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We theoretically investigate electronic orderings with the electric axial moment without breakings of both
spatial inversion and time-reversal symmetries in the zigzag-chain system. Specifically, we elucidate the role of
the local odd-parity hybridization arising from locally noncentrosymmetric lattice structures based on symmetry
and microscopic model analyses. We show that the odd-parity crystalline electric field gives rise to an effective
cross-product coupling between the electric dipole and electric toroidal dipole, the latter of which corresponds
to the electric axial moment. As a result, the staggered component of the electric axial moment is induced by
applying an external electric field, while its uniform component is induced via the appearance of staggered
electric dipole ordering. We also show that uniform electric quadrupole ordering accompanies uniform electric
axial moment. Furthermore, we discuss transverse magnetization as a consequence of the orderings with the
uniform electric axial moment. Our results extend the scope of materials exhibiting electric axial ordering to
those with locally noncentrosymmetric lattice structures.
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I. INTRODUCTION

Polarity and axiality are important factors in determin-
ing the physical properties in condensed matter physics. For
example, a polar vector invariant under time-reversal oper-
ation is a source of electric polarization. When a system
accommodates a polar vector, various parity-violating phys-
ical phenomena occur [1–4], such as antisymmetric spin-split
band structure [5,6], the spin Hall effect [7–11], the Edelstein
effect [12–16], and the nonlinear Hall effect [17,18]. When the
time-reversal symmetry is further broken in the system with a
polar vector, a magnetic toroidal dipole occurs [19–24], which
exhibits a linear magnetoelectric effect [25–29] and nonre-
ciprocal transport [30–34]. Meanwhile, an axial vector that
inverts under time-reversal operation gives rise to magnetiza-
tion, which becomes the origin of the anomalous Hall effect
in collinear [35–39], noncollinear [40–44], and noncoplanar
magnets [45–47].

Recently, an electric axiality, which has the opposite time-
reversal parity to the magnetization, has attracted growing
interest [48,49] since the direct observation of its electronic
ordering termed as ferroaxial (or ferrorotational) ordering in
RbFe(MoO4)2 [50,51] and NiTiO3 [51–53]. Owing to the
different time-reversal parity, a ferroaxial ordered state ex-
hibits qualitatively different physical phenomena from the
conventional ferromagnetic ordering [54–57], such as anti-
symmetric thermopolarization [58], longitudinal spin-current
generation [59,60], and nonlinear transverse magnetization
[61]. However, materials to be identified as ferroaxial ordering
in experiments are much smaller than those as ferromag-
netic ordering: Co3Nb2O8 [62], CaMn7O12 [63], Ca5Ir3O12

[64–67], BaCoSiO4 [68], K2Zr(PO4)2 [69], Na2Hf(BO3)2

[70], and Na-superionic conductors [71]. To extend the scope
of candidate materials, it is important to propose various po-
tential situations to accommodate the electric axial moment
including not only the ferroaxial moment, but also the antifer-

roaxial moment. In particular, the analysis of the electric axial
moment in a simple lattice structure is desired to understand
its fundamental nature.

In the present study, we investigate a fundamental situation,
where the uniform and staggered electric axial moments can
emerge by focusing on a zigzag-chain structure with local
inversion symmetry breaking. The aim of this study is to
clarify the relationship between the electric axial moment and
the locally odd-parity crystalline electric field that arises from
the lack of an inversion center at each lattice site to further
understand the behavior of the electric axial moment, which
will be applied to not only a vast of zigzag-chain materials,
but also materials with similar lattice structures, such as hon-
eycomb and diamond structures. To extract an essence, we
analyze a minimal four-orbital model which incorporates the
effect of the s-p hybridization and atomic spin-orbit coupling
in the one-dimensional zigzag chain. We find that the site-
dependent spin-orbit interaction originating from the local
parity mixing in the zigzag chain gives rise to an effective
cross-product coupling between an electric field and staggered
electric axial moment. Moreover, in analogy to staggered anti-
ferromagnetic ordering with uniform magnetic toroidal dipole
[72,73], we show that staggered electric dipole ordering in
the zigzag chain accompanies uniform electric toroidal dipole
corresponding to the uniform component of the electric axial
moment. We also show that uniform electric quadrupole or-
dering is another one to accompany the uniform electric axial
moment. In both cases, we demonstrate the emergence of the
transverse magnetization characteristic of the uniform electric
axial state, which can be observed in experiments.

