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The understanding of extreme near-field heat transport across vacuum nanogaps between polar dielectric
materials remains an open question. In this work, we present an investigation of heat transport across vacuum
nanogaps between magnesium oxide (MgO) surfaces by nonequilibrium molecular dynamics (NEMD) simula-
tion, which naturally accounts for the nonlocal dielectric response from both acoustic and optical branches as
well as phonon tunneling. A consistent comparison is also made with the continuum fluctuational electrodynam-
ics theory using both local and nonlocal dielectric functions computed by equilibrium molecular dynamics with
the anharmonic damping properly included. As a result, the direct NEMD result shows significant deviations
from the continuum theory even up to a gap size of a few nanometers. The lattice anharmonicity is demonstrated
to have a large impact on the energy transmission and thermal conductance, in contrast to its moderate effect
reported for metallic vacuum nanogaps. The present work thus provides further insight into the physics of heat
transport in the extreme near-field regime between polar materials, and puts forward a methodology to account
for anharmonic effects.
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I. INTRODUCTION

When the gap between two objects is smaller than the
thermal wavelength of photons (∼10μm at 300 K), the ra-
diative heat transfer enters the near-field regime, where the
heat flux can be several orders of magnitude higher than that
predicted by the Stefan-Boltzmann law [1,2]. The near-field
radiative heat transfer (NFRHT) has been well described by
the classical fluctuational electrodynamics (FE) theory [3],
as widely verified by numerous experiments during the past
decades [4–14]. However, it remains still an open question to
fully understand the physics which drives the heat exchanges
in the extreme near-field regime, when the separation gap
becomes smaller than a few nanometers, corresponding to the
transition regime between radiation and conduction. There
have been very few experimental studies in such a regime
[15–19]. Those works were mainly limited to the study of heat
transfer between metals and they yielded conflicting conclu-
sions about the validity of the classical FE theory at gap size
below a few nanometers [11,17,18].

The investigation of extreme near-field heat transport is
of vital significance in many applications such as near-field
scanning thermal microscopy [20–22], heat-assisted magnetic
recording [23–25], nanophotolithography [26], or noncontact
friction [27,28]. On the other hand, it is of fundamental

*yyguo@hit.edu.cn
†samy.merabia@univ-lyon1.fr

interest due to the emerging novel physics at such small
scale including (i) the tunneling of phonons [29–32] and elec-
trons [33–35] across a vacuum nanogap, and (ii) the nonlocal
dielectric response of materials [36,37]. Very recently, the
role played by the acoustic phonon modes in the nonlocal
dielectric response of polar materials has been highlighted
and its importance on the heat transfer close to the contact
has been demonstrated [37]. Atomistic modeling becomes an
essential tool to uncover the underlying physics in the extreme
near-field regime, and also provide a reference to examine
the validity of the continuum FE theory. The contribution
of phonon tunneling across vacuum nanogaps between two
infinite metallic plates has been studied by atomistic meth-
ods [38–41]. Similar atomistic studies have been conducted
on heat transport across Si nanogaps using either empiri-
cal potential [42] or first-principles calculations [43]. Those
works showed that the phonon thermal conductance decays
very rapidly as the gap size increases due to the relatively
short range of atomic interactions in metallic and apolar solid
systems. Generally the contribution of phonon tunneling be-
comes negligible beyond a gap size of 1 nm, beyond which the
photonic contribution dominates [41,43]. Yet, very few studies
have considered heat transfer across nanogaps between polar
materials from an atomistic point of view.

In this work, we focus our attention on the extreme near-
field heat transport between polar materials across vacuum
gaps much thinner than the range of atomic interactions. A
molecular dynamics (MD) simulation of heat transport be-
tween two silica nanoparticles was shown [44] to agree with
the dipole-dipole interaction model after a separation distance
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of a few diameters, where the thermal conductance (h) de-
cays with the gap size (d) as h ∝ d−6. Such power law was
later obtained by a harmonic nonequilibrium Green’s function
(NEGF) simulation of the same configuration [45], where a
slower decay of thermal conductance h ∝ d−4 was further
shown at smaller gap size between 4 Å and a few diameters
due to the surface charge-charge interaction. The electron-
cloud overlap and transition to heat conduction was finally
inferred below a gap size of 4 Å [45]. Recently, the transition
from NFRHT to heat conduction was also studied across a
vacuum gap between two infinite sodium chloride (NaCl)
plates [46] by coupling the Maxwell equations to harmonic
NEGF simulation. The thermal conductance across the gap
predicted by the NEGF has been demonstrated to recover
that by the FE theory beyond a gap size of ∼1 nm, below
which appreciable deviation was observed [46]. However, the
long-range Coulomb interaction forces as input into NEGF
were obtained from the solution of Maxwell equations for a
system of harmonically oscillating charged ions. The role of
lattice anharmonicity is still elusive in their comparison of har-
monic NEGF with FE theory, the latter requiring the dielectric
function including the anharmonic damping. Thus, the critical
gap size below which the classical FE theory becomes invalid
remains today an open question for extreme near-field heat
transport between polar dielectrics [14].

Therefore, the current work aims to present a nonequi-
librium molecular dynamics (NEMD) simulation of extreme
near-field heat transport across a vacuum nanogap between
two infinite MgO plates. A more realistic description of the
anharmonic dynamics of ions and their long-range Coulomb
interaction is provided in MD using an empirical potential
[47], which describes reasonably well the dielectric function
of the material. Furthermore, we propose a more consistent
comparison between the direct NEMD and FE theory by
supplementing the latter with local dielectric function cal-
culated from equilibrium molecular dynamics (EMD). As a
result, we demonstrate a non-negligible deviation of NEMD
from FE theory up to a gap size of 2 nm, while a gradual
recovery of FE theory is expected at larger gap. This will
provide a more reasonable examination of the validity of
FE theory in radiative heat transfer across vacuum nanogaps
between polar dielectric materials. Finally, the role of anhar-
monicity, which is naturally included in NEMD, is shown
to have appreciable effect on the energy transmission across
the nanogap. The remaining of this paper is organized as
follows: The methodology of atomistic modeling will be in-
troduced in Sec. II, followed by a discussion of the results
in Sec. III, and the concluding remarks will be made in
Sec. IV.

