y

∂δh+

∂y
+ ∂u−

c,x

∂x

∂δh−

∂y

∂δh+

∂y

)]

+ μ

8

[
∂u+

c,x

∂x

(
∂δh+

∂x

)2

+ 2
∂δu+

x

∂x

∂h−
c

∂x

∂δh−

∂x
+ ∂u+

c,x

∂x

(
∂δh−

∂x

)2

+ 2

(
∂δu−

x

∂x

∂h−
c

∂x

∂δh+

∂x
+ ∂u−

c,x

∂x

∂δh−

∂x

∂δh+

∂x

)

+ ∂u+
c,y

∂y

(
∂δh+

∂y

)2

+ 2
∂δu+

y

∂y

∂h−
c

∂y

∂δh−

∂y
+ ∂u+

c,y

∂y

(
∂δh−

∂y

)2

+ 2

(
∂δu−

y

∂y

∂h−
c

∂y

∂δh+

∂y
+ ∂u−

c,y

∂y

∂δh−

∂y

∂δh+

∂y

)

− ∂u+
c,y

∂y

(
∂δh+

∂x

)2

− 2
∂δu+

y

∂y

∂h−
c

∂x

∂δh−

∂x
− ∂u+

c,y

∂y

(
∂δh−

∂x

)2

− 2

(
∂δu−

y

∂y

∂h−
0

∂x

∂δh+

∂x
+ ∂u−

c,y

∂y

∂δh−

∂x

∂δh+

∂x

)

−∂u+
c,x

∂x

(
∂δh+

∂y

)2

− 2
∂δu+

x

∂x

∂h−
c

∂y

∂δh−

∂y
+ ∂u+

c,x

∂x

(
∂δh−

∂y

)2

− 2

(
∂δu−

x

∂x

∂h−
c

∂y

∂δh+

∂y
+ ∂u−

c,x

∂x

∂δh−

∂y

∂δh+

∂y

)]

+ μ

8
2

[
∂u+

c,x

∂y

∂δh+

∂x

∂δh+

∂y
+ ∂δu+

x

∂y

∂δh−

∂x

∂h−
c

∂y
+ ∂δu+

x

∂y

∂h−
c

∂x

∂δh−

∂y
+ ∂u+

c,x

∂y

∂δh−

∂x

∂δh−

∂y
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+ ∂δu−
x

∂y

∂δh+

∂x

∂h−
c

∂y
+ ∂u−

c,x

∂y

∂δh+

∂x

∂δh−

∂y
+ ∂δu−

x

∂y

∂h−
c

∂x

∂δh+

∂y
+ ∂u−

c,x

∂y

∂δh−

∂x

∂δh+

∂y

+ ∂u+
c,y

∂x

∂δh+

∂x

∂δh+

∂y
+ ∂δu+

y

∂x

∂δh−

∂x

∂h−
c

∂y
+ ∂δu+

y

∂x

∂h−
c

∂x

∂δh−

∂y
+ ∂u+

c,y

∂x

∂δh−

∂x

∂δh−

∂y

+ ∂δu−
y

∂x

∂δh+

∂x

∂h−
c

∂y
+ ∂u−

c,y

∂x

∂δh+

∂x

∂δh−

∂y
+ ∂δu−

y

∂x

∂h−
c

∂x

∂δh+

∂y
+ ∂u−

c,y

∂x

∂δh−

∂x

∂δh+

∂y

]
. (D9)

We neglect U 3
E terms in further calculation, since it is at least 100 times smaller than other terms. Then, we express the force

constant contributed by the elastic energy in reciprocal space,

U 1,(2)
E =

∑
G,q

κ

4
[(Gx + qx )2 + (Gy + qy)2]2δh+∗

G+qδh+
G+q + κ

4
[(Gx + qx )2 + (Gy + qy)2]2δh−∗

G+qδh−
G+q

+
∑

G

∑
q

λ + μ

4

[
(Gx + qx )2δu+∗

G+q,xδu+
G+q,x + (Gy + qy)2δu+∗

G+q,yδu+
G+q,y

+ (Gx + qx )(Gy + qy)(δu+∗
G+q,xδu+

G+q,y + δu+∗
G+q,yδu+

G+q,x )

+ (Gx + qx )2δu−∗
G+q,xδu−

G+q,x + (Gy + qy)2δu−∗
G+q,yδu−

G+q,y

+ (Gx + qx )(Gy + qy)(δu−∗
G+q,xδu−

G+q,y + δu−∗
G+q,yδu−

G+q,x )
]

+
∑

G

∑
q

μ

4

[
(Gx + qx )2δu+∗

G+q,xδu+
G+q,x + (Gy + qy)2δu+∗

G+q,yδu+
G+q,y

− (Gx + qx )(Gy + qy)(δu+∗
G+q,xδu+

G+q,y + δu+∗
G+q,yδu+

G+q,x )

+ (Gx + qx )2δu−∗
G+q,xδu−

G+q,x + (Gy + qy)2δu−∗
G+q,yδu−

G+q,y

− (Gx + qx )(Gy + qy)(δu−∗
G+q,xδu−

G+q,y + δu−∗
G+q,yδu−

G+q,x )
]

+ μ

4

[
(Gy + qy)2δu+∗

G+q,xδu+
G+q,x + (Gx + qx )2δu+∗

G+q,yδu+
G+q,y

+ (Gx + qx )(Gy + qy)(δu+∗
G+q,xδu+

G+q,y + δu+∗
G+q,yδu+

G+q,x )

+ (Gy + qy)2δu−∗
G+q,xδu−

G+q,x + (Gx + qx )2δu−∗
G+q,yδu−

G+q,y

+ (Gx + qx )(Gy + qy)(δu−∗
G+q,xδu−

G+q,y + δu−∗
G+q,yδu−

G+q,x )
]
. (D10)

U 1,(2)
E is the dominant contribution by the elastic energy, which can be written into a block diagonal matrix,

Ũ1,(2)
E ,G,q = 1

4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(λ + 2μ)G̃2
x + μG̃2

y (λ + μ)G̃xG̃y 0 0 0 0

(λ + μ)G̃xG̃y (λ + 2μ)G̃2
y + μG̃2

x 0 0 0 0

0 0 κ
(
G̃2

x + G̃2
y

)2
0 0 0

0 0 0 (λ + 2μ)G̃2
x + μG̃2

y (λ + μ)G̃xG̃y 0

0 0 0 (λ + μ)G̃xG̃y (λ + 2μ)G̃2
y + μG̃2

x 0

0 0 0 0 0 κ
(
G̃2

x + G̃2
y

)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(D11)

where G̃ = G + q. We can also express U 2,(2)
E in reciprocal space. For simplicity, we denote (Gα − G′