The rest of this paper is organized as follows. In Sec. II, we
present a relationship between the electric axial moment and
odd-parity crystalline electric field based on the symmetry and
augmented multipole analyses. After introducing a minimal
tight-binding model in Sec. III, we show two situations to
activate the electric axial moment in the zigzag chain: One

2469-9950/2023/108(9)/094106(9) 094106-1 ©2023 American Physical Society

https://orcid.org/0000-0001-9186-6958
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.108.094106&domain=pdf&date_stamp=2023-09-12
https://doi.org/10.1103/PhysRevB.108.094106


SATORU HAYAMI PHYSICAL REVIEW B 108, 094106 (2023)

(b)

(c)

(d)

x
yz

(a)

xx

A

B

FIG. 1. (a) Zigzag chain consisting of two sublattices A and B.
The black arrows represent the direction of sublattice-dependent
potential gradient ±∂V pot/∂y corresponding to the odd-parity crys-
talline electric field. (b) Staggered alignment of magnetic dipole M
accompanying the magnetic toroidal dipole T in the zigzag chain.
(c) Staggered alignment of the electric toroidal dipole G accompany-
ing the electric dipole Q. (d) Staggered alignment of Q with uniform
G.

is the application of the external electric field to cause the
staggered electric axial moment in Sec. IV and the other is
staggered electronic orderings to induce the uniform one in
Sec. V. Section VI is devoted to a summary of this paper.

II. ELECTRIC AXIAL MOMENT UNDER LOCALLY
ASYMMETRIC CRYSTAL FIELD

We discuss the relationship between the electric axial
moment and local odd-parity crystalline electric field by in-
troducing four types of multipoles (electric, magnetic, electric
toroidal, and magnetic toroidal multipoles) with different
spatial-inversion and time-reversal parities [74]; the electric
(magnetic toroidal) multipole corresponds to the time-reversal
even (odd) polar tensor, while the electric toroidal (magnetic)
multipole corresponds to the time-reversal even (odd) axial
tensor. We consider the one-dimensional zigzag chain along
the x direction in Fig. 1(a), which belongs to the point group
D2h. Although there is inversion symmetry around the bond
center between the A and B sublattices, the local inversion
symmetry is broken at each sublattice; the site symmetry
belongs to the polar point group C2v. Accordingly, the linear
potential gradient along the y direction occurs in an opposite
direction in each sublattice: ∂V pot/∂y for the A sublattice,
while −∂V pot/∂y for the B sublattice. Such a potential gra-
dient leads to the sublattice-dependent hybridization between
the orbitals with different spatial parity, and results in a
sublattice-dependent antisymmetric spin-orbit interaction by
considering the combination with the atomic spin-orbit cou-
pling [72].

The sublattice-dependent antisymmetric spin-orbit interac-
tion was recently studied in various contexts in condensed
matter physics since it became the origin of various electronic
orderings, such as odd-parity magnetic multipole orderings

[72,73,75–79], skyrmion crystals [80–83], and exotic super-
conducting states [84–95]. For example, the relevance with
magnetic odd-parity multipole orderings is understood from
the symmetry correspondence as follows:

∂V pot

∂y
↔ (M × T )y, (1)

where M and T represent the magnetic dipole and magnetic
toroidal dipole, respectively. The first corresponds to the time-
reversal odd axial vector, while the second corresponds to the
time-reversal odd polar vector. When the staggered structure
of the potential gradient ∂V pot

stag/∂y = ∂V pot
A /∂y − ∂V pot

B /∂y
(the subscript represents the sublattice index) is considered
with the zigzag structure in mind, Eq. (1) is rewritten as

∂V pot
stag

∂y
↔ (Mstag × T uni )

y, (2)

where Mstag = MA − MB and T uni = T A + T B. Equation (2)
means that the staggered potential gradient induces an effec-
tive cross-product coupling between the staggered magnetic
dipole and uniform magnetic toroidal dipole. Thus, the
staggered antiferromagnetic ordered state with the z-spin po-
larization activates the uniform magnetic toroidal dipole along
the x direction in Fig. 1(b), which results in T -related physical
phenomena, such as the magnetoelectric effect [96], nonlinear
transport [97,98], nonlinear spin Hall effect [99,100], and
nonreciprocal magnon excitations [31,32,101–105]. Besides,
since the magnetic toroidal dipole is the same symmetry as
the electric current, the staggered component of the magne-
tization can be induced when applying an electric current
in the paramagnetic state, which is similar to the Edel-
stein effect in noncentrosymmetric crystals [72,73]. These
physical phenomena were discussed in other similar locally
noncentrosymmetric lattice structures, such as honeycomb
[75,76,106–108], diamond [109–111], and bilayer [112–115]
structures, which provided useful information to explore
and understand the metallic materials with odd-parity mag-
netic multipoles, such as UNi4B [116–118] and Ce3TiBi5

