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Localized states coupled to a network of chiral modes in minimally twisted bilayer graphene
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Minimally twisted bilayer graphene in the presence of an interlayer bias develops a triangular network of valley
chiral modes that propagate along the AB/BA interfaces and scatter at the AA regions. The low-energy physics
of the resulting network can be captured by means of a phenomenological scattering network model, allowing to
calculate the energy spectrum and the magnetoconductance in a straightforward way. Although there is in general
a good agreement between microscopic and phenomenological models, there are some aspects that have not been
captured so far with the latter, in particular, the appearance of flatbands in the energy spectrum associated to a
localized density of states at the AA regions. To bring both approaches closer together, we modify the previous
energy-independent phenomenological model and add the possibility to scatter to a set of discrete energy levels at
the AA regions, yielding an S matrix with energy-dependent parameters. Furthermore, we investigate the impact
of Coulomb repulsion in these regions on a mean-field level and discuss possible effects of decoherence due to
elastic and inelastic cotunneling events.

DOI: 10.1103/PhysRevB.108.085431

I. INTRODUCTION

Twisted bilayer graphene, two stacked graphene layers
with a relative twist angle θ , opens the door to control a new
degree of freedom in the electronic band structure. Due to the
relative twist, the stacking order in the two layers in twisted
bilayer graphene varies spatially, resulting in a periodic lattice
with a new lattice constant l = a/2 sin(θ/2) ≈ 14(θ◦)−1 nm,
the moiré lattice constant, with a being the graphene lattice
constant [1–4]. The modulation of the moiré lattice constant
as a function of θ can alter significantly the electronic band
structure [1–4]. Indeed, striking results occur at the so-called
magic angle θ ∼ 1◦, where the curvature of the bands is dras-
tically reduced and interacting effects take over, giving rise
to a variety of correlated phases [5–17]. Beyond the magic
angle, new physics arises for small twist angles θ � 1◦, in
a regime called minimally twisted bilayer graphene (mTBG),
where a triangular network of valley chiral edge states arises
in the presence of an interlayer bias voltage. At such small
twist angles, the moiré lattice constant becomes very large:
l ∼ 100 nm. Thus, it is energetically more favorable to form
a lattice [18] consisting of triangular AB/BA Bernal-stacked
regions with AA regions at each corner [19–21] [see Fig. 1(a)].
Similarly as in Bernal-stacked bilayer graphene [22–24], the
presence of an interlayer bias voltage breaks inversion sym-
metry, yielding a gap opening at the AB/BA stacked regions.
For a given valley and spin, the difference between the valley
Chern number of the AB/BA regions is ±2. Thus, in the limit
of smooth disorder on the scale of a (no intervalley coupling),
two chiral modes propagate along the AB/BA interfaces for
each valley and spin. In this way, mTBG develops a tri-
angular network of valley chiral modes [19], which can be
visualized experimentally using STM measurements [25–30].

Remarkably, more refined calculations have shown that, far
from forming a percolating two-dimensional network, the
chiral modes arrange in perfect one-dimensional zigzag (ZZ)
channels disposed in three directions [31,32]. This unprece-
dented scenario of one-dimensional modes propagating in the
bulk of the material becomes more apparent in interference
experiments. In the presence of a perpendicular magnetic
field, effects of Aharonov-Bohm physics arise in the longi-
tudinal and transversal resistance [33].

The low-energy physics of this system is captured using
a phenomenological scattering model that takes into account
the symmetries of the system, that is, C3 and C2T , where C3

and C2 are rotations about the axis perpendicular to the plane
with respect to the center of an AA region, and T is time-
reversal symmetry. These symmetries impose the following
constraints on the S matrix of a single AA region and a given
valley and spin [32,34,35]:

C3 : SK =
⎛
⎝s f sl sr

sr s f sl

sl sr s f

⎞
⎠, (1)

C2T : sr = (sl )
t , s f = (s f )t , (2)

where the 2 × 2 matrices s f and sl/r contain the transmis-
sion and reflection left/right coefficients of the three pairs
of valley chiral modes that arrive at the AA regions. Ac-
cording to Fig. 1(b), the S matrix relates the incoming
(a) and outgoing (b) scattering states via b = SK a with
a = (a1, a2, a3, a4, a5, a6)t and b = (b1, b2, b3, b4, b5, b6)t .
Note that the S matrix for the opposite valley SK ′ is obtained
by means of the time-reversal operation SK ′ = (SK )t .

The simplicity of these phenomenological models al-
lows not only to recover previous results obtained using a
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FIG. 1. (a) The triangular network under an interlayer bias in
mTBG for a given valley and spin. Double arrows represent the two
chiral modes propagating along the AB/BA interfaces, which scatter
at the AA regions. (b) Sketch of the generalized S matrix for a single
AA region. Here, the incoming modes ai can either deflect to the
neighboring outgoing modes bi via S0 or scatter into the discrete
energy levels ε j from the mode i with the tunneling amplitude ti j .
(c) Triplet of chiral zigzag modes along the moiré lattice vectors l j

[35]. (d) Spectrum in units of Ea = h̄vF /a of the boundary between
two semi-infinite AB and BA regions versus the momentum q along
the interface, calculated with the continuum model from Ref. [23].
We have used �/γ⊥ = 0.1, with � the interlayer bias and γ⊥ the
interlayer coupling. We observe two chiral modes per valley (solid
black and red dashed lines) copropagating inside the gap of the bulk
bands (solid blue).

microscopic approach [36–38], e.g., the independent fami-
lies of chiral ZZ modes, but also to study the topology of
the system [39,40], to include electron-electron interactions
[41–46], effective Bloch oscillations [47], or to calculate two-
and four-terminal magnetotransport [32,35,40].

