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Operator correlations in a quenched non-Hermitian Luttinger liquid
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We study operator correlations of a spinful Luttinger liquid after introducing a non-Hermitian interaction
quench, yielding supersonic modes and dominant superconducting correlations as signatures of the nonunitary
dynamics as well as spin-charge separation. A comparative analysis with the Hermitian counterpart, i.e., when the

quench is Hermitian, shows a significant difference in the behavior of the model. We derive exact expressions for
different operator correlations and show that the superconducting correlations decay slower than the charge and
spin density wave correlations, especially within the short-time limit, and at the long-time limit all the operator
correlations merge differed only by phase factors in the case of non-Hermitian interaction quench whereas they
do not merge in the case of Hermitian interaction quench. In both cases known Luttinger liquid universality is
retained at the long-time limit. We also analyze how the dynamics of operator correlations vary in the presence

of anisotropy in the quenching parameters.
DOI: 10.1103/PhysRevB.108.085433

I. INTRODUCTION

The low-energy physics of an interacting one-dimensional
metallic system is generally described by the Luttinger liquid
(LL) theory [1,2], which is among the better-studied many-
body quantum systems. At equilibrium, the nature of the
system can be understood from various order parameter cor-
relations, which signify tendencies to show quasi-long-range
orders. One uses the bosonization technique in order to study
the physics of LLs. The strength and usefulness of such a
technique lie in its applicability to a wide range of circum-
stances [1,3]. This Luttinger liquid formalism has also been
successfully implemented to study many out-of-equilibrium
phenomena of one-dimensional interacting systems [4—13].

Non-Hermiticity in quantum mechanical systems has
paved the way for several new phenomena [14—17]. Over the
last few years, a diverse set of experiments have reported
signatures of non-Hermitian physics [18-22]. These develop-
ments have resulted in a growing interest in the theoretical
study of non-Hermitian systems. Particular attention has been
paid to the study of P7T -symmetric Hamiltonians as the
eigenenergies of such Hamiltonians can become real [14,15].
This peculiarity has been exploited by a significant number of
works to study the many-body physics of P77 -symmetric sys-
tems [23-27]. Despite recent attempts [23—34], understanding
of the consequences of non-Hermiticity in quantum many-
body systems remains broadly unexplored.

The possibility of unveiling new physics by studying non-
Hermitian systems using LL formalism has attracted the
attention of researchers in recent times [24,27,32,33]. The LL
formalism provides analytical ease to study various many-
body phenomena in non-Hermitian systems and becomes a
natural tool to investigate the same, particularly in one di-
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mension. Yamamoto et al. [32] have studied dissipative LLs
originating from the non-Hermitian XXZ model. The authors
have computed the correlation functions in detail where the
right-state correlation functions take the same form as the
order parameter correlations defined for Hermitian spineless
LLs [2]. In another work, Ashida et al. [27] have shown
emergent superfluidity as a result of relevant non-Hermitian
perturbation over the gapless model of Hermitian Luttinger
liquids. Recently, LL. formalism has been used to study
non-Hermitian dynamics of many-body systems. In particu-
lar, Dora et al. [24] investigated the single-particle Green’s
function and density-density correlator for non-Hermitian
quantum quench in the LLs where supersonic modes appear
as a consequence of non-Hermiticity. Such modes are known
to break the Lieb-Robinson bound [35]. However, detailed
studies and comparisons among different correlators are still
absent in the literature, pertaining to non-Hermitian quantum
quench dynamics of Luttinger liquids. Such analysis would
require a more detailed study of operator correlations (OCs) as
a function of time. We note that the application of OCs in the
study of out-of-equilibrium physics is not new in the context
of Hermitian LLs [4,5,36,37]. It is also very important to
note that supersonic modes are not specific to non-Hermitian
systems [38] and it is of general interest to enquire what lies
beyond these modes.

In this work, we explore the properties of various correla-
tors of a spinful LL. model, under the influence of a sudden
non-Hermitian interaction quench. We explicitly calculate
different operator correlations for the quenched state and com-
pare the result with the Hermitian counterpart. Interestingly,
our results show that in the short-time limit, superconduct-
ing correlations dominate over charge density wave or spin
density wave correlations. The dominance of superconduct-
ing operator correlations is also observed for the spinless
case. We further show how the dominant behavior varies with
anisotropy in quenching parameters.

The organization of the paper is as follows: In Sec. II
we discuss the model and the equation of motion for the
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bosonic operators. In Sec. III we derive general expressions
for various operator correlations required to study the system
after quenching. We derive all quantities exactly to compare
between Hermitian and non-Hermitian quench in LLs and
elaborate on the long-time limit of the operator correlations. In
Sec. IV we discuss the short-time limit of the operator correla-
tions, the effect of anisotropy, and other crucial observations.
In Sec. V we summarize our work.

II. MODEL

A simple model describing a spinful LL can be written as
[39-41]

ig2,|p|O()
H = Z U|p|b;v‘)bp*v + 2—(pr —p,v +bp,vb7p,v)»

2
p#0,v
(1)

where v = ¢ and v = s denote the charge and spin degrees
of freedom, respectively. @(¢) is the unit-step function and
i = ~/=1. b, is the annihilation operator for bosonic excita-
tion of flavor v and momentum p. v is the bare sound velocity
and g, is the coupling constant, which is better understood
when viewed in the context of the underlying fermionic the-
ory. In the fermionic language, g, denotes density-density
interaction between the left and right movers. One can define
82 = 82| £ 821, where the (4) sign holds for the charge
sector (v =c¢) and the (—) sign holds for the spin sector
(v =) [39,40]. Here g, is the interaction between the left
and right movers’ density operators carrying the same spin,
whereas g, is the interaction between the left and right
movers’ density operators carrying opposite spins. We note
that difference in go; and gy results in unequal g,. and
g2. This is also equivalent to introducing anisotropy in the
quenching (interaction) parameters. We discuss in Sec. IV
that such anisotropies can dictate dominating behavior of the
system.