II. METHODOLOGY

In this section, we first introduce in Sec. II A the NEMD
model of the MgO-MgO vacuum nanogap. The method to
extract the spectral thermal conductance for the comparison
with FE theory is also explained. In Sec. II B, we present
a summary of FE theory for NFRHT between two infinite
plates, together with the EMD method to calculate the local
dielectric function as input.

TABLE I. Parameters in empirical potential Eq. (1) for MgO.

Atom e (Elementary charge) A(Å) B(Å) C(Å3kJ1/2 mol−1/2)

Mg +1.40 1.0133 0.052 0
O −1.40 1.8020 0.150 54

A. NEMD simulation and analysis

Heat transport across a parallel vacuum MgO-MgO
nanogap is simulated by NEMD as implemented in the open-
source package LAMMPS [48], as shown in Fig. 1. The nanogap
is obtained by shifting half part of a bulk MgO crystal along
the [1 0 0] direction. In NEMD, the nanogap is sandwiched
between a hot thermostat and a cold thermostat, with two
fixed-layer regions at both ends. These fixed layers will not
be involved in the evolution of the atomic dynamics during
the steady-state run, and are used to avoid the macroscopic
drift of the system, i.e., ensure its stability. Periodic bound-
ary conditions are imposed along the three directions of the
system. The following pairwise atomic interaction potential is
employed [47]:

φi j = eie j

ri j
− CiCj

r6
i j

+ f
(
Bi + Bj

)
exp

(
Ai + Aj − ri j

Bi + Bj

)
, (1)

where the distance between atom i and atom j is ri j =
|ri − r j |, ei( j) is the effective charge of atom i( j), and f =
4.184 kJ/Å/mol, with other atomic parameters Ai( j), Bi( j), and
Ci( j) given in Table I [47]. Such a potential includes both long-
range Coulomb interaction (the first term) and short-range
bonding interaction (the second and third terms). This poten-
tial is adopted as it reproduces well the dielectric response
of bulk MgO in the infrared regime [49], which is crucial
for accurately describing the near-field heat transport across a
vacuum gap [44]. The particle-particle particle-mesh method
[50] is implemented for the treatment of long-range Coulomb
force with a cutoff radius of 10 Å for the direct interactions in
real space.

Four gap sizes from 6 Å to 2 nm are considered, and the
detailed dimensions of the NEMD model after careful size-
independence verification are provided in Table II. The length
of the fixed-layer region (Lf ) should be sufficiently large to
avoid direct long-range interaction between the thermostats
through the periodic boundary condition in the transport di-
rection. In addition, the length of the device region on one
side of the nanogap (Ld ) should be sufficiently large to
avoid direct long-range interaction between the thermostat on
this side and the device region on the other side. A more

TABLE II. Dimension (in u.c., i.e., conventional unit cell of
MgO) of NEMD model of MgO-MgO nanogap shown in Fig. 1.

Gap size d (nm) Lf (u.c.) Lth (u.c.) Ld (u.c.)
Cross section
(u.c. × u.c.)

0.6 8 5 8 8 × 8
1.0 12 5 12 8 × 8
1.2 12 5 12 8 × 8
2.0 14 5 14 10 × 10
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FIG. 1. Schematic of NEMD model of MgO-MgO nanogap with gap size d . Red and green atoms denote Mg2+ and O2− ions, respectively.
Lengths of fixed layer and thermostat are Lf and Lth, respectively, whereas length of device region on one side of nanogap is Ld. System is
symmetric in terms of size. Periodic boundary conditions are applied along three directions of system.

detailed description of the size-independence verification is
given in Appendix. The sufficiently thick fixed-layer and de-
vice regions make the vacuum gap feel as if there are two
semi-infinite contacts, which minimizes the effect of fictitious
cross-gap forces from periodic images along the transport
direction. During the NEMD simulation, a time step of 0.5 fs
is adopted. First, 1 × 106 time steps are run to relax the whole
system under the NPT (isothermal-isobaric) ensemble. Then,
the fixed-layer regions are fixed and 2 × 106 time steps are
run to make the remaining free part reach a steady state under
the effect of Langevin thermostats in the NVE (microcanon-
ical) ensemble. Finally, 4 × 106 time steps of steady-state
runs are performed for the calculation of the spectral and the
overall thermal conductance of the nanogap. Five independent
NEMD simulations are conducted for each gap size to reduce
the statistical fluctuations.

The total heat flow from one side (I) of the nanogap device
region to the other side (J) can be decomposed into its spectral
component as

QI→J =
∫ ∞

0
q(ω)

dω

2π
, (2)

with ω the angular frequency and the spectral (i.e., frequency-
dependent) heat flow computed from the Fourier transform
of the time (t) correlation function between atomic force and
velocity [51,52]:

q(ω) = 2Re
∑
i∈I
j∈J

∫ ∞

−∞
〈F ji(t ) · v j (0)〉 exp (iωt )dt, (3)

where Re denotes the real part, F ji denotes the force on atom
j due to atom i, with v j the atomic velocity, and the bracket 〈〉
represents the nonequilibrium ensemble average as calculated
by time average. Equation (3) essentially gives the magnitude
of heat flow as a sum of the net power exchange (F ji · v j −
Fi j · vi, as a microscopic quantity) between individual atomic
pairs [44,51]. The direction of heat flow (as a macroscopic
quantity) is determined as the direction from the center of one
region (I) to that of the other region (J). Following a previous
study [53], we slightly transform Eq. (3) into the following

form to avoid the huge storage of all the interatomic forces:

q(ω) = 2Re
∑
j∈J

∫ ∞

−∞

〈
F j (t ) · v j (0)

〉
exp (iωt )dt, (4)

with F j (t ) = ∑
i∈I F ji(t ) the overall force on atom j in region

J from all the atoms in region I. It has been assumed that
the ensemble average and the sum over I are interchangeable.
Such an assumption is valid since the ensemble average is
calculated by time average, as also verified in previous studies
[53,54].

