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Experimental results that BaIn2As2 and Ca(Sr)In2As2, which are the same class of alkali metal compounds,
belong to different structural phases have puzzled the current materials physics community. Here, we investigate
the pressure-induced structural phase transition of AIn2As2 and its accompanying improvement in mechanical
and thermal properties. Firstly, the structural stability of the materials and their structural phase transitions
under pressure are characterized by enthalpy and double checking by phonon dispersion spectrum. We also
confirm the structural phase transitions of the hexagonal and monoclinic phases from a group-theoretic point of
view, associating their symmetry operations using transformation matrices. In terms of mechanical properties,
we propose an effective scheme for pressure modulation of the anisotropy of AIn2As2 materials and to induce
the transformation of AIn2As2 from isotropic to anisotropic (hexagonal) and from brittle to ductile (hexagonal
and monoclinic). Meanwhile, we find the negative Poisson’s ratio phenomenon under compression and tension,
which is favorable for a wide range of applications of this series of materials in aerospace, medicine, sensors,
etc. In terms of thermal properties, applying pressure will enhance the structural phase transition temperature of
AIn2As2 materials to near room temperature. We further give direct evidence of phonon softening based on group
velocity calculations and reveal that phonon softening prevents the heat capacity from reaching the Dulong-Petit
limit. Our study provides a theoretical basis for selecting stable structural phases and pioneering thermodynamic
property studies of the thermoelectric topological candidate material AIn2As2.
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I. INTRODUCTION

EuX2As2 (X = Cd, In, Sn), as a series of topologically
magnetic material, has been of great interest to topological
thermoelectric community because of the intrinsically novel
properties. The layered structure of the Zintl-Klemm phase,
EuSn2As2, can be easily peeled off [1]. Both theoretical and
experimental-based studies have demonstrated that it is an
intrinsically magnetic topological insulator [2]. Other related
studies applied high pressure modulation of EuSn2As2 ma-
terial to achieve a continuous transition from R3̄m phase
to C2/m phase [3], and to the high-pressure rhombohedral
phase [4]. In addition, EuCd2As2 is considered to be a Dirac
semimetal [5–7]. It will undergo a topological phase transition
by reforming the magnetic moment direction under the action
of pressure [5] or an electric field [8]. Similarly, as an intrin-
sic magnetic topological insulator, EuIn2As2 has higher-order
topological insulator and axion insulator features [9–13]. It
also exhibits magnetic configuration-dependent topological
phase transition [12–14].

Alkaline earth (A) metal substituted Eu positions will
achieve rich nonmagnetic topological states, which are re-
flected in both Sr(Ba)Cd2As2 [15–17] and SrSn2As2 [18,19].

*Corresponding author: jmzhang@fjnu.edu.cn

Likewise, our previous paper reported that AIn2As2 (A =
Ca, Sr, Ba) can achieve both metal-insulator phase transitions
and topological quantum phase transitions under the action of
pressure [20]. Meanwhile, CaIn2As2 and SrIn2As2 have been
reported to have a P63/mmc phase, while BaIn2As2 possesses
a P2/m phase [21]. Why do compounds of Ba, also an alkaline
earth metal, behave in a different phase to compounds of
Ca and Sr? This is a key question that needs to be urgently
explored. Perhaps there are structural phase transitions be-
tween them? If there exists structural phase transition, what
is the pattern? Are there other intrinsic physical properties
that might accompany them? These are the crucial questions
that have plagued the experimental field and the reasons that
have stimulated research into them in the field of theoretical
computing.

As a key means of experimentally regulating the physical
properties of materials, pressure is also a research method
of particular interest for theoretical calculations. Pressure of-
ten induces interesting and important potential properties in
materials. For example, a topological phase transition will
be achieved by applying hydrostatic pressure in MnBi2Te4

[22,23] and Cd3As2 [24,25]. The pressure will also obtain
a metal-insulator phase transition accompanied by a change
in the band gap [26–28]. In general, the application of pres-
sure inevitably results in structural phase changes. Hydrostatic
pressure modulation of the MnBi4Te7 appears as a structural
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phase transition [22]. Tensile and compressive strains lead
to multiple phase transitions in photovoltaic films CsMI3

(M = Pb, Sn) [29]. Related studies have reported that nar-
row bandgap SrX2As2 (X = Cd, Sn) materials are easily
modulated by external fields [16,18]. Pressure is an effective
means of studying the properties and relationships between
the different structural phases of a material.

Here, we apply pressure to AIn2As2 with three different
structural phases (P63/mmc, R3̄m, and P2/m) to achieve
materials rich in structural phase transition. CaIn2As2 and
SrIn2As2 exhibit a P63/mmc or R3̄m phase at low pressure,
which transforms into a P2/m phase with increasing pres-
sure. However, BaIn2As2 tends to form a P2/m phase. The
phases of the three materials are in agreement with the re-
ported experimental results [21]. The stability of these phases
is next determined by phonon spectral calculations. And we
further analyzed the change of the phonon irreducible repre-
sentation of the pressure-induced structural phase transition.
Furthermore, we have investigated the effect of hydrostatic
pressure on the mechanical and thermodynamic properties of
the material. Our paper explains the physical properties of the
structural phase differences between BaIn2As2 and CaIn2As2

(SrIn2As2) and assesses their structural stability and thermal
and mechanical characteristics.

A brief synopsis of the subsequent content of this pa-
per is given here. Section II presents the crystal structures
and detailed calculations of DFT. Section III focuses on the
results of the study and discussion. Sections III A 1 inves-
tigates the energy and lattice structure characterization at
different pressures and proposes structural phase transitions.
Sections III A 2 investigates the structural phase transitions in
pressure-modulated systems employing phonon spectroscopy.
Sections III A 3 explains the physical nature of structural
phase transitions utilizing symmetry shifts in point groups.
Subsection III B focuses on the mechanical and thermal
properties of materials under pressure modulation. Sections
III B 1 analyses the crystalline anisotropy of the material.
Sections III B 2 characterizes the material’s thermal prop-
erties and discusses the realization of negative Poisson’s
ratio (NPR) performance modulation in compression and
tension. Sections III B 3 characterizes the material’s thermal
properties and reports the pressure-boosted AIn2As2 struc-
tural phase transition temperature. Sections III B 4 reveals
the phenomenon of zero group velocity (ZGV) induced by
softening of phonon modes under pressure and the enhance-
ment of thermal conductivity. Section IV provides a summary
of this study. Appendix A presents the details of the re-
maining auxiliary calculation methods. Appendix A 1 gives
information on the calculation of phonon dispersion spectra
and thermodynamic parameters. Appendix A 2 presents the
relevant parameters for the characterization of mechanical
properties, including equations for the calculation of elastic
modulus, mechanical stability criterion, crystal anisotropy,
calculation of chemical bonding information, and hardness
analysis. In the Appendix B, we present and discuss other
complementary results, such as the evolution of lattice pa-
rameters, symmetry transformation of point group, elastic
modulus analysis, chemical bonding, toughness and brittle-
ness, and hardness prediction. Supplemental Material (SM)
[30] gives additional figures related to mechanical and thermal
properties.

II. CALCULATION METHODS
AND CRYSTAL STRUCTURES

First-principles calculations based on density functional
theory (DFT) are performed in Vienna ab initio simula-
tion package (VASP) [31,32] based on projected augmented
wave (PAW) [33] and Perdew-Burke-Ernzerhof (PBE) type
generalized gradient approximation (GGA) [34] exchange-
correlation function. The valance wave functions are ex-
panded on plane-wave basis with a 400 eV energy cutoff. In
addition, the s semicore orbital of the A atoms are considered
as a valence electron. Spin-orbit coupling (SOC) was consid-
ered in all our calculations. For ion relaxation, the absolute
magnitude of the force on each atom is reduced to less than
0.02 eV/Å. For AIn2As2 with three kinds of space groups
[P63/mmc (No. 194), R3̄m (No. 166), and P2/m (No. 10)],
the �-centered Monkhorst-Pack k-point mesh is considered
as 11 × 11×3, 21 × 21×3, and 5 × 13×4, respectively.

According to report [21], the structures of CaIn2As2 and
SrIn2As2 are crystallized as EuIn2P2 type with P63/mmc
phase, whereas BaIn2As2 is crystallized in the monoclinic
EuGa2P2 structure type with P2/m phase. We further found
that the hexagonal structure with R3̄m phase may also exist in
these materials. To understand this structural phase difference,
pressure was used to systematically study AIn2As2 (A = Ca,
Sr, Ba) for three space groups.

Three structures are obtained by arranging octahedral
structural units and In atoms in different ways. For P63/mmc
phase, A atom occupies the 2a position while In and As
occupy the 4 f position. The adjacent octahedral lattices of
the P63/mmc phase, which was labeled as O1, form a mirror-
symmetric alternating stack between them in the z direction,
and two In atomic layers are inserted in between, also mirror
symmetric about the z direction. The right part of Fig. 1(a)
gives a schematic diagram of the O1 octahedral lattice, with
the isosceles triangular planes marked in cyan color and the
equilateral triangular planes depicted in red color. The Ba-As
octahedral of both P63/mmc and R3̄m phases are connected
by the edges in cyan color in the schematic diagram. For
R3̄m phase, A atom occupies the 3a position while In and
As occupy the 6c position. The In atomic layers of the R3̄m
phase are arranged similarly to P63/mmc phase, while the
octahedral structural units are arranged along a translational
stacking in the T direction as shown by the red arrow in
Fig. 1(b).