α )(Gβ + qβ )(G′
γ + qγ ) as

(α, β, γ ) with α, β, γ = x, y. Then, U 2,(2)
E is given by

U 2,(2)
E =

∑
G,G′

∑
q

λ + μ

8

{
δh+∗

G+qi
[
(x, x, x)u+

c,G−G′,x + (y, y, y)u+
c,G−G′,y + (y, x, x)u+

c,G−G′,y + (x, y, y)u+
c,G−G′,x

]
δh+

G′+q

+ h−
c,G−G′ i

[
δu+∗

G+q,x (x, x, x)δh−
G′+q + δh−∗

G+q(x, x, x)δu+
G′+q,x+δu+∗

G+q,y(y, y, y)δh−
G′+q + δh−∗

G+q(y, y, y)δu+
G′+q,y

+ δu+∗
G+q,y(x, y, x)δh−

G′+q + δh−∗
G+q(x, x, y)δu+

G′+q,y + δu+∗
G+q,x (y, x, y)δh−

G′+q + δh−∗
G+q(y, y, x)δu+

G′+q,x

]
+ δh−∗

G+qi
[
(x, x, x)u+

c,G−G′,x + (y, y, y)u+
c,G−G′,y + (y, x, x)u+

c,G−G′,y + (x, y, y)u+
c,G−G′,x

]
δh−

G′+q

+ h−
c,G−G′ i

[
δu−∗

G+q,x (x, x, x)δh+
G′+q + δh+∗

G+q(x, x, x)δu−
G′+q,x+δu−∗

G+q,y(y, y, y)δh+
G′+q + δh+∗

G+q(y, y, y)δu−
G′+q,y
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+ δu−∗
G+q,y(x, y, x)δh+

G′+q + δh+∗
G+q(x, x, y)δu−

G′+q,y + δu−∗
G+q,x (y, x, y)δh+

G′+q + δh+∗
G+q(y, y, x)δu−

G′+q,x

]
+ δh−∗

G+qi
[
(x, x, x)u−

c,G−G′,x + (y, y, y)u−
c,G−G′,y + (y, x, x)u−

c,G−G′,y + (x, y, y)u−
c,G−G′,x

]
δh+

G′+q

+ δh+∗
G+qi

[
(x, x, x)u−

c,G−G′,x + (y, y, y)(G′
y + qy)u−

c,G−G′,y + (y, x, x)u−
c,G−G′,y + (x, y, y)u−

c,G−G′,x

]
δh−

G′+q

}
+
∑
G,G′

∑
q

μ

8

{
δh+∗

G+qi
[
(x, x, x)u+

c,G−G′,x + (y, y, y)u+
c,G−G′,y − (y, x, x)u+

c,G−G′,y − (x, y, y)u+
c,G−G′,x

]
δh+

G′+q

+ h−
c,G−G′ i

[
δu+∗

G+q,x (x, x, x)δh−
G′+q + δh−∗

G+q(x, x, x)δu+
G′+q,x+δu+∗

G+q,y(y, y, y)δh−
G′+q + δh−∗

G+q(y, y, y)δu+
G′+q,y

− δu+∗
G+q,y(x, y, x)δh−

G′+q − δh−∗
G+q(x, x, y)δu+

G′+q,y − δu+∗
G+q,x (y, x, y)δh−

G′+q − δh−∗
G+q(y, y, x)δu+

G′+q,x

]
+ δh−∗

G+qi
[
(x, x, x)u+

c,G−G′,x + (y, y, y)u+
c,G−G′,y − (y, x, x)u+

c,G−G′,y − (x, y, y)u+
c,G−G′,x

]
δh−

G′+q

+ h−
c,G−G′ i

[
δu−∗

G+q,x (x, x, x)δh+
G′+q + δh+∗

G+q(x, x, x)δu−
G′+q,x+δu−∗

G+q,y(y, y, y)δh+
G′+q + δh+∗

G+q(y, y, y)δu−
G′+q,y

− δu−∗
G+q,y(x, y, x)δh+

G′+q − δh+∗
G+q(x, x, y)δu−

G′+q,y − δu−∗
G+q,x (y, x, y)δh+

G′+q − δh+∗
G+q(y, y, x)δu−

G′+q,x

]
+ δh−∗

G+qi
[
(x, x, x)u−

c,G−G′,x + (y, y, y)u−
c,G−G′,y − (y, x, x)u−

c,G−G′,y − (x, y, y)u−
c,G−G′,x

]
δh+

G′+q

+ δh+∗
G+qi

[
(x, x, x)u−

c,G−G′,x + (y, y, y)(G′
y + qy)u−

c,G−G′,y − (y, x, x)u−
c,G−G′,y − (x, y, y)u−

c,G−G′,x

]
δh−

G′+q

}
+ μ

8

{
δh+∗

G+qi
[
(y, x, y)u+

c,G−G′,x + (y, y, x)u+
c,G−G′,x + (x, x, y)u+

c,G−G′,y + (x, y, x)u+
c,G−G′,y

]
δh+

G′+q

+ i ∗ h−
c,G−G′

[
δu+∗

G+q,x(y, y, x)δh−
G′+q + δh−∗

G′+q(y, x, y)δu+
G+q,x

+ δu+∗
G+q,y(y, x, x)δh−

G′+q + δh−∗
G′+q(y, x, x)δu+

G+q,y

+ δu+∗
G+q,x(x, y, y)δh−

G′+q + δh−∗
G′+q(x, y, y)δu+

G+q,x

+ δu+∗
G+q,y(x, x, y)δh−

G′+q + δh−∗
G′+q(x, y, x)δu+

G+q,y

]
+ δh−∗

G+qi
[
(y, x, y)u+

c,G−G′,x + (y, y, x)u+
c,G−G′,x + (x, x, y)u+

c,G−G′,y + (x, y, x)u+
c,G−G′,y

]
δh−

G′+q

+ i ∗ h−
c,G−G′

[
δu−∗

G+q,x(y, y, x)δh+
G′+q + δh+∗

G′+q(y, x, y)δu−
G+q,x

+ δu−∗
G+q,y(y, x, x)δh+

G′+q + δh+∗
G′+q(y, x, x)δu−

G+q,y

+ δu−∗
G+q,x(x, y, y)δh+

G′+q + δh+∗
G′+q(x, y, y)δu−

G+q,x

+δu−∗
G+q,y(x, x, y)δh+

G′+q + δh+∗
G′+q(x, y, x)δu−

G+q,y

]
+ δh+∗

G+qi(y, x, y)u−
c,G−G′,xδh−

G′+q + δh−∗
G+qi(y, y, x)u−

c,G−G′,xδh+
G′+q

+ δh+∗
G+qi(x, x, y)u−

c,G−G′,yδh−
G′+q + δh−∗

G+qi(x, y, x)u−
c,G−G′,yδh+

G′+q

+ δh−∗
G+qi(y, x, y)u−

c,G−G′,xδh+
G′+q + δh+∗

G+qi(y, y, x)u−
c,G−G′,xδh−

G′+q

+ δh−
G+qi(x, x, y)u−

c,G−G′,yδh+
G′+q + δh−

G+qi(x, y, x)u−
c,G−G′,yδh+

G′+q

}
. (D12)