With the spectral heat flow obtained from NEMD simula-
tion via Eq. (4), the transmission function across the nanogap
is computed as [51]

�(ω) = q(ω)

kB�T
, (5)

where kB is the Boltzmann constant, and �T is the temper-
ature difference between the hot and cold thermostats. The
transmission function represents the product of the number of
available modes at a specific frequency and their transmittance
(�1) [55]. Based on Landauer’s formula, the classical and
quantum thermal conductances per unit area of the nanogap
can be computed, respectively, by [41]

hclassical = 1

Ac

∫ ∞

0
kB�(ω)

dω

2π
, (6)

hquantum = 1

Ac

∫ ∞

0
h̄ω

∂ fBE(ω)

∂T
�(ω)

dω

2π
. (7)

In Eq. (6) and Eq. (7), the classical (kB) and quantum
heat capacity [h̄ω∂ fBE(ω)/∂T ] are used, respectively, with
h̄ the reduced Planck constant, fBE(ω) the Bose-Einstein
equilibrium distribution, and Ac the cross-section area of the
nanogap.

B. Fluctuational electrodynamics theory with EMD inputs

In parallel, we will compare the NEMD result to the predic-
tion of FE theory using inputs of local dielectric function from
EMD (denoted as FE local theory). The NFRHT has been well
described by the FE theory, which predicts the net heat flux
between two infinite parallel plates at T1 and T2, respectively,
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as [2,56]

� = 1

4π2

∫ ∞

0

∫ ∞

0
[	(ω, T1) − 	(ω, T2)]

× ξ12(ω, k‖)k‖dk‖dω, (8)

where 	(ω, T ) = h̄ω[ fBE(ω, T ) + 1/2] is the mean energy of
Planck oscillator at equilibrium with 1/2 accounting for the
vacuum fluctuations or zero-point energy, and k‖ is the parallel
component of the photon wave vector, whereas ξ12(ω, k‖) is
the photon tunneling probability. In the limit of small tem-
perature difference, Eq. (8) can be rewritten into the form of
Landauer’s formula [56], where the thermal conductance per
unit area is calculated as

hNFRHT =
∫ ∞

0
h̄ω

∂ fBE

∂T

[∫ ∞

0
ξ12(ω, k‖)k‖

dk‖
2π

]
dω

2π
. (9)

The integrand in Eq. (9) thus represents the spectral ther-
mal conductance of NFRHT, and will be compared to that
obtained from NEMD in the previous subsection.

The calculation of the photon tunneling probability
ξ12(ω, k‖) requires the knowledge of the local dielectric func-
tion of bulk MgO [2,56]. To ensure a consistent comparison
between the present NEMD and the FE theory, we compute
the dielectric function by EMD simulation using the same
atomic interaction potential as in NEMD.

The local dielectric function tensor is related to the dielec-
tric susceptibility χαβ (ω) as [58,59] εαβ (ω) = δαβ + χαβ (ω),
with δαβ the Kronecker delta, and χαβ (ω) calculated via
the fluctuation-dissipation theorem (i.e. Green-Kubo formula)
[58–60]:

χαβ (ω) = V

ε0kBT

[
〈Pα (0)Pβ (0)〉

+ iω
∫ ∞

0
exp(iωt )〈Pα (t )Pβ (0)〉dt

]
, (10)

where V is the system volume and ε0 is the vacuum permit-
tivity. In Eq. (10), the polarization of the system is calculated
as the density of dipole moment: P(t ) = 1/V

∑
i eiui(t ), with

ui = ri − ri,0 the atomic displacement with respect to its equi-
librium position ri,0. In the numerical implementation, we
adopt a 10 × 10 × 10 supercell of 8000 atoms in the EMD
simulation with a time step of 0.5 fs. The size of the supercell
has been tested to be sufficiently large to capture well the
long-range interaction. First, 1 × 106 time steps are run under
the NVT (canonical) ensemble for structure relaxation, after
which 5 × 106 time steps are run under the NVE ensemble.
The polarization of the system is output once per 20 time
steps during the NVE run. Ten independent simulations are
conducted to reduce the statistical fluctuations. As shown in
Fig. 2, the local dielectric function calculated by EMD at
300 K generally agrees well with the available experimental
data [57], similar to the findings in Ref. [49]. Note that the
electronic degrees of freedom are not taken into account in the
MD simulation, which only captures the ionic contribution to
dielectric response as the dominant mechanism in the infrared
regime. Following Ref. [59], in Fig. 2 we have included a
constant correction term to account for the electronic contri-
bution as εαβ (ω) = δαβ + χαβ (ω) + (ε∞−1)δαβ , with ε∞ =
3.01 being the high-frequency dielectric constant [57].

FIG. 2. Local dielectric function (ε = ε1 + iε2) of bulk MgO at
300 K in infrared regime: (a) Real part (ε1); (b) Imaginary (Imag.)
part (ε2). Discrete symbols represent experimental data from liter-
ature [57], whereas red and black solid lines denote present result
calculated by equilibrium molecular dynamics. Black dashed line in
(a) represents ε1 = −1 corresponding to resonance frequency.

III. RESULTS AND DISCUSSION

In this section, we first present the results of the spectral
and overall thermal conductance of MgO-MgO nanogap at
300 K in Sec. III A and Sec. III B, respectively. We also com-
pare the NEMD results with the FE local theory to examine
the validity of the latter. The role of lattice anharmonicity on
heat transfer across the vacuum nanogap is finally discussed
in Sec. III C.

A. Transmission function and spectral thermal conductance

The frequency-dependent transmission functions across
three MgO-MgO nanogaps with a gap size of 6 Å, 1 nm, and
2 nm by NEMD at 300 K are shown in Fig. 3(a). To have an
intuitive understanding of which phonon branch contributes
to the heat tunneling, we calculate the phonon dispersion
via the nonlocal dielectric function by EMD, as plotted in
Fig. 3(b). The �-X direction is chosen corresponding to the
[1 0 0] transport direction. The frequency- and wave-vector
dependent (i.e., nonlocal) dielectric function is related to the
dielectric susceptibility as εαβ (ω, k) = ε∞δαβ + χαβ (ω, k),
where χαβ (ω, k) is calculated through a generalized version
of the Green-Kubo formula in Eq. (10):

χαβ (ω, k) = V

ε0kBT

[
〈P∗

α (0, k)Pβ (0, k)〉

+ iω
∫ ∞

0
exp(iωt )〈P∗

α (t, k)Pβ (0, k)〉dt

]
, (11)

with the superscript “*” denoting the complex conjugate. The
wave-vector dependent polarization of the system is calcu-
lated by the following projection:

P(t, k) = 1

V

∑
lκ

elκulκ (t ) exp (ik · rl,0), (12)

where the atomic index lκ includes the indices of lattice unit
cell (l) and atoms within one unit cell (κ), respectively, and
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FIG. 3. Frequency-dependent (a) transmission function by
NEMD of MgO-MgO nanogaps with gap size of 6 Å, 1 nm, and 2 nm,
respectively, and (b) imaginary part of nonlocal dielectric function in
log scale (i.e.,log ε2) of bulk MgO showing phonon dispersion along
�-X direction. System temperature is 300 K.

rl,0 is the equilibrium position of lattice unit cell. The different
phonon branches are clearly seen in Fig. 3(b), with the broad-
ening from the anharmonic phonon-phonon scattering. The
present way to compute the phonon dispersion from EMD is
in principle equivalent to the classical spectral energy density
analysis used to extract the phonon dispersion and lifetimes
[61]. The nonlocal dielectric function could be also calculated
via NEMD by imposing an external electric field and evaluat-
ing the induced polarization of the system [62]. However, the
implementation is more tedious compared to the EMD based
on the Green-Kubo formula here. In principle, the dielectric
functions obtained by NEMD and EMD should be equivalent
in the linear response regime, although a rigorous verification
is beyond the scope of the present study.

As shown in Fig. 3(a), the transmission function is gener-
ally reduced in both spectral range and magnitude as the gap
size increases. For gap size �1 nm, the transmission function
is almost negligible at a frequency lower than 15 THz. In other
words, only optical modes could go through those nanogaps,
based on the phonon dispersion in Fig. 3(b). At a gap size of
6 Å, there is also energy transmission in the lower-frequency
range corresponding to acoustic phonons. To be more specific,
the significant peak around 10 THz shall be contributed by the
longitudinal acoustic (LA) phonons, whereas the few small
peaks between 5 ∼ 10 THz could be due to both LA and
transverse acoustic (TA) phonons.

As the validity of classical FE theory remains unclear in
radiative heat transfer across few-nanometer polar dielectric
vacuum gap [11,14], we examine this issue by using the
NEMD results as benchmark. To be more specific, we make a
comparison of the spectral thermal conductance by NEMD to
that predicted by FE local theory, as shown in Fig. 4. For a fair
comparison, the quantum-corrected thermal conductance by
NEMD as calculated in Eq. (7) is used, whereas the electronic
contribution to the dielectric function (ε∞−1) is excluded in
the FE theoretical calculation. There is only one peak in the

FIG. 4. Spectral thermal conductance of MgO-MgO nanogaps at
gap size of (a) 0.6 nm, (b) 1 nm, and (c) 2 nm. Blue solid lines
denote present quantum-corrected result by nonequilibrium molec-
ular dynamics, whereas red solid lines denote result by fluctuational
electrodynamics theory with local dielectric function calculated by
EMD (cf. Fig. 2), and magenta dashed lines denote result by nonlocal
theory for radiative heat transfer from Ref. [37].

thermal spectrum of NRFHT predicted by FE local theory.
This resonance peak is known to be caused by the surface
phonon polaritons from the hybridization of transverse optical
(TO) phonons and electromagnetic waves [63]. The frequency
of the resonance peak lies where the real part of the local di-
electric function in Fig. 2 reaches −1, which does not coincide
with the frequency of TO phonons, whereas the broadening of
the peak comes from anharmonic damping. At the smallest
gap size of 6 Å in Fig. 4(a), a very broad thermal spectrum
is obtained by NEMD, which shows a very large deviation
from the FE local theory. This is clear evidence of the failure
of the continuum FE theory with local dielectric response. As
the gap size increases to 1 and 2 nm in Figs. 4(b) and 4(c),
respectively, the difference between the results of NEMD and
FE local theory tends to become gradually smaller. Actually,
at the 2-nm gap, the thermal spectrum from NEMD shows
a significant peak at ∼17.5 THz that is quite close to the
resonance peak predicted by FE theory. Note that the height
of the second peak at ∼25 THz is only ∼10% of the height of
the main peak. The results at 2 nm gap indicate that NEMD
indeed captures the near-field heat transfer by electromagnetic
waves between polar crystals. The underlying reason lies in
the fact that the interatomic potential in Eq. (1) adequately
includes the Coulomb interaction between ions, i.e., the ionic
electrostatic interaction. Thus NEMD captures successfully
the electrical fields generated by the vibrating charged ions,
i.e., the evanescent waves or surface phonon polaritons, as
already validated in a previous pioneering study [44]. As only
electrostatics is considered, the present NEMD simulation
is not able to describe the propagation of electromagnetic
waves (i.e., the retardation effect), which is important in
far-field radiative heat transfer yet negligible in the extreme
near-field regime [2]. We have not simulated even larger
nanogaps mainly due to two reasons: (i) the intensive
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FIG. 5. Thermal conductance of MgO-MgO nanogaps vs gap size d at 300 K in (a) log-log scale and (b) log-normal scale. Blue squares
with error bar denote present quantum-corrected results by NEMD, whereas red circles denote near-field radiative heat transfer result by FE
theory using local dielectric function calculated by EMD (cf. Fig. 2), and magenta dashed-dotted lines denote result by nonlocal theory for
radiative heat transfer from Ref. [37]. Solid lines in (b) are used for guiding the eye.

computational cost required to eliminate the size effect to
accurately describe the slowly decaying long-range Coulomb
forces, and (ii) the very large fluctuations of the NEMD con-
ductance for large gaps.

The deviation between continuum theory and NEMD at
very small gap size has two main origins: (i) the phonon tun-
neling due to direct short-range atomic interaction across the
gap, similar to that in heat transport through metallic vacuum
nanogaps [41], and (ii) the nonlocal dielectric response of
polar materials from long-range interaction between dipole
moments generated by ionic vibrations, including the opti-
cal response of both acoustic phonons [37] and longitudinal
optical (LO) phonons [64]. The nonlocal dielectric response
is highlighted in the frequency- and wave-vector dependent
dielectric function shown in Fig. 3(b). In contrast to local
dielectrics where only �-point TO phonons couple to the
electromagnetic waves, all the branches including LO, TO,
LA, and TA phonons throughout the Brillouin zone show clear
optical response (i.e., infrared absorption). As a comparison,
we include in Fig. 4 our recent result by nonlocal theory for
radiative heat transfer at atomic scale [37]. Although a perfect
agreement with nonlocal theory is not achieved, our NEMD
simulation captures well some crucial features of nonlocal
dielectric response predicted by the theory, especially the
contribution from acoustic phonons at the smallest gap. It
remains, however, a challenging task to disentangle the con-
tributions from phonon tunneling and from nonlocal dielectric
response in the present methodology.