However, the structure with P2/m space group with low
symmetry is quite different from the previous two. The Ba-As
octahedral layer of the P2/m phase consists of a combination
of two types of octahedral lattices, O2 and O3, as shown in
the right part of Fig. 1(c). O2 consists of four isosceles trian-
gles (marked in purple and yellow colors) and four irregular
triangles. O3 consists of four isosceles triangles with different
edge lengths, indicated by different colors. Compared to O1

and O2, the top view of O3 has a clear shift of the As and
A atoms. As shown in the shaded background part of the
octahedral schematic in Fig. 1(c), the [101] orientation, one
end of the O3 octahedral lattice is connected to the yellow-
colored edge labeled in O2 through the yellow-colored edge,
which is noted as O2-O3. And the other end of O3 is coedged
with the yellow-colored part of O2 through the labeled green
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FIG. 1. AIn2As2 crystal structure with (a) P63/mmc, (b) R3̄m,
and (c) P2/m space groups. A schematic diagram of the A-As octa-
hedra forming the corresponding structures is also included.

color edge, which is noted as O′
2-O3. Note in particular that

although in the [101] orientation both ends of O3 are con-
nected to the yellow-colored part of O2 by coedges, their
edge lengths are not equal and depend on the lengths of the
yellow-colored and green-colored parts of O3, respectively. In
the [010] orientation, both O2 and O′

2 layers are spliced via
the blue-colored coedge in the O2 octahedral lattice, and the
O3 layer is also connected by the blue-colored edge of the O2

octahedral lattice.
Figures 1(a), 1(b), and 1(c) show the structures of AIn2As2,

which belongs to the space group P63/mmc, R3̄m, and P2/m,
respectively. The hexagonal structure of the P63/mmc and
R3̄m phases is composed of alternating [In2As2]2− layers
separated by a slab of A2+ cations. The structure of P2/m
phase is also layered and it is composed of different types
of polyanions [In2As2]2− units and A2+ cations. They all
exist as structural units formed by octahedral with A atoms
at the center and As atoms occupying the vertices. The spe-
cific structural distinctions are described accordingly in the
SM [30]. In short, the valence electron numbers of all three
compounds follow the Zintl-Klemm formalism and all ele-
ments achieve closed-shell electronic configurations. Lattice
parameters reported experimentally are a = 4.148 (4.222) Å
and c = 17.726 (18.110) Å for CaIn2As2 (SrIn2As2) with

TABLE I. Summary table of AIn2As2 different structural phases
dependent on pressure. (+) indicates a relatively stable structural
phase and (–) indicates a relatively unstable structural phase. NPMP
and HPP are abbreviations for negative-pressure mixed phase and
high-pressure phase, respectively.

Space group CaIn2As2 SrIn2As2 BaIn2As2

P63/mmc �10 GPa(+) <6 GPa (+) <0 GPa (NPMP)
R3̄m (–) <6 GPa(+) <0 GPa (NPMP)
P2/m >10 GPa(+) �6 GPa(+) <0 GPa (NPMP),

�0 GPa (HPP)

P63/mmc space group and a = 10.275 Å, b = 4.301 Å,
c = 13.332 Å, and β = 95.569 degree for P2/m space group.

The symmetry generators of P63/mmc contain identity op-
eration E , inversion symmetry I, twofold screw rotation axis
G2z = {C2z|00 1

2 }, threefold rotation axis C3z, and the combined
rotation axis C2(110). Slightly different with P63/mmc, R3̄m
space group with a hexagonal lattice lacks the G2z opera-
tion but has an additional lattice translation operation T =
{x + 2

3 , y + 1
3 , z + 1

3 }. While the P2/m has lower symmetry
generators that named twofold screw rotation axis C2y (unique
axis b), identity operation E , and inversion symmetry I. These
basic operations will generate a total of 24, 36 (12×3 sets),
and four symmetric operations for the P63/mmc, R3̄m, and
P2/m space groups, respectively.

III. RESULTS AND DISCUSSION

A. Structural stability and structural phase transition

1. Dependence of enthalpy on pressure
in different structural phases

Enthalpy is an important state parameter in thermodynam-
ics that characterizes the energy of a material system. It is
equal to the sum of the product of internal energy and pressure
and volume and can be expressed as H = U + pV , where U
is the internal energy of the system, p is the pressure of the
system, and V is the volume.

Thus, we first investigated the enthalpy of different struc-
tural phases of AIn2As2 under the controlling of pressure
[see Figs. 2(a)–2(c)]. In different AIn2As2 systems, the en-
thalpy difference (�H) between the two hexagonal phases
(P63/mmc and R3̄m) under pressure relative to the mono-
clinic phase (P2/m) has different trends. Since P63/mmc
and R3̄m have similar crystal structures and symmetry op-
erations, their pressure-dependent enthalpy evolution trends
behave approximately the same [see green and red curves in
Figs. 2(a)–2(c)]. The purple dashed lines in Figs. 2(a)–2(c)
mark the approximate values of the transition pressure of the
structural phase transition, with the left side of the transition
point indicating a more likely formation of the hexagonal
phase (P63/mmc or R3̄m), while the right region indicates
a more likely formation of the monoclinic phase with P2/m
space group. For CaIn2As2, SrIn2As2, and BaIn2As2 sys-
tems, the phase transition points move toward low pressure,
respectively, and BaIn2As2 in particular basically tends to
exhibit a P2/m phase, which is consistent with the experimen-
tally reported results [21]. As summarized in Table I, unlike
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FIG. 2. The enthalpy differences of the three structured phases of (a) CaIn2As2, (b) SrIn2As2, and (c) BaIn2As2, with the energy of the
P2/m phase as the reference value.

BaIn2As2, CaIn2As2 and SrIn2As2 tend to form hexagonal
structured phases at pressures below 10 GPa and 6 GPa,
which explains the experimental conclusion that CaIn2As2

and SrIn2As2 have a different space group structure than
BaIn2As2. For BaIn2As2, a negative-pressure mixed phase
(NPMP) with similar energy of the three structural phases
will appear at tension stress (negative pressure values), while
a P2/m high-pressure phase (HPP) will formed at compres-
sive stress (positive pressure values). Thus, we achieved a
series of pressure-dependent structural phase transitions for
the AIn2As2 systems. The change in hardness of the hexag-
onal and monoclinic phases under pressure is predicted from
Table II. See Appendix B 3 d for details.

2. Phonon dispersion spectrum analysis

To better illustrate the structural phase transition of
AIn2As2, we further compare the structural stability of
AIn2As2 under pressure for different space groups by phonon
dispersion spectroscopy calculations. As shown in Fig. 3, the
phonon and projected density of states (PDOS) calculations
show that the AIn2As2 systems of the P63/mmc space group
are all stable structures at both atmospheric pressure and
zero-bandgap pressure. The pressure values at which the zero
bandgap appears in the induced system have been reported
in previous study and are 3 GPa, 6.637 GPa, and 10.555 GPa
for CaIn2As2, SrIn2As2, and BaIn2As2, respectively [20]. And
we have shown that the system will undergo a nontrivial to
trivial topological transitions at these pressure critical values
[20]. The lattice waves of the acoustic and optical branches
are distinguished in the phonon spectrum by yellow and
green curves, respectively. From Figs. 3(a)–3(l), the acous-
tic branching lattice waves of the systems with space group

P63/mmc have complete degeneracy in the A-L, L-H, and H-
A high-symmetry paths. The BaIn2As2 of the R3̄m and P2/m
space groups do not have fully phonon dispersion degeneracy
in any of the Brillouin zone paths we have considered (see
Fig. S11 within the SM [30]).

From the PDOS images in Fig. 3, it can be found that
the low-frequency parts of CaIn2As2 and SrIn2As2 are mainly
composed of the phonon dispersion of the In element, while
the contribution of the Ba element in the BaIn2As2 systems
are more prominent in the low-frequency phonon dispersion,
as the red arrow shown in Figs. 3(j) and 3(l). Two relatively
flat high-frequency phonon dispersions consisting of As and
In elements exist for the SrIn2As2 and BaIn2As2 systems,
corresponding to the local peaks in the PDOS diagrams. Sim-
ilarly, there is a local peak in the 2–3 THz region consisting
mainly of A elements. Compared to the atmospheric pressure
system, the phonon spectrum of the zero-bandgap pressure
system has a broader distribution and spreads to the high-
frequency region (see Fig. 3). For BaIn2As2 structures with
different space groups, all have stable phonon characteristics
at atmospheric pressure have shown in Figs. 3 and S11 within
the SM [30]. As shown in Fig. S11(b) within the SM [30],
the acoustic branching lattice wave has a slight imaginary
frequency near �, indicating that the structure with R3̄m space
group is less stable under the action of 14 GPa than at atmo-
spheric pressure. From Fig. S11(d) within the SM [30], the
structure with P2/m space group can still exist stably when
14 GPa is applied. Thus, for the BaIn2As2 system, as shown
in the enlarged plots in Figs. 3(k) and S11(b) and S11(d)
within the SM [30], it is shown that the hexagonal phase
is not stable at high pressure, while the monoclinic phase
with the P2/m space group is stable. The phonon spectrum
calculation verifies our result that BaIn2As2 has a NPMP and

TABLE II. Hardness prediction results for different structural phases dependent on the band gap.

Type of material General Cubic Hexagonal Orthorhombic Rhombohedral

Insulator H2 H2 H1b H2 H2

(Eg >2 eV)
Semiconductor H5 H5 H1b, H3 H2

(0 <Eg <2 eV)
Metal H4 H1a H4 H4 H4

(Eg = 0)
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FIG. 3. Phonon dispersion and local phonon density of states combinations for (a)–(d) CaIn2As2, (e)–(h) SrIn2As2, and (i)–(l) BaIn2As2

with P63/mmc space group at atmospheric pressure and zero-bandgap pressure, respectively.

a HPP (P2/m space group), as considered from the energy
comparison. In a word, our high-pressure calculations realized
the structural phase transition of AIn2As2 bulk materials. And
we further reveal that they are pressure-tunable and can exist
stably in a specific pressure range, which is beneficial for the
experimentally study.

