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Magnetotransport on quantum spin Hall edge coupled to bulk midgap states
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We consider magnetotransport on a helical edge of a quantum spin Hall insulator, in the presence of bulk
midgap states side coupled to the edge. In the presence of a magnetic field, the midgap levels are spin split, and
hybridization of these levels with the itinerant edge states leads to backscattering, and the ensuing increase
in the resistance. We show that there is a singular cusplike contribution to the positive magnetoresistance
stemming from resonant midgap states weakly coupled to the edge. The singular behavior persists for both
coherent and incoherent edge transport regimes. We use the developed theory to fit the experimental data for the
magnetoresistance for monolayer WTe2 at liquid helium temperatures. The results of the fitting suggest that the
cusplike behavior of the resistance in weak magnetic fields observed in experiments on monolayer WTe2 with
long edge channels might indeed be explained by hybridization of the helical edge states with spin-split bulk
midgap states. In particular, the dependence of the magnetoresistance on the direction of the external magnetic
field is well described by the incoherent edge transport theory, at the same time being quite distinct from the one
expected for a magnetic-field-induced edge gap.
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I. INTRODUCTION

Transport and magnetotransport on a helical edge of a
quantum spin Hall, or two-dimensional topological insula-
tor, phase have been considered one of the main tests for
the identification of this phase since its theoretical proposal
[1–3] and initial experimental discoveries [4]. Tradition-
ally, considerations of the edge conductance focus on its
two related aspects: the conductance quantization (or often
lack thereof) at the value of 2e2/h at low temperatures,
and its suppression by various perturbations, magnetic fields
in particular. Arguably, the conductance quantization issue
has received more theoretical and experimental attention.
If one accepts the view that ideally the conductance on
a helical edge must be quantized at sufficiently low tem-
peratures, the main issue to address is the observed lack
of quantization. There are several proposed mechanisms
for this: localization of electrons by magnetic impurities
[5–7], vacancy-induced magnetic moments [8], the existence
of charge puddles [9–11], interaction-mediated backscatter-
ing [12,13], spontaneous TR breaking on the edge [14],
backscattering by nuclear magnetic moments [15], or noise
[16].

In this paper we completely put aside the issue of the con-
ductance quantization and focus solely on its suppression by
an external magnetic field. Given the above list of mechanisms
proposed to explain the lack of conductance quantization, it is
likely that the number of those affecting the magnetoconduc-
tance is just as extensive. Therefore, it makes sense to limit the
scope of our study to the minimal set of physical aspects of
the problem that can explain the observed features of the edge
transport. We thus limit ourselves to considerations of elastic
transport (coherent or incoherent) in the presence of coupling

between the edge electrons and either potential disorder on the
edge or resonant midgap levels in the bulk.

We specifically focus on explaining the observed magne-
toconductance in 1T′-WTe2 monolayers. (Without a magnetic
field, but in the presence of a strong disorder, the edge conduc-
tance of this material was theoretically discussed in Ref. [17].)
Monolayer WTe2 was theoretically proposed to host the quan-
tum spin Hall insulator phase in Refs. [18–21]. Subsequent
experimental studies confirmed the presence of edge conduc-
tion at low temperatures [22–30].

Detailed edge magnetoconductance studies [29] showed
that the edge conductance strongly depends on the mag-
netic field orientation with respect to a well-defined direction,
which essentially does not depend on sample, gate voltage, or
edge orientation in a given sample. It is natural to identify this
special direction, canted away from the normal to the sample
due to the low symmetry of the latter, with the direction of the
spin polarization of the spin-momentum locked edge states
[29–32].

The edge magnetoresistance in WTe2 for small B fields
appears to have a nonanalytic cusplike field dependence,
somewhat rounded, as it must be, at the smallest B fields. Fur-
thermore, the conductance is suppressed by roughly an order
of magnitude in magnetic fields of order of 0.1–0.5 Tesla, for
field orientations perpendicular to the edge spin polarization.
The strong field dependence of the edge conductance at small
B fields is puzzling.

There are various ways to explain such strong magnetic
field dependence. One can broadly separate the effects asso-
ciated with a magnetic field into spin (Zeeman) and orbital
ones. The orbital mechanisms of conductance suppression
are strongest for magnetic fields oriented perpendicular to
the two-dimensional sample plane. They are thought to be
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behind the strong conductance suppression by out-of-plane
magnetic fields in HgTe/CdTe quantum wells [4]. Naturally, in
order to have an appreciable effect on transport, weak orbital
magnetic field requires a way to produce a large magnetic flux,
either through a charge puddle near the edge, or through some
effective loop formed by an edge state forced to reptate away
from the physical edge by strong disorder [11,33–35].

Unlike the case of HgTe/CdTe quantum wells, there is
no strong qualitative difference between edge magnetocon-
ductance in WTe2 for in-plane and out-of-plane magnetic
fields. Due to the canted spin polarization on the edge,
both of the above field orientations make substantial an-
gles with the edge spin polarization (roughly 55◦ and 35◦,
respectively), and show similar magnetoconductance. This
appears to be consistent with strong lateral confinement of
the edge states in WTe2 due to a large direct gap [17,36–38],
as distinct from the actual narrow indirect gap of the
material.

If Zeeman fields are responsible for edge magnetocon-
ductance in WTe2, then the most obvious mechanism for
conductance suppression would be opening up a gap at a
topological edge. If the chemical potential happens to be
very close to the Dirac point energy on the edge, magnetic
field will indeed lead to insulating behavior, as conjectured in
Ref. [26] to explain observed magnetoconductance for very
short channels. However, the cusplike behavior of the mag-
netoconductance persists for a wide range of gate voltages
[29,30], which suggests that the gap opening on the edge is
at the very least not the only mechanism of singular magneto-
conductance.

Converted to energy units, magnetic fields of 0.1–0.5 Tesla
correspond to an energy scale of 0.1 meV (or 1 K in tem-
perature units), unless the g-factor on the edge is anomalously
large. There are no reports of such edge g-factors to the best of
our knowledge. It is then a key question how such small fields
can have a large effect on the edge conductance for generic
values of the chemical potential, say, from meVs to tens of
meVs away from an edge Dirac point. It is hard to find a
relevant energy scale that controls edge conduction and which
is small enough to be overcome by such a small magnetic
field.

In this paper we argue that small Zeeman fields can be
given a chance to have a large effect on transport if they are
able to cause spin precession that persists for a long time. It
is impossible to achieve this on the edge itself, because of
the strong spin-momentum locking and the associated strong
effective Zeeman fields coming from the spin splitting at the
Fermi level. However, edge electrons can be hybridized with
bulk midgap states in a way roughly described by the (nonin-
teracting) Anderson impurity model. In WTe2, such states can
come from Te vacancies [39]. Then edge electrons can spend
considerable time in the bulk states while traversing an edge.
Since midgap states are Kramers degenerate for zero fields,
(we assume that the electron-electron interaction is weak,
and spin magnetic moments are not formed), then even small
Zeeman fields will cause large precession angles for electrons
spending time on resonant bulk midgap states. In this paper
we show that this can lead to significant backscattering, and
conductance suppression with a cusplike behavior for small
fields.