B. Thermal conductance

The overall thermal conductance of MgO-MgO nanogap
is obtained by integrating the spectral thermal conductance
in Sec. III A over the whole frequency range, as given in
Fig. 5(a) in log-log scale and in Fig. 5(b) in log-normal
scale. In the current studied range of gap size from 6 Å to
2 nm, the thermal conductance across the gap by NEMD is
higher than that of NFRHT predicted by FE local theory. The
underlying reason is due to both phonon tunneling and nonlo-
cal dielectric response, as discussed at the end of Sec. III A.

On the other hand, the NEMD result is gradually approaching
that of FE theory as the gap size increases, with a faster
decaying trend of h ∝ d−2.8 compared to h ∝ d−2 in the lat-
ter. There is still non-negligible difference between them at
the 2-nm gap, while the convergence of NEMD to FE local
theory is expected at larger gap size. A recent study [64]
has estimated a nonlocal length of ∼10 nm in polar dielectric
materials, which indeed indicates appreciable nonlocal optical
response at few-nanometer scale. This is caused by the slowly
decaying Coulomb interaction, which also explains the much
slower decay trend of the thermal conductance compared to
that (h ∝ d−9) characterizing the metallic nanogaps [41]. In
Fig. 5, we have also included the thermal conductance across
the gap predicted by the nonlocal theory in our recent work
[37]. In contrast to the NEMD conductance, the nonlocal the-
oretical result is lower than that by the FE local theory. Such
a discrepancy needs to be investigated in depth in the future,
since we are not able to disentangle the nonlocal dielectric
response and phonon tunneling in this work. Note that in
NEMD, the thermal conductance will not diverge as h ∝ d−2.8

when the gap size further decreases. Instead, a transition to
the contact heat conduction should occur, as already shown in
previous works [45,46]. Actually, when setting the gap size as
half of the lattice constant of bulk MgO in NEMD simulation,
we will recover exactly the heat conduction across a MgO
film.

We would like to point out the importance of taking into
account the anharmonicity in the comparison of atomistic
simulation and continuum FE theory. In the lattice dynamics
theory, the local dielectric function of simple ionic crystals
like MgO is given by [65]

ε(ω) = ε∞ + S

�2
TO(ω) − ω2 − 2iωTO�(ω)

, (13)

where ωTO is the eigenfrequency of TO phonon at 0 K, and
�TO(ω) = ωTO + �(ω) is the renormalized eigenfrequency
of TO phonon considering its frequency shift �(ω), �(ω)
is its damping resulting from anharmonic phonon-phonon
scattering, and S is the oscillator strength. The imaginary
part of the dielectric function in Eq. (13) is expressed as a
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FIG. 6. Temperature-dependent thermal conductance of 1-nm
MgO-MgO nanogap by NEMD: (a) classical conductance via
Eq. (6), and (b) quantum-corrected conductance via Eq. (7). Solid
lines are used for guiding the eye.

Lorentzian function:

ε2(ω) = 2SωTO�(ω)[
�2

TO(ω) − ω2
]2 + 4ω2

TO�2(ω)
. (14)

In the harmonic limit [�(ω) → 0], the imaginary part in
Eq. (14) will be reduced to a Dirac delta function, which
makes the calculation of NFRHT via Eq. (9) impractical.
From this perspective, the comparison of harmonic NEGF to
FE theory for heat transport across polar dielectric nanogaps
in Ref. [46] remains debatable due to the inconsistency be-
tween the inputs of the atomic interaction forces. To be more
specific, only harmonic forces are employed in the former,
whereas both the harmonic and anharmonic forces are es-
sential for calculating the dielectric function in the latter. In
this work, our comparison is more consistent since the same
atomic interaction is included in the NEMD and in the cal-
culation of dielectric function as input into the continuum FE
theory. The critical gap size (> 2 nm) where the continuum
theory is recovered in the present work is larger than that
(∼ 1 nm) found in Ref. [46].

C. The role of anharmonicity

Finally, we investigate the role of anharmonicity on the
extreme near-field heat transport across MgO-MgO nanogap,
as motivated by the significant effect of the anharmonic
phonon-phonon scattering on the dielectric response of polar
materials. The 1-nm nanogap is considered, and we raise the
strength of anharmonicity by varying the system temperature
from 50 to 300 K. As shown in Fig. 6(a), the classical thermal
conductance obtained by NEMD increases as the temperature
rises, and its value at 300 K is more than twice that at 50 K.
It has been known that the increase of thermal boundary con-
ductance with temperature at solid-solid interface predicted
by NEMD is attributed to the inelastic anharmonic phonon
scattering [66]. Thus, the present temperature-dependent trend
of thermal conductance across the gap is most likely caused by
the lattice anharmonicity. As a comparison, the thermal con-
ductance of metallic vacuum nanogaps in our previous study
increases only ∼20–30% from 1 to 300 K, which indicates
moderate anharmonic effect [41]. According to Eq. (6), the in-
creasing thermal conductance across the gap could only come

FIG. 7. Temperature-dependent transmission function across
MgO-MgO nanogap with gap size of 1 nm: (a) NEMD result and
(b) near-field radiative heat transfer result by FE theory with local
dielectric function calculated by EMD (cf. Fig. 2). Inset in (b) shows
enlarged plot between 15 and 22 THz.

from the enhanced energy transmission, since the spectral-
heat capacity is a constant (kB) in the classical limit. In
Fig. 6(b), the quantum-corrected thermal conductance calcu-
lated via Eq. (7) varies by more than four orders of magnitude
in the same temperature range, as mainly contributed by the
increasing phonon population from Bose-Einstein statistics.