There are, however, some features that appear in the spectra
of the microscopic calculations that have so far not been cap-
tured in these phenomenological models. Here, we will focus
on the flatbands placed in the middle of the gap opened by
the interlayer bias voltage, which exhibit a localized character
at the AA regions [19,37,48]. To include these features in the
phenomenological approach, we introduce a discrete density
of states at the AA regions by means of a collection of N
discrete levels which couple to the valley chiral modes propa-
gating along the AB/BA regions [cf. Fig. 1(b)]. The resulting
S matrix acquires an energy dependence due to the energy
difference between the position of the discrete energy levels
and the propagating modes. In this context, we investigate
the energy spectrum and magnetotransport of the resulting
triangular network and analyze the effects of electron-electron
interaction on a mean-field level at the AA regions, which
can lead to Coulomb blockade. It is reasonable to incorporate
Coulomb interaction into the AA regions due to their small
size (∼10 nm) [37]. We further discuss the impact of decoher-
ence caused by inelastic and elastic cotunneling processes.

The structure of the paper is as follows. In Secs. II and III,
we introduce the model and the energy-dependent S matrix

for a single AA region (node). Then, we calculate the energy
bands of the network in Sec. IV. In Sec. V, we calculate
the two-terminal magnetoconductance of a finite length strip
and discuss the impact of cotunneling events that can lead to
decoherence.

II. MODEL AND HAMILTONIAN
FOR A SINGLE AA REGION

We model the AA regions taking into account two effects.
First, we add a set of discrete levels which are coupled to the
chiral modes. Second, we also include an energy-independent
deflection process between an incoming mode and the neigh-
boring modes [see Fig. 1(b)]. This is justified because in the
proximity of the AA regions, the chiral modes approach each
other, giving rise to a finite overlap between the wave func-
tions. The deflection probability depends on the localization
length of the chiral modes relative to the moiré length l . It
is expected that the overlap between neighboring channels
decreases if the localization length of the chiral modes perpen-
dicular to the propagation direction is much smaller than the
moiré wavelength [37,49]. Furthermore, due to the negligible
spin-dependent couplings in graphene systems [50,51], such
as spin-orbit coupling, we will consider hereafter a spinless
Hamiltonian.

We model a single AA region using a set of N discrete
energy levels described by means of the Hamiltonian

HD =
N∑

j=1

ε j d̂
†
j d̂ j + U

2

N∑
j, j′

j �= j′

n̂ j n̂ j′

≈
N∑

j=1

ε j d̂
†
j d̂ j + U

2

N∑
j, j′

j �= j′

(〈n̂ j〉n̂ j′ + n̂ j〈n̂ j′ 〉), (3)

with ε j being the energy of the jth level and U is the Coulomb
repulsion energy. Here, d̂†

j (d̂ j ) is the creation (annihilation)

operator of the energy level j in the AA region and n̂ j = d̂†
j d̂ j

is the occupation number operator of the jth level. In the
second line of Eq. (3), we replace the many-body Coulomb
repulsion by a mean-field single-electron term. This approx-
imation is valid as long as the fluctuations in the occupation
number are small [52,53]. In this mean-field description we
cannot capture all effects that can possibly occur, such as
cotunneling processes that change the occupation of the dis-
crete levels. As we will argue at the end of Sec. V, these
processes can lead to decoherence of interference effects. Un-
der the mean-field approximation any term that corresponds
to interaction between electrons of the different valleys will
only lead to a modification in U . That means, as long as this
approximation is valid, we can disregard intervalley scatter-
ing due to Coulomb interaction. We further assume that the
discrete levels are in equilibrium with the external leads of
the network, which set the Fermi energy EF . Details of the
self-consistent calculation of 〈n̂i〉 are given in Appendix A.

We include possible degeneracies present in the AA re-
gions and set a twofold-degenerate level ε j = ε j+1. We can
motivate these degeneracies by spin or orbital degrees of
freedom, which can arise, for example, in bilayer graphene

085431-2



LOCALIZED STATES COUPLED TO A NETWORK OF … PHYSICAL REVIEW B 108, 085431 (2023)

quantum dots [54,55]. Furthermore, we consider that the en-
ergy difference between the nearest nondegenerate levels is
the largest energy scale in the problem. In this way, we reduce
the number of relevant discrete levels per node to two, i.e.,
N = 2 and ε := ε1 = ε2. Note, however, that the extension
to an arbitrary number of states is straightforward. Since U
is large, the energy levels are well separated. Therefore, the
number of levels does not affect the distinct regimes we will
discuss in the rest of the paper.

The coupling between the chiral modes and the discrete
energy levels at position xAA is given by the tunneling Hamil-
tonian

HT =
6∑

i=1

N∑
j=1

ti j d̂
†
j ψ̂i(xAA) + H.c., (4)

where ti j describes the tunnel amplitudes between the ith
chiral mode and the jth discrete energy level. C3 symmetry
imposes t1, j = t3, j = t5, j and t2, j = t4, j = t6, j . If in addition
C2T symmetry is fulfilled, then t1, j and t2, j are real. The field
operators ψ̂ (x) account for the chiral modes, which propagate
due to the kinetic energy term

H0 =
6∑

i=1

∫ ∞

−∞
dxiψ̂

†
i (xi )(−ih̄vi )∂xi ψ̂i(xi ), (5)

where xi is the coordinate of the ith chiral mode with velocity
|vi| = vF and vF is the Fermi velocity of graphene.