FIG. 1. Schematic view of helical edge states hybridized with
bulk midgap states. The vertical axis is energy and the horizontal
axis, y, is distance from the physical edge. Each vertical bar repre-
sents a midgap state: its y coordinate, ymg, describes its localization
center in real space; its middle is the energy of the level; and its
length �(ymg) indicates the width of the level due to hybridization
with the edge states (the matrix elements of which are V and V ∗).
The vertical blue shaded band indicates the range in which �(ymg) is
comparable to h̄ωL , where ωL is the Larmor precession frequency for
a typical midgap state. In real space, these states are located in a strip
centered at yB whose width a is roughly the typical extent of a midgap
state wave function. The horizontal (yellow) shaded band indicates
the levels that are within h̄ωL of the Fermi level, EF . The states (bold
green bars) within the intersection of the two bands backscatter edge
electrons with a probability of order unity. The number of such states
is proportional to h̄ωL , leading to a distinctive |B| behavior of the
magnetoresistance at small fields.

A simple qualitative picture of the strong edge conductance
suppression by a magnetic field in the presence of midgap bulk
levels can be derived from a semiclassical argument based on
the field-induced spin precession of electrons residing on a
midgap level due to its hybridization with the edge state. A
cartoon of helical edge states coupled to bulk midgap states,
which are distributed in both real space and energy, is shown
in Fig. 1.

First, consider a midgap level resonant with a scattering
electron traversing a helical edge of a quantum spin Hall insu-
lator. Without a magnetic field, even for nonzero hybridization
of a midgap level with the edge states, it can only lead to
forward scattering of edge electrons due to the helical nature
of the edge state, and time-reversal symmetry [40]. However, a
scattering edge electron wave packet spends the Wigner delay
time on the midgap level before going back into an outgoing
edge mode. (This picture also holds in the presence of a mag-
netic field.) If the width of the level due to its hybridization
with the edge electrons is denoted as �, then the time an
electron spends on a resonant impurity level is ∼h̄/�. For a
small magnetic field with a finite component perpendicular
to the edge spin polarization, one can think of electron spin
precession while it resides on the midgap level, hence the spin
orientation of the electron rotates by an angle ∼h̄ωL/�, where
ωL is the Larmor precession frequency for the midgap level,
in the sense that it involves the g-factor for the level. If the
spin of an electron rotates by an angle of order unity from
its original orientation, then the electron can be rescattered
into both helical channels. This implies that midgap levels
whose energies are within a window of h̄ωL of the Fermi
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level, and whose widths � ∼ h̄ωL backscatter electrons with
a probability close to one, leading to substantial conductance
suppression. Midgap levels that are well outside this window,
or whose width is too different from the spin splitting, are
essentially decoupled from the edge states at the Fermi level.

A real sample will have many midgap levels, see Fig. 1.
The level width due to coupling to the edge states varies with
the distance to the physical edge of the system. Formally, for
any small magnetic field there is a group of midgap levels
far enough from the edge that their width is comparable to
the spin splitting energy due to the magnetic field. If these
levels are also close to the Fermi level, they suppress the edge
conductance efficiently. It is intuitively clear that the strength
of conductance suppression is determined by the number of
such strongly backscattering midgap states. This number can
be estimated by counting the number of midgap levels within
an energy window of h̄ωL around the Fermi level, and in
real space within a strip of width determined by the condition
that � is not too different from h̄ωL (not too small, and not
too large). Let us denote the level width as a function of the
distance to the edge, y, as �(y). Then the distance of this
real-space strip from the edge, yB, is found from �(yB) ∼ h̄ωL,
and its width is (dyB(�)/d�)h̄ωL. We use the simplest, but
physically motivated, possible model of level width, �(y) =
�0 exp(−y/a), with �0 determining the maximum width of
the level in the vicinity of the physical edge and a the scale
on which the level width decays in the bulk. We obtain yB =
a ln(�0/h̄ωL ), while the strip width is field independent and
is simply a, such that yB � a always holds at small magnetic
fields. Then, under the plausible assumption that the density of
midgap levels is approximately uniform near the Fermi level,
we see immediately that the number of resonant levels goes
linearly with h̄ωL, and hence linearly with the magnetic field
magnitude. This is the essential origin of the striking cusp
displayed by the magnetoconductance at zero field.

Within the above picture, the scale of the rounding of the
cusp is determined as follows. If the field is so weak that the
resonant midgap levels are very far from the edge, and the
required level width is smaller than the one due to inelastic
processes such as phonon-assisted hopping, then we expect
the preceding considerations not to apply. It is hard to estimate
the corresponding field scale, but it can be read off from the
data.

The rest of the paper is organized as follows. We consider
backscattering on a helical edge in the presence of a magnetic
field due to a single bulk midgap state in Sec. II. In Sec. III
we calculate the magnetoconductance of a helical edge in
coherent and incoherent regimes, and show that the presence
of resonant midgap states leads to cusplike feature in the con-
ductance at small B fields. Finally, we discuss our results and
their relation to the experimental data on magnetotransport in
monolayer WTe2 in Sec. IV.

II. DISORDER SCATTERING ON A HELICAL EDGE

In this section, we consider helical edge electrons coupled
to a midgap state localized somewhere in the bulk, but hy-
bridized with the edge states. If the energy of the midgap
state is sufficiently close to the Fermi level, electrons spend a
considerable time in that state while traveling along the edge.

In the presence of a magnetic field misaligned with the edge
spin polarization, the spin of the electron on the midgap level
precesses, and allows backscattering on the edge. The charac-
teristic field in this case is such that the corresponding Zeeman
energy is comparable to the level width due to coupling to
the edge. For impurities not too close to the edge, the width
can be very small, in particular much smaller than the spin
splitting at the Fermi level, hence small magnetic fields can
induce substantial backscattering.

In Appendix A we will contrast the above scenario with a
more conventional model of a short-range potential impurity
on the edge. Without magnetic field, there is no backscat-
tering due to the TR symmery of the problem. Nonzero
magnetic field acts to tilt the spins of the helical states in
the same direction, leading to their finite overlap, and allow-
ing backscattering. The amount of spin tilting on the edge,
hence the rate of backscattering, is determined by the relative
magnitude of the Zeeman energy, and the zero-B-field spin
splitting for edge states at the Fermi level. This spin split-
ting comes from the spin-orbit coupling and the associated
spin-momentum locking on the edge. Then the important
observation is that in this model the Zeeman energy associ-
ated with the B field must be comparable to the zero-B-field
spin splitting for edge states in order to lead to significant
backscattering. As a result, this type of scattering cannot lead
to nonanalytic magnetoconductance behavior in small fields.