3. Symmetry transformation of point group

Here, we perform a detailed symmetry theory analysis
of the structural phase transition. The structure of the fully
relaxed P63/mmc space group cannot be directly establish
a symmetry transition with the P2/m. But we note that the
P63/mmc structure belongs to the same hexagonal crystal
system as R3̄m. Their lattice structures are very similar and
only a simple lattice perturbation is required to achieve the
structural transformation. Then, the R3̄m phase structure can
be transformed into the P2/m phase through a series of sym-
metry transformations, as shown in Fig. 4(d). To understand
more deeply the evolutionary mechanism behind the structural
phase transition under pressure, we calculate the Raman and
infrared-Raman (IR) activity for these two space groups [see
Fig. 4(e) and Table III]. The phonon modes at � point can be
decomposed into different irreducible representations, and the
correspondence between the irreducible representations of the
two phases is shown in Table IV.

We utilize the overall transformation matrix T [Eq. (B1)]
to realize the structural phase transition from R3̄m to P2/m
[from Figs. 4(a) to 4(b)], and then the lattice perturbation to
obtain Fig. 4(c). T can be obtained by GS × EAN × EEN ,

and LC = GS × EAN , where the transformation matrices
group-subgroup, element of the affine normalizers, lattice
compatible, and element of the euclidean normalizers are rep-
resented by GS, EAN , LC, and EEN , respectively. As shown
in Table IV, the irreducible representations of the two point
groups at � have a clear correspondence. It is worth noting
that A1u and A2g of R3̄m are both Raman inactive and IR in-
active [see Fig. 4(e)]. On the other hand, determining exactly
which atoms contribute to these activities will be one of the
most important factors influencing the trend of the structural
phase transition. As shown in Table III, the Raman activity
Ag (Bg) of the P2/m phase is mainly in the m site symmetry

TABLE III. Wyckoff positions (WP), site symmetry group
(SSG), and mechanical representation of every atoms in P2/m and
R3̄m space groups.

SG Atoms Coordinates WP SSG Mechanical rep.

P2/m A (1/2,0,0) 1d 2/m Au + 2Bu

(0,0,1/2) 1c 2/m
(x,1/2,z) 2n m 2Ag + Au + Bg + 2Bu

In (x,1/2,z) 2n m
(x,0,z) 2m m

As (x,1/2,z) 2n m
(x,0,z) 2m m

R3̄m A (0,0,0) 3m –3m A2u + Eu

In (0,0,z) 6m 3m A1g + A2u + Eu + Eg

As (0,0,z) 6m 3m

094111-5



GUO, HUANG, AND ZHANG PHYSICAL REVIEW B 108, 094111 (2023)

FIG. 4. [(a)–(c)] Crystal structure of the R3̄m phase, the crystal structure of the intermediate phase P2/m obtained by a transformation
matrix, and our calculated crystal structure of the monoclinic phase (P2/m). (d) Schematic diagram of the transition from hexagonal to
monoclinic phase with the reason for the structural phase transition labeled below. (e) Raman and infrared Raman (IR) activity characterization
of R3̄m and P2/m irreducible representation.

group, which can be contributed by In, As, or A atoms at the
2n Wyckoff site. And the IR-active Au(Bu) can be contributed
by any site of atoms. For the R3̄m phase, the Raman activities
A1g and Eg are contributed by In, As atoms only, while the IR
activities A2u and Eu can be contributed by any kind of atoms
as well.

Furthermore, we note the existence of an intermediate
phase C2m for this phase change process. A total of six
transformation matrix channels with indices [3 2 2] are avail-
able for the conversion of the symmetric operation between
these two phases, as shown in Eq. (B2). The result ob-
tained by their structure relations of group G = R3̄m and
subgroup H = P2/m belongs to a class with the chain R3̄m →
C2/m → P2/m → P2/m and index 12. To change the basis of
the group general positions is used the transformation matri-
ces P = (P, p) are shown in Eq. (B2). The linear part Pi of the
transformation P = (P, p) implies the change of basis vectors,
and the column p describes the origin shift O′ = O + p. And
the symmetric operations of group R3̄m (see Table V) and
subgroup P2/m (see Table VI) can be fully correlated by

RP2/m = Q × RR3̄m × P, where Q is the inverse transformation
of P.

According to this relationship, the identity (ε) and inverse
(I) symmetry operations with low symmetry can naturally be
represented by the corresponding ones with high symmetry.
However, C2y and IC2y in the P2/m phase can have different
R3̄m transition symmetry operations, which are C2x, IC2x (P1

and P2) or C2y, IC2y (P3 and P4) or C2xy, IC2xy (P5 and P6),
respectively. For example, the following Eq. (B2) gives the
C2y symmetric operation of the P2/m phase based on the P1

transformation matrix using the C2x symmetric operation of
the R3̄m phase.

In conclusion, we achieved the structural phase transition
of the AIn2As2 system from the hexagonal phase (P63/mmc
and R3̄m) to the monoclinic phase (P2/m) from the symmetry
operation point of view. As summarized by the schematic
diagram of the structural phase transition in Fig. 4(d), the
P63/mmc phase can be transformed into the R3̄m phase after
a simple octahedral layer dislocation. Then the intermediate
phase C2/m and the regular P2/m [Fig. 4(b)] are obtained

TABLE IV. The irreducible representation of the transformation relation between the D3d point group and the C2h point group at the �-high
symmetry point.

k vector � (0, 0, 0)

Relations between the irreps D3d (−3m) A1g A1u A2g A2u Eg Eu

C2h (2/m) Ag Au Bg Bu Ag+Bg Au+Bu
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TABLE V. Symmetry operations of R3̄m space group.

SO Seitz symbols (x,y,z) form Matrix form

ε {1 | 0 } x,y,z

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

I {–1 | 0} –x,–y,–z

⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠

C2x {2100| 0} x–y,–y,–z

⎛
⎝1 −1 0

0 −1 0
0 0 −1

⎞
⎠

IC2x {m100| 0 } –x+y,y,z

⎛
⎝−1 1 0

0 1 0
0 0 1

⎞
⎠

C2y {2010| 0} –x,–x+y,–z

⎛
⎝−1 0 0

−1 1 0
0 0 −1

⎞
⎠

IC2y {m010| 0} x,x–y,z

⎛
⎝1 0 0

1 −1 0
0 0 1

⎞
⎠

C2xy {2110| 0} y,x,–z

⎛
⎝0 1 0

1 0 0
0 0 −1

⎞
⎠

IC2xy {m110| 0} –y,–x,z

⎛
⎝ 0 −1 0

−1 0 0
0 0 1

⎞
⎠

after the symmetry-breaking by the symmetry-operated trans-
formation. Finally, a simple lattice perturbation is required to
induce the transformation of the well-aligned P2/m phase into
the actual P2/m structure we calculated [Fig. 4(c)],

QRP =
⎛
⎝0 1/2 1

1 −1/2 0
0 3/4 0

⎞
⎠

⎛
⎝1 −1 0

0 −1 0
0 0 −1

⎞
⎠

⎛
⎝0 1 2/3

0 0 4/3
1 0 −2/3

⎞
⎠

=
⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠ = C2y(P2/m). (1)

TABLE VI. Symmetry operations of P2/m space group.

SO Seitz symbols (x,y,z) form Matrix form

ε {1|0} x,y,z

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠

C2y {2010|0} –x,y,–z

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠

I {–1|0} –x,–y,–z

⎛
⎝−1 0 0

0 −1 0
0 0 −1

⎞
⎠

IC2y {m010|0} x,–y,z

⎛
⎝1 0 0

0 −1 0
0 0 1

⎞
⎠

B. Performance change after structural phase transition
under pressure

1. Regulation of crystal anisotropy

Based on the elastic constants analyzed in Appendix B 3 a,
we can get the following results. First, we predict that the
hexagonal phase Baln2As2 is more compressible in the ab
plane, and the octahedral layer in Fig. 1(a) is more suscep-
tible to phase transitions in the ab plane. In contrast, the
structural phase transitions of CaIn2As2 and SrIn2As2 are in
the c direction. This difference explains that experimentally
BaIn2As2 has different structural phases from CaIn2As2 or
SrIn2As2. The monoclinic phase of AIn2As2 has a structural
phase transition in the a direction, which is manifested by
weaker bonding in the a axis and relatively easy stripping in
that direction. Immediately after that, we find that the bulk
modulus B, shear modulus G, and Young’s modulus E of the
two-phase structures will be effectively regulated by pressure
and show different trends (see Table VII).

According to the Appendix B 3 b, we have described and
analyzed the significance of the various moduli of elasticity
and the trend of their evolution under pressure. The three-
dimensional (3D) figures of various elastic moduli (G, E ,
linear compression LC) in the SM show that the anisotropic
properties of the different structural phases of AIn2As2 dif-
fer significantly. Various elastic moduli of hexagonal phase
(P63/mmc) AIn2As2 under no pressure tend to be crystal
isotropic, especially for BaIn2As2 (see Fig. S1 within the
SM [30]). As shown in the first two rows of Fig. S2 within
the SM [30], CaIn2As2 and SrIn2As2 remain isotropic in
their elastic moduli due to too little pressure. However, at
10.555 GPa, the G, E , and v of the BaIn2As2 system shift
to anisotropy, and the LC tends to remain isotropic (see the
third row of Fig. S2 within the SM [30]). In sharp contrast to
the hexagonal phase, the monoclinic (P2/m) AIn2As2 systems
exhibit significant crystal anisotropy under no pressure (see
Figs. S3–S5 within the SM [30]). Moreover, the pressure will
further enhance the anisotropy of the individual elastic mod-
uli of the monoclinic phase AIn2As2 system. 2D projections
of the pressure-regulated G, E , LC, and v associated with
CaIn2As2, SrIn2As2, and BaIn2As2 are presented in the SM
as Figs. S6–S10 [30]. For a detailed analysis of the anisotropy
of these mechanical parameters projected in the xy, yz, and xz
directions, see Appendix B 3 c.