We can write the high-order terms in a matrix form U 2,(2)
E =∑G,G′,q δũ†

G′+qŨ2,(2)
E ,G,G′,qδũG+q. Despite its higher-order nature,

the Ũ2,(2)
E ,G,G′,q terms couples all the components of the displacement fields together, giving rise to fruitful phononic properties in

TBG. At last, we expand the kinetic energy near the equilibrium position,

T =
∫

d2r
ρ

4
[(u̇+

x )2 + (u̇+
y )2 + (u̇−

x )2 + (u̇−
y )2 + (ḣ+)2 + (ḣ−)2]

= T (0) + ρω2

4

∑
G

∑
q

(δu+∗
G+q,xδu+

G+q,x + δu+∗
G+q,yδu+

G+q,y+ δu−∗
G+q,xδu−

G′+q,x + δu−∗
G+q,yδu−

G+q,y+ δh+∗
G+qδh+

G+q+ δh−∗
G+qδh−

G+q)

= T (0) +
∑
G,q

ρω2

4
δũ†

G+qδũG+q, (D13)

where ρ = 7.61×10−7 kg/m2 is the mass per area of the single-layer graphene, ω is the phonon frequency.
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FIG. 7. Phonon band structures and density of state (DOS) of TBG with twist angles (a) θ = 13.2◦, (b) θ = 7.34◦, (c) θ = 3.48◦, (d)
θ = 2.45◦, and (e) θ = 1.53◦. (f) The temperature dependence of specific heat of TBG with different twist angles.

After evaluating the second-order functional derivatives of
the total energy with respect to the displacement fields, we
obtain the equation of motion in reciprocal space,

ρω2

4
δũG+q = Ũ1,(2)

E ,G,qδũG+q +
∑
G′

Ũ2,(2)
E ,G,G′,qδũG′+q

+
∑
G′

Ũ(2)
B,G,G′δũG′+q. (D14)

APPENDIX E: PHONON BANDS AND PHONON
CONTRIBUTION TO SPECIFIC HEAT

AT DIFFERENT TWIST ANGLES

In the main text, we numerically solve the equation of mo-
tion to obtain the phonon properties of TBG with θ = 1.05◦.
Here, using the same method we also calculate phonon
properties of TBG at different twist angles. In Fig. 7, we
present the projected phonon band structures of TBG with
different twist angles calculated with the continuum elastic
model. The green lines denote phonon modes with dom-
inant h− component, and the red lines represent phonon
modes with dominant u− components. The gray lines show
the phonon band structures with dominant h+ modes, and
the blue lines show the phonon band structures with dom-
inant u+ component. As the twist angle becomes larger,
the energy difference between sliding (u−) modes and u+
modes diminishes. When the twist angle decreases, the dis-

persions of the sliding modes are significantly renormalized
by the interlayer coupling. Besides, when θ � 4◦, we find
that the breathing (h−) modes lead to a peak around 2.5 THz
in the density of state (DOS) plot. We would like to note that
the moiré phonons in our model can be understood as the
acoustic modes from the untwisted bilayer graphene being
folded into the moiré Brillouin zone and renormalized by
the interlayer coupling. As a result, in our model, we can
only capture the low-frequency phonon properties. Despite
this limitation, our calculated low-frequency phonon band
structures and DOS of TBG with larger twist angles agree well
with previous studies with atomistic approaches [64,75].

Furthermore, we calculate the phonon contributions to spe-
cific heat of TBG, which is one of the key parameters to
characterize the phonon and thermal properties. The specific
heat of TBG is expressed as [116,117]

cv (T ) = 3NA

kBT 2

∫ ωmax

0

e
h̄ω

kBT

[e
h̄ω

kBT − 1]2
(h̄ω)2 f (ω)dω, (E1)

where NA is Avogadro constant, T is the temperature, and kB

is the Boltzmann constant. The normalized phonon DOS f (ω)
is given by

f (ω) = g(ω)∫ ωmax

0 g(ω)dω
, (E2)

where g(ω) is the phonon DOS and ωmax is the cutoff phonon
frequency. Since our model are valid for low-frequency

094115-24



LATTICE DISTORTIONS, MOIRÉ PHONONS, AND … PHYSICAL REVIEW B 108, 094115 (2023)

phonons, and cannot properly describe high-frequency (�
10 THz) phonon properties; here we approximate the high-
frequency phonon DOS by twice of the phonon DOS of
single-layer graphene, given that the interlayer coupling ef-
fects become more and more negligible at higher frequencies.
In Fig. 7(f), we present the temperature-dependent specific
heat of TBG at different twist angles. Although the specific
heat of TBG changes as the twist angle varies, they follow a
similar trend. To be specific, we analyze how the specific heat
varies with temperature for TBG with θ = 1.53◦. When the
temperature is below 25 K, the specific heat scales roughly as
cv ∼ T 1.36, while between 25 K and 45 K, it follows a trend
of cv ∼ T 1.42. The power-law factor increases as the temper-
ature increases. This trend holds true for TBG with different

twist angles although the specific power-law factors may be
slightly different. Our results are in qualitative agreement with
previous studies [116,118,119].

APPENDIX F: DETAILS IN THE FORMALISM FOR THE
EFFECTIVE ELECTRONIC CONTINUUM MODEL

In Sec. V A, we study the influence of the lattice distortions
on the electronic band structure. We derive the interlayer
hopping amplitudes under lattice distortions in Eq. (36). Here
we present the details in the calculations of the coefficients.
We first consider nh,1 + n′

h,1 = 0, nh,2 + n′
h,2 = 0, . . . , i.e., the

effects from the out-of-plane distortions are neglected. Taking
the approximation Q‖ ≈ Q j ,

− d0

2π

∫
d pz t (Q j + pzez )ei pzd0 = − d0

2π

∫
d pz

∫
d3r

1

S0d0
T (r + d ′ez )e−i(Q j+pzez )·(r+d ′ez )ei pzd0

= − 1

S0

∫
d2r T (r + d0ez )e−iQ j ·r

≈ 0.101 eV, (F1)

where d0 = 3.3869 Å is the average distance of the fully relaxed magic-angle TBG. Then, we consider the first-order effect
from the out-of-plane distortions. Specifically, for certain moiré reciprocal lattice vector Gh

m1
, we have nh,m1 + n′

h,m1
= 1 and

nh,m + n′
h,m = 0 with m �=m1. The integration over pz can also be done analytically,