[119–122].
In analogy to Eq. (1), the odd-parity potential gradient is

symmetrically related to electric-type multipoles with time-
reversal even as

∂V pot

∂y
↔ (G × Q)y, (3)

where G and Q stand for the electric toroidal dipole and
electric dipole, respectively; G (Q) corresponds to the electric
axial (polar) vector with the opposite time-reversal parity to M
(T ). In the zigzag-chain structure with the staggered potential
gradient, the above expression is rewritten as

∂V pot
stag

∂y
↔ (Gstag × Quni )

y, (4)

where Gstag = GA − GB and Quni = QA + QB. Thus, the stag-
gered alignment of the z-directional electric axial moment,
i.e., Gz

stag �= 0, induces the uniform electric dipole (electric
polarization) along the x direction, as shown in Fig. 1(c). Con-
versely, when the electric field along the x direction is applied
in the paramagnetic state, one can expect the z component of

094106-2



UNIFORM AND STAGGERED ELECTRIC AXIAL MOMENT … PHYSICAL REVIEW B 108, 094106 (2023)

the staggered electric axial moment since the electric field is
the same symmetry as Quni.

Moreover, one can further rewrite the expression in Eq. (4)
while preserving the symmetry as follows:

∂V pot
stag

∂y
↔ (Guni × Qstag)y, (5)

where Guni = GA + GB and Qstag = QA − QB. This corre-
spondence indicates that the staggered electric dipole ordering
in the z component accompanies the uniform axial moment
along the x direction, as shown in Fig. 1(d). In this way, the
staggered (uniform) alignment of the electric dipole leads to
the uniform (staggered) alignment of the electric axial mo-
ment in the zigzag-chain system.

III. MODEL

To demonstrate the above effective cross-product coupling
between the electric dipole and electric axial moments beyond
the symmetry argument, we investigate a minimal fundamen-
tal model in the zigzag chain. To incorporate the effect arising
from the absence of the local inversion symmetry like the
odd-parity hybridization, the atomic spin-orbit coupling, and
dipole degrees of freedom in terms of Q and G, we consider
the s-p hybridized model consisting of four orbitals (s, px, py,
pz) in the zigzag chain, which is given by

H = Ht + Hpot + HSOC + Hodd,

Ht = −
∑

i jαα′σ

(
tαα′
i j c†

iα′σ c jασ + H.c.
)
, (6)

Hpot = �
∑

iσ

c†
isσ cisσ , (7)

HSOC = λ

2

∑
iα̃α̃′σσ ′

c†
iα̃σ HSOCciα̃′σ ′, (8)

Hodd = −V
∑

iσ

pi(c
†
isσ cipyσ + H.c.), (9)

where c†
iασ and ciασ stand for the creation and annihilation

fermion operators at site i, orbital α = s, px, py, and pz,
and spin σ , respectively. The total Hamiltonian consists of
the hopping Hamiltonian Ht , onsite-potential Hamiltonian
Hpot, spin-orbit-coupling Hamiltonian HSOC, and odd-parity
mixing Hamiltonian Hodd. Ht represents the nearest-neighbor
hopping between the A and B sublattices; we use four Slater-
Koster parameters tssσ , tppσ , tppπ , and tspσ for tαα′

i j by setting
the positions of the A and B sublattices as (0,0,0) and
(a/2,−a/2, 0); a is the lattice constant along the x direc-
tion and we take a = 1 as the length unit. The hoppings are
parametrized as (tssσ , tppσ , tppπ , tspσ ) = (1,−0.8, 0.4,−0.6);
we set tssσ as the energy unit of the total Hamiltonian in
Eq. (6). Hpot represents the atomic energy level for the s
orbital, which is lowered from the p-orbital level by � = −2.
For simplicity, we ignore other even-parity crystalline electric
fields, which split into the three p orbitals. HSOC with α̃ = px,
py, and pz represents the atomic spin-orbit coupling for three p
orbitals with the orbital angular momenta l = 1 whose 6 × 6

matrix is given by

HSOC =
⎛
⎝

0 −iσ z iσ y

iσ z 0 −iσ x

−iσ y iσ x 0

⎞
⎠, (10)

where σμ is the μ component of the Pauli matrix in spin space.
We take the magnitude of the spin-orbit coupling as λ = 0.5.
Hodd represents an odd-parity crystalline electric field depend-
ing on the sublattices, which arises from the absence of local
inversion symmetry. Since the local potential gradient appears
along the y direction, as shown in Fig. 1(a), the local s-py

hybridization so as to mix different parities occurs. Owing
to the presence of the global inversion symmetry around the
nearest-neighbor bond center, the sign of the hybridization is
opposite for the A and B sublattices; pi = +1(−1) for the A
(B) sublattice. We set V = 0.3.