III. GENERALIZED S MATRIX

To include the deflection processes together with the cou-
pling to the discrete levels into a single S matrix, we make use
of the generalized Weidenmüller formula calculated by means
of the equation of motion method [56–58],

S(E ) = S0 − iπν(1 + iπνR)−1W†[E − hD

+ iπνW (1 + iπνR)−1W†]−1W (1 + S0), (6)

where ν = 1/π h̄vF and R is a decomposition of the energy-
independent S matrix S0 given by

S0 = (1 + iπνR)−1(1 − iπνR). (7)

The explicit form of R is given in Appendix B 2. Moreover,
the matrix W accounts for the coupling between the chiral
modes and the discrete energy levels and hD is a matrix repre-
sentation of the Hamiltonian in Eq. (3). Without the deflection
processes (R = 0), Eq. (6) reduces to the well known Mahaux-
Weidenmüller formula [59],

SD = 1 − 2iπνW†[E − hD + iπνWW†]−1W . (8)

We now introduce S0 and SD separately.

A. Deflection processes S0

We model the deflection processes taking place between
the incoming mode and the neighboring outgoing modes us-
ing the phenomenological S matrix from Refs. [32,35] [see

Fig. 1(b)]. The parametrization of S0 with forward scattering
under C3 and C2T symmetries is given by

s f =
(

ei(φ+χ )
√

Pf 1 −√
Pf 2

−√
Pf 2 −e−i(φ+χ )

√
Pf 1

)
, (9)

sr =
(

eiφ
√

Pd1
√

Pd2

−√
Pd2 −e−iφ

√
Pd1

)
, (10)

with sl = (sr )t and where Pf 1 (Pf 2) is the probability for
intrachannel (interchannel) forward scattering, and Pd1 (Pd2)
is the probability for intrachannel (interchannel) deflec-
tions. The phase φ is an independent real parameter and
accounts for a phase difference picked up in the scat-
tering process. This parameter tunes the network from
decoupled ZZ chiral modes propagating in three different
directions (φ = 0) [see Fig. 1(b)] to flatbands performing
closed orbits around the AB and BA regions (φ = π/2). The
S matrix is unitary for 2(Pd1 + Pd2) + Pf 1 + Pf 2 = 1 and
cos χ = (Pd2 − Pd1)/2

√
Pf 1Pd1, where we take χ � 0. More-

over, χ has to be real which implies 2
√

Pf 1Pd1 � |Pd2 − Pd1|.
Since we only consider deflections here, we set s f = 0 and
Pd1 = Pd2, such that χ = π/2.

B. Discrete levels SD

The matrix hD entering in Eqs. (6) and (8) is given by

hD =
(

ε1 + U 〈n̂2〉 0
0 ε2 + U 〈n̂1〉

)
, (11)

which is obtained from Eq. (3), with N = 2, that is, HD =
(d̂†

1 , d̂†
2 )hD(d̂1, d̂2)t .

From Eq. (4), we write

HT = (d̂†
1 , d̂†

2 )W (ψ̂1, ψ̂2, ψ̂3, ψ̂4, ψ̂5, ψ̂6)t + H.c. (12)

with

W =
(

t1,1 t2,1 t1,1 t2,1 t1,1 t2,1

t1,2 t2,2 t1,2 t2,2 t1,2 t2,2

)
, (13)

where ti, j ∈ R for i, j = 1, 2. For simplicity, we impose that
any given valley chiral mode couples with the same amplitude
to every discrete state, yielding a single tunnel amplitude
tD := ti,1 = ti,2. As mentioned already in Sec. II, we will stick
to the case of ε := ε1 = ε2. Therefore, the energy difference
between the two levels is caused by the Coulomb repulsion
energy U .

The expression for SD with the previously mentioned sim-
plifications is given in Appendix B 3. We also show that the
scattering matrix SD for the case with a single tunnel am-
plitude tD can be written as three free chiral modes plus the
one-channel Efimkin-MacDonald model [34].

IV. NETWORK ENERGY BANDS

We now construct a triangular network of chiral modes
making use of the S matrix introduced above and Bloch’s
theorem (see Refs. [32,34,35]). To this aim, we place the
AA regions (nodes) at positions ml1 + nl2, with m, n ∈ Z,
and l1,2 = l (−1/2,±√

3/2) are moiré lattice vectors [see
Fig. 1(c)]. We relabel the incoming scattering amplitudes as

amn = (a1mn, a2mn, a3mn, a4mn, a5mn, a6mn)t , (14)
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and bmn for the outgoing scattering states. In this notation, the
S matrix given in Eq. (6) becomes

bmn = S(E )amn. (15)

Furthermore, the incoming states at the node (m, n) are the
outgoing states of neighboring nodes, more specifically

amn = ei E
El (b1m+1n, b2m+1n, b3m−1n−1,

b4m−1n−1, b5mn+1, b6mn+1)t , (16)

where we include the effects of a dynamical phase picked up
along the propagation between nodes. We use El = h̄vF /l as
the energy scale of the system.