Before the quench (i.e., t < 0), the above Hamiltonian
describes a noninteracting bosonic system. The interaction
quench at + =0 has imaginary coupling strength, which
makes the Hamiltonian non-Hermitian. In spite of non-
Hermiticity, the spectrum remains real at ¢t > 0 and is given
by U, |pl, where ¥, = v/v* + g3, represents the renormalized
velocity. Also, note that the system remains stable for the limit
|g2v| < v, and in the rest of the paper we maintain this limit
unless mentioned otherwise.

Since we are interested in the time evolution of the system,
we first focus on writing down the equations governing the
time evolution of the boson operators. In the presence of non-
Hermiticity we work in the pseudo-Heisenberg picture [24],
where the equations of motion for the bosonic operators {b,, , }
and {b], ,} can be written as

iatbp W(1) = [bp (1), H,
i, b}, (1) = [b}, (1), H]. @)
General solutions of Eq. (2) take the form
p W(t) = Up, v(t)bp v+ Up, v(t)b_p Vs

—p U(t) - up v(t)b—pv vp.v(t)bp,v’

3

where u,, ,(t) and v, , (¢) are the Bogoliubov coefficients, sat-
isfying the constraint |u,,,v(t)|2 + Ivl,,v(t)l2 = 1. As a result
of non-Hermiticity, the Hermitian conjugate of the operator

by, (t) is not related to b' (t). These coefficients take the
form

—pv

- v .
up (1) = cos(vy|plt) — o sin(®, |plt),
vV

Up (1) = 2 sin(,1pl). 4)
v
The above solutions satisfy the boundary conditions u,, ,(0) =
1 and v,,,(0) = 0. For the Hermitian case, Bogoliubov coef-
ficients satisfy the constraint |up,v(t)|2 — vpu(@)* =1, and
bpv(t) = up ()b + vy, (t)bfp »» such that b}9 (t) is ob-
tained by taking the Hermman conjugate [6,10,12].

If we use the same mapping g», — —igz, t0 map non-
Hermitian Hamiltonian to Hermitian Hamiltonian, then the
Bogoliubov coefficients are mapped to the same coefficients
defined for a Hermitian quench problem but with a negative
interaction strength. We have shown the exact expressions of
these coefficients in Appendix C while discussing the details
of Hermitian quench.

III. BEYOND SUPERSONIC MODES

In this section, we investigate the OCs of a spinful LL
using the developments made in the last section. We study the
operator correlations, as a function of time, computed over the
quenched state | (1)) = e~*!|y,) obtained by evolving the
ground state |y) of the noninteracting Hamiltonian defined
by Eq. (1) at+ — 0. It is noted that the time evolution takes
place by the Hamiltonian defined in the same equation but for
t— 0.

The operators that are being used to define these corre-
lators can be any of the following: CDW (charge density
wave), SDW, , . (spin density wave), SS (singlet supercon-
ductor), TSy, . (triplet superconductor). We use the symbol
O to denote these operators and detailed expressions of these
operators are furnished in Table I. One should note that here
we are using the same operator identities used to characterize
phases of spinful LLs in equilibrium [1,2] but the expectation
values are computed out-of-equilibrium. The general form
of the OCs, in the case of non-Hermitian interaction quench
dynamics, is given as

(Wole™ e MO (x, 1)O(0, 1) o)
N(@®)

where N(t) = (Yole’ ' e=H|yr0). The above correlation
function assumes the operators to follow the pseudo-
Heisenberg picture of time evolution, i.e., Of(x, 1) =
MO (x)e ™ and O(x, 1) = 'O (x)e . OT(x, 1) and
O(x, t) are not related by Hermitian conjugation at time ¢ >
0, similarly to the b,, and b;v [see Eq. (2)]. Calculating
any correlation involves computing the product of operators

it o= which reflects the nonunitarity of time

(OT(x)O(0))yu = ,

of the form e "e
evolution. We can write this product in a simpler manner using
the symmetry of the system. The Hamiltonian contains opera-

tors of the form ICJr = bj) vbT_p v Koy =bpobpy, K5, =

(bl,,vb,,,]J +b_,,\, Zpv)/2. Here, ICi” are the generators of

L,V
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TABLE I. We tabulate different values of A, corresponding to
Egs. (12) and (14). One can obtain the expression for OCs, for any
O, using this table. We have taken the definitions of the @ from
[1]. Here k; is the Fermi momenta related to the underlying fermion
model. Calculation of the identities defined in Egs. (12) and (14) does
not require this phase factor. Otherwise, ignoring such a phase factor
(e*%*r*) in the definition of O is not unusual [2].

A, A Definition of O
CDW - - L VW cos[ 2hy ()]
SS + - Le i cos[v/26,(x)]
TS, + - L eV cos[v/26,(x)]
TS, + + L7V 5in[ /26, (x)]
TS, + - ZZ V) in[/26,(x)]
SDW, - + ;k,’ ~ V20 cos[v/26,(x)]
SDW, - + U V3 Gin[/20,(x)]
SDW, - — Mf V20 5in[/2¢h,(x)]

the SU(1,1) Lie group. The faithful matrix representation of
the SU(1,1) Lie group [42] can be used to write the evolution
operator

0
Uy (t) = l—IECH y(POKS, Lo (POK 4

p>0

C_v(p.OK,, , (6)

where C,, (p, t), with n = {0, £}, are some coefficients to be
determined from the relation

Uv(t) _ elH| te—lH ot (7)

subject to the boundary conditions C, ,(p,t = 0) = 0, such
that U,(0) = 1. The total evolution operator is a product of
U,(t) operators and it can be written in a compact form
ot g—iH1 _ I, U, ().