The enhanced energy transmission across the nanogap with
increasing temperature is explicitly demonstrated in Fig. 7(a).
Interestingly, the enhancement occurs mainly in the frequency
range between 15 and 20 THz, while the transmission function
is almost independent of temperature between 20 and 25 THz.
As a comparison, we also plot the temperature-dependent
transmission function of NFRHT predicted by the FE theory,
i.e., the term in the square bracket of Eq. (9), as shown in
Fig. 7(b). Here, the local dielectric functions at correspond-
ing temperatures are computed by EMD and then used for
FE theoretical calculation. As the temperature increases, the
peak in the transmission function curve is reduced while it
is broadened. This can be explained by the same trend of

TABLE III. Independence verification of cross-section size (in
u.c.) in NEMD model of 1-nm MgO-MgO nanogap. Lth = 5 u.c.,
Lf = Ld = 4 u.c. Standard deviation of thermal conductance across
gap is computed from five independent NEMD simulations.

Cross section (u.c. × u.c.) hNEMD (×107W/m2 K)

6 × 6 3.82 (±0.06)
8 × 8 3.83 (±0.10)
10 × 10 3.93 (±0.04)
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TABLE IV. Independence verification of size (in u.c.) of fixed layer and device region in molecular dynamics model of 1-nm MgO-MgO
nanogap. Lth = 5 u.c., cross-section size: 8u.c. × 8 u.c. hSHC is calculated by integrating spectral heat current (SHC) extracted from NEMD.

Lf (u.c.) Ld (u.c.) hNEMD (×107W/m2 K) hSHC (×107W/m2 K) hSHC/hNEMD(%)

4 4 3.83 (±0.10) 3.37 (±0.13) 87.98
4 6 3.82 (±0.05) 3.50 (±0.12) 91.53
4 8 3.73 (±0.08) 3.47 (±0.06) 93.07
8 8 3.82 (±0.08) 3.57 (±0.07) 93.38
10 10 3.79 (±0.08) 3.58 (±0.15) 94.41
12 12 3.75 (±0.11) 3.56 (±0.14) 95.01

local dielectric function in Eq. (14) since the damping (i.e.,
the phonon linewidth) increases with temperature. However,
the trend is quite different in the result by NEMD, namely,
the peaks are enhanced and also broadened between 15 and
20 THz. It could not be explained by the effect of anharmonic-
ity on the local dielectric response of the material. The impact
of anharmonic phonon scattering on either the nonlocal re-
sponse or the phonon tunneling may be one possible reason,
which remains to be further investigated in future works.

IV. CONCLUSIONS

In summary, we present an atomistic modeling of the ex-
treme near-field heat transport across polar dielectric vacuum
nanogaps. At angstrom- and nanometer-sized gaps, the direct
non-equilibrium molecular dynamics result shows significant
deviations from the continuum fluctuational electrodynamics
theory with consistent microscopic input, due to both phonon
tunneling and nonlocal dielectric response. The NEMD re-
sults gradually approach that of the continuum theory and are
expected to recover the latter at larger nanogaps. The energy
transmission across the nanogap increases as the temperature
rises, attributed to the effect of lattice anharmonicity. Our
results highlight the importance of nonlocal effects stemming
from both acoustic and optical phonons in the extreme near-
field regime. The atomistic simulation allows one to take into
account all contributions to the energy transfer. However, to
date we are not able to quantify the relative contribution of
the tunneling of phonons with respect to their radiative contri-
bution. This analysis will be the subject of a future work.
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APPENDIX: SIZE-INDEPENDENCE VERIFICATION
OF NEMD MODEL

Here, we provide the details of size-independence verifi-
cation of the dimension of NEMD model for the 1-nm MgO
nanogap as an example. First, we verify the influence of cross-
section size by fixing Lth = 5 u.c., Lf = Ld = 4 u.c. As the
cross section increases from 6 u.c. × 6 u.c. to 10 u.c. × 10
u.c., the classical thermal conductance directly obtained by
NEMD increases less than 3%, as summarized in Table III.
Thus, we adopt a cross section of 8u.c. × 8 u.c. for the NEMD
simulation of 1-nm gap.

We further verify the influence of the size of the fixed layer
(Lf ) and the device region (2Ld ) at Lth = 5 u.c. using a cross
section of 8u.c. × 8 u.c. As Lf and Ld increase, the classical
thermal conductance directly obtained by NEMD (hNEMD)
almost does not change, as shown in Table IV. In contrast,
the classical thermal conductance obtained by integrating
the spectral heat current from NEMD (hSHC), i.e., based on
Eq. (6), gradually increases and approaches that directly ob-
tained by NEMD. We have a small mismatch between hSHC

and hNEMD since the spectral heat current is calculated be-
tween the left-hand side and right-hand side of the device
region. Due to the long-range Coulomb interaction, there is
some heat flow between the left-hand (right-hand) thermostat
and right-hand (left-hand) side of the device region. To avoid
such spurious effect and considering the periodic boundary
condition along the transport direction, we increase Lf and Ld

to be sufficiently large such that difference between hSHC and
hNEMD is less than 5%, i.e., within the statistical uncertainty
of NEMD simulation, as summarized in Table IV. Finally, we
adopt Lf = Ld = 12 u.c. for the NEMD simulation of 1-nm
gap.

[1] A. Volokitin and B. N. Persson, Rev. Mod. Phys. 79, 1291
(2007).

[2] Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill,
New York, 2007).

[3] S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of
Statistical Radiophysics 3 (Springer, Heidelberg, 1989).

[4] C. Hargreaves, Phys. Lett. A 30, 491 (1969).

[5] A. Narayanaswamy, S. Shen, and G. Chen, Phys. Rev. B 78,
115303 (2008).

[6] S. Shen, A. Narayanaswamy, and G. Chen, Nano Lett. 9, 2909
(2009).

[7] E. Rousseau, A. Siria, G. Jourdan, S. Volz, F. Comin,
J. Chevrier, and J.-J. Greffet, Nat. Photonics 3, 514
(2009).