Making use of the translational invariance, Bloch’s theo-
rem relates [34,60]⎛

⎜⎜⎜⎜⎜⎜⎝

b1m+1n

b2m+1n

b3m−1n−1

b4m−1n−1

b5mn+1

b6m,n+1

⎞
⎟⎟⎟⎟⎟⎟⎠

k

= [M(k) ⊗ 12]

⎛
⎜⎜⎜⎜⎜⎜⎝

b1mn

b2mn

b3mn

b4mn

b5mn

b6mn

⎞
⎟⎟⎟⎟⎟⎟⎠

k

, (17)

with M(k) = diag(eik1 , eik3 , eik2 ) where k j = k · l j ( j =
1, 2, 3) and l3 = −(l1 + l2). Finally, we substitute Eqs. (15)
and (16) into Eq. (17), and find

[M(k) ⊗ 12]S(E ) ak = e−i E
El ak, (18)

whose solutions give the energy spectrum of the system. In
the limit of tD → 0, the S matrix is independent of E and
the spectrum is obtained taking i log(ξ j ), with ξ j being the
jth eigenvalue of [M(k) ⊗ 12]S. The resulting spectrum is
periodic in energy with period 2π h̄vF /l , which can be inferred
from Eq. (18). In turn, for finite coupling tD �= 0, the S matrix
depends on E , and, thus, the spectrum is obtained by solving

det([M(k) ⊗ 12]S(E ) − e−i E
El 16) = 0, (19)

which is highly nonlinear and contains an infinite set of solu-
tions for a given (kx, ky). In this situation, the energy spectrum
becomes periodic only far from the resonances, where the
energy dependence of S is suppressed. Note that the energy
spectra for the opposite valley is obtained by using SK ′ and
reversing the sign of the momenta introduced in M(k) →
M(−k).

A. Relation between δq and φ

Before analyzing the numerical results of the energy spec-
trum, it is important to pay attention to the momentum
difference δq exhibited by the chiral modes copropagating
along a single AB/BA interface [23] [see Fig. 1(d)]. Similarly
as with the dynamical phase accumulated between two con-
secutive AA regions in Eq. (16), the effects of the momentum
difference are included by multiplying the scattering ampli-
tudes by Z = exp[i(δql/2)13 ⊗ σz], where σz is the Pauli
matrix in the space of copropagating chiral modes. When
the chiral modes scatter into an AA region, they become
mixed, and, thus, the total phase of each outgoing mode can
be compensated or accumulated. The addition of this phase
difference modifies the network spectrum in the same way as

φ does [32,35]. To see this, we add the phase (δql/2)13 ⊗ σz

to the dynamical phase in Eq. (16) and obtain in this case the
following equation for the energy spectrum:

det([M(k) ⊗ 12]S′(E ) − e−i E
El 16) = 0, (20)

with S′(E ) = ZS(E ). Here, we used that the matrix M(k) ⊗
12 commutes with Z .

The S matrix found in Refs. [32,35], as well as
the one derived in Eq. (6) without the discrete levels
(tD = 0), satisfies ZS0(φ0) = MS0(φ0 + φ)M†, with
M = √

Z = exp[i(δql/4)13 ⊗ σz] for φ = δql/2, which
demonstrates the equivalence φ = δql/2. This means that
there are two microscopic origins of the phase difference φ:
It can be accumulated along the links due to the momentum
difference of the chiral modes or directly by scattering with
the AA region.

Assuming that the phase φ is entirely picked up along the
links, we estimate φ in the experiment reported in Ref. [33].
There, the electric field opened a gap around ∼50 meV and the
interlayer coupling ≈0.39 eV yielded a momentum difference
of δq ≈ 0.17 nm−1. Now, the twist angle gives rise to l ≈ 140
nm; hence, φ′ = δql/2 ≈ 3.89π and φ = 4π − φ′ ≈ 0.34.
This value of φ sets the system into the chiral ZZ regime,
where the three families of chiral ZZ modes are weakly cou-
pled and it is in accordance with the analysis performed in
Ref. [32].

B. Numerical results

We are now ready to calculate the energy spectrum in
the presence of discrete energy levels at the AA regions. We
consider different values of tD and φ. We introduce the di-
mensionless parameter

τ = tD
√

l/h̄vF , (21)

to quantify the coupling tD with respect to the kinetic energy
of the valley chiral modes. For the scattering parameters of
the deflecting scattering matrix S0, we use Pd1 = Pd2 = 1/4.
Furthermore, the parameter φ enters as the phase factor picked
up along the links of the network, and, therefore, it affects
both S matrices S0 and SD (see Sec. IV A). We assume that the
occupation of the discrete levels is determined by equilibrium
with the external leads, which set the Fermi energy EF . For
this reason, we give our results as a function of EF .

For τ = 0, we reproduce the network bands of the phe-
nomenological scattering matrix [32,35] [see Figs. 2(a)–2(d)].
For φ ≈ 0 [Fig. 2(a)] the spectrum disperses linearly, resulting
from the presence of ZZ chiral modes propagating in three
different directions in the bulk of the material [31,32,35].
Increasing slightly φ = 0.2 [Fig. 2(b)] gives rise to a finite
coupling process between the chiral ZZ modes. Consequently,
indirect gaps open in the spectrum. For larger values of φ =
1.2 > π/6 [Figs. 2(c) and 2(d)], the ZZ bands hybridize fur-
ther and lose their chiral character, yielding the opening of
gaps in the spectrum.