In order to find the analytical expression of OCs, one
requires to find the exact solutions of C,,(p,t). It can be
shown from Eq. (5) that the contribution due to the Cy, term
cancels with N'(¢) and the contribution due to the C,,(p, 1)
term vanishes due to the fact that b;,v annihilates (¥,|. As
a result, one is left with the only requirement of computing
C_,(p,t). One can show from Egs. (6) and (7) that the dif-
ferential equations governing the time evolution of C,,(p, t)
become

iCov (P, 1) = 2Bp o [Cou(p, 1) + C_y(p, ],

(OT()O(0)nn
(OT(®)O00))o

o

~ [T 2

Uy v —&5
X € 1 — — |Ds(x,0)—2 %%
P |:( U—x) (. 0) ; Vg (v2 + U5

:DL‘ > ‘Dc _g%
Dc , 0)—2 2«
v_(‘> . 0) nz:; v <v2 + 0,

iCiv(Pa 1) = Bpr(1+ eCOV(pJ)) + aﬂ,vcil)(pa 1)
+ BpCi (P, 1) (®)

We define o), =2v|g| and B,, =igs |q|. Solving these
equations one can obtain the solutions for C_,(p, t) as

2up, )y (1)
|up,v(t)|2 - |Up,v(t)|2 )

We use these solutions to calculate the OCs for different
operators.

The O operators which are furnished in Table I require the
knowledge of the dual boson fields ¢,(x) and 6, (x). Below
we mention the relation between b, , operators and the field
operators [1,39]

Cfu = (9)

l
2

¢ (x) = —z—Z( ) —e~ T (e,

—ipx ipx
+e P b—p,v —e’ b]),l})a

1
Lp\21 _o _;
0,(x) = l— Z (%) I—)e_T(e_'pxb;,V + e’”xb‘,p v

_ipxpt
e b_p.v

p>0

—e Pb_,, —e"b,,). (10)
Here L is the length of the system, although we calculate the
final expressions in the thermodynamic limit. « is an inherent
length scale associated with the underlying lattice. We further
note that we have dropped the terms which go to zero at L —
0o, from Eq. (10). In the present work, the time dependence of
the exponent Ry, in particular, is of our interest. We define
Rnu, which captures the scaling of the OCs,

(G)T(x)@(o))NH)
(OT(x)00)o /)

We note that the exponent Ryp is a measure of the rate
of decay of the OCs. We have found the exponent to be
real for all the OCs. The term (OT(x)D(0))o denotes the
operator correlation of the bare noninteracting system and it
varies for different OCs by phase factors. In Appendix A,
we elaborate on important expressions, used to compute all
the operator correlations mentioned in Table I. The methods
for calculating all the OCs follow from the derivations of
(O py () Ocpw (0)var and (O Fs(x)Oss(0))wn, respectively.
We refer to Appendix B for the details and report the gen-
eral expression of OCs for non-Hermitian quantum quench in
spinful LLs below:

Rnu = log( (11)

n oo n+l
v ) D.(x, m)] exp[ BSOS (- 1)’”Mnm<g36> F.(x, mt):|
¢ n=0 m=1
n oo n+l gz
) Dy(x, m)} exp|: B3y (- 1)"’/\/1,,",( 25) Fi(x, mt)]
s n=0 m=1

12)
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FIG. 1. Supersonic modes are a characteristic feature of non-Hermitian quench. It is expected to observe the appearance of such modes in
the scaling of the OCs. However, comparison among different operator correlations shows the dominance of superconducting correlations over
charge density wave or spin density wave OCs, in the short-time limit. For the above two plots, used system parameters are g, /v = 0.6, g2, /v
= 0.2, x = 100«. The sequence of the OCs is of particular importance, which will be clear in forthcoming sections of the paper. In (a) we plot
exponent Ryy as a function of time. A larger value of exponent signifies slower decay and hence the dominating behavior of the system is
governed by the operator having the largest value of Ryy. The panel (b) shows how the information of spin-charge separation is being carried
by the supersonic modes. The property of LL ensures that the OCs can be written as a product of charge and spin sectors. We show both the
sectors separately and the combined sum using three different lines (for CDW-OC only). One can see different cusps coming from the charge
sector and spin sector. P. denotes the point on the time axis where the cusp appears from the charge sector, and P, denotes the cusp appearing

from the spin sector.

Here, M, ,, =2"Cy_p_1 — *"Cp_ms1, where C is used
for combination. ¥, =vVvi+g5,, vo,=vVvi-g,
Wpy = U, | pl, “p,v(t) = Cos(wp,vt) - % Sin(wp,vt)a
. 2
V(1) = £ sin(w, 1) Dy(x,1) = gllog(l + G357) +
2 2
log(1 + Gpagay)) Fyx. 1) = gllog(l + 55) =
log(1 + m)]. We recall v = ¢, s.

Different operator correlations can be obtained from
Eq. (12) for different values of A, ;. We provide a dictionary
in Table I. In Fig. 1 we have shown that in the short-time
limit for non-Hermitian quench, different cusp corresponds
to the supersonic modes, and the position of one cusp is
dominated by the contribution coming from either the charge
sector or the spin sector. This is because of spin-charge separa-
tion. In the long-time limit the time-dependent parts D, (x, t)
and F,(x,t) vanishes. The long-time behavior of OCs is
given by

(0" O O)wa
(© 0O |_

= exp |:<1 — e )Dc(x, 0)i|
V_¢
X exp |:(1 — Uﬁs )Ds(x, O)]. (13)

At long time, one cannot distinguish between different OCs
from Ryp. In the following segment of the paper, we contrast
this behavior with the Hermitian case.

A. Hermitian case

One can study the Hermitian case in a manner similar
to the non-Hermitian quench. We furnish the details in Ap-
pendix C. In this case, no supersonic modes appear and the
Lieb-Robinson bounds are obeyed. One expects two cusps
as shown in Fig. 2, one coming from the spin sector and
another from the charge sector. In the long-time limit the
time-dependent function D, (x, ) vanishes, whereas the time-
independent part is different for CDW and SS, and they do not
merge asymptotically.