The case of conventional wires side coupled to an impurity
level was considered in Ref. [41]. Here we consider this prob-
lem for a helical edge state coupled to a midgap electronic
state located in the bulk of the quantum spin Hall insulator.
The model is also similar in spirit to that of a quantum dot
side coupled to the edge, used in Refs. [9,10] to describe
charge puddles close to the edge. Unlike those studies, we
assume only a single Kramers-degenerate level coupled to
the edge, instead of a macroscopic dot with a small level
spacing. We also focus on the backscattering in the presence
of magnetic field, while Refs. [9,10] considered the possibility
of backscattering in the absence of a magnetic field, which
required the presence of electron-electron interactions.

The Hamiltonian of the problem has three parts:

Htot = Hedge + Hhyb + Hmg. (1)

Here Hedge is the Hamiltonian of edge electrons with mo-
mentum k along the edge direction, Dirac speed v, and spin
projections σ =↑,↓ on a particular axis that defines the edge
spin polarization at the chemical potential μ. While the prob-
lem we are solving is single particle, it is still convenient
to express the corresponding Hamiltonians in the second-
quantized form. We then have

Hedge =
∑
kσ

(σvk − μ)a†
k,σ

ak,σ , (2)

where we treat σ =↑,↓ as ±1, respectively, when used in an
equation, ak,σ is the annihilation operator for the electrons
with momentum k and spin projection σ . In this section we
ignore the Zeeman coupling for the edge electrons, assuming
the corresponding energy scale is much smaller than the spin
splitting of the edge states at the Fermi level. Inclusion of
the Zeeman coupling will only yield unimportant perturbative
effects, quadratic in the magnetic field.
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To describe the edge-midgap state hybridization, we will
assume that the midgap state is localized around xmg = 0, x
being the coordinate along the edge. This allows us to avoid
factors such as exp(ikxmg) in the hybridization matrix element.
With this assumption, Hhyb is given by

Hhyb =
∑
k,σ

(Va†
k,σ

cσ + V ∗c†
σ ak,σ ), (3)

where cσ is the annihilation operator for electron with spin σ

in the midgap state, and the hybridization matrix element V is
assumed to be spin conserving and momentum independent.
Strictly speaking, the spin conservation of the hybridization
matrix element need not hold in the presence of spin-orbit
coupling. This is, however, the simplest possible assumption
that allows us to limit the number of parameters to describe
the model. It is also a reasonable assumption for the case
of monolayer WTe2, in which the band structure, both bulk
and edge, is characterized by a definite spin projection onto
a certain axis in the mirror plane of the material [29,32,38],
inherited by the edge states. One should then think of sz as the
spin projection onto that axis.

Finally, Hmg describes a midgap level with energy εmg,
and includes Zeeman coupling to a magnetic field B.
We will use the notation b = 1

2 gmgμBB ≡ (bx, by, bz ) ≡
(b sin θ cos φ, b sin θ sin φ, b cos θ ), where gmg is the g-factor
for the midgap state. For definiteness, we measure angle θ of a
spherical coordinate system from the up direction of the edge
spin. With this notation, Hmg is written as

Hmg = (c†
↑ c†

↓)
(

εmg + bz bx − iby

bx + iby εmg − bz

)(
c↑
c↓

)
. (4)

We now proceed to solve the scattering problem for Hamil-
tonian (1), treating Hhyb as the scattering part. It is convenient
to describe the midgap state using the eigenstates of Hmg,
modifying the hybridization accordingly.

The single-particle Hamiltonian of the midgap state can be
diagonalized as

U

(
εmg + bz bx − iby

bx + iby εmg − bz

)
U † =

(
ε+ 0
0 ε−

)
, (5)

where the eigenvalues are ε± = εmg ± b. The unitary matrix U
diagonalizing the midgap state Hamiltonian can be defined as
connecting the annihilation operators for the spin states of the
midgap level, c↑,↓, to those of the eigenstates of the midgap
level Hamiltonian, c±:(

c↑
c↓

)
= U †

(
c+
c−

)
≡

(
cos θ

2 − sin θ
2 e−iφ

sin θ
2 e+iφ cos θ

2

)(
c+
c−

)
. (6)

In the new basis, the midgap level Hamiltonian is written as

Hmg = (c†
+ c†

−)

(
ε+ 0
0 ε−

)(
c+
c−

)
, (7)

while the hybridization between the edge electrons with spins
↑,↓, and the midgap level eigenstates labeled with ± becomes

Vσ s =
(

V↑+ V↑−
V↓+ V↓−

)
= V

⎛
⎝ cos θ

2 − sin θ
2 e−iφ

sin θ
2 e+iφ cos θ

2

⎞
⎠, (8)

such that the hybridization Hamiltonian is

Hhyb =
∑

k,σ=↑,↓

∑
s=+,−

Vσ sa
†
k,σ

cs + H.c. (9)

Since we are dealing with a single-particle problem, in what
follows we switch to single-particle retarded Green’s func-
tion, and the T -matrix to solve the corresponding Schrödinger
equation using the Lippmann-Schwinger approach.

We first define a few quantities for the case of uncoupled
edge and midgap level. The single-particle retarded Green’s
function can be written as the sum of single-particle operators
acting in the edge and midgap level subspaces of the full
electronic Hilbert space that contains the edge and midgap
states:

Ĝ0 = Ĝedge + Ĝmg. (10)

The edge Green’s function is written as

Ĝedge =
∑

kσ=↑,↓

|k, σ 〉〈k, σ |
E + iη − σvk

, (11)

where η is a positive infinitesimal, and |kσ 〉 are the single-
particle eigenstates of Hedge with momentum k and spin σ .
The midgap level Green’s function is

Ĝmg =
∑
s=±

|s〉〈s|
E + iη − εs

, (12)

where |s〉 with s = ± are the midgap states with energies ε±.
The hybridization between the edge and midgap states can

be decomposed into a sum of two parts, V̂ = V̂ + V̂†. The
operator V only has matrix elements for transitions from the
midgap state into edge states:

V̂ =
∑

k

∑
s,σ

Vσ s|k, σ 〉〈s|, (13)

while V̂† only has matrix elements for transitions from the
edge states to the midgap level:

V̂† =
∑

k

∑
s,σ

V ∗
σ s|s〉〈k, σ |. (14)

From now on we will suppress the hats on top of single-
particle operators.