− d0

2π

∫
d pz t (Q j + pzez )ei pzd0 × [i pzh

−
Gh

m1

]
= − d0

2π

∫
d pz t (Q j + pzez )

d

dd ′ (ei pzd ′
)|d ′=d0 h−

Gh
m1

= − d0

2π

∫
d pz

d

dd ′ (
∫

d3r
1

S0d0
T (r + d ′′ez )e−i(Q j+pzez )·(r+d ′′ez )ei pzd ′

)|d ′=d0 h−
Gh

m1

= − 1

S0

∫
d2r

d

dd ′ (T (r + d ′ez ))|d ′=d0 e−iQ j ·rh−
Gh

m1

= − 1

S0

∫
d2r

[
(Vπ − Vσ )

( −2d0

|r + d0ez|2
+ 2d3

0

|r + d0ez|4
)

+ T (r + d0ez )
−d0/r0

|r + d0ez|
]

e−iQ j ·rh−
Gh

m1

≈ −0.248 h−
Gh

m1

eV. (F2)

We also consider the second-order effects to the interlayer hopping from out-of-plane lattice distortions. For some moiré
reciprocal lattice vector Gh

m1
and Gh

m2
, we have nh,m1 + n′

h,m1
= 1, nh,m2 + n′

h,m2
= 1, and nh,m + n′

h,m = 0 with m �=m1, m2, which
leads to

d2

dd ′2 T (r + d ′ez )|d ′=d0 (F3)

= (Vπ − Vσ )

( −rz

r0rm

)
∗
(

−2rz

r2
m

+ 2r3
z

r4
m

)
+ (Vπ − Vσ ) ∗

(
−2

r2
m

+ 4r2
z

r4
m

+ 6r2
z

r4
m

− 8r4
z

r6
m

)

+Vπ

( −rz

r0rm

)2
(

1 −
(

rz

rm

)2
)

+ Vπ

( −1

r0rm

)(
1 −

(
rz

rm

)2
)

+ Vπ

( −rz

r0rm

)( −2d0

|r + d0ez|2
+ 2d3

0

|r + d0ez|4
)

+Vσ

( −rz

r0rm

)2( rz

rm

)2

+ Vσ

( −1

r0rm

)(
rz

rm

)2

+ Vσ

( −rz

r0rm

)(
2d0

|r + d0ez|2
− 2d3

0

|r + d0ez|4
)

. (F4)

The integration over pz can be done analytically,

− 1

S0

∫
d2r

d2

dd ′2 T (r + d ′ez )|d ′=d0 e−iQ j ·rhGh
m1

hGh
m2

≈ 0.508 hGh
m1

hGh
m2

eV. (F5)
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We have derived the coefficients in Eq. (36), with the value of t0(Q j )≈0.101 eV, t1(Q j )≈0.248 eV/Å, and t2(Q j )≈
0.508 eV/Å2.

The lattice distortions also has influence on the interlayer hopping terms of TBG. To study this influence, we start with
a monolayer graphene with lattice vector, a1 = (a, 0, 0), and a2 = a( 1

2 ,
√

3
2 , 0). τA = (0, 0, 0) and τB = a√

3
(0,−1, 0) represent

the relative position of two sublattices. Consider the hopping events from B sublattice to the nearest-neighbor A sublattice, which
are connected to each other by r0

1 = (0, a0, 0), r0
2 = (

√
3

2 ,− 1
2 , 0)a0, and r0

3 = (−
√

3
2 ,− 1

2 , 0)a0 with a0 = a/
√

3. In order to treat
both in-plane and out-of-plane lattice distortions on equal footing, we introduce the three dimensional lattice strain û, which is
expressed as

û =
⎡
⎣uxx uxy uhx

uxy uyy uhy

uhx uhy uhh

⎤
⎦, (F6)

where uαβ = (∂uα/∂rβ + ∂uβ/∂rα )/2, α, β = x, y, and uhα = ∂h/∂rα , α = x, y. Three vectors from B sublattice to A sublattice
undergoes small shifts from r0

i to ri = (1 + û)r0
i , i = 1, 2, 3. As a result, the hopping amplitudes change from t (r0

i ) to t (ri ). For
i = 1, we can expand the hopping amplitude to second-order term of lattice strain,

t (r1) ≈ V 0
π

[
1 − β

( |r1|
a0

− 1

)
+ β2

2

( |r1|
a0

− 1

)2
](

1 − u2
hy

)+ V 0
σ e−(a0−d0 )/r0 u2

hy,

= V 0
π

[
1 − β

(
uyy + 1

2
u2

xy + 1

2
u2

hy

)
+ β2

2

(
uyy + 1

2
u2

xy + 1

2
u2

hy

)2
](

1 − u2
hy

)+ V 0
σ e−(a0−d0 )/r0 u2

hy

≈ V 0
π

[
1 − β

(
uyy + 1

2
u2

xy + 1

2
u2

hy

)
+ β2

2
u2

yy

](
1 − u2

hy

)+ V 0
σ e−(a0−d0 )/r0 u2

hy

≈ V 0
π

[
1 − β

(
uyy − β

2
u2

yy + 1

2
u2

xy + 1

2
u2

hy

)
− u2

hy

]
+ V 0

σ e−(a0−d0 )/r0 u2
hy. (F7)

Then, the differences of the hopping amplitudes is given by

δt (r1) = −V 0
π β

(
uyy − β

2
u2

yy + 1

2
u2

xy + 1

2
u2

hy

)
− V 0

π u2
hy + V 0

σ e−(a0−d0 )/r0 u2
hy, (F8)

where β = a0/r0. Similarly, we evaluate the difference of hopping amplitudes under strain for i = 2 and i = 3,

δt (r2) = −V 0
π β

[
3

4
uxx −

√
3

2
uxy + 1

4
uyy +

(
3

32
− 9β

32

)
u2

xx +
(

3

32
− β

32

)
u2

yy +
(

1

8
− 3β

8

)
u2

xy

+
(√

3

8
+ 3

√
3β

8

)
uxxuxy −

(√
3

8
−

√
3β

8

)
uyyuxy −

(
3

16
+ 3β

16

)
uxxuyy

+ 3

8
u2

hx −
√

3

4
uhxuhy + 1

8
u2

yy

]
− V 0

π

(√
3

2
uhx − 1

2
uhy

)2

+ V 0
σ e−(a0−d0 )/r0

(√
3

2
uhx − 1

2
uhy

)2

,

δt (r3) = −V 0
π β

[
3

4
uxx +

√
3

2
uxy + 1

4
uyy +

(
3

32
− 9β

32

)
u2

xx +
(

3

32
− β

32

)
u2

yy +
(

1

8
− 3β

8

)
u2

xy

−
(√

3

8
+ 3

√
3β

8

)
uxxuxy +

(√
3

8
−

√
3β

8

)
uyyuxy −

(
3

16
+ 3β

16

)
uxxuyy

+ 3

8
u2

hx +
√

3

4
uhxuhy + 1

8
u2

yy

]
− V 0

π

(√
3

2
uhx + 1

2
uhy

)2

+ V 0
σ e−(a0−d0 )/r0

(√
3

2
uhx + 1

2
uhy

)2

. (F9)