For the Hermitian case the normalization factor
N(t) is unity and the correlation function reduces to
(Yol O (x, )D(0, 1)|¥). In this case, the general expression
for operator correlation is given by

(0T ()0(0)y
(O7(x)0(0))o
( gZC(gZC + Acv)
= exp A —

—C

[Dc(x, 0) — De(x, t)])

X exp (—W[Dxx, 0) — Dy(x, r)]>,
v

)

(14)
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FIG. 2. In (a) we show different OCs for various OQ’s in the case of Hermitian quench. One can observe that the CDW operator has the
slowest decay, signifying the repulsive nature of the system. For this plot used system parameters are g,/v = 0.6, g2, /v = 0.2, x = 100c.
(b) However, one can change the sign of the function g, to —g);, and g», to —g, to see the superconducting correlations becoming dominant.
This is expected due to introducing negative interaction through quench. One must notice the alteration in the sequence of the OCs, between

(a) and (b).

where v_, = Vv? — g%v. We define the exponent as Ry =

log (O (x)0(0))5 /(07 (x)D(0))o). And the long-time be-
havior of operator correlation is given by

B. Helical LL

In the case of the helical Luttinger liquid (HLL), the oppo-
site movers carry opposite spins and thus only g, interaction
exists. The relevant operator correlations for the HLL are
given by the spin density wave (SDW) operator and super-

w GM D.(x O)) conducting (Su) operator [43,44]. These operators are defined
(OT@x)O(0))0 |,- 00 V2, e as follows:
g2l £ 8s0) Ou = o D) = St (16)
X €Xp <_TDS(X, O)). Su » Uspw P
- (15) We note that the form of the operators is similar to that of

The expressions can be calculated for various values of A i,
as done for the non-Hermitian case. In this case, as well,
A. s follow from Table I. It is clear from the above ex-
pression that at the t — oo limit, different correlations are
distinguishable. We note that the computation of various OCs
for Hermitian quench is similar to that of the non-Hermitian
counterpart.

J

the spinless LL due to the fact that the momentum and the
spin are locked with each other for the HLL. The derivation
of the operator correlations follows in the same manner as
done for the spinful case except now one has to incorporate the
fact that the spin and momentum are locked with each other
[45]. However, the SDW operator is distinct for this case and
has no spinless counterpart. In the case of the non-Hermitian
interaction quench of HLL, SDW-OC and Su-OC are given
below,

(O] pw () Ospw (0))wi ( ) ( —&. )
= = 21— — )D(x,0)—4 D(x, nt)
(Ogpw () Ospw (0))o P x Z 24 vv_ o
oo n+l gz
X exp |: 2821 Z Z(—l)m./\/ln m( u) F(x, mt):| 17)
n=0 m=1

(04, () 05y 0w ( ) ( —&, )
= 21— — |D(x,0)—4 D(x,
(0§, () 0s4(0))0 P |: . 0) - Z v \ 02 + du_ (x, nt)

oo n+l

x exp|: LLYS - 1)"’Mnm<g%i> F(x, mt):| (18)

n=0 m=1
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whereas in the case of Hermitian interaction quench, OCs are given by

(Ogpw ) OspwO)n _
(Opw () Ospw (0))o
(0§, ()0su(0)y
Tt o o T €X
(0§, (x)0s4(0))o

where ¥ = vVv? + g3, and v_ = vv? — g3, . The procedure

for obtaining operator correlation for the helical LL is the
same as that of the spinful LL, with the exception that due to
the locking of opposite spins in opposite directions, the helical
LL does not show spin-charge separation. One can obtain
D(x,t) and F (x, t) by replacing 9, with ¥ in the expression
of D, (x,1) and F, (x, t), defined below Eq. (12).

IV. RESULTS AND DISCUSSION

In the last section, we have shown that the scaling expo-
nents Ryy computed for superconducting pairings dominate
over those of charge and spin density waves, but in the case of
a Hermitian interaction quench the superconducting OCs are
suppressed. We find that in the long-time limit, all the expo-
nents merge, in the case of non-Hermitian quench as shown
in Fig. 1. This is in sharp contrast to the Hermitian quench
counterpart, as shown in Fig. 2. We also notice spin-charge
separation from Fig. 1(b).

One can explicitly check how SS-OC dominates over
CDW-OC in the short-time limit by computing the difference
between their exponents,

'R,Sv%q — R%L)]W = Z dUGU(X)%, (1)
where
(0] (x)0,(0))np
R = log | L INE ) 22)
wH g( (0] (00,0 )

with n = CDW, SS, and

oo n+l gz n
m 2v

G,(x) = ;;( D Mn,m(zﬁ%> F(eymt).  (23)
We define d, = ASS — ASPW and note that G, (x) > 0. It is
apparent from Table I that d. > 0 and d; = 0, hence from
Eq. (21), the difference of exponent of the SS and CDW
operator correlations is positive and thus SS dominates over
CDW. Similar arguments hold for other correlations, as well.
The slower decay of the superconducting OC compared to the
charge density wave OC remains true for the non-Hermitian
quench in the spinless LL. In Appendix D we have shown the
results for the spinless case.

If one changes the sign of the quenching (interaction)
parameter to negative (i.e., an attractive interaction), then
in the case of the Hermitian quench this leads to an alter-
ation in the sequence of different exponents, as shown in
Fig. 2(b). Interestingly, this is the same sequence observed
in the case of non-Hermitian quench. This implies that if we
map the Bogoliubov coefficients of the non-Hermitian case to

( 2g21(g21 —v)
P\————— % —

(_ 2g21(g21 +v)
2

[D(x,0) — D(x, t)]), (19)

[D(x,0) — D(x, t)]), (20)

(

its Hermitian counterpart by using the exact mapping which
has been done for the Hamiltonian, i.e., g», — —igs,, then
the result for Hermitian quench with negative interaction is
reproduced.