To discuss the cross-product coupling between Q and
G at the microscopic level, we define their operator ex-
pressions. Based on the augmented multipole description
[123–126], their expressions for Qi = (Qx

i , Qy
i , Qz

i ) and Gi =
(Gx

i , Gy
i , Gz

i ) at site i are given by

Qx
i =

∑
σ

(c†
isσ cipxσ + H.c.), (11)

Qy
i =

∑
σ

(c†
isσ cipyσ + H.c.), (12)

Qz
i =

∑
σ

(c†
isσ cipzσ + H.c.), (13)

Gx
i = − ic†

ipz↑cipx↑ + c†
ipy↓cipx↑

− c†
ipx↓cipy↑ + ic†

ipz↓cipx↓ + H.c., (14)

Gy
i = ic†

ipy↓cipx↑ − ic†
ipz↑cipy↑

− ic†
ipx↓cipy↑ + ic†

ipz↓cipy↓ + H.c., (15)

Gz
i = ic†

ipz↓cipx↑ − c†
ipz↓cipy↑

− ic†
ipx↓cipz↑ + c†

ipy↓cipz↑ + H.c.. (16)

From these expressions, one finds that Qi corresponds to
the real s-p hybridization without spin dependence, while
Gi corresponds to the outer product of the orbital angular
momentum and spin operators (l i × σ i) [127], each of which
is represented by

lx
i =

∑
σ

(
ic†

ipzσ
cipyσ + H.c.

)
, (17)

ly
i =

∑
σ

(
ic†

ipxσ
cipzσ + H.c.

)
, (18)

lz
i =

∑
σ

(
ic†

ipyσ
cipxσ + H.c.

)
, (19)

σ x
i =

∑
σσ ′α

c†
iασ σ x

σσ ′ciασ ′ , (20)

σ
y
i =

∑
σσ ′α

c†
iασ σ

y
σσ ′ciασ ′ , (21)

σ z
i =

∑
σσ ′α

c†
iασ σ z

σσ ′ciασ ′ , (22)

where the spin operator si is defined by si = σ i/2. It is
noted that the staggered potential gradient in Eq. (9) is also
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described by the staggered alignment of the y component of
the electric dipole.

Although we here adopt the s-p hybridized orbitals in the
model for simplicity, a qualitatively similar result is obtained
for different choices of orbitals, such as p-d and d- f hy-
bridized orbitals, when the electric axial degree of freedom in
Eqs. (14) to (16) is included in the low-energy Hilbert space
[123]. On the other hand, it is noted that the physical quantities
discussed in the following sections are quantitatively affected
by the choice of orbitals since the model parameters are also
dependent on the orbital nature. To understand the important
model parameters to induce such physical quantities at the
qualitative level, we introduce the expansion method in Ref.
[128] in the subsequent sections.

IV. STAGGERED AXIAL MOMENT IN AN EXTERNAL
ELECTRIC FIELD

We examine the effective cross-product coupling between
the staggered electric toroidal dipole G and the uniform
electric dipole Q in Eq. (4). As discussed in Sec. II, the z com-
ponent of the staggered electric axial moment is induced by
applying the external electric field along the x direction paral-
lel to the zigzag-chain direction. To microscopically evaluate
such a cross-product coupling, we calculate the correlation
function between them based on the Kubo formula, which is
given by

Kz;x = 1

iN

∑
m,n,k

f (εnk) − f (εmk)

εnk − εmk

Gnm
z,kJmn

x,k

εnk − εmk + iδ
, (23)

where N is the number of sites, f (ε) is the Fermi distribution
function, εnk and |nk〉 are the nth eigenvalue and eigenstate
of H, respectively. Gnm

z,k = 〈nk|pηGz
η|mk〉 [pη = +1(−1) for

the A (B) sublattice] and Jmn
x,k = 〈mk|Jx|nk〉 are the matrix

elements of staggered electric toroidal dipole operator and
the current operator Jx = (e/h̄)∂H/∂kx, respectively. We set
e/h̄ = 1, the temperature T = 0.01, and the broadning factor
δ = 10−5. Kz;x represents the linear-response function where
the z component of the staggered electric axial moment is
induced by the external electric field along the x direction.