The equation for the T -matrix in the full electronic Hilbert
space, Tfull, has the usual form of Tfull = ∑∞

n=0 V̂ (Ĝ0V̂ )n. By
solving for the matrix elements of the T -matrix that couple
the edge and midgap states, one can obtain the T -matrix for
the edge electrons, T :

T = V̂ĜmgV̂†(1 − ĜedgeV̂ĜmgV̂†)−1. (15)

Using the definition T kakb
σaσb

= 〈kaσa|T |kbσb〉 to describe the
scattering matrix elements between edge states |kaσa〉 and
|kbσb〉, we can get an algebraic equation for the edge T -matrix
from the Lippmann-Schwinger equation:

T kakb
σaσb

−
∑

k

∑
s,σ

T kakb
σaσ

Vσ sV ∗
σbs

(E + iη − σvk)(E + iη − εs)

=
∑

s

VσasV ∗
σbs

E + iη − εs
. (16)
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Since the hybridization matrix elements are momentum inde-
pendent, the T -matrix should also be momentum independent
T kakb

σaσb
= Tσaσb . Then the sum over momenta k in Eq. (16) can

be performed by switching to integration:
∑

k → Lx
2π

∫
dk.

According to the Sokhotski-Plemelj theorem, 1
E+iη−εkσ

=
P 1

E−εkσ
− iπδ(E − εkσ ). The principal integral has the mean-

ing of the energy shift of the midgap level due to the coupling
to the edge electrons. We will assume that this shift has al-
ready been incorporated into εs, and disregard the principal
value integral. We then obtain the final equation for the edge
T -matrix:

Tσaσb + iLx

2v

∑
σ

∑
s

Tσaσ

Vσ sV ∗
σbs

E − εs
=

∑
s

VσasV ∗
σbs

E − εs
. (17)

To write down the solution of the above equation, we
define the midgap level width due to coupling to the edge
electrons, � = Lx |V |2

2v
, as well as the energy difference between

the incoming electron and the midgap level, ε = E − εd . The
T -matrix is then

T ≡
(

T↑↑ T↑↓
T↓↑ T↓↓

)
= |V |2

(ε + i�)2 − b2

×
(

ε + i� + b cos θ b sin θe−iφ

b sin θe+iφ ε + i� − b cos θ

)
. (18)

Using the expression for the T -matrix, we can solve the
scattering problem on the edge. To this end, we define two sets
of scattering states with incoming waves incident from the left
and right. These states |ψα〉 are labeled with index α = L, R,
respectively, while the incident plane-wave states are denoted
|ψin,α〉. In position representation, the incoming electron wave
functions are given by

〈x|ψin,L〉 =
(

eikx

0

)
, (19)

〈x|ψin,R〉 =
(

0
e−ikx

)
, (20)

where k = E/v is the momentum of the incoming electron.
The scattering is characterized by transmission coefficients

t0 and t ′
0 and reflection coefficients r0 and r′

0. These are de-
fined via the asymptotic behavior of 〈x|ψα〉 for x > 0 and
x < 0 (since the scattering region is assumed to be confined to
x = 0). Specifically, we have form

〈x|ψL〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
t0eikx

0

)
x > 0(

eikx

r0e−ikx

)
x < 0

, (21)

and

〈x|ψR〉 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
r′

0e+ikx

e−ikx

)
x > 0(

0
t ′
0e−ikx

)
x < 0

. (22)

The Lippmann-Schwinger equation for |ψα〉 that allows us
to relate the scattering amplitudes to the T -matrix is

〈x|ψα〉 = 〈x|ψin,α〉 + 〈x|GedgeT |ψin,α〉. (23)

FIG. 2. The transmission probability through a midgap level,
Tmg, as a function of Zeeman field strength, b, measured in units of
the level width, �, for θ = π/2, ε = 0.

In position representation the edge electron Green’s function
(11) is given by

Gedge(x, y) =
(

− iLx
v

ei E (x−y)
v θ (x − y) 0
0 − iLx

v
e

−iE (x−y)
v θ (y − x)

)
,

(24)

while the T -matrix is completely local for momentum-
independent hybridization between the midgap and edge
states: Tσaσb (x, y) = Tσaσbδ(x)δ(y), where Tσaσb is given by
Eq. (18).

The transmission and reflection amplitudes are found to be

t0 = ε2 + �2 − b2 − 2ib� cos θ

(ε + i�)2 − b2
,

r0 = −2i�b sin θe+iφ

(ε + i�)2 − b2
,

t ′
0 = ε2 + �2 − b2 + 2ib� cos θ

(ε + i�)2 − b2
,

r′
0 = −2i�b sin θe−iφ

(ε + i�)2 − b2
. (25)

The transmission probability through a single midgap level is
then given by

Tmg = |t0|2 = |t ′
0|2 = (ε2 + �2 − b2)2 + 4b2�2 cos2 θ

(ε2 + �2 − b2)2 + 4b2�2
. (26)

It is apparent that Tmg satisfies obvious conditions Tmg

(b = 0) = Tmg(θ = 0) = 1.
To understand the significance of Eq. (26), let us consider

the case of a magnetic field field perpendicular to the edge spin
polarizations, θ = π/2, and a resonant midgap level, ε ≡ E −
εmg = 0. The dependence of the transmission coefficient on
the magnitude of the Zeeman field, b, is shown in Fig. 2. It is
apparent that the transmission is dramatically suppressed for
b ∼ �, and becomes close to unity for b 
 � and b � �. This
suppression for b ∼ � is crucial for the magnetoconductance
of a sample with many impurities.

The dependence of the transmission probability on the
magnitude of the Zeeman field can be understood qualitatively
as follows. As an electron gets scattered by a midgap level, the
time it spends on the level is roughly 
t ∼ min(�−1, ε−1).
For small b, one can think about classical spin precession
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during the time spent on the level, which leads to spin rotation
by 
φ ∼ b
t ∼ b/� (for θ = π/2). If 
φ becomes compa-
rable to unity, the electron exiting the level can enter either
of the helical states, since its wave function has considerable
overlap with both spinors, and this results in considerable
backscattering. For large enough fields, b � �, the above
semiclassical reasoning fails, and transmission is restored as
the two Zeeman-split midgap levels decouple from the edge
electrons. The overall conclusion of this argument is that
midgap levels with ε ∼ � ∼ b can lead to strong backscat-
tering of helical electrons even for small values of b.

These considerations have important implications for
transport along an edge coupled to multiple midgap levels
located in the bulk of the system. Under such circumstances,
the level width varies with the real-space level distance from
the edge. There is then a group of optimally located in real and
energy spaces levels, which satisfy the ε ∼ � ∼ b condition,
and provide strong backscattering even for small magnetic
fields. We will describe this situation quantitatively in Sec. III.

We close this section with a brief comparison of the
transmission probability for a midgap level and the one
for a potential impurity model, Tpot, which is considered in
Appendix A. We quote here Eq. (A19) for Tpot:

Tpot = E2 − b2
e

E2 − (
4−ω2

4+ω2

)2
b2

e

, (27)

where be is the Zeeman energy for the edge electrons, defined
just like b, but with g-factor of the midgap level replaced
with the one for edge electrons, and dimensionless quantity
ω is proportional to the strength of the impurity potential. See
Appendix A for details.