We further compared the bulk anisotropy and plane
anisotropy coefficients for each elastic modulus of AIn2As2

under pressure (see Fig. 5). The anisotropy coefficients of the
hexagonal phase (P63/mmc) mostly exhibit isotropic features
and are distributed around the red dashed line in Fig. 5. For
G and E of the hexagonal phase, the pressure will somehow
enhance their degree of anisotropy. In contrast, the degree
of anisotropy of LC and v shows robustness to the pressure.
G in hexagonal phase AIn2As2 at all pressures and mono-
clinic phase AIn2As2 at 0 GPa exhibit equal bulk and plane
anisotropy coefficients [see Fig. 5(a)]. The pressure will break
the equilibrium of equal bulk and plane anisotropy coeffi-
cients for the monoclinic phase, and the enhancement of the
bulk anisotropy mainly comes from the two-plane anisotropy
enhancement of xy and xz. In contrast, the G anisotropy of
the yz plane is robust for pressure, which does not become
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FIG. 5. Bulk anisotropy coefficients and plane anisotropy coefficients for hexagonal phase and monoclinic relative to (a) G, (b) E , (c) LC,
(d) v under pressure. The red dashed line indicates the anisotropy coefficient A = 1, representing the complete isotropy. The dashed column
indicates infinity anisotropy coefficients, which means that the minimum value of the modulus of elasticity is 0 or negative.

significantly more extensive due to pressure, as shown by the
yellow rectangle of the P2/m phase in Fig. 5(a). Similarly, the
yz plane anisotropy of Young’s modulus E and linear com-
pression LC in the monoclinic phase AIn2As2 do not become
much larger under pressure modulation. In contrast, the xy or
xz plane E and LC anisotropies are an essential reason for
the significant increase in the anisotropy of the bulk E and
bulk LC [see Figs. 5(b) and 5(c)]. Of interest is the monoclinic
phase system where LC and Poisson’s ratio v appears to have
a minimum value of 0 or even negative at 26 GPa, resulting in
an anisotropy of infinity [see the dashed hollow rectangles in
Figs. 5(c) and 5(d)]. Although the bulk anisotropy coefficients
tend to infinity, there are finite anisotropy coefficients (nonin-
finity) for SrIn2As2 (BaIn2As2) for LC and v in the xz plane
and xy plane, respectively. Moreover, they both undergo a dra-
matic change in anisotropy under pressure modulation, with
the same pattern as the 2D analysis above. Their anisotropy
can be described by the two anisotropy constants AU and AL

in Table VIII, which can be calculated by Eqs. (A15) and
(A16). The values of AU and AL illustrate that BaIn2As2 in the
hexagonal phase is completely isotropic at 0 GPa and that the
pressure can substantially enhance the system anisotropy. In
addition, the monoclinic phase’s anisotropy is stronger than
the hexagonal phase’s. Calculating the anisotropy constants
leads to an assertion consistent with the previous discussion.

2. Realization of negative Poisson’s ratio material

Poisson’s ratio is the opposite of transverse strain to axial
strain when a material is tensile or compressive in a particular
direction. NPR materials, also known as auxetic materials,
have several excellent properties because of their unique
mechanical structure, including superior fracture resistance,
shear resistance, sound and energy absorption, dent resistance,
and surface isotropy [35–37]. Although NPR is allowed by
thermodynamics, this property is rare in crystalline solids
[38]. NPR is mainly studied in 2D materials and structures,
and it is crucial to design a 3D multilevel system that can
exhibit NPR under deformation [39]. It is difficult to find
materials that can show a negative Poisson ratio under both
pressure and tension, and it is even rarer to find materials
or structures that can have the same NPR performance under
tension and compression stresses [39].

Using pressure modulation, we observe a NPR phe-
nomenon in AIn2As2 with low symmetry P2/m phase. In the
case of CaIn2As2, for example, the system exhibits a generally
NPR behavior in the absence of pressure or at low compres-
sive stresses [see Figs. 6(b) and 6(c)]. At both tensile pressure
of −4 GPa [see Fig. 6(a)] and compressive pressure of 26 GPa
[see Fig. 6(d)], the material rarely exhibits NPR property. We
predict that this NPR material can be widely used for many
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FIG. 6. Poisson’s ratio (v) of CaIn2As2 in xy, xz, and yz planes. (a)–(d) monoclinic phase under −4 GPa, 0 GPa, 16 GPa, and 26 GPa
pressures.

applications in medical devices, cushioning and protective
equipment, intelligent sensors, and defense industries.

3. Thermal properties analysis and enhance
in phase transition temperature

Experimentally synthesized BaIn2As2 (P2/m) has dif-
ferent structural phases from CaIn2As2 and SrIn2As2

(P63/mmc). The above first-principles calculations based on
absolute zero (T = 0 K) conditions give detailed results of
the structural phase transition. However, the thermodynamic
physical picture of the structural phases at high temperatures
is still blurred. Here, we calculate the dependence of thermo-
dynamic parameters on temperature between the hexagonal
phase (P63/mmc) and the low-symmetry monoclinic phase
(P2/m). The specific heat at constant volume Cv, the vibra-
tional entropy Svib(T ), the internal energy Uvib(T ), and the
Helmholtz free energy F (T ) of individual harmonic oscillator
and its difference �FP2/m−P63/mmc(T ) between two phases are
given as Eqs. (A1)–(A5).

To investigate the mechanism of the response of the above-
mentioned thermal parameters to temperature under pressure,
we compared the thermodynamic curves of the two phases
P63/mmc and P2/m under pressure, as shown in Figs. S13
and S14 within the SM [30]. As the pressure increases, both
phases show an increase in free energy F (red curve), a
decrease in entropy S (blue curve), and a convergence of
the heat capacity CV to a constant (green curve). As shown
by the arrows in the enlarged diagram in the right column
of Figs. S13 and S14 within the SM [30], the intersection
of heat capacity and entropy tends to move towards higher
temperatures as the pressure increases, except for BaIn2As2

in the P2/m phase. This exception may be due to lattice
distortion inducing a large phonon dispersion spectrum of
imaginary frequencies at � (shown in Fig. S12(i) within the
SM [30]). The phonon frequencies of each system of the
P2/m space group corresponding to Fig. S12 within the SM
[30] at the point � are shown in Fig. S20(a) within the SM
[30]. It is easy to find that CaIn2As2 at 0 GPa, BaIn2As2

at 16 GPa, and AIn2As2 at 26 GPa all have large imagi-
nary frequencies. The acoustic and optical branches for each

frequency correspond to the irreducible representation and
activity (Raman or IR) are compared in Table S1 within the
SM [30]. Unlike other systems where the acoustic branch
consists of Au + 2Bu, the acoustic branch of CaIn2As2 has Bg

involved in the absence of pressure, and the Bu IR activity
is squeezed to the fourth branch (–0.95 cm−1), leading to
the dynamic instability of the system. With the application
of pressure, the phonon dispersion spectrum expands and
shifts toward high frequencies while CaIn2As2 opens a gap
near 100 cm−1.

As shown in Fig. S15(a) witin the SM [30], the curve of
entropy increase indicates that the vibrational entropy favors
a monoclinic phase of AIn2As2 over a hexagonal phase. The
vibrational entropy difference (�SP2/m−P63/mmc) between the
two phases increases rapidly at low temperatures (�250 K),
and then the trend moderates as temperature increases to
3000 K. To quantitatively analyze the vibrational entropy, we
give the temperature-dependent characteristic curves of free
energy difference including the vibrational entropy [shown
in Fig. S15(b) within the SM [30]]. At low temperatures,
the free energy difference between the monoclinic phase and
the hexagonal phase is positive, implying that the hexagonal
phase is relatively stable. When the temperature increases, the
vibrational entropy prefers to stabilize the monoclinic phase,
which (−T �S(T ) < 0) becomes large enough to compen-
sate for the 0 K energy difference (�E > 0), prompting the
free energy difference to become negative (�F (T ) < 0) and
the phase transition from the hexagonal phase to the mono-
clinic phase occurs. The transition temperatures are 160 K,
156 K, and 148 K for CaIn2As2, SrIn2As2, and BaIn2As2,
respectively. The hexagonal and monoclinic phases are low-
and high-temperature phases, respectively, which is incon-
sistent with the experimentally reported high temperature
where CaIn2As2 and SrIn2As2 are hexagonal and BaIn2As2

are monoclinic phases [21]. This discrepancy may be caused
by defects or lattice distortions under high temperature. As
shown in Fig. 7, pressure can effectively raise the structural
phase transition temperature of AIn2As2 beyond absolute zero
(273 K). The phase transition temperature decreases with the
increased ionicity of the A atoms at 0 and 16 GPa, which is
related to the strength of the interatomic chemical bonds. In
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FIG. 7. Enlarged diagrams of the Helmholtz free energy difference for AIn2As2 monoclinic and hexagonal phases under different pressures.

particular, the SrIn2As2 system will reach a higher temper-
ature of 324 K at 26 GPa. Our results will provide critical
pressure and temperature options for the experimental synthe-
sis of AIn2As2 in specific structural phases.