Next, we set a finite coupling τ �= 0. We differenti-
ate between two energy sectors, far from resonance, i.e.,
|EF − ε| � |τ |2El and |EF − ε − U | � |τ |2El , and close to
resonance. In the former limit, the system becomes effectively
described by the deflection matrix S0. Consequently, electrons
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FIG. 2. Network bands along high-symmetry lines [see inset of panel (d)] for different values of φ and τ = tD

√
l/h̄vF in units of El =

h̄vF /l . Black solid lines belong to the K valley and red dashed lines to the K ′ valley. Horizontal grey lines indicate the position of the energy
levels ε = El and ε + U = 4.25El , [(a)–(d)] τ = 0, [(e)–(h)] τ = 0.1, and [(i)–(l)] τ = 0.2.

do not tunnel through the discrete energy states. Therefore,
the network bands for finite coupling are far from the dis-
crete energy levels and remain the same as without coupling
to the discrete levels. Close to resonance |EF − ε| � |τ |2El

or |EF − ε − U | � |τ |2El , the S matrix becomes a combina-
tion of both S matrices, S0 and SD. Analyzing the network
energy spectrum at resonance, that is, by varying simultane-
ously EF = ε, we observe high and low conductance regimes
(see Appendix B 4). Therefore, depending on the values of
ε and ε + U , we will observe a different response close to
resonance. To explore both scenarios, we analyze the case
in which ε and ε + U coincide with a low- and a high-
conductance limit. Hence, we will use for the calculations
ε = h̄vF /l and U = 3.25h̄vF /l .

In the network bands, the discrete energy levels appear as
flatbands [Figs. 2(e)–2(l)]. For higher values of τ the energy
window, where the influence of the discrete energy levels is
dominant, becomes bigger and therefore the bandwidth of the
nominal flatbands grows with larger τ [Figs. 2(i)–2(l)].

V. MAGNETOCONDUCTANCE

We consider a wider-than-long strip in contact with left
and right leads and calculate the conductance as a function
of the Fermi energy EF in the presence of a magnetic field

B perpendicular to the plane of the system. To this aim, we
make use of Bloch’s theorem in the transverse direction de-
scribing an infinitely wide strip and set a finite length in the
longitudinal direction (see Fig. 3). Here, particles can acquire
three different phases when propagating from one node to
the neighboring one, that is, the phase φ = δql/2 due to the
momentum difference, a dynamical phase φdyn = E/El with
El = h̄vF /l , and the Peierls phase

�P

(
x

l/2

)
= π�

�0

(
x

l/2
+ 1

2

)
, (22)

FIG. 3. Network strip with length L = Nl and width W � L.
Black circles depict the scattering AA regions and S1, S2 represent the
inequivalent scattering sections used to calculate the conductance.
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FIG. 4. Conductance as a function of EF for a network model
with length L = 20l and W � L for different φ and couplings to
the AA region τ = tD

√
l/h̄vF over EF in units of El = h̄vF /l and

temperature T = 0. The other parameters are ε = El , U = 3.25El ,
G0 = 4e2/h. In (d) instead of fixed energy levels ε1, ε2 we have used
a normal distribution with mean value εμ = El and U = 3.25El and
a standard deviation of σ = h̄vF /10l from which the values of the
energy levels were randomly picked for each network strip.

which accounts for the effects of the applied magnetic field
B and gives rise to the magnetic flux � = BA through a
moiré unit cell with area A = (

√
3/2)l2, where �0 = e/h is

the magnetic flux quantum. The phase ±�P is accumulated
starting from a node with horizontal position x in the down-
ward/upward direction. Here, we have used the Landau gauge
A = Bxey.

We calculate the two-terminal linear conductance by
means of the Landauer-Büttiker formalism [61,62]

G = 4e2

h

W√
3l

∫
dET (E )

(
−∂ f0(E )

∂E

)
, (23)

where W is the width of the strip, l is the moiré lattice
constant, and the factor 4 accounts for the spin and valley
contributions. Here, f0 is the Fermi-Dirac distribution given
by

f0(E ) = 1

exp [(E − EF )/kBT ] + 1
, (24)

and EF is the Fermi energy. Furthermore, T (E ) ∈ [0, 4] is
the transmission function per unit cell for a given valley and
spin, which is calculated by the recursive combination of S
matrices corresponding to sections along the strip (see Fig. 3).
Further details of the transport calculations are presented in
Appendix C.

Conductance at B = 0. The conductance per unit cell at
zero temperature for a network strip of length L and width
W � L is

G

G0
= W√

3l
T (EF ), (25)

with G0 = 4e2/h. In Fig. 4, we show the conductance as a
function of the Fermi energy EF for three different tunnel
amplitudes τ and four values of φ. For τ = 0, we recover the
results of the phenomenological model with Pf = 0 shown in

Refs. [32,35] [see Fig. 4(a)]. As we have discussed above, for
φ ≈ 0, the system is metallic and composed of three fami-
lies of chiral ZZ modes, which give an energy-independent
conductance G

√
3l/G0W = 2. Furthermore, for φ = 0.2, the

ZZ chiral modes start hybridizing, leading to the appearance
of indirect gaps, around which the conductance develops a
peaked structure. Since the linear conductance follows a sim-
ilar structure as the density of states, we expect to observe
maxima in the conductance around the indirect gaps due to
the presence of van Hove singularities characteristic of one-
dimensional systems. For larger values of φ = 1.2 � π/2,
the system develops gaps, yielding zero conductance at those
positions. Finally, for φ ≈ π/2, the conductance is zero since
the electrons tend to form closed orbits around the AB and BA
regions [32,35].