Finally, we study the role of anisotropy between the
quenching parameters g and g,,. Figure 3 shows that
anisotropy in quenching parameters can significantly alter the
exponents and may dictate which OC correlation is dominant.
To understand this behavior in more detail we focus on two
particular exponents: TS,-OC and SS-OC. We compute

Ry — Rivi = JsGs(x)%, (24)

where d; = ATS — ASS and the definitions of R}, (with
n = TSy, SS) and G,(x) follow from Eq. (22) and Eq. (23),
respectively. We further note, from Table I, that d,>0. It
is apparent from the same table that the contribution coming
from the charge sector in the difference of the exponents under
study vanishes since ASS = ATS:. These exponents merge for
82| = &2, which is a result of the fact that go; = g2 — 821
itself vanishes. If g5, > g21 then we see that g, is positive,
and so is the difference in Eq. (24). And hence TS, supercon-
ducting pairing dominates over SS. In the opposite limit, i.e.,
821 < &1, 825 1s negative as a result of which the difference in
Eq. (24) is negative and hence SS pairing dominates over TS,
pairing. Other exponents can also be studied in the same man-
ner. One would find that for g5 = g»., all the superconduct-
ing correlations merge but still dominate over other OCs. We
note that anisotropy dictates which superconducting pairing is
dominant; however, the overall dominant correlation remains
superconducting, within the short-time limit. For all the OCs,
LL universality is retained at ¢+ — oo [5,24]. This can be un-
derstood from the saturation attained by the exponents Ry g -

For the case of the helical Luttinger liquid (HLL), the
dominance of Su-OC over SDW-OC, in the presence of non-
Hermitian interaction quench, is shown in Fig. 4(a). This is
in sharp contrast to the case of Hermitian interaction quench,
shown in Fig. 4(b). The dominance of superconductor op-
erator correlation over spin density wave correlation can be
understood with a similar argument given for CDW-OC and
SS-OC in the spinful LL.

Previously, theoretical proposals have been made to realize
phases of LLs with dominant superconducting correlations in
static Hermitian systems [46,47] under unconventional cir-
cumstances. In these referred works no attractive interaction is
present and they show how superconductivity can be realized
in LL platforms even if the emergence of the same is unex-
pected. These studies also rely upon the scaling of operator
correlations to observe dominant superconductivity. In our
case, one cannot infer from the quenching parameter whether
the interaction is attractive or repulsive since it is an imaginary
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FIG. 3. We show how different types of superconducting correlations are obtained by varying anisotropy in the coupling constant. (a) For
this plot used system parameters are g;;/v = 0.6, g»1 /v = 0.2, x = 100c. One can observe that the TS, , correlation is most dominating.

(b) For this plot used system parameters are g»;/v = 0.2, g1 /v = 0.6, x = 100c. In this case, SS and TS, correlations are the most dominant.
Hence, modulation in anisotropy can modify the dominant behavior of the system.

number. However, we have been able to show that for a non-
Hermitian LL quenched out of equilibrium, superconducting
behavior becomes dominant within a short-time limit.

V. SUMMARY

We have analytically studied the problem of a non-
Hermitian quantum quench in a spinful Luttinger liquid and
obtained exact expressions for various operator correlations
(OCs). The exponents Ryy and Ry capture the scaling of
the OCs, as shown in Egs. (12) and (14). These exponents
are crucial in understanding the system properties beyond

0 100 200
vt/

the appearance of supersonic modes. We have explicitly dis-
cussed the results in the short-time [Eq. (21)] and long-time
limits [Eqgs. (13) and (15)] by comparing the non-Hermitian
quench with Hermitian quench for a spinful LL. We find that,
surprisingly, for the case of non-Hermitian quench, supercon-
ducting correlations dominate over SDW or CDW correlations
(Fig. 1), which is in stark difference to the Hermitian quench
(Fig. 2). We have also studied the effect of varying anisotropy
in quenching parameters on the exponents Ry of the OCs,
as shown in Fig. 3.

The importance of non-Hermitian physics can be under-
stood from its relevance, especially in the study of open

0 100 200
vt/

FIG. 4. OCs with non-Hermitian quench of a helical LL (a), and for a Hermitian quench (b). One can observe that the Su correlation
is dominating with non-Hermitian quench, in contrast to the dominant SDW correlation for the Hermitian quench. Further, appearance of

supersonic modes is also associated with non-Hermitian quench; they are absent for the case of Hermitian quench. For (a) parameters used are
g21 /v =0.4, x = 100c, and for (b) the parameters used are g,, /v = 0.4, x = 100c.
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quantum systems. In the case of an open quantum system,
although the time evolution of the quantum system is de-
scribed by the Lindblad master equation, the dynamics of the
density operator depends only on the effective Hamiltonian in
the absence of quantum jumps [16,48,49]. Further, with the
progress made in the fields of ultracold atoms and photonic
devices, which have shown potential for the implementation
of non-Hermitian physics, we expect our results to be ob-
served in similar systems where particle loss and gain can
be controlled effectively [50-54]. In this regard, we would
also like to mention that such systems have experimental sig-
nificance and the non-Hermitian quantum many-body system
has been realized in ultracold ytterbium atoms in an optical
lattice [52]. The recent study by Rosso et al. [55] deals with

J

APPENDIX A:

interacting one-dimensional gas of spin-1/2 fermions with
two-body losses, where the spinful interacting system has
found its application in non-Hermitian physics. In addition,
the Heisenberg XXZ spin chain, which is well studied in the
context of optical lattices [56,57], is another possible system
to observe the physics of spinless LLs. The HLLs might
also be of interest due to their experimental relevance; recent
experimental realizations of HLLs are notable [58,59].
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IMPORTANT IDENTITIES

We derive various useful identities to calculate the OCs. Our main motivation here is to compute the expressions
(e£1V/200) o FiV20.0)y and (e+iv260:()FiV20,0)) These two terms are required to obtain any OC. One can observe that

(e £iv/20, () Fiv/ 20y 0y

In the case of Hermitian systems, we note that the term U, (t) = e

(W) | e:ttf¢v(x)e1tf¢v(0) | v (1)) =

Wo | Uv(l‘)eiiﬁ(¢"(x’t)7¢”(o’t)) | Vo).