Then, we consider the monolayer graphene Hamiltonian in reciprocal space,

û =
[

0 g(k, û)
g∗(k, û) 0

]
, (F10)
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where g(k, û) =∑3
i=1 t (ri )eik·ri . We can expand g(k) near the Kμ valley, with Kμ = μ( − 4π/(3a), 0, 0). Then, we have

g(k̄, û) = −h̄vF

[
μ

(
k̄x + μ

e

h̄
Ax

)
− i

(
k̄y + μ

e

h̄
Ay

)]
, (F11)

with k̄ = k − Kμ. Compared with the monolayer graphene Hamiltonian, the pseudo vector potential induced by strain in the lth
layer graphene is given by

A(l )
x = βγ0

ev

⎡
⎣3

4

(
∂u(l )

x

∂x
− ∂u(l )

y

∂y

)
+ 3

32

⎛
⎝(1 − 3β )

(
∂u(l )

x

∂x

)2

− (4 + 4β )

(
∂u(l )

x

∂y
+ ∂u(l )

y

∂x

)2

−(2 + 2β )
∂u(l )

x

∂x

∂u(l )
y

∂y
+ (1 + 5β )

(
∂u(l )

y

∂y

)2
⎞
⎠
⎤
⎦+

(
μ

βγ0

ev

3

8
+ μ

M

ev

3

4

)[(
∂h(l )

∂x

)2

−
(

∂h(l )

∂y

)2
]
,

A(l )
y = βγ0

ev

[
−3

4

(
∂u(l )

x

∂y
+ ∂u(l )

y

∂x

)
+ 3

16

(
(1 + 3β )

∂u(l )
x

∂x

(
∂u(l )

x

∂y
+ ∂u(l )

y

∂x

)
− (1 − β )

(
∂u(l )

x

∂y
+ ∂u(l )

y

∂x

)
∂u(l )

y

∂y

)]

−
(

μ
βγ0

ev

3

4
+ μ

M

ev

3

2

)
∂h(l )

∂x

∂h(l )

∂y
, (F12)

where M = −V 0
π + V 0

σ e−(a0−d0 )/r0 ≈36 eV, β = a0/r0 ≈3.14, and γ0 = |V 0
π | = 2.7 eV. v in the above equation is just the Fermi

velocity vF . The pseudo vector potential in reciprocal space is expressed as

A(l )
x = μ

βγ0

ev

⎡
⎣3

4

∑
G

(
i Gxu(l )

G,x − i Gyu(l )
G,y

)
eiG·r + 3

32

∑
G,G′

[
(1 − 3β )i Gxi G′

xu(l )
G,xu(l )

G′,x

−
(

4 + 4β

4

)(
i Gyi G′

yu(l )
G,xu(l )

G′,x + 2i Gyi G′
xu(l )

G,xu(l )
G′,y + i Gxi G′

xu(l )
G,yu(l )

G′,y

)

− (2 + 2β )i Gxi G′
yu(l )

G,xu(l )
G′,y + (1 + 5β )i Gyi G′

yu(l )
G,yu(l )

G′,y

]
ei(G+G′ )·r

]

+ μ
βγ0

ev

(
3

8
+ 3M

4βγ0

)(
i Gxi G′

xh(l )
G h(l )

G′ − i Gyi G′
yh(l )

G h(l )
G′
)
ei(G+G′ )·r,

A(l )
y = μ

βγ0

ev

⎡
⎣3

4

∑
G

(− i Gyu(l )
G,x − i Gxu(l )

G,y

)
eiG·r + 3

8

∑
G,G′

[
1 + 3β

2

(
i Gxi G′

yu(l )
G,xu(l )

G′,x

+ i Gxi G′
xu(l )

G,xu(l )
G′,y

)− 1 − β

2

(
i Gyi G′

yu(l )
G,xu(l )

G′,y + i Gxi G′
yu(l )

G,yu(l )
G′,y

)]
ei(G+G′ )·r

]

+ μ
βγ0

ev

(
3

4
+ 3M

2βγ0

)(−i Gxi G′
yh(l )

G h(l )
G′
)
ei(G+G′ )·r. (F13)

Thus, the intralayer Hamiltonian of valley μ for the lth layer is given by

Hμ,(l )(k) = −h̄vF

(
k + μ

e

h̄
A(l ) − Kμ,(l )

)
· (μσx, σy), (F14)

where σx and σy are Pauli matrices defined in the sublattice space and Kμ,(l ) is the Dirac point in the lth layer from valley μ.

[1] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.
Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E.
Kaxiras et al., Nature (London) 556, 80 (2018).

[2] X. Lu, P. Stepanov, W. Yang, M. Xie, M. A. Aamir, I.
Das, C. Urgell, K. Watanabe, T. Taniguchi, G. Zhang et al.,
Nature (London) 574, 653 (2019).

[3] A. Kerelsky, L. J. McGilly, D. M. Kennes, L. Xian,
M. Yankowitz, S. Chen, K. Watanabe, T. Taniguchi,

J. Hone, C. Dean et al., Nature (London) 572, 95
(2019).

[4] Y. Jiang, X. Lai, K. Watanabe, T. Taniguchi, K. Haule,
J. Mao, and E. Y. Andrei, Nature (London) 573, 91
(2019).

[5] Y. Xie, B. Lian, B. Jäck, X. Liu, C.-L. Chiu, K. Watanabe, T.
Taniguchi, B. A. Bernevig, and A. Yazdani, Nature (London)
572, 101 (2019).

094115-27

https://doi.org/10.1038/nature26154
https://doi.org/10.1038/s41586-019-1695-0
https://doi.org/10.1038/s41586-019-1431-9
https://doi.org/10.1038/s41586-019-1460-4
https://doi.org/10.1038/s41586-019-1422-x


BO XIE AND JIANPENG LIU PHYSICAL REVIEW B 108, 094115 (2023)

[6] Y. Choi, J. Kemmer, Y. Peng, A. Thomson, H. Arora, R.
Polski, Y. Zhang, H. Ren, J. Alicea, G. Refael et al., Nat. Phys.
15, 1174 (2019).

[7] M. Serlin, C. Tschirhart, H. Polshyn, Y. Zhang, J. Zhu, K.
Watanabe, T. Taniguchi, L. Balents, and A. Young, Science
367, 900 (2020).

[8] P. Stepanov, I. Das, X. Lu, A. Fahimniya, K. Watanabe, T.
Taniguchi, F. H. L. Koppens, J. Lischner, L. Levitov, and D. K.
Efetov, Nature (London) 583, 375 (2020).

[9] Y. Saito, J. Ge, K. Watanabe, T. Taniguchi, and A. F. Young,
Nat. Phys. 16, 926 (2020).