For a finite coupling to the discrete levels, τ �= 0, the
conductance exhibits appreciable changes around the reso-
nances. As we have seen above, the band structure is modified
around the position of the discrete levels. For small φ ≈ 0,
the discrete levels exhibit a flatband dispersion and, con-
sequently, close to the resonances the conductance exhibits
dips. The width of these dips are proportional to |τ |2h̄vF /l
(cf. Sec. IV B) for small coupling. As we have mentioned
above, we expect to observe a different behavior at EF = ε

and EF = ε + U , since they are placed in different regimes
of the model at resonance (see Appendix B 4). Indeed, we
observe a larger dip width for EF = ε + U , developing a peak
exactly at resonance (see Fig. 4). For larger values of π/6 �
φ � π/2, the coupling to the discrete levels adds some curva-
ture to the otherwise flat bands, increasing the conductance.
Note, however, the conductance peaks within the network gap
[EF ∼ ε and EF ∼ ε + U in Fig. 4(d)] come from a spurious
effect from considering an energy-independent coupling. A
more accurate approach would be to calculate the coupling
self-consistently, considering the energy-dependent density of
states of the network. Then, the coupling would be zero if
the energy levels lie inside a gap of the network bands, and,
therefore, there would be no conductance peaks (see more
details in Appendix A).

The impact of the presence of the discrete levels can be
slightly different if, instead of considering a fixed value of ε,
we take a random distribution. This distribution is defined by
a mean value εμ and a standard deviation σ . We have chosen
in Fig. 4(d) σ = 0.1El , which is around two times bigger
than the bandwidth of the resonance � = 6Elτ

2. We average
over 20 random samples. Note that we are still looking at a
network strip, so the periodicity in the transversal direction is
not broken. Doing so, we observe in Fig. 4(d) that the width of
the dips observed for φ ≈ 0 increases with respect to Fig. 4(b)
and becomes determined not only by τ but also by the variance
of the energy distribution. Also the small peak structure at
the higher energy level is no longer visible. Furthermore, the
spurious conductance peaks developed at φ ≈ π/2 become
suppressed.

Conductance at B �= 0. We now include the effects of the
magnetic flux � and study the conductance as a function
of both EF and �/�0 for T = 0 K, φ = 0.2, and τ = 0.2
(see Fig. 5). Here, we observe two low-conductance regions
for energies close to EF = ε = El and EF = ε + U = 4.25El .
Since we have set φ = 0.2 (weakly coupled chiral ZZ modes),
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FIG. 5. Conductance at zero temperature as a function of EF and
the magnetic flux � for a network with length L = 20l and W � L.
We have used τ = 0.2, ε = El , U = 3.25El , φ = 0.2, G0 = 4e2/h,
and El = h̄vF /l . We highlight the lower energy level at ε and the
upper energy level at ε + U with black arrows at the vertical axis.

the system is highly conducting away from the resonances.
Then, close to the resonances, the conductance is reduced.
Furthermore, the density plot develops a fractal structure, also
known as the Hofstadter pattern [63]. Here, the unusually big
moiré unit cell allows to observe this structure for experimen-
tally realizable magnetic fields [35].

The periodicity of the conductance as a function of �/�0

contains information about the underlying network physics.
In general, the magnetoconductance shows Aharonov-Bohm
(AB) resonances at multiples of � = 2�0/n, with n being an
integer, which originate from trajectories that encircle an area
nA/2 in the presence of a magnetic flux (see Fig. 6). When,
for example, only parallel chiral ZZ modes are coupled, the
periodicity of the conductance becomes �/�0 = 1, because
the minimal area that particles propagating along the network
can encircle is A [32]. This also occurs in the special case
of Pf = 0 and Pd1 = Pd2, that is, far from resonance. In this
case, S0 allows to couple nonparallel ZZ chiral modes, but

again, the minimal area that particles can encircle is A. In
turn, when all possible couplings between ZZ chiral modes
are allowed, particles can encircle half the unit cell, yielding a
larger periodicity �/�0 = 2. To see this more explicitly, we
calculate separately the conductance as a function of �/�0

at three different values of EF : close to the resonances EF =
1.1ε [Fig. 6(a)] and EF ≈ 0.997(ε + U ) [Fig. 6(b)], where
the periodicity is recovered after � = 2�0. While far from
resonance EF = 20ε [Fig. 6(c)], the periodicity is � ≈ �0.
Deviations from the periodicity �/�0 = 1 can occur because
of the small but finite coupling to the discrete levels.

The underlying periodicity of the AB resonances present
in Fig. 6 emerges more clearly at higher temperatures.
Here, the interference of electron trajectories that do not
enclose an integer multiple of the moiré unit cell area are
averaged out, because they accumulate a different dynam-
ical phase [32,64]. Although this suppression affects both
scattering mechanisms, we observe that for T/Tl = 0.1 the
period �/�0 = 1 is restored faster for the conductance away
from EF = 20ε, whereas close to a resonance EF = 1.1ε or
EF ≈ 0.997(ε +U ), the period remains �/�0 = 2.

Decoherence effects. So far we have assumed that electrons
propagate across the network without modifying the occu-
pation on the discrete levels, which is implicitly assumed in
the mean-field approximation. However, in the actual system
nothing prevents a change in the occupation of the discrete
levels in a cotunneling process through an AA region [see two
examples in Figs. 7(b) and 7(c)]. These changes of occupation
events can lead to a “which path” decoherence process, which
can reduce significantly the Aharonov-Bohm resonances.