Although the heat capacity varies at low temperatures due
to pressure (see green curves in Figs. S13 and S14 within
the SM [30]), the heat capacity of the same phase eventually
converges to the same constant independent of pressure and
A elements, satisfying the Dulong-Petit limit at high tem-
peratures. To observe the change of heat capacity at high
temperatures more clearly, we found that the heat capacity
of all systems near 1000 K did not reach Dulong-Petit limit
(see Fig. S17 within the SM [30]). Except for CaIn2As2

(P2/m) under no pressure due to the existence of phonon
dispersion at imaginary frequencies causing the heat capacity
curve to fall below the 16 GPa case, all of them showed the
phenomenon of lowering the high-temperature heat capacity
worth after pressurization. When the temperature increases to
3000 K, CaIn2As2 with P2/m phase at 0 GPa still cannot reach
Dulong-Petit limit and has the situation of leveling off (see
Fig. 8). The rest system of the absence of pressure can cross
Dulong-Petit limit. However, as shown by the red dashed line
in Fig. 8(b), applying a 16 GPa pressure can push the heat
capacity curve beyond the Dulong-Petit limit.

4. Zero-group velocity behavior of phonon mode softening
and Phonon thermal conductivity prediction

In order to study in depth the thermal conductivity prop-
erties and the sources of thermodynamic instability of the
AIn2As2 material at high pressures, we calculated phonon
group velocities, as shown in Fig. 9. Figures 9(a)–9(c) demon-
strate that the hexagonal phase (P63/mmc space group) is both
stable in the absence of pressure and at the induced zero-
bandgap pressure. The pressure induces the group velocity
towards lower and higher frequencies, behaving more diver-
gent. In addition, both two phases of AIn2As2 show a tendency
for the group velocity to become larger in the medium and
high-frequency regions with increasing pressure (see Fig. 9).
Moreover, the low-frequency acoustic branch mainly con-
tributes to the phonon thermal conductivity of all systems.
However, compared to the hexagonal phase, the monoclinic
phase of AIn2As2 has larger group velocities in the low-
frequency region, and the group velocities in the medium and
high-frequency areas are all roughly distributed in the range
of 2–3 km/s. The pressure drives a virtual frequency in the
low-frequency region because of the appearance of softened
phonon modes, which induces a ZGV [see Figs. 9(d)–9(f)].

The phonon thermal conductivity depends on the group
velocity with the relation κ = Cv2

gτ , where τ is the average

FIG. 8. (a) Hexagonal phase and (b) monoclinic phase CV − T curves. The cyan color dashed line indicates the Dulong-Petit limit.
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FIG. 9. Group velocity distributions dependent on phonon frequencies for the P63/mmc phase (a) CaIn2As2, (b) SrIn2As2, (c) BaIn2As2,
and the P2/m phase (d) CaIn2As2, (e) SrIn2As2, and (f) BaIn2As2 under different pressure.

relaxation time. The thermal conductivity can be initially
predicted from v2

g. Figures S18 and S19 within the SM [30]
give images of the frequency dependence of the squared
group velocity v2

gi(i = x, y, z) in the three directions of the
hexagonal and monoclinic phases AIn2As2 under pressure.
Closely related to the crystal structure, the P63/mmc phase
has similar group velocity evolution curves in the x and y
directions. Therefore, for the P63/mmc phase, we refer to
the thermal conductivity transported within the octahedral
inner layer as the in-plane thermal conductivity. Along the
z direction, we refer to the out-of-plane thermal conductiv-
ity. The out-of-plane thermal conductivity of the hexagonal
phase AIn2As2 is slightly larger than the in-plane thermal
conductivity. In the low-frequency region, thermal conduction
is more favored along out-of-plane. However, the fluctuation
phenomenon of the out-of-plane thermal conductivity is more
pronounced, with zero thermal conductivity behavior in spe-
cific frequency regions, and thermal conductivity is frequency
selective. Therefore, due to the octahedral lattice’s hindrance,
the out-of-plane thermal conduction behavior of the hexago-
nal phase AIn2As2 is not as easy. For the monoclinic phase,
as shown in Fig. S19 within the SM [30] AIn2As2 has thermal
conduction anisotropy in three directions, and the y direction
is the main direction of thermal conduction (for CaIn2As2).
This is because both the P2/m phase structure along the x and
z directions must traverse the A-As octahedral lattice [see the
lattice structure in Fig. 1(c)]. In contrast, along the y direction,
thermal conductivity is possible through the interstices of the
octahedral lattice. For the monoclinic phase, the contribution
of thermal conduction in the z direction is also significant
to a certain extent. In summary, the x direction is the most
difficult direction for thermal conduction in the monoclinic

phase, which is related to the smallest C11 elastic constant (see
Fig. 11).

The pressures all enhance the group velocity for AIn2As2

systems, leading to a shift of the group velocity towards high
and low frequencies. The ZGV phenomenon resulting from
shifting the monoclinic phase phonon spectrum towards lower
frequencies under pressure directly reflects the softening of
the phonon modes. The phonon frequency distribution of the
monoclinic phase under pressure and the structure with atomic
sites are given as shown in Fig. S20 within the SM [30].
We focus on the CaIn2As2 (0, 26 GPa), SrIn2As2 (26 GPa),
and BaIn2As2 (26 GPa) systems that produce significant
imaginary frequencies. The group velocity at the imaginary
frequency (IFGV) of CaIn2As2 under pressure absences is
mainly contributed by the In-2n position (red dashed circle in
Fig. S20(b) within the SM [30]) and the As-2m position (blue
dashed circle in Fig. S20(b) within the SM [30]). Most of the
IFGV of CaIn2As2 under 26 GPa originates from not only the
atomic contributions from the two Wyckoff sites mentioned
above, but also the In-2n site of the cyan color and the green-
colored As-2n site. For the IFGV of SrIn2As2 and BaIn2As2

at 26 GPa, there is also a contribution from the A atom in
addition to the In and As atom contributions. The IFGV of
SrIn2As2 under 26 GPa is mainly contributed by the Cyan-
colored In-2n site, the blue-colored As-2m site and the A2-1c
site. BaIn2As2, on the other hand, is primarily contributed by
the black-colored In-2m site, the green-colored As-2n site, the
A1-1d site and the A2-1c site. The main contributing atoms
to the ZGV phenomenon produced by the softening of the
phonon vibrational modes are also presented in Fig. S20(c)
within the SM [30]. We can clearly find that the phonon mode
softening is critically due to atomic vibrations across the zero
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FIG. 10. Pressure-dependent evolution curves for AIn2As2 of monoclinic phases (P2/m space group). (a)–(c) Lattice constants, (d) ac-plane
angle, (e) volume, and (f) band gap.

frequency near the In-In chain ([101] direction in Fig. S20
within the SM [30]). As seen in Table S1 within the SM
[30], for the CaIn2As2 (0 GPa) system, the relatively large
imaginary frequencies (below–0.08 cm−1) are mainly con-
tributed by IR-active Au and Raman-active Bg. For AIn2As2

under 26 GPa, on the other hand, the virtual frequencies are
all mainly contributed by Bu. Therefore, softening the phonon
modes at high pressure weakens the IR vibrational modes, Au

and Bu. It is interesting to note that the strange imaginary
frequency of CaIn2As2 at 0 GPa also originates from the
appearance of the Raman vibrational mode Bg, which should
not have appeared in the acoustic branch. We can predict that
along between the A-As octahedral layers (In-In atomic gaps)

is the direction of maximum probability of phonon softening
and thermal conduction in the monoclinic phase AIn2As2.

IV. CONCLUSIONS

Based on DFT calculations, we have predicted the struc-
tural phase transition of AIn2As2 materials under pressure and
characterized their mechanical and thermal properties. Firstly,
enthalpy of formation and phonon spectroscopy calculations
confirm the structural phase transition of AIn2As2 under
pressure. Moreover, the low-pressure phase of Ca(Sr)In2As2

materials is hexagonal, while the high-pressure phase is mon-
oclinic. But BaIn2As2 always prefers to form monoclinic
phases. Next, we deeply analyze the symmetries of different

FIG. 11. The difference in elastic stiffness constants for the AIn2As2 system belonging to the (a)P63/mmc (b) P2/m space group
corresponds to the data in Table VII.
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space groups, propose the structural phase transition path of
P63/mmc →R3̄m → C2/m → P2/m with C2/m as the inter-
mediate phase, and establish the physical correlation behind
the structural phase transition.

We then also obtain a variety of elastic moduli based on
the elastic stiffness matrix and further analyze the crystal
anisotropy, chemical bonding properties, hardness, toughness,
and other mechanical properties of the P63/mmc phase and
the P2/m phase AIn2As2. Among them, we have deeply in-
vestigated the crystal anisotropy transition of AIn2As2 series
materials based on pressure. Pressure will induce a transition
from isotropy to anisotropy in the AIn2As2 of the hexagonal
phase. Pressure will also enhance the crystal anisotropy in the
monoclinic phase. In addition, the bulk anisotropy of these
mechanical parameters (G, E , LC, v) depends differently on
the plane anisotropy of the xy, yz, and xz planes. We also find
that pressure will induce a transition from brittle to ductile in
the AIn2As2 of the monoclinic and hexagonal phases. And it
is found that AIn2As2 can be transformed into NPR materi-
als under both compressive and tensile stresses. At the same
time, we predict the hardness of different structural phases of
AIn2As2 that depend on the band gap.