Figure 2 shows the chemical potential μ dependence of
Kz;x for the model in Eq. (6); the regions for μ � −4.6 and
μ � 1.65 correspond to those of zero electron filling and full
filling, respectively. We also show the data in the low-filling
region in the inset of Fig. 2. As found in the behavior of Kz;x, it
becomes nonzero for all μ. Thus, the zigzag-chain system un-
der the locally noncentrosymmetric lattice structure exhibits
instability toward the staggered electric axial moment when
the electric field is applied, as expected from the symmetry
argument in Sec. II.

To extract the essential model parameters to cause nonzero
Kz;x at the qualitative level, we perform the expansion method
for the linear response function following the manner in
Ref. [128]. As a result, we find that the spin-orbit coupling λ

is included in the expansion of Kz;x at any order, which means
that λ is essential for Kz;x. In addition, we find that all the or-
ders in the expansion vanish when both the s-p hybridization
V and the hopping between the s-p orbitals tspσ are zero, i.e.,
Kz;x = 0 for V = tspσ = 0; the odd-parity hybridization also
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FIG. 2. Chemical potential μ dependence of the electric-field-
induced staggered electric axial moment Kz;x . The inset shows the
data in the low-filling region for −5 � μ � −1.5.

plays an important role in inducing Kz;x. Such a behavior is
also confirmed by directly performing a numerical evaluation
of Eq. (23).

At the quantitative level, Kz;x is enhanced at some particular
μ, as shown in Fig. 2; the largest response is obtained at
μ 	 0.72. Since the dominant process for Kz;x is the interband
one with m �= n, one notices that the small energy difference
in the denominator in Eq. (23) tends to enhance Kz;x. Indeed,
as shown in the band structure in Fig. 3(a), the chemical
potential that maximizes Kz;x lies in the small band gap de-
noted by the horizontal dashed line in Fig. 3(a); see also the
data denoted by the thick black lines in Fig. 3(b). Thus, the
small gap structure in the band dispersion is desired to obtain
a large response of Kz;x. The gap opening is owing to the
spin-orbit coupling, as shown in Fig. 3(b), where there is no
gap structure for λ = 0 as denoted by the thin red lines and
the gap opening is found for nonzero λ. Since the magnitude
of the gap is almost the same for different λ, a large response
can be expected by tuning the chemical potential even for
different λ.

Let us discuss the difference from different staggered re-
sponses in the zigzag-chain system, where the z component of
the staggered magnetization is induced by an external electric
current parallel to the chain direction in Fig. 1(b) [72,73]. Al-
though such a response can be calculated by replacing Gz

η with
σ z

η in Eq. (23), the dominant process becomes the intraband
process related to δ, which is different from the interband
process in the present Kz;x. Thus, Kz;x becomes nonzero for
both metals and insulators, while it appears only for metals in
the case of staggered magnetization.

V. UNIFORM AXIAL MOMENT UNDER
ELECTRONIC ORDERING

We discuss the situation where the uniform electric axial
moment is induced by two types of electronic orderings: One
is the staggered electric dipole ordering in Sec. V A and
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FIG. 3. (a) Band dispersion of the model in Eq. (6). The hor-
izontal dashed line represents the energy, where Kz;x in Fig. 2 is
maximized. (b) The band dispersions in the vicinity of the tiny band
gap around μ 	 0.72. The thin red, dashed thin green, thick black,
and dashed thick blue lines represent the dispersions at λ = 0, 0.2,
0.5, and 1, respectively.

another is the uniform electric quadrupole ordering in
Sec. V B. We also show the behavior of the transverse magne-
tization under both orderings.

A. Staggered electric dipole ordering

As discussed in Sec. II, the z component of the staggered
electric dipole ordering, Qz

stag ≡ (Qz
A − Qz

B)/2 in Eq. (13),
in the zigzag chain accompanies the uniform electric ax-
ial moment along the x direction corresponding to Gx

uni ≡
(Gx

A + Gx
B)/2 in Eq. (14). The first corresponds to the cluster

electric axial moment, while the second corresponds to the
atomic-scale electric axial moment. We here investigate the
relationship between Qz

stag and Gx
uni by introducing the molec-

ular field to induce Qz
stag, which is given by

HMF
stag = −h

∑
iσ

pi
(
c†

isσ cipzσ + H.c.
)
, (24)

where h is the amplitude of the molecular field; we set h = 0.1
in the following. In the presence of HMF

stag, 〈Qz
stag〉 (〈· · · 〉 means

the expectation value) becomes nonzero and the symmetry of
the system is lowered from D2h to C2h so that the uniform elec-
tric axial moment belongs to the totally symmetric irreducible
representation.