The edge electron states relevant for transport are those
located near the Fermi level, such that the energy E of the
scattering electron is of the order of the spin splitting of the
edge states at the Fermi level. It is then clear from Eq. (27)
that unless the Fermi level is within ∼0.1 meV of the Dirac
point energy, the scattering on a potential impurity is very
weak, and the corresponding transmission probability goes as
Tpot ∝ b2

e/E2.

III. TRANSPORT ON A HELICAL EDGE
WITH MANY IMPURITIES

In this section we consider transport on a topological edge
in the presence of multiple impurities. Realistic experiments
on WTe2 are often performed on irregular flakes, with contacts
placed as shown schematically in Fig. 3. It typically observed
[29] that even the zero-B-field two-probe conductance in long
channels is far from its quantized value. This makes it natural
to assume that the two-probe conductance between the source
and drain electrodes is determined by backscattering in the
shortest part of the edge confined between them. We restrict
our attention to this single portion of the entire edge, assuming
that the complementary part is long enough to neglect electron
transfer between the source and drain along it. To describe the
short-channel setup, like the one in Ref. [26], one just needs
to include the transport along the complementary part of the
sample’s edge, which presents no difficulty, if the interedge
scattering is absent.

FIG. 3. Left: Typical experimental setup for a flake of WTe2,
with source (S) and drain (D) electrodes attached to a particular edge.
Right: schematic view of the shortest edge confined between the
source and drain electrodes, with two types of disorder for helical
electrons traveling along the edge. The empty circle depicted right
on top of the helical edge states represents a potential impurity with
potential uδ(x), centered at the location of the impurity. The shaded
circle is a bulk midgap state, hybridized with the helical edge states
by a matrix element Vp.

Under the realistic circumstances, the transport along a
helical edge is partially coherent due to finite temperature,
electron-electron as well as electron-phonon interaction, and
possibly other factors. Our goal is to show that weakly side-
coupled midgap bulk states lead to a cusplike behavior of
the magnetoconductance at small B fields. Hence we mostly
disregard the electron-electron and electron-phonon interac-
tion on the edge. (This question was considered, for instance,
in Refs. [13,42].) We consider two limits of edge transport:
fully coherent, in which backscattering on the edge leads to
localization, and fully incoherent transport, assuming there
are local chemical potentials for each species of the helical
electrons.

A. Coherent transport: Localization

We assume that the potential impurities on the edge and
the midgap states are dilute enough, such that each of them
can be considered as an independent scatterer. The potential
impurities are assumed to be all identical to each other, and
are described with a linear density np. The midgap states
have a two-dimensional density in the real space, nmg, and
their energies, εmg, are distributed with certain probability
density ρ(εmg) in the energy space, normalized to unity. We
will make a realistic assumption that ρ(εmg) does not have
much structure as a function of εmg on the scale of the Zeeman
energy. That is, we will take ρ(ε) ≡ ρ, but the value of the
constant ρ probably depends on the gate voltage.

For the fully coherent case, the logarithm of the transmis-
sion coefficient is an additive self-averaging quantity [43].
Assuming that the edge has length Lx, and interacts with
midgap states from a rectangular region of width Ly (Ly

will cancel out from all final results), and that the distribu-
tion of the number of the impurities and midgap states is
Poissonian, we can write the following expression for the
disorder-averaged transmission probability on the edge:

ln Ttot = npLx ln Tpot + nmgLxLy〈ln Tmg〉. (28)

In the equation above Tpot is the transmission probabil-
ity of a potential impurity, Eq. (A19). 〈log Tmg〉 is the
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disorder-averaged logarithm of the transmission coefficient
due to a midgap state, calculated below.

Our main goal is to determine the behavior of the magneto-
conductance at small fields, and to extract its singular part. It is
clear from Eq. (A19) that the transmission coefficient through
a potential impurity admits a regular expansion in powers of
b2

e/E2 ∝ B2 sin2 θ at a finite doping level on the edge, so the
singular part can only come from the midgap states. Hence
we focus on 〈log Tmg〉 below, neglecting the effects associated
with Tpot.

It follows from Eq. (26) that the transmission coefficient
due to a midgap state can be written as

Tmg = Tmg(ε, �, θ ), (29)

where, again, ε is the difference between the energy of the
electron and the energy of the midgap state, � is the midgap
state width due to coupling to the helical edge, and θ is the
angle between the direction of the magnetic field, and the edge
spin polarization in the absence of the field. (It does not matter
what helicity is taken to define the positive direction, since the
angular dependence is invariant with respect to θ → π − θ .)
As before, we disregard the effect of the Zeeman field on the
edge spin polarization at small magnetic fields while calcu-
lating transmission through a midgap state, since it does not
affect the small-field behavior of the conductance.

To perform averaging over disorder, we assume a simple
model in which the midgap level width depends on its dis-
tance to the edge, � = �(y). Then impurity averaging over
the midgap level spatial position and energy is defined as

〈. . .〉 = ρ

Ly

∫ Ly

0
dy

∫ ∞

−∞
dεmg(. . .). (30)

The limits for the energy integral are set to be infinite under
the assumption that the quantity being averaged will provide
convergence of the integral.

We will perform the integration over y with

�(y) = �0e−y/a, (31)

which is borrowed from the form of overlap integral between
localized impurity states in the theory of doped semiconduc-
tors [44]. The length scale a roughly coincides with the spatial
extent of the midgap level wave function, and �0 is the width
of the level located very close to the edge. We expect that
�0 � b, since it originates from unit-cell scale physics.

Performing the integrals in Eq. (30) with the transmission
coefficient from Eq. (26), we obtain in the �0 → ∞ limit

〈ln Tmg〉 ≈ −2π2ρ
a

Ly
b(1 − |cos θ |). (32)

For a finite �0, corrections to this result go as b2/�0, and are
expected to be very small.

Equation (32) is one of the main results of this work.
The notable features are its linear scaling with the magnitude
of the Zeeman field, b, and its dependence on the angle θ

between the direction of the magnetic field, and the edge spin
polarization in the absence of a magnetic field. Since we have
no reliable estimates for the prefactor in the right-hand side of
Eq. (32), the dependence on b and θ should be considered
as the main signatures of this mechanism of magnetocon-
ductance. Note that while linear dependence on b can be

FIG. 4. Schematic representation of edge transport in the inco-
herent regime. The shaded rectangle represents the scattering region.
Also shown the distribution functions of the incoming (equilibrium)
and outgoing states right after scattering (out of equilibrium). The
distribution functions of the outgoing states are relaxed to equilib-
rium ones with channel-specific chemical potentials away from the
scattering region, before the next scattering event.

expected for chemical potentials near an edge Dirac point due
to opening of an edge gap, the angular dependence in that case
would be given by |sin θ |, which can be distinguished from
1 − |cos θ | given the precision of existing experiments. Of
course, an activated mechanism of conductance can be distin-
guished from the present one by its temperature dependence,
not just angular one.