[10] X. Liu, Z. Wang, K. Watanabe, T. Taniguchi, O. Vafek, and J.
Li, Science 371, 1261 (2021).

[11] A. L. Sharpe, E. J. Fox, A. W. Barnard, J. Finney, K. Watanabe,
T. Taniguchi, M. A. Kastner, and D. Goldhaber-Gordon,
Science 365, 605 (2019).

[12] P. Stepanov, M. Xie, T. Taniguchi, K. Watanabe, X. Lu, A. H.
MacDonald, B. A. Bernevig, and D. K. Efetov, Phys. Rev. Lett.
127, 197701 (2021).

[13] K. P. Nuckolls, M. Oh, D. Wong, B. Lian, K. Watanabe, T.
Taniguchi, B. A. Bernevig, and A. Yazdani, Nature (London)
588, 610 (2020).

[14] S. Wu, Z. Zhang, K. Watanabe, T. Taniguchi, and E. Y. Andrei,
Nat. Mater. 20, 488 (2021).

[15] I. Das, X. Lu, J. Herzog-Arbeitman, Z.-D. Song, K. Watanabe,
T. Taniguchi, B. A. Bernevig, and D. K. Efetov, Nat. Phys. 17,
710 (2021).

[16] A. T. Pierce, Y. Xie, J. M. Park, E. Khalaf, S. H. Lee, Y. Cao,
D. E. Parker, P. R. Forrester, S. Chen, K. Watanabe et al.,
Nat. Phys. 17, 1210 (2021).

[17] C. Shen, J. Ying, L. Liu, J. Liu, N. Li, S. Wang, J. Tang, Y.
Zhao, Y. Chu, K. Watanabe et al., Chin. Phys. Lett. 38, 047301
(2021).

[18] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.
Kaxiras, and P. Jarillo-Herrero, Nature (London) 556, 43
(2018).

[19] M. Yankowitz, S. Chen, H. Polshyn, Y. Zhang, K. Watanabe,
T. Taniguchi, D. Graf, A. F. Young, and C. R. Dean, Science
363, 1059 (2019).

[20] E. Codecido, Q. Wang, R. Koester, S. Che, H. Tian, R. Lv, S.
Tran, K. Watanabe, T. Taniguchi, F. Zhang, M. Bockrath, and
C. N. Lau, Sci. Adv. 5, eaaw9770 (2019).

[21] Y. Cao, D. Rodan-Legrain, J. M. Park, N. F. Yuan, K.
Watanabe, T. Taniguchi, R. M. Fernandes, L. Fu, and P. Jarillo-
Herrero, Science 372, 264 (2021).

[22] R. Bistritzer and A. H. MacDonald, Proc. Natl. Acad. Sci.
USA 108, 12233 (2011).

[23] Z. Song, Z. Wang, W. Shi, G. Li, C. Fang, and B. A. Bernevig,
Phys. Rev. Lett. 123, 036401 (2019).

[24] J. Ahn, S. Park, and B.-J. Yang, Phys. Rev. X 9, 021013 (2019).
[25] H. C. Po, L. Zou, T. Senthil, and A. Vishwanath, Phys. Rev. B

99, 195455 (2019).
[26] G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath,

Phys. Rev. Lett. 122, 106405 (2019).
[27] J. Liu, J. Liu, and X. Dai, Phys. Rev. B 99, 155415 (2019).
[28] L. Balents, C. R. Dean, D. K. Efetov, and A. F. Young,

Nat. Phys. 16, 725 (2020).
[29] E. Y. Andrei, D. K. Efetov, P. Jarillo-Herrero, A. H.

MacDonald, K. F. Mak, T. Senthil, E. Tutuc, A. Yazdani, and
A. F. Young, Nat. Rev. Mater. 6, 201 (2021).

[30] J. Liu and X. Dai, Nat. Rev. Phys. 3, 367 (2021).
[31] J. Kang and O. Vafek, Phys. Rev. Lett. 122, 246401 (2019).
[32] K. Seo, V. N. Kotov, and B. Uchoa, Phys. Rev. Lett. 122,

246402 (2019).
[33] M. Xie and A. H. MacDonald, Phys. Rev. Lett. 124, 097601

(2020).
[34] F. Wu, Phys. Rev. B 99, 195114 (2019).
[35] N. Bultinck, S. Chatterjee, and M. P. Zaletel, Phys. Rev. Lett.

124, 166601 (2020).
[36] F. Wu and S. Das Sarma, Phys. Rev. Lett. 124, 046403

(2020).
[37] N. Bultinck, E. Khalaf, S. Liu, S. Chatterjee, A.

Vishwanath, and M. P. Zaletel, Phys. Rev. X 10, 031034
(2020).

[38] J. Liu and X. Dai, Phys. Rev. B 103, 035427 (2021).
[39] Y. Zhang, K. Jiang, Z. Wang, and F. Zhang, Phys. Rev. B 102,

035136 (2020).
[40] K. Hejazi, X. Chen, and L. Balents, Phys. Rev. Res. 3, 013242

(2021).
[41] J. Kang and O. Vafek, Phys. Rev. B 102, 035161 (2020).
[42] B.-B. Chen, Y. D. Liao, Z. Chen, O. Vafek, J. Kang, W. Li, and

Z. Y. Meng, Nat. Commun. 12, 5480 (2021).
[43] C. Lu, Y. Zhang, Y. Zhang, M. Zhang, C.-C. Liu, Y. Wang,

Z.-C. Gu, W.-Q. Chen, and F. Yang, Phys. Rev. B 106, 024518
(2022).

[44] Y. D. Liao, J. Kang, C. N. Breiø, X. Y. Xu, H.-Q. Wu, B. M.
Andersen, R. M. Fernandes, and Z. Y. Meng, Phys. Rev. X 11,
011014 (2021).

[45] B. A. Bernevig, Z.-D. Song, N. Regnault, and B. Lian,
Phys. Rev. B 103, 205413 (2021).

[46] B. Lian, Z.-D. Song, N. Regnault, D. K. Efetov, A. Yazdani,
and B. A. Bernevig, Phys. Rev. B 103, 205414 (2021).

[47] F. Xie, A. Cowsik, Z.-D. Song, B. Lian, B. A. Bernevig, and
N. Regnault, Phys. Rev. B 103, 205416 (2021).

[48] T. Soejima, D. E. Parker, N. Bultinck, J. Hauschild, and M. P.
Zaletel, Phys. Rev. B 102, 205111 (2020).

[49] P. Potasz, M. Xie, and A. H. MacDonald, Phys. Rev. Lett. 127,
147203 (2021).

[50] X. Zhang, G. Pan, Y. Zhang, J. Kang, and Z. Y. Meng,
Chin. Phys. Lett. 38, 077305 (2021).