In addition, we consider the effect of the external magnetic
field in the presence of the uniform electric axial moment
since an unconventional transverse response is expected under
the ordering [61]. Then, we introduce the Zeeman Hamilto-
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FIG. 4. (a) Magnetic field Hy and (b) Hz dependence of the
atomic-scale electric axial moment 〈Gx

uni〉 and cluster electric axial
moment 〈Qz

stag〉 in the staggered electric dipole ordering for h = 0.1
and ne = 2.2. (c) H dependence of symmetrized spin moment 〈sS〉
and antisymmetrized spin moment 〈sAS〉 for h = 0.1 and ne = 2.2.
(d) H dependence of symmetrized orbital moment 〈lS〉 and antisym-
metrized orbital moment 〈lAS〉 for h = 0.1 and ne = 2.2.

nian given by

HZ = −
∑

i

H · (l i + 2si ), (25)

where we consider the transverse magnetic field perpen-
dicular to the uniform electric axial moment, i.e., H =
(0, Hy, Hz ). When the uniform electric axial moment is ac-
tivated, the y (z) component of the uniform magnetization,
My (Mz ), is expected to be induced by the magnetic field
along the z (y) direction in addition to the parallel compo-
nent; we denote the notation to represent such a situation as
My(Hz ) [Mz(Hy)]. In particular, the antisymmetrized compo-
nent MAS ≡ [My(Hz ) − Mz(Hy)]/2 corresponds to the signal
of the electric axial moment, while the symmetrized com-
ponent MS ≡ [My(Hz ) + Mz(Hy)]/2 corresponds to that of
the yz component of the electric quadrupole moment. In the
present model, both components are permitted from the C2h

symmetry since the staggered electric dipole ordering is re-
garded as the superposition of the electric toroidal dipole and
electric quadrupole [76]. We calculate the antisymmetrized
(symmetrized) spin and orbital moments sAS and lAS (sS and
lS), respectively; MAS = sAS + lAS and MS = sS + lS.

Figures 4(a) and 4(b) show the Hy and Hz dependence
of the expectation values of cluster and atomic electric axial
moment, 〈Qz

stag〉 and 〈Gx
uni〉, respectively. We set the electron

filling as ne = 2.2, where ne = 8 is the full filling; this filling
corresponds to the situation where the s (p) orbital is almost
fully occupied (empty). We confirmed that the following re-
sult is not altered at the qualitative level for different ne. In
both cases, 〈Qz

stag〉 becomes nonzero for Hy � 0 or Hz � 0,
while 〈Gx

uni〉 becomes nonzero in a nonzero field for Hy > 0
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FIG. 5. Uniform alignment of electric quadrupole Qyz in the
zigzag chain. The uniform electric axial moment denoted by the
green arrow is induced along the x direction.

or Hz > 0. This indicates that 〈Qz
stag〉 and 〈Gx

uni〉 are related
to each other via the external magnetic field. Indeed, we
obtain the essential model parameters under Hz in the form
of hH2

z (c1V + c2tspσ )F , where c1 and c2 are numerical coef-
ficients and F denotes the function depending on the model
parameters of the Hamiltonian. We find that 〈Gx

uni〉 can be
induced in the same direction irrespective of the sign of Hz

[57] and needs the odd-parity s-p hybridization (V and tspσ )
as well as the molecular field (h). A similar relation also holds
for the case under Hy in Fig. 4(a).

Next, we plot the expectation values of sAS and sS in
Fig. 4(c) and lAS and lS in Fig. 4(d) with Hy = Hz = H . The
result shows that both quantities become nonzero once the
magnetic field is applied. By analyzing the essential model
parameters for 〈sAS〉, 〈sS〉, 〈lAS〉, and 〈lS〉, we find a similar
tendency of the model parameter dependence to induce Kz;x

and 〈Gx
uni〉; 〈sAS〉 and 〈sS〉 are proportional to hHλ(c′

1V +
c′

2tspσ )F ′, while 〈lAS〉 and 〈lS〉 are proportional to hH (c′′
1V +

c′′
2tspσ )F ′′, where c′

1, c′
2, c′′

1, and c′′
2 are numerical coefficients

and F ′ and F ′′ are functions of the model parameters [129].
The difference is that the spin-orbit coupling λ is included
in the essential model parameters of 〈sAS〉 and 〈sS〉 since
the odd-parity hybridization without spin dependence affects
〈sAS〉 and 〈sS〉 via the spin–orbit coupling. Another difference
from 〈Gx

uni〉 appears in the magnetic field dependence. The
transverse magnetization is proportional to H rather than H2

owing to the different time-reversal parity between 〈Gx
uni〉 and

spin/orbital moments.