iHJt efiH\,t

(AD)

is equal to 1. This quantity solely arises due to

non-Hermiticity. These terms appear in the derivation of all the OCs. We cast the above expression in the form given below:

(Yo | Uy ()2 070000 |y —

(Yo | Uy (1) V2@ @000 00) |y ),

(A2)

We have used the relation ¢, (x, ) — ¢,(0, 1) = ¢;7(x, ) + ¢, (x, t). The original dual fields are defined in Eq. (10), in terms of
{b;yv} and {b,,,} operators from which one can compute ¢;f (x, 7) and ¢, (x, 1) fields as

1

2

¢y (1) = —ip Z ( ) 5¢ T, (1) 4 v (DT — Db, — (¢ — 1T, ], (A3)
p>0 1
— Lp 21w ipx —ipx
¢y (x’ t) _l_ Z Z ;e 2 [Up,v(t) - Mp,v(t)][(e - 1)bp,v - (e - l)bfp,v]- (A4)
p>0
We can also write
Wo | UV(t)e:biﬁ[¢.f(x,1)+¢\7(x-t)] | Yo) = (Yo | UV(t)eiiﬁﬁr(x,t)ei:l:«/ifbv’(x,f)e[¢.f(x,f),¢\7(x,t)] | ¥o). (A5)
The commutator in the above expression is given by
4 . X\,
(¢, (x,1), ¢ (x, )] = Z L—pe‘“p sin’ (%)[Mp,v(l)vp,v(l) = Up (Ot (1) + 2 | vy, (1) 7 —1]. (A6)
p>0
We note that V29 1) | 40y =| 1) and as a result we get
(Wo | Un(t) = (Yo | 00 = (g | [ S @Rt S5 = Ny () (g | [ €SP0, (A7)

p>0

where (¥ (7) | ¥(1))
by writing N () =[],

V=c,§

p>0

= N(¢) as defined in Eq. (5). We have decoupled the contribution coming from spin and charge sectors
N, (7). So calculating Eq. (AS5) reduces to computation of (W | U, (1 )eXivY207 1) | ) olé7 (.07 (0],

After doing some algebraic manipulations one can write it in the form below:

(Yo | Up()e N0 | el n o]

pr e 1,0+ v Ol = 1],

_(eibx l)b_ v]}n
P, |1l/_0>e[¢“}*‘(x,t),¢\,_(x,t)]

U(p,t)k
= (o |1'[Z
p>0 mn
mf T _a * " . px " F(x,t),¢7 (x,t
zg;[—c,v(p,t)] (L—pe p[up’v(t)—l—vp,v(t)]Z) [451n2 (7” el#7 gy o]

n!

(A8)
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We can thus write the operator identities as
(2200 FVDBO) A1 (1)p™ Lo T sin® ()0 (0 (O (Pt )=t ) ()0 Ot )+ 20 (P11} (A9)
=N, .

Now we put the value of C_, in the above equation from Eq. (9) and use the expression of u, ,(¢) and v, ,(t) from Eq. (4) to
reduce the above expression in the form

2,
1+ % sin(y pr) cos(By pt)

03 -2¢3,, sin2 (b pr) ). (AlO)

T e~P sin’ (”‘ W2 (

(EVIWFNVIOY _ Af (1) 0 7

Now, consider the argument of exponential in the above equation:

ngv : ~ ~ ~
4 1+ =2 sin(v, pt ) cos(, pt) 4 2
E —— 7P sin? (px>l~)5 — - 7= = E —e P sin’ (_px> - vv. 7 -
Lp 2 0} — 283, sin (9, p1) Lp 27\ 9} - 283, sin* (0 pr)

p>0 p>0
92282 gin(9, pt) cos(D, pt)
+Z—e P sin2 (px) i . (A1)
prs 2 02 — 2g5 sin’*(D,pt)
We proceed further by converting the sum over p to an integral over p such that in the thermodynamic limit L — oo one gets
4 52 00 d n
Z —ne"”’ sin’ (ﬂ) - v”. 5 = f e “P[1 — cos(px)] Z ( g%" smz(v‘,pt)>
= Lp 2 /\ 92 —2g5, sin* (D, pr) o P
2&% ' 2n! 1 x?
vy 2n r :
= ——log|1 . Al2
=\ 4D Z( r'!2n—r)!2 g[ + [ot+2itﬁu(n—r)]2:| (A12)
And finally, we write
4 1+ g’” 2 sin(D, pt ) cos(y pr ) — "
Z —ne_‘"” sin? <I£>vU ’ D (x,0)+ ZZ ( 5 & ) D, (x, nt)
= Lp 92 —2g3 sin®(¥,pt) v2 4+ Uu_,

n m=n+1
+g~ﬂZ(g%“> > D) Crimet = P'Coomit I, (x, mt),

v m=1

(A13)

where the forms of ¥,, v_,, D,(x,t) and F,(x,t) are defined in the main text. One can check that the terms of the form
(e£1V2.(0) o £iV26,(0)) can be written as

(eiiﬁ(ﬁv(x)eiiﬁtﬁw(o)) — Nv(t)e* p=0 L’; 70{"COSZ(%)luz,v(f)+vp,v(f)lzc—v(PJ)
% eZ,,>o L’;, 7‘”}0052(,")[’4; \,(f)Up,v(l)*vp,v(l)up,v(f)+2|vp,u(f)|2*1]. (A14)

It is analytically and numerically checked that these terms vanish and have no contribution in the correlation functions. We
proceed with 6, fields in the same manner to obtain