[51] J. S. Hofmann, E. Khalaf, A. Vishwanath, E. Berg, and J. Y.
Lee, Phys. Rev. X 12, 011061 (2022).

[52] D. E. Parker, T. Soejima, J. Hauschild, M. P. Zaletel, and N.
Bultinck, Phys. Rev. Lett. 127, 027601 (2021).

[53] W.-Y. He, D. Goldhaber-Gordon, and K. T. Law,
Nat. Commun. 11, 1650 (2020).

[54] J. Zhu, J.-J. Su, and A. H. MacDonald, Phys. Rev. Lett. 125,
227702 (2020).

[55] C. Huang, N. Wei, and A. H. MacDonald, Phys. Rev. Lett. 126,
056801 (2021).

[56] X. Ying, M. Ye, and L. Balents, Phys. Rev. B 103, 115436
(2021).

[57] H. Polshyn, M. Yankowitz, S. Chen, Y. Zhang, K. Watanabe,
T. Taniguchi, C. R. Dean, and A. F. Young, Nat. Phys. 15, 1011
(2019).

[58] Y. Cao, D. Chowdhury, D. Rodan-Legrain, O. Rubies-Bigorda,
K. Watanabe, T. Taniguchi, T. Senthil, and P. Jarillo-Herrero,
Phys. Rev. Lett. 124, 076801 (2020).

[59] F. Wu, A. H. MacDonald, and I. Martin, Phys. Rev. Lett. 121,
257001 (2018).

094115-28

https://doi.org/10.1038/s41567-019-0606-5
https://doi.org/10.1126/science.aay5533
https://doi.org/10.1038/s41586-020-2459-6
https://doi.org/10.1038/s41567-020-0928-3
https://doi.org/10.1126/science.abb8754
https://doi.org/10.1126/science.aaw3780
https://doi.org/10.1103/PhysRevLett.127.197701
https://doi.org/10.1038/s41586-020-3028-8
https://doi.org/10.1038/s41563-020-00911-2
https://doi.org/10.1038/s41567-021-01186-3
https://doi.org/10.1038/s41567-021-01347-4
https://doi.org/10.1088/0256-307X/38/4/047301
https://doi.org/10.1038/nature26160
https://doi.org/10.1126/science.aav1910
https://doi.org/10.1126/sciadv.aaw9770
https://doi.org/10.1126/science.abc2836
https://doi.org/10.1073/pnas.1108174108
https://doi.org/10.1103/PhysRevLett.123.036401
https://doi.org/10.1103/PhysRevX.9.021013
https://doi.org/10.1103/PhysRevB.99.195455
https://doi.org/10.1103/PhysRevLett.122.106405
https://doi.org/10.1103/PhysRevB.99.155415
https://doi.org/10.1038/s41567-020-0906-9
https://doi.org/10.1038/s41578-021-00284-1
https://doi.org/10.1038/s42254-021-00297-3
https://doi.org/10.1103/PhysRevLett.122.246401
https://doi.org/10.1103/PhysRevLett.122.246402
https://doi.org/10.1103/PhysRevLett.124.097601
https://doi.org/10.1103/PhysRevB.99.195114
https://doi.org/10.1103/PhysRevLett.124.166601
https://doi.org/10.1103/PhysRevLett.124.046403
https://doi.org/10.1103/PhysRevX.10.031034
https://doi.org/10.1103/PhysRevB.103.035427
https://doi.org/10.1103/PhysRevB.102.035136
https://doi.org/10.1103/PhysRevResearch.3.013242
https://doi.org/10.1103/PhysRevB.102.035161
https://doi.org/10.1038/s41467-021-25438-1
https://doi.org/10.1103/PhysRevB.106.024518
https://doi.org/10.1103/PhysRevX.11.011014
https://doi.org/10.1103/PhysRevB.103.205413
https://doi.org/10.1103/PhysRevB.103.205414
https://doi.org/10.1103/PhysRevB.103.205416
https://doi.org/10.1103/PhysRevB.102.205111
https://doi.org/10.1103/PhysRevLett.127.147203
https://doi.org/10.1088/0256-307X/38/7/077305
https://doi.org/10.1103/PhysRevX.12.011061
https://doi.org/10.1103/PhysRevLett.127.027601
https://doi.org/10.1038/s41467-020-15473-9
https://doi.org/10.1103/PhysRevLett.125.227702
https://doi.org/10.1103/PhysRevLett.126.056801
https://doi.org/10.1103/PhysRevB.103.115436
https://doi.org/10.1038/s41567-019-0596-3
https://doi.org/10.1103/PhysRevLett.124.076801
https://doi.org/10.1103/PhysRevLett.121.257001


LATTICE DISTORTIONS, MOIRÉ PHONONS, AND … PHYSICAL REVIEW B 108, 094115 (2023)

[60] B. Lian, Z. Wang, and B. A. Bernevig, Phys. Rev. Lett. 122,
257002 (2019).

[61] G. Sharma, I. Yudhistira, N. Chakraborty, D. Y. H. Ho,
M. M. A. Ezzi, M. S. Fuhrer, G. Vignale, and S. Adam,
Nat. Commun. 12, 5737 (2021).

[62] C. Chen, K. P. Nuckolls, S. Ding, W. Miao, D. Wong, M. Oh,
R. L. Lee, S. He, C. Peng, D. Pei et al., arXiv:2303.14903.

[63] A. C. Gadelha, D. A. A. Ohlberg, C. Rabelo, E. G. S. Neto,
T. L. Vasconcelos, J. L. Campos, J. S. Lemos, V. Ornelas, D.
Miranda, R. Nadas et al., Nature (London) 590, 405 (2021).

[64] A. I. Cocemasov, D. L. Nika, and A. A. Balandin, Phys. Rev.
B 88, 035428 (2013).

[65] Y. W. Choi and H. J. Choi, Phys. Rev. B 98, 241412(R) (2018).
[66] G. S. N. Eliel, M. V. O. Moutinho, A. C. Gadelha, A. Righi,

L. C. Campos, H. B. Ribeiro, P.-W. Chiu, K. Watanabe, T.
Taniguchi, P. Puech et al., Nat. Commun. 9, 1221 (2018).

[67] F. Wu, E. Hwang, and S. Das Sarma, Phys. Rev. B 99, 165112
(2019).

[68] M. Angeli, E. Tosatti, and M. Fabrizio, Phys. Rev. X 9, 041010
(2019).