B. Uniform electric quadrupole ordering

We have so far investigated the situation where the uniform
electric axial moment is induced by the staggered electric
dipole, as schematically shown in Fig. 1(d). Meanwhile, the
uniform electric axial moment is expected to be induced even
for other electronic orderings once the resultant symmetry
in the presence of the symmetry-lowering molecular field is
the same as that in the case of the staggered electric dipole
ordering. As an example, we consider the uniform electric
quadrupole ordering, as shown in Fig. 5, which also lowers the
symmetry from D2h to C2h. The microscopic order parameter
is given by

HMF
uni = −h′ ∑

iσ

(c†
ipyσ

cipzσ + H.c.), (26)

where h′ is the magnitude of the molecular field regarding the
electric quadrupole.

Figures 6(a) and 6(b) show the Hy and Hz dependence of
〈Qz

stag〉 and 〈Gx
uni〉 for the model Hamiltonian H + HMF

uni + HZ.
We also show the H dependence of 〈sAS〉 and 〈sS〉 (〈lAS〉
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FIG. 6. (a) Hy and (b) Hz dependence of 〈Gx
uni〉 and 〈Qz

stag〉 in
the uniform electric quadrupole ordering for h′ = 0.1 and ne = 2.2.
(c) H dependence of 〈sS〉 and 〈sAS〉 for h′ = 0.1 and ne = 2.2. (d) H
dependence of 〈lS〉 and 〈lAS〉 for h′ = 0.1 and ne = 2.2.

and 〈lS〉) in Fig. 6(c) [Fig. 6(d)]. In contrast to the result in
Fig. 4, 〈Gx

uni〉, 〈sAS〉 and 〈sS〉, 〈lAS〉, and 〈lS〉 exhibit differ-
ent model parameter dependence: 〈Gx

uni〉 is proportional to
h′H2F ′′′, 〈sAS〉 and 〈sS〉 are proportional to h′HλF ′′′′, and
〈lAS〉 and 〈lS〉 are proportional to h′HF ′′′′′, where F ′′′, F ′′′′,
F ′′′′′ are functions of the model parameters [129]. Thus, the
effect of the odd-parity hybridization, V and tspσ , is not re-
quired in the case of the uniform electric quadrupole ordering.
The difference is understood from the orbital dependence of
the order parameter; the electric dipole (Qz) corresponds to the
hybridization between the s and p orbitals, while the electric
quadrupole (Qyz) corresponds to the hybridization between the
p orbitals. Since the operator of the electric axial moment
Gx is described by the hybridization between p orbitals in
Eq. (14), the s-p hybridized factor is required to couple Qz

and Gx in the case of the staggered electric dipole ordering,
while it is not necessary for the coupling between Qyz and Gx

in the case of the uniform electric quadrupole ordering. In this
way, the important model parameters to induce the electric
axial moment and its related transverse magnetization largely
depend on the microscopic electronic order parameters.

In a similar manner, we can induce the uniform electric
axial moment by considering a higher-order electric multipole
ordering. For example, the staggered electric octupole or uni-
form electric hexadecapole orderings can lead to the uniform
electric axial moment once the irreducible representation of
the order parameters is the same as that of the electric axial
moment. The truncation of the order of multipoles depends
on the basis wave function in the low-energy Hilbert space.

VI. SUMMARY

To summarize, we investigated the fundamental properties
of the electric axial moment by focusing on its ordering in the
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one-dimensional zigzag chain. We proposed that the zigzag
chain with a locally noncentrosymmetric lattice structure is
a prototype to examine electric-axial physics by exemplify-
ing the emergence of staggered and uniform electric axial
moments. We found that the staggered electric axial mo-
ment is induced by applying the external electric field, where
the interplay between the spin-orbit coupling and the odd-
parity hybridization plays an important role. In addition, we
showed that the uniform electric axial moment is activated by
the staggered electric dipole ordering and/or uniform elec-
tric quadrupole ordering, both of which are a source of the
transverse magnetic responses. Since there are a lot of situa-
tions and materials with the zigzag structure, such as zigzag
nanoribbon of the transition metal dichalcogenides [96,130],

3d transition metals [131], Ba4In8Sb16 [132], LnM2Al10 (Ln:
lanthanoid ions, M: transition metal ions) [133–139], and
U2Ir3Si5 [140], our results will be a reference to study the
nature of the electric axial moment in future experiments.