On the other hand, we postulate that downward pressure
can effectively raise materials’ structural phase transition
temperature and report their thermal properties such as heat
capacity, entropy and free energy. Pressure is favored to
enhance the heat capacity profile of the softened mono-
clinic CaIn2As2 to reach the Dulong-Petit limit. Thus, we
determined that Ca(Sr)In2As2 is hexagonal at low pressure.
BaIn2As2 enjoys a monoclinic phase but will be in the NPMP
phase with similar energies of the monoclinic and hexagonal
phases if stretched. At low temperatures, AIn2As2 materials
prefer to form the hexagonal phase, but they will transform
into a monoclinic phase under high temperatures. Moreover,
the pressure is favorable to increase the transition tempera-
ture of the structural phase. A theoretical basis is laid for a
better study of the thermoelectric properties of AIn2As2. In
a nutshell, our study confirms the mechanical properties and
thermal behavior behind the structural phase transition of this
family of materials.
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APPENDIX A: COMPUTATIONAL DETAILS

1. Phonon and thermodynamic properties calculation

For the phonon calculation, the density functional per-
turbation theory (DFPT) in PHONOPY [40] was applied
to combine with VASP in the structures of the P63/mmc,
R3̄m, and P2/m space groups by the 2 × 2×1, 2 × 2×2, and
1 × 2 × 1 supercells, respectively.
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TABLE VIII. The reciprocal of Pugh’s ratio B/G, Kleinman’s parameter ξ , Cauchy’s pressure PC (GPa), chemical bond type, universal
anisotropy index (Au), and Log-Euclidean anisotropy (AL) from different space group: monoclinic phases (P2/m) and hexagons (P63/mmc)
for AIn2As2 under different pressures.

Phase Material Pressure (GPa) B/G ξ Pa
C (Chemical bond) Pc

C (Chemical bond) Au AL

P2/m CaIn2As2 0 1.619 (brittle) 0.73 12.3 (MLB) 0.315 0.134
16 2.351 (ductile) 1.35 36.6 (MLB) 0.910 0.357
26 3.04 (ductile) 1.81 41.4 (MLB) 2.883 0.973

SrIn2As2 0 1.553 (brittle) 0.78 13.7 (MLB) 0.491 0.207
16 2.330 (ductile) 1.45 42.8 (MLB) 1.022 0.398
26 2.949 (ductile) 1.83 54.1 (MLB) 1.753 0.639

BaIn2As2 0 1.549 (brittle) 0.83 15.2 (MLB) 0.701 0.291
16 2.565 (ductile) 1.51 51.7 (MLB) 1.204 0.468

26 3.443 (ductile) 1.87 68.0 (MLB) 2.255 0.794
P63/mmc CaIn2As2 0 1.574 (brittle) 0.50 –0.6 (CLB) –6.8 (CLB) 0.044 0.020

3 1.818 (ductile) 0.56 7.9 (MLB) –2.3 (CLB) 0.072 0.032
SrIn2As2 0 1.547 (brittle) 0.51 –1.9 (CLB) –5.9 (CLB) 0.014 0.006

6.637 2.198 (ductile) 0.63 20.2 (MLB) 5.8 (MLB) 0.094 0.041
BaIn2As2 0 1.603(brittle) 0.55 –1.7 (CLB) –2.7 (CLB) 0.000 0.000

10.555 3.104 (ductile) 0.81 37.7 (MLB) 26.2 (MLB) 0.275 0.120

Thermodynamic properties, including heat capacity, in-
ternal energy, entropy, and Helmholtz free energy, were
calculated by the following equations [41,42]:

Cv = kB

Nq

∑
q, j

(
h̄ωq j

2kBT

)2

cosech2

(
h̄ωq j

2kBT

)
, (A1)

Uvib(T ) = 1

Nq

∑
q, j

h̄ωq j

[
1

eh̄ωq j/kBT − 1
+ 1

2

]
, (A2)

Svib(T ) = kB

Nq

∑
q, j

⎡
⎣ h̄ωq j

kBT (e
h̄ωq j
kBT − 1)

− ln
(
1 − e

−h̄ωq j
kBT

)⎤⎦ ,

(A3)

F (T ) = 1

Nq

∑
q, j

[
h̄ωq j

2
+ kBT ln(1 − e−h̄ωq j/kBT )

]
, (A4)

�FP2/m−P63/mmc(T ) = �E + �Uvib(T ) − T �S(T ), (A5)

where kB is the Boltzmann constant, Nq is the number of wave
vectors q, and ωq j is the vibrational frequency of the phonon
mode q j. � in Eq. (A5) denotes each physical parameter
difference, where �E is the total energy difference calculated
by VASP.

2. Mechanical properties characterization

a. Elastic moduli and mechanical stability criteria

The elastic modulus formulas for the hexagonal and mon-
oclinic phases are from Ref. [43] and Ref. [44], respectively.
The mechanical stability criterion is from Ref. [45]. The Voigt
Reuss-Hill [46] approximation is the arithmetic mean of the
Voigt [47] and Reuss bounds [48]. B denotes the bulk modu-
lus, G denotes the shear modulus, E denotes Young’s modulus,
and v denotes Poisson’s ratio. According to the Voigt-Reuss-
Hill approximation [46], XH = (1/2)(XR + XV ), X = B, G.
Furthermore, Young’s modulus E and Poisson’s ratio v are

derived from Eq. (A6),

E = 9BG

3B + G
, v = 3B − 2G

6B + 2G
. (A6)

The independent elastic stiffness constants Ci j of hexago-
nal phase include C11, C33, C44, C12, and C13. The modulus can
be described as follows:

BV = 1
9 [2(C11 + C12) + 4C13 + C33], (A7)

GV = 1
30 (M + 12C44 + 12C66), (A8)

BR = C2

M
, (A9)

GR =
5
2 (C2C44C66)

3BV C44C66 + C2(C44 + C66)
, (A10)

where

M = C11 + C12 + 2C33 − 4C13,

C2 = (C11 + C12)C33 − 2C2
13.

The mechanical stability criteria are given via

C44 > 0, C11 > |C12|, (C11 + 2C12)C33 > 2C2
13.

As for monoclinic phase, the independent Ci j can be indi-
cated to C11, C22, C33, C44, C55, C66, C12, C13, C23, C15, C25,
C35, and C64. The modulus can be described as follows:

BV = 1
9 [C11 + C22 + C33 + 2(C12 + C13 + C23)], (A11)

GV = 1
15 [C11 + C22 + C33 + 3(C44 + C55 + C66)

− (C12 + C13 + C23)].
(A12)

BR = 
[a(C11 + C22 − 2C12) + b(2C12 − 2C11 − C23)

+ c(C15 − 2C25) + d (2C12 + 2C23 − C13 − 2C22)

+ 2e(C25 − C15) + f ]−1, (A13)
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GR = 15

{
[4a(C11 + C22 + C12) + b(C11 − C12 − C23)

+ c(C15 + C25) + d (C22 − C12 − C23 − C13)

+ e(C15 − C25) + f ]/
 + 3

[
g



+ C44 + C66

C44C66 − C2
64

]}−1

,

(A14)

a =C33C55 − C2
35, b = C23C55 − C25C35,

c =C13C35 − C15C33, d = C13C55 − C15C35,

e =C13C25 − C15C23,

f =C11
(
C22C55 − C2

25

) − C12(C12C55 − C15C25)

+ C15(C12C25 − C15C22) + C25(C23C35 − C25C33),

g =C11C22C33 − C11C
2
23 − C22C

2
13 − C33C

2
12 + 2C12C13C23,


 = 2[C15C25(C33C12 − C13C23) + C15C35(C22C13 − C12C23

+ C25C35(C11C23 − C12C13)] − [
C2

15

(
C22C33 − C2

23

)
+ C2

25

(
C11C33 − C2

13

) + C2
35

(
C11C22 − C2

12

)] + gC55.

The criteria for mechanical stability are given via

C11 > 0, C22 > 0, C33>0, C44 > 0, C55>0, C66>0,

[C11 + C22 + C33 + 2(C12 + C13 + C23)] > 0,(
C33C55 − C2

35

)
> 0,

(
C44C66 − C2

46

)
> 0,

(C22 + C33 − 2C23) > 0,[
C22

(
C33C55 − C2

35

) + 2C23C25C35 − C2
23C55

− C2
25C33

]
> 0,

{2[C15C25(C33C12 − C13C23) + C15C35(C22C13

− C12C23)

+ C25C35(C11C23 − C12C13)] − [
C2

15

(
C22C33 − C2

23

)
+ C2

25(C11C33 − C2
13) + C2

35(C11C22 − C2
12)

]
+ gC55} > 0.

b. Crystal anisotropy calculation

Since Zener anisotropy [49] and Chung-Buessem
anisotropy [50] indices are only applicable to cubic
crystals, we used the universal anisotropy index AU [51]
and log-Euclidean anisotropy index AL [52] for the anisotropy
analysis of P63/mmc and P2/m phases. AU takes into
account all the stiffness coefficients to define the anisotropy,
exploiting the tensor nature of the elastic stiffness. The
specific expression is shown in Eq. (A15). The expression
for AL with respect to the modulus of elasticity is given by
Eq. (A16),

AU = 5
GV

GR
+ BV

BR
− 6, (A15)

AL =
√[

ln

(
BV

BR

)]2

+ 5

[
ln

(
GV

GR

)]2
. (A16)

The value of the anisotropy parameter (AU and AL) is � 0.
They characterize the strength of the crystal anisotropy, and
their convergence to zero implies crystal isotropy.

c. Bonding information calculation

The Kleinman parameter (ξ ) allows evaluation of the sta-
bility of the solid under stretching or bending [53], which is
defined as

ξ = C11 + 8C12

7C11 − 2C12
.

ξ = 0 and 1 imply that bond bending and stretching will be
dominated, respectively.

The Cauchy pressure (PC) can also be used to describe
the brittleness and ductility of a metal or compound. For
hexagonal crystal systems, it is defined as Pa

C = C13 − C44 and
Pb

C = C12 − C66 [54].

d. Hardness prediction

First-principles calculations provide a good assessment of
the various mechanical properties of a solid. However, DFT
does not give a reasonable evaluation of hardness directly.
We predict hardness based on the following semi-empirical
relationships to describe the mechanical behavior of AIn2As2

fully [55–59],

H1a = 0.1475G, H1b = 0.0607E [55],

H2 = 0.1769G − 2.899 [56],

H3 = 0.0635E [57],

H4 = (1 − 2v)B

6(1 + v)
[58],

H5 = 2

(
G3

B2

)0.585

− 3 [59]. (A17)

In addition, Ivanovskii is well placed to summarize these
semi-experiences [60]. Furthermore, Sobhit Singh calculated
the hardness of various materials and compared it with ex-
perimental data to choose the semi-empirical calculation of
the most appropriate hardness based on the material’s space
group and band gap [61] (see Table II).