085434-8

https://doi.org/10.1103/RevModPhys.79.1291
https://doi.org/10.1016/0375-9601(69)90264-3
https://doi.org/10.1103/PhysRevB.78.115303
https://doi.org/10.1021/nl901208v
https://doi.org/10.1038/nphoton.2009.144


ATOMISTIC MODELING OF EXTREME NEAR-FIELD … PHYSICAL REVIEW B 108, 085434 (2023)

[8] R. Ottens, V. Quetschke, S. Wise, A. Alemi, R. Lundock, G.
Mueller, D. H. Reitze, D. B. Tanner, and B. F. Whiting, Phys.
Rev. Lett. 107, 014301 (2011).

[9] T. Kralik, P. Hanzelka, M. Zobac, V. Musilova, T. Fort, and M.
Horak, Phys. Rev. Lett. 109, 224302 (2012).

[10] B. Song, Y. Ganjeh, S. Sadat, D. Thompson, A. Fiorino, V.
Fernández-Hurtado, J. Feist, F. J. Garcia-Vidal, J. C. Cuevas,
and P. Reddy, Nat. Nanotechnol. 10, 253 (2015).

[11] K. Kim, B. Song, V. Fernández-Hurtado, W. Lee, W. Jeong, L.
Cui, D. Thompson, J. Feist, M. H. Reid, F. J. García-Vidal, J. C.
Cuevas, E. Meyhofer, and P. Reddy, Nature (London) 528, 387
(2015).

[12] R. St-Gelais, L. Zhu, S. Fan, and M. Lipson, Nat. Nanotechnol.
11, 515 (2016).

[13] M. Ghashami, H. Geng, T. Kim, N. Iacopino, S. K. Cho, and
K. Park, Phys. Rev. Lett. 120, 175901 (2018).

[14] H. Salihoglu, W. Nam, L. Traverso, M. Segovia, P. K.
Venuthurumilli, W. Liu, Y. Wei, W. Li, and X. Xu, Nano Lett.
20, 6091 (2020).

[15] A. Kittel, W. Müller-Hirsch, J. Parisi, S.-A. Biehs, D. Reddig,
and M. Holthaus, Phys. Rev. Lett. 95, 224301 (2005).

[16] L. Worbes, D. Hellmann, and A. Kittel, Phys. Rev. Lett. 110,
134302 (2013).

[17] K. Kloppstech, N. Könne, S.-A. Biehs, A. W. Rodriguez, L.
Worbes, D. Hellmann, and A. Kittel, Nat. Commun. 8, 14475
(2017).

[18] L. Cui, W. Jeong, V. Fernández-Hurtado, J. Feist, F. J. García-
Vidal, J. C. Cuevas, E. Meyhofer, and P. Reddy, Nat. Commun.
8, 14479 (2017).

[19] A. Jarzembski, T. Tokunaga, J. Crossley, J. Yun, C. Shaskey, R.
A. Murdick, I. Park, M. Francoeur, and K. Park, Phys. Rev. B
106, 205418 (2022).

[20] Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A.
Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet,
Nature (London) 444, 740 (2006).

[21] I. Altfeder, A. A. Voevodin, and A. K. Roy, Phys. Rev. Lett.
105, 166101 (2010).

[22] A. C. Jones and M. B. Raschke, Nano Lett. 12, 1475 (2012).
[23] M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener,

R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, Proc. IEEE
96, 1810 (2008).

[24] W. Challener, C. Peng, A. Itagi, D. Karns, W. Peng, Y. Peng, X.
Yang, X. Zhu, N. Gokemeijer, and Y.-T. Hsia, Nat. Photonics 3,
220 (2009).

[25] B. C. Stipe, T. C. Strand, C. C. Poon, H. Balamane, T. D. Boone,
J. A. Katine, J.-L. Li, V. Rawat, H. Nemoto, and A. Hirotsune,
Nat. Photonics 4, 484 (2010).

[26] W. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano
Lett. 4, 1085 (2004).

[27] M. Lee, R. L. Vink, C. A. Volkert, and M. Krüger, Phys. Rev. B
104, 174309 (2021).

[28] A. Volokitin, Appl. Surface Sci. Adv. 6, 100160 (2021).
[29] M. Prunnila and J. Meltaus, Phys. Rev. Lett. 105, 125501

(2010).
[30] Y. Ezzahri and K. Joulain, Phys. Rev. B 90, 115433

(2014).
[31] J. Pendry, K. Sasihithlu, and R. Craster, Phys. Rev. B 94,

075414 (2016).
[32] Z. Geng and I. J. Maasilta, Phys. Rev. Res. 4, 033073 (2022).

[33] E. L. Wolf, Principles of Electron Tunneling Spectroscopy
(Oxford University Press, 2012).

[34] Z.-Q. Zhang, J.-T. Lü, and J.-S. Wang, Phys. Rev. B 97, 195450
(2018).

[35] M. Gómez Viloria, Y. Guo, S. Merabia, P. Ben-Abdallah, and
R. Messina, Phys. Rev. B 107, 125414 (2023).

[36] P.-O. Chapuis, S. Volz, C. Henkel, K. Joulain, and J.-J. Greffet,
Phys. Rev. B 77, 035431 (2008).

[37] M. Gómez Viloria, Y. Guo, S. Merabia, R. Messina, and P. Ben-
Abdallah, arXiv:2302.00520 (2023).

[38] A. Alkurdi, C. Adessi, F. Tabatabaei, S. Li, K. Termentzidis,
and S. Merabia, Int. J. Heat Mass Transfer 158, 119963 (2020).

[39] T. Tokunaga, A. Jarzembski, T. Shiga, K. Park, and M.
Francoeur, Phys. Rev. B 104, 125404 (2021).

[40] W. Chen and G. Nagayama, Int. J. Heat Mass Transfer 176,
121431 (2021).

[41] Y. Guo, C. Adessi, M. Cobian, and S. Merabia, Phys. Rev. B
106, 085403 (2022).

[42] D. P. Sellan, E. Landry, K. Sasihithlu, A. Narayanaswamy,
A. McGaughey, and C. Amon, Phys. Rev. B 85, 024118
(2012).

[43] T. Tokunaga, M. Arai, K. Kobayashi, W. Hayami, S. Suehara,
T. Shiga, K. Park, and M. Francoeur, Phys. Rev. B 105, 045410
(2022).

[44] G. Domingues, S. Volz, K. Joulain, and J.-J. Greffet, Phys. Rev.
Lett. 94, 085901 (2005).