(eiiﬁav(x)ezpiﬁev(O)) N, (t)e 0 tee P sin® (5, , (1) =0, (OPC—y (pu1)
% o= Lo fe P sin? (%)[u;,v(t)v,y,v(t)fvp,v(t)up.\,(t)fZ\vp,\,(t)|2+1J’ (A15)

which turns out to be

( eiiﬁe.,<x)e¢if29v(0>> = N, (t)exp |:

vV _g%v "
22 <v2+vvv_ ) Dy, nt):|

n m=n+1
X exp [gf” > <g%“) Z (=1)"[*"Cpom—t — *"Cormy1 |Fo (x, mt)]. (A16)
Uy

We also calculate
( eiiﬁe\,(x) eiiﬁ@.,(O)) = N, (@) e L0 e cos>(5)us, (D) =0p0 (DI Cy (pit)
- vV

x e~ L0 1€ 7 08 N, (0 =0p (it (V=205 (O +1], (A17)
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It has been mathematically checked that Eq. (A17) vanishes similarly to Eq. (A14). So far we have computed the quantities
which are crucial in the calculation of different OCs. We keep in mind that OCs for CDW and SS are shown, in the next section,
in detail and all the other OCs can be calculated in a similar manner.

APPENDIX B: NON-HERMITIAN QUENCH

The study of various OCs relies upon detailed computation of different expressions furnished in Table I, over time-evolved
ground state | (t)) = e~#'|y). The boson operators {bp,»} and {b‘ .} are related to the dual fields as per Eq. (10). The time
evolution of these boson operators takes place according to Eq. (2). One specific OC is a particular combination of the dual boson
fields of Eq. (10). In order to find out the OCs, we need to find out different expectations (taken over | (¢))) of exponentiated
¢, and 6, fields. We focus on two particular cases, where the CDW-OC requires the calculation of the product of exponentials
defined with ¢, fields and SS-OC where the same is done with 6, fields. These two OCs capture all the technical details required
to compute other OCs.

1. OC for CDW
The CDW correlator takes the form (Table I)

2R (1) | eV cos[V/ 26, (x)]e™V 24O cos[v/2¢5(0)] | v

0 Ocpw (0 Bl
(Ocpw ) Ocpw (0)) v = Py WO O (B
We can write the OC for CDW in a compact form as
. 2iKx(oIV20) IV 2B 0) ((iV20:() giVIBO)y 4 (o=iv/290(0) iV 20y )
(Olpw®)Ocpw (0)) na . (B2)

= 21242 N()NG(1)

In writing the above equation we have used the fact that (e/V2$:®eiV26:0)) = (¢=iV20:(x)=iv20:0)y gnd (e=1V2:(0)iV26:0)) —
(e1V29:)¢=iv20:0)y _So using Eq. (A9) the nonzero part of the above expression can be written as

2ikrx
. e~ f 4 o=ap gin (2wt (t)+ DIPC_c(p.t
(Ocpw () Ocpw (0))vu = a2’ = Xm0 ;¢S CDG (DF0p(OFCe(p.1)
« eZ’DU L’;e"”” sin (’» Ny (v, (1)~ Up, e (Vp,c (1) 2]y (D — l][, (p 1), (B3)
where L(p, t) is given by
Es(P, t) = e_ p>0 gtf"‘” smz(%)[”fy,x(l)+vp.x(’)]chs(P") 2 ps0 i; e smz(%)[u;"(l)vlw(t)_um(l)vp‘x(t)+2|vp'xmlz_l]' (B4)

All the terms can be combined to obtain

2iksx
<©éDw(x)©CDW(0))NH — e e~ 2 p=0 Lp€7”” sin (m)[M,,((l)-‘rvpt(t)]zcﬂ(l? t) =2 =0 i;e’“” Slnz(%)[u;‘,’x(t)+vp.x(f)]zcﬂ-(17qt)
271202
x EZ">° L’;, e P an(%)[u;h\-(t)vp,x([)7M[),.v(t)vp,x([)+2‘Up.s(t)‘271]

s 2p-0 Tp€ S CEG (OVpe () —ttp. ()0 (D)+210p e (P =11 (B5)
We next use the identities defined in Eqgs. (A10)—(A13) to write
(Ofpw ()Ocow (0))wn

2ik,x
= 222 P

c

Uc g%L ! 82c s m g%c !
ZZ V_¢ <v2 + VV_e ) De(x,nt) = . Z Z(_l) MunFelr, mt)(ﬁ}f) (B6)

n=1 n=0 m=1
oo n+l
xexp|: 22 o <v2 ;é’f&v ) Dy(x, nt) — &ZZ( D" My Fi (x, mt)(g%s) i|,
n=0 m=1

where M, ,, is defined in the main text. If we divide the correlation by its bare part and convert the summations over p to
integrals over p as discussed in the previous section we would get

T _ n
(O¢pw @) Ocpw (0)) vr =exp|:<1 >D x. 0)_22 e (Uz +8U%cv > D, (x. nt)]

(O pw () Ocpw (0))o
o 00 gz n m=n+1
X exp |:_f)_c Z (2;02) Z (="M, mFe(x, mt):|
¢ =0 <

m=1

—C
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X exp [(1 - v—)D (x,0) - 22 vv_s <v2 ff‘ - ) Dy(x, m)}
g g2 n m=n+1
X exp |: UZ‘Y Z < 352) Z (=1)" M, mFs(x, mt):| (B7)

S n=0 S

2. OC for SS

This part of the Appendix is dedicated to the computation of the SS-OC. The analytical calculation of the SS-OC is similar
to that of the CDW-OC but with 0, fields. Using Table I, one can write the SS-OC as

: L () | @V cos[V2,(x)]e VO cos[v/2¢,(0)] | ¥ (1))
(Ogs () Oss(Mner = — 3 TOTIO . (B8)

Using equation Eq. (A15) we can write

(O35 0550wty = 5gyeTr NGO tpcOPC- 00
x &= Toeo 1€ S 00—ty (0 O=21up O £ () 4 (B9)
where L(p, t) is given by
Li(p,t) = 67 =0 L" e S1I12(%)[M,*,J(t)Jrvp.s(t)]ZCﬂ(PJ) >0 f,’,e’“” Slnz(%)[M;A(t)UpAv(t)7’4[7,.:(t)vpm(t)‘%zlv[m(t)‘z71]. (B10)