ELATools [62], MechElastic [61,63], and ELATE [64] pro-
grams were used for the calculation of mechanical parameters
and visualization of the modulus.

APPENDIX B: ADDITIONAL RESULTS

1. Evolution of lattice parameters under pressure

The application of pressure will first directly change the
lattice parameters of the material. The R3̄m and P63/mmc
space groups, which also belong to the hexagonal crystal
system, have similar pressure-dependent lattice parameter
evolution patterns. As the reported earlier, the lattice constants
of AIn2As2 materials with the P63/mmc space group both
decrease with increasing pressure. In addition, the bond angles
of the hexagonal crystal system are robust to pressure, always
maintaining α = 90◦, β = 90◦, γ = 120◦. However, the bond
angle β of monoclinic crystal systems is very sensitive to
pressure. As shown in Fig. 10(d), the bond angles of the three
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systems first decrease then increase with increasing pressure,
especially for the SrIn2As2 and BaIn2As2 systems, where
this evolution regular is more obvious. The lattice constants
a, b, and c all show a general trend of becoming smaller
with the applied positive pressure [see Fig. 10(a)–10(c)]. The
lattice constant a is almost linear with pressure, and the lattice
constants b and c are gradually decreasing curves. It is impor-
tant to note that the lattice constant b of BaIn2As2 becomes
larger again under high pressure. As shown in Fig. 10(e), the
volume-pressure curve fully reflects the effect of pressure.
As with the lattice parameters, the volume shows a positive
correlation with the radius of the A atom (BaIn2As2 is the
largest and CaIn2As2 the smallest). As shown in Fig. 10(f),
the band gaps of all three AIn2As2 systems show a trend of
increasing and then decreasing under pressure, and all have
a band gap maximum around 10 GPa. Narrow band gaps are
often accompanied by the nontrivial topological properties of
band inversion.

2. Symmetry transformation of point group

For the space group R3̄m with point group D3d (−3m),

�acoustic = A2u + Eu,

�optic = 2A1g + 2A2u + 2Eg + 2Eu.

In total, there are 15 vibrational modes, five nondegenerate A1g

and A2u modes, and five doubly degenerate Eg and Eu modes.
Among them, optical vibrations 2A1g + 2Eg are Raman (R)
active, while optical modes 2A2u + 2Eu are infrared Raman
(IR) active,

R(A1g) =
⎛
⎝a d 0

d a 0
0 0 b

⎞
⎠, R(Eg,1) =

⎛
⎝c 0 0

0 −c d
0 d 0

⎞
⎠,

and R(Eg,2) =
⎛
⎝ 0 −c −d

−c 0 0
−d 0 0

⎞
⎠.

For the space group P2/m with point group C2h (2/m),

�acoustic = Au + 2Bu,

�optic = 18Ag + 10Au + 9Bg + 20Bu.

In total, there are 60 vibrational modes, all of them are nonde-
generate Ag, Bg, Au, and Bu modes. Here, the optical vibration
10Au + 20Bu is infrared (IR) active, while the optical mode
18Ag + 9Bg is Raman (R) active. The corresponding mode
activity and symmetry at the � point are shown in Table IV,

R(Ag) =
⎛
⎝a d 0

d b 0
0 0 c

⎞
⎠; R(Bg) =

⎛
⎝0 0 e

0 0 f
e f 0

⎞
⎠,

T =

⎛
⎜⎝

− 2
3 −1 − 4

3 − 1
3

2
3 −1 4

3
1
3

− 1
3 0 1

3 − 1
6

⎞
⎟⎠, (B1)

GS =

⎛
⎜⎝

0 −1 2
3 0

0 −1 − 2
3 0

1 0 − 2
3 0

⎞
⎟⎠; EAN =

⎛
⎜⎜⎜⎝

−1 0 −1

0 1 0

−1 0 −2

0 0 0

⎞
⎟⎟⎟⎠;

LC =

⎛
⎜⎝

− 2
3 −1 − 4

3
2
3 −1 4

3

− 1
3 0 − 1

3

⎞
⎟⎠; EEN =

⎛
⎝1 0 0 1

2
0 1 0 0
0 0 1 0

⎞
⎠.

The structural transformation is performed in Bilbao Crystal-
lographic Server [65]. The chain of transformation relations
from the R3̄m to the P2/m structure includes three transfor-
mation matrices channels (Pi, p)(i = 1 − 6) [see Eq. (B2)].
These matrices achieve the symmetric operational transforma-
tion from the hexagonal to the monoclinic phase,

(P1|p) =
⎛
⎝0 1 2/3 |0

0 0 4/3 |0
1 0 −2/3 |0

⎞
⎠;

(P2|p) =
⎛
⎝−2/3 1 0 | − 1/6

−4/3 0 0 | − 1/3
−4/3 0 1 | − 1/3

⎞
⎠;

(P3|p) =
⎛
⎝0 0 −4/3 | − 1/3

0 1 −2/3 | − 1/6
1 0 −2/3 | − 1/6

⎞
⎠;

(P4|p) =
⎛
⎝−4/3 0 4/3 |0

−2/3 1 2/3 |0
1/3 0 −4/3 |0

⎞
⎠;

(P5|p) =
⎛
⎝−2/3 −1 0 |0

2/3 −1 0 |0
−4/3 0 1 |0

⎞
⎠;

(P6|p) =
⎛
⎝ 2/3 −1 −2/3 | − 1/6

−2/3 −1 2/3 |1/6
1/3 0 −4/3 | − 1/3

⎞
⎠. (B2)

3. Mechanical properties characterization

a. Calculation of elastic constants

Stress and strain tend to change the elastic tensor infor-
mation of the solid materials, so it is crucial to study the
mechanical properties of materials under pressure, such as
Young’s modulus, shear modulus, p-wave modulus, Poisson’s
ratio, anisotropy index, Kleinman’s parameter, Cauchy pres-
sure, Pugh’s ratio, and hardness information. Our calculated
results under all pressures satisfy the criteria for mechani-
cal stability in Appendix A 2 a, representing that all AIn2As2

systems are mechanically stable. We calculated the elastic
constants for the two phases at different pressures as shown
in Table VII. C11, C22, and C33 denote the linear compres-
sion resistance along the a, b, and c axes, respectively. For
hexagonal phase, C11 = C22 �= C33 and C33 are smaller than
C11 for all systems except BaIn2As2, indicating that the c
axis is more compressible than the a axis and b axis, which
also reflects the weaker chemical bonding in the c axis than
the a axis and b axis. In contrast, C33 is larger than C11 in
BaIn2As2 of the hexagonal phase resulting in the c axis being
more incompressible than the a(b) axis, indicating that the c-
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directional chemical bonding of BaIn2As2 is more stable than
the a(b) directional. This easily compressible direction evalu-
ates the maximum probability direction of the structure phase
transition. Due to the weaker bonding in the ab plane, the
octahedral layers in Fig. 1(a) are more easily deformed within
the layers than between them. This anomalous behavior of the
hexagonal phase BaIn2As2 compared to CaIn2As2, SrIn2As2

perfectly explains the previous experimental result for their
different structural phases. As can be seen from Fig. 11(a), the
bonding strengths differences between the a(b) axis and c axis
of CaIn2As2 and SrIn2As2 are positive, while the bonding in
the in-plane (C11 and C22) of BaIn2As2 is weaker than that in
the out-plane (C33) (about–3.5 GPa). This result implies that
CaIn2As2 and SrIn2As2 are prone to structural phase transi-
tions in the c-direction, while BaIn2As2 is prone to structural
phase transitions in the in-plane. For the monoclinic phase
[see Table VII and Fig. 11(a)], satisfying C11 �= C22 �= C33,
C11 is smaller than C22 and C33 for all systems, and the dif-
ference �C11−Ci j (i = j = 2, 3) becomes more significant as
the pressure is applied except for BaIn2As2 which becomes
smaller under 26 GPa. Without pressure, C22 of CaIn2As2

is maximum while C33 of SrIn2As2 and BaIn2As2 is maxi-
mum. With applying pressure, C22 and C33 compete, CaIn2As2

becomes maximum at 16 GPa for C33 while SrIn2As2 and
BaIn2As2 reverse to the maximum at 26 GPa for C22. In
conclusion, the monoclinic phase of AIn2As2, especially after
applying pressure, has weak bonding in the a axis, and it is
relatively easy to peel in that direction.

b. Elastic modulus analysis

The bulk modulus B is a physical measure of the material’s
ability to resist compression: the more significant the B, the
more excellent the resistance to compression and the smaller
the compressibility. The B of Hill approximation is related to
BV and BR, and the B of both two phases can be explicitly
calculated by Eqs. (A7), (A9), (A11), and (A13). As shown in
Table VII, the B of the monoclinic phase is generally smaller
and more compressible than the hexagonal phase, which is
related to the low-symmetry structure of the monoclinic. The
bulk modulus of the hexagonal phase obtained from the elastic
constants remarkably agrees with the fit of the B-M equa-
tion reported in our previous paper [20]. The bulk moduli
of the present paper (Ref. [20]) are 45.779 GPa (46.3 GPa),
43.437 GPa (43.8 GPa), and 41.077 GPa (41.7 GPa) for the
hexagonal phases CaIn2As2, SrIn2As2, and BaIn2As2, respec-
tively. Our results also show that pressure can effectively
enhance the resistance to compression of both two phases,
which can be explained by the decrease in lattice parame-
ters after compression [see Figs. 3(a)–3(e) and Fig. S2 in
Ref. [20]).