To understand the impact of the decoherence processes,
we study the smallest network that encloses a moiré unit cell
containing two paths 1 and 2 [see Fig. 7(a)]. In this setup, the
total probability for going from |i〉 to | f 〉 is given by

P =
Np∑
j=1

(
P j

1 + P j
2 + 2R

{√
P j

1 P j
2

〈
χ

j
1

∣∣χ j
2

〉
e−i �

�0
})

. (26)

The subindex j runs over all possible final configurations
of the AA regions (Np), and R denotes the real part. Here,
P j

i is the probability that an electron moves through the

FIG. 6. Magnetoconductance as a function of the magnetic flux � for a network strip with length L = 10l and W � L for different
temperatures and Fermi energies: (a) close to the lower energy level (EF = 1.1El ), (b) close to the higher energy level (EF = 4.24El ), and
(c) far from the energy levels (EF = 20El ). The temperature scale is Tl = h̄vF /(kBl ) and the energy scale El = h̄vF /l . We have used τ = 0.2,
ε = El , U = 3.25El , G0 = 4e2/h, and φ = 0.2. Encircling half of the moiré unit cell A/2 n times leads to an Aharonov-Bohm resonance.
Certain values of n are highlighted.
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FIG. 7. (a) Reduced system with four AA regions A, B,C, D
around one moiré unit cell. We highlight in blue and red the top
and bottom paths 1 and 2, through which the electron interferes.
(b) Elastic and (c) inelastic processes changing the occupation of the
levels.

system over the path i, whereby the system ends in the
configuration j. The last term in Eq. (26) accumulates a
Peierls phase due to the magnetic flux piercing the enclosed
AB and BA regions and it is responsible for the AB reso-
nances obtained above. Precisely, this term is susceptible of
being canceled by a change of occupation, which enters via
the overlap 〈χ j

1 |χ j
2 〉. Here, |χ j

α〉 accounts for the state of the
discrete levels after the transition with configuration j of path
α = 1, 2.

The cancellation of the interference term depends on
whether it is possible to “label” the path the electron has taken
via the change in the occupation of the discrete levels. For
example, if the final state of the AA regions exhibits no change
in the occupation, the state |χα〉 then reads

|χα〉 = d†
D1d†

C1d†
B1d†

A1 |〉 = |i〉 , (27)

where d†
Li creates an electron in the AA region L = A, B,C, D

in the energy level i = 1, 2. In this case, both of the states |χα〉
are equal and therefore |〈χ1|χ2〉| = 1. This also applies if both
paths change the occupation at A or D. In these cases, there
is no “labeling” possible on the path. However, if we change
the occupation at B or C for paths 1 and 2, respectively, the
interference term cancels because 〈χ j

1 |χ j
2 〉 = 0.

We differentiate between elastic and inelastic “labeling”
events, noting that the latter has a negligible impact because
the number of inelastic labeling events is constrained by the

bias voltage. Note that the bias voltage is bounded to the
gap opened by the interlayer bias. Thus, for small bias volt-
age and a large system size, the number of labeling events
is negligible compared to the number of times an electron
can encircle a closed path and gather a magnetic flux. In
turn, the situation is different for the elastic labeling events,
where the number of processes is not bounded by the bias
voltage [65,66]. We can see its impact in the simplest network
considered in Fig. 7(a), with Np = 16 corresponding to all
possible final configurations of the AA regions, out of which
the number of processes that do not “label” the path is only
4. Therefore, in this scenario we expect a reduction of the AB
conductance maxima when the Fermi energy is close to reso-
nance with the localized energy levels, i.e., |EF − ε| � |τ |2El

or |EF − ε − U | � |τ |2El . Note that, for |EF − ε| � |τ |2El

and |EF − ε − U | � |τ |2El , the probability of going through
the discrete levels is negligible since it is more preferable to
deflect to a neighboring link and, therefore, the labeling events
are less likely to take place.

VI. CONCLUSIONS

Inspired by microscopic calculations on minimally twisted
bilayer graphene under an interlayer bias [19,21,48], we have
modeled phenomenologically a triangular network of val-
ley chiral modes that propagate along the AB/BA interfaces,
forming the sides of the triangles, and scatter at the AA re-
gions, placed at the triangles vertices. In contrast to previous
phenomenological models [32,35] that consider a negligible
density of states at the AA regions, we model them using
a discrete density of states with N energy levels, which are
coherently coupled to the valley chiral modes. In addition,
we have considered an energy-independent deflection process
that accounts for the overlap of the neighboring chiral modes’
wave functions. This overlap becomes finite only in the prox-
imity of the AA regions, where incoming and outgoing valley
chiral states approach one another. To combine these two
processes in a single S matrix, we have used the generalized
Weidenmüller formula [58], yielding an energy-dependent S
matrix with two asymptotic limits depending on the energy
difference between the position of the discrete levels and the
propagating modes: close to resonance, the scattering pro-
cesses with the discrete levels become relevant, while far from
the resonances, deflection processes dominate. This approach
allows us to include Coulomb interactions on a mean-field
level at the AA regions.

We have investigated the impact of the coupling between
the discrete states at the AA regions and the valley chiral
modes in the energy spectrum of the network and on the mag-
netoconductance. We have found that, close to the resonance,
the discrete levels hybridize with the chiral ZZ modes (φ ≈ 0)
or the flat bands (φ ≈ π/2), giving rise to anticrossings in the
energy spectrum and dips (φ ≈ 0) or peaks (φ ≈ π/2) in the
conductance. Far from resonance, the system is dominated by
the deflection processes.

The two limits, close and far from the resonance, can be
differentiated not only by the relative size of their conduc-
tances, but also by the periodicity of the magnetoconductance,
where Aharonov-Bohm resonances arise at multiples 2/n
of the magnetic flux �/�0 with n being an integer, which
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originate from trajectories encircling an area nA/2. This dif-
ference arises due to the presence of chiral ZZ modes in
the phenomenological model, which couple mainly to other
parallel chiral ZZ modes and therefore cannot encircle a single
AB or BA region, such that the periodicity of the magneto-
conductance is reduced. In contrast, close to resonance, the
periodicity of all multiples are possible, due to the absence
of ZZ modes. This difference becomes more visible at higher
temperatures. Here, processes that do not enclose an integer
multiple of the moiré unit cell area accumulate a finite dynam-
ical phase, and, therefore, at finite temperatures they become
averaged out.