Using Eq. (32), we can write down the expression for the
magnetoconductance in the coherent regime if we assume
that other mechanisms of backscattering are not very sensitive
to weak magnetic fields. For instance, backscattering due to
magnetic impurities requires magnetic anisotropy for the latter
[6,7], and one expects that weak magnetic fields will not
overpower that anisotropy to change the conductance appre-
ciably. Restoring the magnetic field magnitude, B, in place
of the Zeeman energy scale b, we thus obtain for the edge
conductance G(B) at weak fields in the coherent (localization)
regime:

G(B)

G(0)
= exp [ln Ttot] ≈ exp

[
−Lx

�

|B|
B0

(1 − |cos θ |)
]
, (33)

where � = 1/nmga, B−1
0 = π2ρgmgμB. We expect B0 to be a

rather large field scale, since it roughly corresponds to the
Zeeman energy of ρ−1, which is probably at least similar
to the band gap. The overall factor of (Lx/�)(B/B0) is the
number of midgap states located within a real-space strip of
width a near the edge of the system, and energy-space strip
of width ∼gmgμBB near the Fermi level. Equation (33) is
applicable for magnetic fields that are not too small, for which
(Lx/�)(B/B0) � 1. We will further discuss Eq. (33) in Sec. IV,
turning now to the incoherent edge transport.

B. Incoherent transport

In this section, we consider the regime in which there is
inelastic relaxation on the edge, strong enough to establish
(separate) local equilibria on each of the two helical channels.
This regime should be relevant at high enough temperatures,
such that inelastic processes due to electron-electron and
electron-phonon interaction are frequent enough.

An elastic scattering event, regardless of the type of im-
purity causing it, followed by inelastic relaxation to a local
distribution with nonequilibrium chemical potential tempera-
ture is shown schematically in Fig. 4. Each elastic scattering
event, occurring at a given energy, connects the electron
distribution functions of the outgoing electrons to those of
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incoming ones, assumed to have the equilibrium form. We
will denote quantities pertaining to the incoming and outgoing
electrons with superscripts in and out , respectively. Further-
more, we will use subscripts ↑,↓ to indicate to which helical
channel, up-spin or down-spin, various quantities pertain. We
will use T (E ) and R(E ) = 1 − T (E ) for the elastic transmis-
sion and reflection coefficients, without specifying the type
of the impurity, since the considerations are general. With
this notation, we obtain the following equations for the dis-
tribution functions of electrons involved in an act of elastic
scattering:

f out
↑ = T (E ) feq(μin

↑ ) + R(E ) feq(μin
↓ ),

f out
↓ = T (E ) feq(μin

↓ ) + R(E ) feq(μin
↑ ), (34)

where feq(μ) = [1 + eβ(E−μ)]−1 is the Fermi-Dirac distribu-
tion function with inverse temperature β. The values of the
chemical potentials for the outgoing electrons are obtained
from the condition that inelastic scattering within each helical
channel conserves the number of electrons in that channel,
leading to the condition∫

dEνσ (E ) f out
σ =

∫
dEνσ (E ) feq

(
μout

σ

)
, (35)

with σ =↑,↓, and νσ (E ) being the density of states for the
two helical channels. If these densities of states are approx-
imately constant near the Fermi level, and deviations from
equilibrium are small, we immediately obtain

μout
↑ = T̄ μin

↑ + R̄μin
↓ ,

μout
↓ = T̄ μin

↓ + R̄μin
↑ . (36)

In Eq. (36) we introduced energy-averaged transmission and
reflections coefficients:

T̄ =
∫

dE T (E )

(
−∂ feq

∂E

)
, R̄ = 1 − T̄ . (37)

Equations (36) allow us to calculate the intrinsic, or four-
probe, resistance of the impurity in question. Denoting this
resistance as the inverse of the corresponding conductance,
G−1

imp, since we reserved R for the reflection probability in an
impurity problem, we obtain [43]

G−1
imp = h

e2

R̄

T̄
. (38)

We can now use Eq. (38) to determine magnetoconduc-
tance on an edge with many impurities. To account for
conductance suppression in zero magnetic field, the theory
of which we are not trying to build at all, we assume that
various scattering mechanisms obey the Mathiessen rule in
the incoherent regime, such that the resistances are additive,
and the inverse conductance on the edge can be written as

G−1(B) = G−1(0) + h

e2

∑
imp

R̄imp

T̄imp
. (39)

The sum over impurities,
∑

imp, just adds together intrinsic
resistances of all types of disorder present, while the quantum
resistance of the helical channel itself, h/e2, is included in the
zero-field resistance G−1(0).

We perform disorder averaging for the additive resistance
(39), which amounts to averaging each impurity’s intrinsic re-
sistance. As before, we are interested in the small-field part of
the magnetoconductance, and we expect the midgap states to
provide a singular contribution. Therefore, we replace the sum
over impurities by just the sum over midgap levels hybridized
with the helical edge,

∑
imp → ∑

mg. Then we obtain, much
as in Sec. III A:∑

mg

〈
R̄mg

T̄mg

〉
≈ nmgLxρ

∫ ∞

−∞
dεmg

∫ ∞

0
dy

R̄mg

T̄mg
. (40)

We then notice that since Rmg vanishes for B = 0, at small
B fields we can set Tmg → 1 to obtain the leading in B con-
tribution to the resistance. After this step, the averaging is
done for the reflection probability only. Since all integrals are
converging, we can interchange the integrations over εmg and
E in Eq. (40). In other words, energy averaging, Eq. (37),
and impurity averaging commute for Rmg. Because of our
assumption that the midgap levels are distributed uniformly
on energy scales appearing in the electron scattering prob-
lem, integration over εmg in Eq. (40) removes the dependence
on the electron energy E in the disorder-averaged reflection
probability, hence energy averaging becomes trivial. Finally,
performing all the integration, and again taking the �0/b→ ∞
limit, we obtain

∑
mg

〈
R̄mg

T̄mg

〉
≈ π2nmgLxρa b sin2 θ ≡ Lx

�

|B|
B0

sin2 θ. (41)

The expression for the magnetoconductance in the incoherent
regime then becomes

G(B) = 1

G−1(0) + h
e2

Lx
�

|B|
B0

sin2 θ
. (42)

This is another important result of this work. It is clear that
from the Taylor series in B point of view this expression
(42) is very similar to Eq. (33). Yet the two expressions can
be distinguished by respective angular dependence. Again,
the sin2 θ dependence in the incoherent case is quite distinct
from the |sin θ | in the special case of the Fermi level being
very close to an edge Dirac point, and the ensuing thermally
activated edge transport.

IV. RELATION TO EXPERIMENT AND DISCUSSION

In this work we have studied how the presence of midgap
states in the bulk of a quantum spin Hall insulator affects
magnetotransport along its edge. We showed that hybridiza-
tion of the midgap levels with the helical edge states leads
to backscattering of the latter in the presence of a magnetic
field. The backscattering probability can be of order unity for
resonant midgap levels located not too close to the edge in real
space, such that their width due to coupling to the helical edge
states is comparable to the Zeeman coupling energy scale for
the midgap level.