[45] S. Xiong, K. Yang, Y. A. Kosevich, Y. Chalopin, R. D’Agosta,
P. Cortona, and S. Volz, Phys. Rev. Lett. 112, 114301 (2014).

[46] V. Chiloyan, J. Garg, K. Esfarjani, and G. Chen, Nat. Commun.
6, 6755 (2015).

[47] M. Matsui, J. Chem. Phys. 91, 489 (1989).
[48] A. P. Thompson, H. M. Aktulga, R. Berger, D. S. Bolintineanu,

W. M. Brown, P. S. Crozier, P. J. in’t Veld, A. Kohlmeyer, S.
G. Moore, and T. D. Nguyen, Comput. Phys. Commun. 271,
108171 (2022).

[49] Y. Chalopin, M. Hayoun, S. Volz, and H. Dammak, Appl. Phys.
Lett. 104, 011905 (2014).

[50] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids
(Oxford University Press, 2017).

[51] K. Sääskilahti, J. Oksanen, J. Tulkki, and S. Volz, Phys. Rev. B
90, 134312 (2014).

[52] K. Sääskilahti, J. Oksanen, S. Volz, and J. Tulkki, Phys. Rev. B
91, 115426 (2015).

[53] K. Sääskilahti, J. Oksanen, J. Tulkki, and S. Volz, Phys. Rev. E
93, 052141 (2016).

[54] A. Giri, J. L. Braun, and P. E. Hopkins, J. Phys. Chem. C 120,
24847 (2016).

[55] C. A. Polanco and L. Lindsay, Phys. Rev. B 99, 075202 (2019).
[56] S.-A. Biehs, E. Rousseau, and J.-J. Greffet, Phys. Rev. Lett. 105,

234301 (2010).
[57] E. D. Palik, Handbook of Optical Constants of Solids (Academic

Press, San Diego, 1998), Vol. II.
[58] A. Maradudin and R. J. P. R. Wallis, Phys. Rev. 123, 777 (1961).
[59] F. Gangemi, A. Carati, L. Galgani, R. Gangemi, and A.

Maiocchi, Europhys. Lett. 110, 47003 (2015).
[60] W. Chen and L.-S. Li, J. Appl. Phys. 129, 244104 (2021).
[61] J. A. Thomas, J. E. Turney, R. M. Iutzi, C. H. Amon, and A. J.

McGaughey, Phys. Rev. B 81, 081411 (2010).
[62] A. Mattoni and C. Caddeo, J. Chem. Phys. 152, 104705 (2020).

085434-9

https://doi.org/10.1103/PhysRevLett.107.014301
https://doi.org/10.1103/PhysRevLett.109.224302
https://doi.org/10.1038/nnano.2015.6
https://doi.org/10.1038/nature16070
https://doi.org/10.1038/nnano.2016.20
https://doi.org/10.1103/PhysRevLett.120.175901
https://doi.org/10.1021/acs.nanolett.0c02137
https://doi.org/10.1103/PhysRevLett.95.224301
https://doi.org/10.1103/PhysRevLett.110.134302
https://doi.org/10.1038/ncomms14475
https://doi.org/10.1038/ncomms14479
https://doi.org/10.1103/PhysRevB.106.205418
https://doi.org/10.1038/nature05265
https://doi.org/10.1103/PhysRevLett.105.166101
https://doi.org/10.1021/nl204201g
https://doi.org/10.1109/JPROC.2008.2004315
https://doi.org/10.1038/nphoton.2009.26
https://doi.org/10.1038/nphoton.2010.90
https://doi.org/10.1021/nl049573q
https://doi.org/10.1103/PhysRevB.104.174309
https://doi.org/10.1016/j.apsadv.2021.100160
https://doi.org/10.1103/PhysRevLett.105.125501
https://doi.org/10.1103/PhysRevB.90.115433
https://doi.org/10.1103/PhysRevB.94.075414
https://doi.org/10.1103/PhysRevResearch.4.033073
https://doi.org/10.1103/PhysRevB.97.195450
https://doi.org/10.1103/PhysRevB.107.125414
https://doi.org/10.1103/PhysRevB.77.035431
http://arxiv.org/abs/arXiv:2302.00520
https://doi.org/10.1016/j.ijheatmasstransfer.2020.119963
https://doi.org/10.1103/PhysRevB.104.125404
https://doi.org/10.1016/j.ijheatmasstransfer.2021.121431
https://doi.org/10.1103/PhysRevB.106.085403
https://doi.org/10.1103/PhysRevB.85.024118
https://doi.org/10.1103/PhysRevB.105.045410
https://doi.org/10.1103/PhysRevLett.94.085901
https://doi.org/10.1103/PhysRevLett.112.114301
https://doi.org/10.1038/ncomms7755
https://doi.org/10.1063/1.457484
https://doi.org/10.1016/j.cpc.2021.108171
https://doi.org/10.1063/1.4860989
https://doi.org/10.1103/PhysRevB.90.134312
https://doi.org/10.1103/PhysRevB.91.115426
https://doi.org/10.1103/PhysRevE.93.052141
https://doi.org/10.1021/acs.jpcc.6b08124
https://doi.org/10.1103/PhysRevB.99.075202
https://doi.org/10.1103/PhysRevLett.105.234301
https://doi.org/10.1103/PhysRev.123.777
https://doi.org/10.1209/0295-5075/110/47003
https://doi.org/10.1063/5.0049464
https://doi.org/10.1103/PhysRevB.81.081411
https://doi.org/10.1063/1.5133064


YANGYU GUO et al. PHYSICAL REVIEW B 108, 085434 (2023)

[63] J.-P. Mulet, K. Joulain, R. Carminati, and J.-J. Greffet,
Microscale Thermophys. Eng. 6, 209 (2002).

[64] C. R. Gubbin and S. De Liberato, Phys. Rev. X 10, 021027
(2020).

[65] P. Brüesch, Phonons: Theory and Experiments II (Springer,
Heidelberg, 1986).

[66] R. J. Stevens, L. V. Zhigilei, and P. M. Norris, Int. J. Heat Mass
Transfer 50, 3977 (2007).

085434-10

https://doi.org/10.1080/10893950290053321
https://doi.org/10.1103/PhysRevX.10.021027
https://doi.org/10.1016/j.ijheatmasstransfer.2007.01.040