ACKNOWLEDGMENTS

This research was supported by JSPS KAKENHI Grants
No. JP21H01037, No. JP22H04468, No. JP22H00101, No.
JP22H01183, No. JP23K03288, and No. JP23H04869, and by
JST PRESTO (JPMJPR20L8). Parts of the numerical calcula-
tions were performed in the supercomputing systems in ISSP,
the University of Tokyo.

[1] L. Fu, Phys. Rev. Lett. 115, 026401 (2015).
[2] V. Kozii and L. Fu, Phys. Rev. Lett. 115, 207002 (2015).
[3] J. W. F. Venderbos, V. Kozii, and L. Fu, Phys. Rev. B 94,

180504(R) (2016).
[4] S. Hayami, Y. Yanagi, H. Kusunose, and Y. Motome, Phys.

Rev. Lett. 122, 147602 (2019).
[5] E. I. Rashba, Sov. Phys. Solid State 2, 1109 (1960).
[6] M. S. Dresselhaus, G. Dresselhaus, and A. Jorio, Group

Theory: Application to the Physics of Condensed Matter
(Springer-Verlag, Berlin, 2008).

[7] S. Murakami, N. Nagaosa, and S.-C. Zhang, Science 301, 1348
(2003).

[8] S. Murakami, N. Nagaosa, and S.-C. Zhang, Phys. Rev. Lett.
93, 156804 (2004).

[9] J. Sinova, D. Culcer, Q. Niu, N. A. Sinitsyn, T. Jungwirth, and
A. H. MacDonald, Phys. Rev. Lett. 92, 126603 (2004).

[10] S. Fujimoto, J. Phys. Soc. Jpn. 75, 083704 (2006).
[11] S. Fujimoto, J. Phys. Soc. Jpn. 76, 051008 (2007).
[12] V. M. Edelstein, Solid State Commun. 73, 233 (1990).
[13] S. K. Yip, Phys. Rev. B 65, 144508 (2002).
[14] S. Fujimoto, Phys. Rev. B 72, 024515 (2005).
[15] T. Yoda, T. Yokoyama, and S. Murakami, Nano Lett. 18, 916

(2018).
[16] G. Massarelli, B. Wu, and A. Paramekanti, Phys. Rev. B 100,

075136 (2019).
[17] I. Sodemann and L. Fu, Phys. Rev. Lett. 115, 216806 (2015).
[18] S. Nandy and I. Sodemann, Phys. Rev. B 100, 195117

(2019).
[19] V. Dubovik and A. Cheshkov, Sov. J. Part. Nucl 5, 318 (1975).
[20] V. Dubovik and V. Tugushev, Phys. Rep. 187, 145 (1990).
[21] A. Gorbatsevich and Y. V. Kopaev, Ferroelectrics 161, 321

(1994).
[22] N. A. Spaldin, M. Fiebig, and M. Mostovoy, J. Phys.:

Condens. Matter 20, 434203 (2008).
[23] B. B. Van Aken, J.-P. Rivera, H. Schmid, and M. Fiebig,

Nature (London) 449, 702 (2007).
[24] S.-W. Cheong, D. Talbayev, V. Kiryukhin, and A. Saxena, npj

Quantum Mater. 3, 19 (2018).
[25] Y. F. Popov, A. Kadomtseva, D. Belov, G. Vorob’ev, and A.

Zvezdin, J. Exp. Theor. Phys. Lett. 69, 330 (1999).
[26] H. Schmid, Ferroelectrics 252, 41 (2001).
[27] C. Ederer and N. A. Spaldin, Phys. Rev. B 76, 214404 (2007).
[28] D. Khomskii, Physics 2, 20 (2009).

[29] A. S. Zimmermann, D. Meier, and M. Fiebig, Nat. Commun.
5, 4796 (2014).

[30] K. Sawada and N. Nagaosa, Phys. Rev. Lett. 95, 237402
(2005).

[31] S. Miyahara and N. Furukawa, J. Phys. Soc. Jpn. 81, 023712
(2012).

[32] S. Miyahara and N. Furukawa, Phys. Rev. B 89, 195145
(2014).

[33] Y. Tokura and N. Nagaosa, Nat. Commun. 9, 3740 (2018).
[34] S. Hayami and M. Yatsushiro, Phys. Rev. B 106, 014420

(2022).
[35] J. Ye, Y. B. Kim, A. J. Millis, B. I. Shraiman, P. Majumdar,
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