We showed that the presence of bulk midgap states leads
to nonanalytic, cusplike, dependence of the edge conductance
on the magnetic field in both coherent and incoherent trans-
port regimes. The two regimes can be distinguished by the
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angular dependence of the magnetoconductance, see Eqs. (33)
and (42).

Given specific angular dependencies obtained in this work,
it is tempting to compare them to those observed experimen-
tally in monolayer WTe2. This material belongs to the C2

2h
crystallographic class, and has a mirror plane perpendicular
to the monolayer. It was previously argued [29,31,38] that
the antiparallel spin polarizations of the counterpropagating
helical edge states are determined by the bulk band structure
(rather than the details of the edge in a particular sample,
or gate voltage for the same sample), and lie in the afore-
mentioned mirror plane. We will denote the angle that the
spin polarization of one of the helical channel makes with the
normal to the sample as θ0. It does not matter which channel’s
spin polarization is chosen to define θ0, since all the results
are invariant with respect to θ0 → π − θ0.

In Ref. [29] the magnetoconductance of monolayer WTe2

was studied as a function of the magnetic field magnitude,
and its direction in the mirror plane of the sample. Below we
will denote θ to be angle that the magnetic field makes with
the normal to the monolayer, rather than with the edge spin
polarization direction, as in the preceding part of the paper.
In Ref. [29], the direction of the spin polarization of the edge
electrons was determined as the direction of the magnetic field
for which the suppression of the edge conductance was the
smallest, but still nonzero.

To compare the present theory to the experimental data,
we note that in both coherent and incoherent transport cases
the sample resistance, R(B, θ ), is predicted to rise linearly
with the magnetic field, with some rounding at the smallest
fields (see the discussion at the end of Sec. I). Neglecting the
rounding, we expect the resistance to go as

R(B, θ ) = R(0, θ )[1 + β1(θ )|B|], (43)

in both regimes of transport, see Eqs. (33) and (42).
The specific prediction of the theory is the angular depen-

dence of the coefficient β1(θ ), which is given by

βcoh
1 ∝ [1 + |cos(θ − θ0)|],

β incoh
1 ∝ sin2(θ − θ0), (44)

for the coherent and incoherent regimes, respectively. These
angular dependencies are quite distinct from each other, as
well as from the case of the chemical potential being in the
edge gap, for which the angular dependence of β1 should
follow the |sin(θ − θ0)| form.

Fitting the experimental data for the sample resistance to a
linear function at small magnetic fields, we first of all observe
that linear-in-B dependence describes the small-field magne-
toresistance well, see Fig. 5. Furthermore, we can extract the
angular dependence of the observed β1(θ ) from the fits, which
is presented in Fig. 6. It turns out that

β1(θ ) = c0 + c1 sin2(θ − θ0) (45)

with c0 = 0.1 T−1, c1 = 3.2 T−1 fits the values extracted from
the experimental data very well, see Fig. 6. This suggests that
the edge transport is described with the incoherent regime of
the present theory.

The phenomenological constant term c0 obtained from the
data can possibly stem from θ0 defining only the average

FIG. 5. Fits of experimental data at low magnetic fields
(0.05T < B < 0.2T ) to linear dependence (main panel) at various
field angles. The inset demonstrates deviations from the small-field
linear magnetoresistance at larger values of B.

direction of the edge spin polarization, the variation of which
can come from random spin-orbit coupling due to the local
electric fields near the edge, or anisotropies of the midgap
state g-factor. Under such circumstances, we expect that there
will be finite backscattering even for a magnetic field aligned
with the average edge spin polarization, which is captured by
c0 �= 0.

The presented analysis suggests that the transport in a
few-micron-long edge channels of monolayer WTe2 is largely
incoherent at T = 4 K. It would be interesting to study the de-
pendence of the shape of β1(θ ) on temperature. Such β1(θ, T )
could shed light on the coherent-incoherent transition in the
quantum spin Hall insulator edge transport.

FIG. 6. Experimentally extracted slope of resistance at small
magnetic fields (0.05T < B < 0.2T ) as a function of the field an-
gle (red dots). The continuous blue line is the least-squares fit to
β1(θ ) = c0 + c1sin2(θ − θ0), with c0 = 0.1 T−1, c1 = 3.2 T−1, and
θ0 = 33.7◦.
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Apart from monolayer WTe2, magnetotransport in HgTe
quantum wells in the topological regime was recently studied
in Ref. [45]. It was observed that out-of-plane magnetic fields
of only B = 0.05 mT led to a dramatic resistance increase
by four orders of magnitude at temperatures of T = 50 mK,
which suggests strong localization on the edge. In that case
the largest magnetoresistance is observed for magnetic field
direction along the edge spin polarization. This implies that
spin precession on midgap states is not the mechanism of
small-field magnetoresistance in that material.
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APPENDIX: HELICAL EDGE WITH
A POTENTIAL IMPURITY

We consider an infinitely long one-dimensional system of
helical fermions with a single short-range impurity. We model
this problem with a Hamiltonian that consists of three parts:

Hedge = H0 + HZ + Himp, (A1)

where H0 is the Hamiltonian of edge electrons with their spin
polarization defining the z direction. HZ is the Zeeman cou-
pling term between external magnetic field in the x-direction.
Himp is the potential impurity on edge. The three terms in the
Hamiltonian are as follows. First,

H0 =
∑
σσ ′

∫ +∞

−∞
dxψ†

σ (x)[−ivσz∂x]σσ ′ψσ ′ (x), (A2)

where ψσ (x) is the field operator annihilating an electron with
spin projection σ at spatial position x, and v is the Dirac speed,
and σz is a Pauli matrix.

HZ =
∑
σσ ′

∫ +∞

−∞
dxψ†

σ (x)[beσx]σσ ′ψσ ′ (x), (A3)

To simplify the notation, we describe the magnetic field with
the corresponding Zeeman energy, be = 1

2 geμBB, where ge

is the g-factor for the edge electrons, μB > 0 is the Bohr
magneton, and B is the magnetic induction. Finally,

Himp =
∑

σ

∫ +∞

−∞
dxU (x)ψ†

σ (x)ψσ (x), (A4)

in which we will take the impurity potential U (x) to be repre-
sented by a δ function for simplicity: U (x) = uδ(x), where u
describes the impurity strength.