Next, one can follow the similar steps used to compute CDW-OC, elaborated in Appendix B 1, but with fields 6, to obtain

(05(x)Oss(0)vu

1
= 222 xp |:

2 Ve _822c ! 82¢ > 1y ggc
Zv_c o) Dern)+ TE ) ) (=1 Mo Fle,mo)

n=0 m=1
_g% 2 oo n+l g2
X exp ——D(x 0)—22 <v2+vsv )D(x m)——ZZ( 1" My Fy(x, mz)< Y) . (BID
Us n=0 m=1

One has to use Eq. (A16) to calculate the above expression. If we divide the correlation with its bare part and convert p sum to
p integral, then we get

(O3 ) Oss O _ [(1

(05(x)Oss(0))o

)D (x,0) — 22 i (v2 ffcv ) DC(X,nt):|
o gz n m=n+1
X exp |: T)L Z (212)62> Z (=1)" My mFe(x, mt)j|
¢ n=0 c m=1
X exp |:<1 <v2 +éfév_ > Dy (x, nt):|

)D (x,0) — 22
o0 g2 n m=n+1
xexp|: 2 Z( 25) Y (= l)m/\/ln,ml*}(x,mt)i|. (B12)

n=0 S m=1

0y
v

APPENDIX C: HERMITIAN QUENCH

In this Appendix, we briefly discuss the calculation of different OCs, in the case of Hermitian interaction quench. It has been
noted that the calculation does not require pseudo-Heisenberg representation and everything can be calculated in the Heisenberg
picture. We begin by writing down the two most important entities for the calculation:

(eﬂﬁd,v(x)ﬁ,-@,,v(o)) — () | o EIV26,() ,Fiv/26,(0) | v(@) = (Vo | o1 EV200 (x.1) =, (0.1)] | Yo), (CD)

(5VPRIGFNO) — (1) | VDI | (1)) = (g | £V ANEOHOT |y, (€2)
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Following the similar arguments and steps as that of the non-Hermitian case we can write

i x i 4 —ap o bx * *
(eEIV20 0 FiVI.0)) — expy _Zﬁe P sin’ <7>[up’v(t)vp,,,(t)+vp’v(t)up,‘,(t)—i-Z|vp,v(t) > +11].  (C3)
p>0

The terms of the form (V26 @) ¢£iv26.(0)) vanish in a manner similar to the non-Hermitian case. We can further write

(X200 FIVO)) — ey |:_<1 " gzu(gzzv - v))Dv(x, 0)+ g2v(g22v - v)DU(x, t)]. (c4)
v

-V —V

For 6, fields we can write

A A 4
(PRI = exp | 37 e sin (5 )1, (005 0) F 0 (Ot 6) = 2 | a6 P 1)
p>0

= exp [-(1 1 SnlEn 1Y) U)>Du(x, 0) 4 S8 F V), r)]. (C5)
v v

-V —V

Next, we write down the explicit expression for the Bogoliubov coefficients used in our calculation, for the Hermitian case

v .
(1) = cOS(B, [plt) = == sin(@, plo).
. v (C6)
l
Vp(t) = 5’;2“ sin(3, | plt).

v

We have used the above identities to calculate the OCs for the Hermitian case. In this regard, one is referred to Fig. 2(a), to
observe the effect of repulsive interaction quench in OCs. In Fig. 2(b) we have shown the results for g2, — —g2,.

OC for CDW and SS

In the case of Hermitian quench, (y(¢) | ¥ (¢)) = 1. Following the same techniques used for the calculations done in the case
of non-Hermitian quench, we compute the exact expressions for CDW and SS correlators. The CDW-OC takes the form

+ R (P (1) | eV cos[ V2 (x)]eV 20O cos[/26,(0)] | (1))
(Ocpw®)Ocpw(0)) g = e OIRIG

<e—i«/§¢( (X)eiﬁ@ (0)>(<ei\/§¢A (X)eiﬁ¢x(0)> + (e—iw/iq')s(x)eiﬁﬁ (0)> ). (C7)

eZikfx
27202

We extract the nonzero part from the above expression as

2ikrx

est 4 =P sin? (Z) ()0 (t)+Fitp.c (DU (E)+2]0pc (P41
<©EDW(X)@CDW(O))H = a2t o Tpe P sin® (5 )t (0vp. (D)t (0] (0)+2[0p ()P +1]

o o Somo e sin® (B )l (O (i (003, (O 2l (P 1] C8)

If we divide the correlation with its bare part and convert p sum to p integral, then we get

(0w @) Ocow () 7<7g2“(f§“’”))[Dr(x,O)ch(x,t)]ef(gizf‘fzf“”)[Dx(x,O)fDx(x,t)] ©9)
(O ¢ pw ) Ocpw (0))o
We can calculate the above quantity for SS-OC, in the same manner, as
0L (x)0ss(0 (2% ) D, (1,0)-D(x.0)] —( 2= ) [Dy(x,0)~Ds (x.1)]
( ss() ss(0)u —e ( V2, ) e ( ER ) ) (C10)

(0 0ss(0))g

APPENDIX D: RESULTS FOR SPINLESS LL

One can compute OCs, under non-Hermitian and Hermitian sudden quench, for the spinless case as well. We have obtained
the exponents Rny and Ry for the spinless LL, which we show below. The calculation follows in the same manner as we have
elaborated in Appendices A—C. We note that for this case, Su and CDW stand for superconductor and charge density wave,
respectively. We define the operators corresponding to Su and CDW OCs as [1,2]

e~ 2i0() e 2ipW)

Osu(x) = — Ocpw(x) = — (D1)
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Here the dual bosonic fields ¢(x) and 6(x) are defined in the same way as we have done in Eq. (10) but without the v index.
Corresponding results would be the same as in Fig. 4, where CDW correlation would behave the same way as the SDW

correlation shown in the figure.
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