[69] M. Koshino and Y.-W. Son, Phys. Rev. B 100, 075416 (2019).
[70] M. Koshino and N. N. T. Nam, Phys. Rev. B 101, 195425

(2020).
[71] Y. W. Choi and H. J. Choi, Phys. Rev. Lett. 127, 167001

(2021).
[72] M. Lamparski, B. Van Troeye, and V. Meunier, 2D Mater. 7,

025050 (2020).
[73] X. Liu, R. Peng, Z. Sun, and J. Liu, Nano Lett. 22, 7791

(2022).
[74] J. Z. Lu, Z. Zhu, M. Angeli, D. T. Larson, and E. Kaxiras,

Phys. Rev. B 106, 144305 (2022).
[75] W. Miao, C. Li, X. Han, D. Pan, and X. Dai, Phys. Rev. B 107,

125112 (2023).
[76] N. N. T. Nam and M. Koshino, Phys. Rev. B 96, 075311

(2017).
[77] S. Carr, D. Massatt, S. B. Torrisi, P. Cazeaux, M. Luskin, and

E. Kaxiras, Phys. Rev. B 98, 224102 (2018).
[78] R. He, T.-F. Chung, C. Delaney, C. Keiser, L. A. Jauregui,

P. M. Shand, C. C. Chancey, Y. Wang, J. Bao, and Y. P. Chen,
Nano Lett. 13, 3594 (2013).

[79] N. P. Kazmierczak, M. Van Winkle, C. Ophus, K. C. Bustillo,
S. Carr, H. G. Brown, J. Ciston, T. Taniguchi, K. Watanabe,
and D. K. Bediako, Nat. Mater. 20, 956 (2021).

[80] L. D. Landau, E. M. Lifvsic, E. M. Lifshitz, A. M. Kosevich,
and L. P. Pitaevskii, Theory of Elasticity, Vol. 7 (Elsevier,
Amsterdam, 1986).

[81] J. Jung, A. M. DaSilva, A. H. MacDonald, and S. Adam,
Nat. Commun. 6, 6308 (2015).

[82] J. Lennard and I. Jones, Proc. R. Soc. London A 106, 441
(1924).

[83] G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).
[84] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15

(1996).
[85] G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
[86] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[87] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77,

3865 (1996).
[88] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.

Bediako, Strain fields in twisted bilayer graphene: Dataset 1 of
19 (2021).

[89] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 2 of
19 (2021).

[90] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 3 of
19 (2021).

[91] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 4 of
19 (2021).

[92] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 5 of
19 (2021).

[93] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 6 of
19 (2021).

[94] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 7 of
19 (2021).

[95] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 8 of
19 (2021).

[96] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 9 of
19 (2021).

[97] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 10
of 19 (2021).

[98] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 11
of 19 (2021).

[99] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 12
of 19 (2021).

[100] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 13
of 19 (2021).

[101] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 14
of 19 (2021).

[102] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 15
of 19 (2021).

[103] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 16
of 19 (2021).

[104] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 17
of 19 (2021).

[105] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 18
of 19 (2021).

[106] M. Van Winkle, K. C. Bustillo, J. Ciston, C. Ophus, and D. K.
Bediako, Strain fields in twisted bilayer graphene: Dataset 19
of 19 (2021).

[107] M. Long, P. A. Pantaleón, Z. Zhan, F. Guinea, J. Á. Silva-
Guillén, and S. Yuan, npj Comput. Mater. 8, 73 (2022).

[108] P. Moon and M. Koshino, Phys. Rev. B 87, 205404
(2013).

[109] J. M. B. Lopes dos Santos, N. M. R. Peres, and A. H. Castro
Neto, Phys. Rev. B 86, 155449 (2012).

094115-29

https://doi.org/10.1103/PhysRevLett.122.257002
https://doi.org/10.1038/s41467-021-25864-1
http://arxiv.org/abs/arXiv:2303.14903
https://doi.org/10.1038/s41586-021-03252-5
https://doi.org/10.1103/PhysRevB.88.035428
https://doi.org/10.1103/PhysRevB.98.241412
https://doi.org/10.1038/s41467-018-03479-3
https://doi.org/10.1103/PhysRevB.99.165112
https://doi.org/10.1103/PhysRevX.9.041010
https://doi.org/10.1103/PhysRevB.100.075416
https://doi.org/10.1103/PhysRevB.101.195425
https://doi.org/10.1103/PhysRevLett.127.167001
https://doi.org/10.1088/2053-1583/ab7874
https://doi.org/10.1021/acs.nanolett.2c02010
https://doi.org/10.1103/PhysRevB.106.144305
https://doi.org/10.1103/PhysRevB.107.125112
https://doi.org/10.1103/PhysRevB.96.075311
https://doi.org/10.1103/PhysRevB.98.224102
https://doi.org/10.1021/nl4013387
https://doi.org/10.1038/s41563-021-00973-w
https://doi.org/10.1038/ncomms7308
https://doi.org/10.1098/rspa.1924.0081
https://doi.org/10.1103/PhysRevB.54.11169
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1103/PhysRevB.49.14251
https://doi.org/10.1103/PhysRevB.47.558
https://doi.org/10.1103/PhysRevLett.77.3865
https://doi.org/10.1038/s41524-022-00763-1
https://doi.org/10.1103/PhysRevB.87.205404
https://doi.org/10.1103/PhysRevB.86.155449


BO XIE AND JIANPENG LIU PHYSICAL REVIEW B 108, 094115 (2023)

[110] R. Bistritzer and A. H. MacDonald, Phys. Rev. B 81, 245412
(2010).

[111] Z.-D. Song, B. Lian, N. Regnault, and B. A. Bernevig,
Phys. Rev. B 103, 205412 (2021).

[112] V. M. Pereira and A. H. Castro Neto, Phys. Rev. Lett. 103,
046801 (2009).

[113] S. Fang, S. Carr, Z. Zhu, D. Massatt, and E. Kaxiras,
arXiv:1908.00058.

[114] J. Kang and O. Vafek, Phys. Rev. B 107, 075408
(2023).

[115] C.-X. Liu, Y. Chen, A. Yazdani, and B. A. Bernevig,
arXiv:2303.15551.

[116] D. L. Nika, A. I. Cocemasov, and A. A. Balandin, Appl. Phys.
Lett. 105, 031904 (2014).

[117] J. M. Ziman, Electrons and Phonons: The Theory of Transport
Phenomena in Solids (Oxford University Press, Oxford, 2001).

[118] H. Li, H. Ying, X. Chen, D. L. Nika, A. I. Cocemasov, W. Cai,
A. A. Balandin, and S. Chen, Nanoscale 6, 13402 (2014).

[119] A. I. Cocemasov, D. L. Nika, and A. A. Balandin, Nanoscale
7, 12851 (2015).

094115-30

https://doi.org/10.1103/PhysRevB.81.245412
https://doi.org/10.1103/PhysRevB.103.205412
https://doi.org/10.1103/PhysRevLett.103.046801
http://arxiv.org/abs/arXiv:1908.00058
https://doi.org/10.1103/PhysRevB.107.075408
http://arxiv.org/abs/arXiv:2303.15551
https://doi.org/10.1063/1.4890622
https://doi.org/10.1039/C4NR04455J
https://doi.org/10.1039/C5NR03579A