In this section, we will use the Lippmann-Schwinger
equation to solve the transmission and reflection probability
of potential scattering. We use the helical edge Hamilto-
nian (Hhelical) plus the Zeeman coupling term (Hmag) as the
unperturbed Hamiltonian. In second quantization form, the

unperturbed Hamiltonian is

Hfree =
∑
σσ ′

∫ +∞

−∞
dxψ†

σ (x)[−ivσz∂x + beσx]σσ ′ψσ ′ (x). (A5)

In momentum space, the unperturbed Hamiltonian can be
written as

Hfree =
∑

p

(
a†

k,↑ a†
k,↓

)(vp be

be −vp

)(
ak,↑
ak,↓

)
. (A6)

The energy spectrum for this Hamiltonian is Espectrum =
±√

v2k2 + b2
e. We assume that the energy of the incoming

electron is positive, i.e., E > 0. The energy for conduction
band is Ec(k) = √

v2k2 + b2
e and the energy band for valence

band is Ev (k) = −√
v2k2 + b2

e. In this case the electron can be
left propagating or right propagating. The right-propagating

electron eigenstate |χc(k+)〉 has momentum k+ =
√

v2k2+b2
e

v
,

while the left-propagating electron eigenstate |χc(k−)〉 has

momentum k− = −
√

v2k2+b2
e

v
. The expressions for eigenstates

are

|χc(k+)〉 = 1√(
E − √

E2 − b2
e

)2 + b2
e

(
be

E − √
E2 − b2

e

)
,

(A7)
and

|χc(k−)〉 = 1√(
E − √

E2 − b2
e

)2 + b2
e

(
E − √

E2 − b2
e

be

)
.

(A8)
The Green’s function for the helical edge with Zeeman

coupling term between external magnetic in x direction field
and the edge is

G(E + iη) =
∑

k

∑
ss′

|ks〉〈ks′|
E + iη − Hfree

=
∑

k

∑
ss′

|ks〉(E + iη + vkσz + beσx )ss′ 〈ks′|
(E + iη)2 − v2 p2 − b2

e

,

(A9)

Where k is the momentum of the electron and ss′ =↑ or ↓ are
the spin indices of the electron wave function.

The potential impurity can also be written in the basis of
spin and momentum of electrons. In momentum space the in-
teraction between state with momentum k and spin s and state
with momentum k′ and spin s′ is uniform V kk′

ss′ = 〈ks|V |k′s′〉 =
u
Lx

δss′ , where Lx is the length of the edge. so the V matrix is

V =
∑
k,s

∑
k′,s′

|k′s′〉V kk′
ss′ 〈ks| =

∑
kk′

∑
s

|ks〉 u

Lx
〈k′s|. (A10)

The T -matrix equals the sum of products of Green’s func-
tions and interactions: T = (

∑∞
n=0(V G)n)V = (1 − V G)−1V ,

so we can derive T -matrix using the identity T − V GT = V .
Defining dimensionless constant ω = u

v
, we then use the defi-

nition T kakb
σaσb

= 〈kaσa|T |kbσb〉 to describe the scattering matrix
between edge state |kaσa〉 and |kbσb〉. We get the algebraic
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equation for the T -matrix

T kakb
σaσb

− u

2π

∑
s

∫
dk

(E + iη + vkσz + beσx )σasT kkb
sσb

(E + iη)2 − v2k2 − b2
e

= u

Lx
δσaσb .

(A11)

Since the V matrix is independent of momentum, we can
assume that the T -matrix is also independent of momentum.
So the equation for the T -matrix can be simplified into

Tσaσb−
u

2π

∑
s

∫
dk

(E + iη + vkσz + beσx )σasTsσb

(E + iη)2 − v2k2 − b2
e

= u

Lx
δσaσb .

(A12)

Integrating out the internal momentum k, we will get an alge-
braic equation for the T -matrix.

Tσaσb +
∑

s

iω

2

(E + beσx )σasTsσb√
E2 − b2

e

= u

Lx
δσaσb . (A13)

Solving the algebraic equation for T -matrix, we get the ex-
pression for T -matrix.

T = u/Lx(
1 + iωE

2
√

E2−b2
e

)2
+

(
ωbe

2
√

E2−b2
e

)2

×
⎛
⎝1 + iωE

2
√

E2−b2
e

− iωbe

2
√

E2−b2
e

− iωbe

2
√

E2−b2
e

1 + iωE

2
√

E2−b2
e

⎞
⎠. (A14)

The real-space Green’s function for helical edge with Zeeman
coupling term between external magnetic field in x direction
is

G(x, y) = Lx

2π

∫
dk

eik(x−y)

E + iη − Hfree
eik(x−y)

=

⎧⎪⎪⎨
⎪⎪⎩

− iLx
2v

E+
√

E2−b2
eσz+beσx√

E2−b2
e

e
i
√

E2−b2
e (x−y)

v x > y

− iLx
2v

E−
√

E2−b2
eσz+beσx√

E2−b2
e

e− i
√

E2−b2
e (x−y)

v x < y
.

(A15)

The Hamiltonian can be written in terms of eigenstates by
H (k j ) = E |χc(ki )〉〈χc(ki )| − E |χc(ki )〉〈χc(ki )|, where i = +
for right-moving state and i = − for left-moving state. Using
this relation and completeness relation 1 = |χc(ki )〉〈χc(ki )| +
|χc(ki )〉〈χc(ki )|, the real-space Green’s function can be written

FIG. 7. The transmission probability as a function of magnetic
field b. The dimensionless parameter ω is chosen to be ω = 1.

as.

G(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

− iLxE
v

|χc (k+ )〉〈χc (k+ )|√
E2−b2

e

e
i
√

E2−b2
e (x−y)

v x > y

− iLxE
v

|χc (k− )〉〈χc (k− )|√
E2−b2

e

e− i
√

E2−b2
e (x−y)

v x < y
. (A16)

Using the relation between incoming wave |χc(k+)〉 with pos-
itive energy and momentum and final wave |χout (k)〉, we can
write |χout (k)〉 = |χc(k+)〉 + GT |χc(k+)〉. The reflection and
transmission coefficients can be related to the T -matrix and
eigenstate for given energy. The reflection coefficient is

r = − iLxE

v
√

E2 − b2
e

〈χc(k−)|T |χc(k+)〉. (A17)

We can simplify the reflection coefficient to

r = −4iωbe

(4 − ω2)
√

E2 − b2
e + 4iωE

. (A18)

Additionally, for single-channel helical conductor, the trans-
mission probability Tpot is related to the reflection coefficient r
by Tpot = |t |2 = 1 − |r|2. The transmission probability there-
fore is

Tpot = E2 − b2
e

E2 − (
4−ω2

4+ω2

)2
b2

e

. (A19)

As expected, this transmission probability vanishes for E =
be, see Fig. 7, i.e., when the Zeeman gap on the edge (2be) is
equal to the spin splitting at the Fermi energy (2E ). For small
edge Zeeman fields, it behaves as Timp ∝ b2

e/E2. This is the
main lesson of this section: unlike the case of midgap states,
potential disorder cannot lead to nonanalytic behavior of the
transmission coefficient at small fields. The reason for that is
the existence of zero-field spin splitting for the edge states,
which is absent for the midgap levels, as they are degenerate
in the absence of time-reversal breaking due to the Kramers
theorem.
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