The shear modulus G reflects the ratio of stress to strain
under shear deformation. The larger the G, the greater the
resistance to shear deformation. G can also be calculated
from Eqs. (A8), (A10), (A12), and (A14). The relationship
between the two structural phases of G and the trend of change
under pressure is similar to that of B. The applied pressure
can enhance the shear deformation resistance of most of the
systems. However, it reduced again that the shear deformation
resistance of CaIn2As2 at 26 GPa and BaIn2As2 (both two

phases) under higher pressures. Without pressure, B and G
of both space groups decrease as the atomic number of A
increases.

Young’s modulus E is an important index to characterize
the stiffness of solid materials reflecting the system’s resis-
tance to elastic deformation. Poisson’s ratio v reflects the
stability of the solid against shear deformation. They can be
calculated from B and G by Eq. (A6). Also given by Table VII,
the variation regular of E under pressure is consistent with G
and B for the P2/m phase and P63/mmc phase, respectively.
Poisson’s ratio v is stable at–1∼ 0.5 under linear elastic shear
deformation. Based on the data in Table VII, we can quickly
determine that v is positive and within the stability range,
again proving that all systems are mechanically stable.

c. Pressure affects crystal anisotropy results

In order to visualize the effect of pressure on each elastic
modulus, we calculated their 2D projections in a specific
plane (see Figs. S6–S10 within the SM [30]). The hexagonal
phase (see Figs. S6 and S7 within the SM [30]) tends to be
more isotropic than the monoclinic phase due to the higher
symmetry and the neater octahedral lattice, especially with
the most significant isotropy for each BaIn2As2 mechanics
without pressure (compare with Figs. S6 and S10 within
the SM [30]). When the pressure modulates AIn2As2 as a
zero-bandgap solid material, the linear compression main-
tains isotropy. Since the pressure values of induced zero
bandgaps for CaIn2As2 and SrIn2As2 are weak, the varia-
tion of each mechanical quantity is not significantly different
from that under no pressure. However, we can see that a
pressure of 10.555 GPa will induce the change of G, E ,
v of BaIn2As2 from isotropic to anisotropic. For CaIn2As2

in the monoclinic phase (see Fig. S8 within the SM [30]),
the following conclusions can be drawn as the pressure in-
creases: (1) The anisotropy of the G-minimum positive (green
curve) and E -maximum positive increase, especially in the
xy(001) and xz(010) planes. This phenomenon is because
the difference between C22 (C33) and C11 increases sharply
under pressure. (2) The maximum positive value of linear
compression changes from almost isotropic to polarized in
the x direction (a axis). The maximum positive value in the
yz plane disappears due to the pressure effect. In contrast,
the minimum negative value polarization along the z direction
(c axis) appears under 26 GPa pressure (red curve). (3) At
26 GPa, the minimum NPR phenomenon occurs (red curve
in Fig. S8 within the SM [30]). For SrIn2As2 and BaIn2As2

in the monoclinic phase of Figs. S9 and S10 within the SM
[30], the more obvious difference is that the pressure-induced
linear compression at 26 GPa has a minimum negative value
along the y direction (b axis), but not z direction. Second,
the maximum value of linear compression and the minimum
positive value of v (green curve) are observed in the yz plane
under 26 GPa, which are not visible in CaIn2As2. Also, the
anisotropy of the maximum positive value of v (blue curve)
for the CaIn2As2 and SrIn2As2 regimes at 26 GPa is weaker
than that of BaIn2As2 in yz plane.

Furthermore, we calculate the 3D space-dependent me-
chanical quantities (G, E , B, and v) for the two phases as
BaIn2As2 (see Figs. S1–S5 within the SM [30]). It can be
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visualized that the AIn2As2 of the intrinsic hexagonal phase is
indeed highly isotropic, while the monoclinic phase exhibits
anisotropy.

d. Chemical bonding, brittleness, and hardness prediction

The Pugh’s ratio (G/B) or B/G ratio defines the ductility
or brittleness of a solid. With B/G = 1.75 as the threshold
value, a material with B/G > 1.75 is considered ductile,
while the opposite is considered brittle. From Table VIII, we
can find that the AIn2As2 system without pressure behaves
as brittle, while B/G increases and transforms into ductile
after applying pressure. The ξ parameter evaluates whether
the material is bending dominated or stretch dominated. When
the value is close to 0, the system is bending-dominated, and
close to 1, it is tensile dominated. As seen in Table VIII, the
monoclinic phase has a larger ξ than the hexagonal phase, and
the larger the A atomic number, the larger the ξ . Moreover, all
the AIn2As2 systems we consider, whether pressurized or not,
exhibit stretching dominance. As demonstrated in Table VIII,
Cauchy’s pressure PC can effectively assess the type of chem-
ical bonding. The monoclinic phase AIn2As2 tends to bond in
a metallic manner MLB, and the strength of this bonding is
proportional to the ionization energy of the A ion. Moreover,
the pressure favors the enhancement of the metallic character
of the system. The hexagonal phase of AIn2As2 has both
Cauchy’s pressures (Pa

C and Pc
C) negative in the absence of

pressure, indicating a tendency to form covalent bonds CLB.
In addition, the pressure will reverse the sign of Cauchy’s
pressure, and the bonding style changes to a metallic bonding-
dominated situation.

Hardness can adequately describe the mechanical behavior
of solids and is one of the critical factors in practical pro-
duction processes. We evaluate the hardness of AIn2As2 in
different states according to the six semi-empirical formulas
of Eq. (A17) and the judgment guide of Table II. The Vickers
hardness is calculated from H1b or H3 for the hexagonal phase
of AIn2As2 with P63mmc space group, semiconductors at
0 GPa (0 <Eg <2 eV). As shown in the orange and red curves
in Fig. 12, they are higher than other calculations. When
applying a pressure that induces a zero bandgap (Eg = 0), the
crystal hardness tends to be expressed by H4, with a reduced
hardness (green curve). For the monoclinic phase of the gen-
eral case, AIn2As2 is a semiconductor at 0 GPa and 16 GPa
and becomes metallic at 26 GPa. Again, from the results
of Table II and Fig. 12, we know that the H5 equation can
represent the hardness of the system at 0 GPa and 16 GPa,
while H4 describes the hardness of the system at 26 GPa.
In the absence of pressure, the monoclinic phase of AIn2As2

has the maximum hardness (indicated by the grey curve).
With a pressure of 16 GPa, the hardness is still expressed by
H5, but the hardness decreases by almost half, especially for
BaIn2As2. At a pressure of 26 GPa, the hardness of the system
increases again and is expressed by H4. We suggest that the
change in hardness may have a necessary relationship to the
structural phase transition. Overall, our predicted hardness of
the AIn2As2 material is not high, well below the experimental
96 GPa for diamond [66], but close to that of ZnO (7.2 GPa)
[55], which is also a hexagonal phase.

FIG. 12. Comparison of hardness parameters of AIn2As2 hexag-
onal phase (P63/mmc) and monoclinic phase (P2/m) under different
pressures.

In order to observe more comprehensively the effect of
pressure on the overall hardness of the crystal, we calcu-
lated 3D hardness distributions for BaIn2As2 as an example
(see Figs. 13). The left and right columns of Fig. 13 show
the hardness distributions of monoclinic phase BaIn2As2 at
0 GPa and 26 GPa, respectively. The hardness distribution is
symmetric about the x axis when no pressure is applied [see
Fig. 13(a)], and the symmetry of the hardness distribution
is broken when 26 GPa pressure is applied [see Fig. 13(d)].
Such an asymmetric transition can be observed more clearly
in the side (yz plane) of Figs. 13(b) and 13(e). The range of
coordinates and the intensity of the contours in Figs. 13(a)
and 13(d) allow determining that the maximum hardness of
the 0 GPa crystal is higher than 26 GPa, consistent with
the hardness relationship predicted quantitatively earlier. In
addition, it can be found that the pressure application in-
duces a shift in the hardness distribution of BaIn2As2 from
clustering in the center of the crystal to dispersion in the
y direction. Figures 13(c) and 13(f) show the projection of
hardness in the xy plane. A comparison of the localized
peak in Fig. 13(c) with the “fishtail” hardness relationship
in Fig. 13(f) shows that pressure does weaken the hardness
localization.

e. Analysis of the degree of �F − T linear correlation

We are concerned that at high temperatures (�2500 K),
the free energy difference of the pressure-absent AIn2As2

system exhibits almost a linear decrease with temperature
and has different slopes (see the enlarged figure in the
upper right of Fig. S15(b) within the SM [30]). The tem-
perature dependence of the energy difference between the
two structural phases changes from parabolic to linear, and
this monotonically decreasing relationship indicates that the
phase transition from hexagonal to monoclinic has fully re-
alized at ultrahigh temperatures. The degree of tilt of the
curve depends on the A atomic radius size. To better il-
lustrate the linearity, we performed an error analysis of
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FIG. 13. Hardness distribution of the BaIn2As2 monoclinic phase structure under 0 and 26 GPa pressures.

the slopes over the full range (0–3000 K) with the high-
temperature linear slopes of the three systems, and the
results are shown in Fig. S16 within the SM [30]. From
the marked slope errors of 5% of the temperature values
(2400 K, 2450 K, and 2420 K for CaIn2As2, SrIn2As2 and

BaIn2As2, respectively), it can be seen that, within the error
tolerance, the three systems show a linear slope after tem-
peratures above 2500 K. The slope is linear for all three
systems after the temperature above 2500 K within the error
tolerance.
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