Finally, using qualitative arguments we have shown that
when the Fermi energy is close to resonance with the dis-
crete energy levels, elastic cotunneling events can give rise
to a change in the occupation of the discrete levels, in-
ducing “which path” decoherence processes, suppressing the
Aharonov-Bohm resonances present in the conductance.
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APPENDIX A: SELF-CONSISTENT CALCULATION
OF THE OCCUPATION NUMBER

We calculate the occupation number of the energy levels
in the AA region self-consistently. To do so we use the Dyson
equation to find the Green’s function of these energy levels.
We define first the following Green’s functions in the real
space and time domain:

gii(x, x′; t ) = −iθ (t )〈{ψi(x, t ), ψ†
i (x′, 0)}〉0, (A1)

gj
DD(t ) = −iθ (t )〈{dj (t ), d†

j (0)}〉0. (A2)

The Green’s functions g belong to the free system without
coupling. So we have an isolated AA region and isolated chiral
modes. This is shown by the index 0 of the expectation value.
To calculate these, we use the equation of motion method. The
free AA region is described by HD in Eq. (3) and the free chiral
mode by H0 in Eq. (5) in the main text. We find after a Fourier
transform from time to energy domain

gj
DD(E ) = 1

E − ε j − U 〈n j′ 〉 , (A3)

gii(x, x′; E ) = −i

h̄vF
�(x − x′)eiE (x−x′ )/h̄vF . (A4)

Note that the solution for the free chiral mode is the same as
for a helical edge state [67,68].

For the case with finite coupling between AA region and
modes [see Eq. (4) in the main text], we define the following
Green’s functions:

Gj
DD(t ) = −iθ (t )〈{dj (t ), d†

j (0)}〉, (A5)

Gj
iD(x; t ) = −iθ (t )〈{ψi(x, t ), d†

j (0)}〉. (A6)

To calculate these we use the Dyson equation in the following
form:

Gj
DD(E ) = gj

DD(E ) +
6∑

i=1

gj
DD(E )H j

T,DiG
j
iD(xAA; E ), (A7)

Gj
iD(x; E ) = gii(x, xAA; E )H j

T,iDGj
DD(E ). (A8)

We assume that the occupation numbers of the dot levels is
a local property of each AA node. Therefore, we have only
considered tunneling processes between the dot levels and the
chiral channels [see Eq. (4)]. Moreover, due to the infinites-
imal bias applied, we assume that each chiral channel is in
equilibrium with external reservoirs (setting the Fermi energy
EF ). It also means that deflections between chiral channels
(S0) do not contribute as they connect different AA nodes.

Plugging Eq. (A8) into Eq. (A7) we find

Gj
DD = gj

DD(E )

1 − gj
DD(E )|tD|2 ∑

i gii(xAA, xAA, E )
(A9)

= gj
DD(E )

1 + gj
DD(E ) 6i|tD|2

h̄vF

. (A10)

We have used H j
T,DiH

j
T,iD = |tD|2 like in the main text for all i

and j. Therefore, we find the following self-energy:

� = −6i|tD|2
h̄vF

= −i�/2, (A11)

where � leads to a broadening of the energy levels in the AA
region. This holds true for both energy levels.

Note that the parameter � is calculated assuming that the
density of states of the network is constant. As we have
shown, the spectrum can exhibit gap openings, resulting in
an energy-dependent density of states. Therefore, a more ac-
curate approach would involve the self-consistent calculation
of the coupling �(E ). However, due to the perturbative limit
of small coupling we are analyzing, we do not expect to
see qualitative differences between both approaches, since the
coupling parameter � can only decrease in the self-consistent
limit.

We calculate the average occupation self-consistently as-
suming that the discrete levels are in equilibrium with respect
to the external leads that set the Fermi energy EF , namely [69]
(i �= i′),

〈n̂i〉 =
∫ ∞

−∞

dE

2π
f0(E )

�

(E − εi − U 〈n̂i′ 〉)2 + (�/2)2
(A12)

with f0(E ) the Fermi-Dirac distribution

f0(E ) = 1

exp [(E − EF )/kBT ] + 1
. (A13)
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In the limit of low temperature, kBT � �, we find

〈n̂i〉 ≈
∫ EF

−∞

dE

2π

�

(E − εi − U 〈n̂i′ 〉)2 + (�/2)2

= 1

2
+ 1

π
arctan

(
EF − εi − U 〈n̂i′ 〉

�/2

)
. (A14)

Here, �/2 = 6|tD|2/h̄vF is the broadening produced by the
coupling to the chiral modes. Both equations can be solved
self-consistently by plugging the solution for 〈n̂i〉 into the
equation of 〈n̂i′ 〉 and vice versa until these values have
converged.

APPENDIX B: SCATTERING MATRICES

1. Generalized Weidenmüller formula

The generalized Weidenmüller formula used in Ref. [58]
and in the main text Eq. (6) is equivalent to

S(E ) = −1 + 2

[
1 + iπνRt + iνπ

2
g(E )(W†W )t

]−1

, (B1)

with

g(E ) = 1

E − ε1 − U 〈n̂2〉 + 1

E − ε2 − U 〈n̂1〉 . (B2)

Using this simplified expression it is easier to estimate the
regimes in which either the deflection process or the scattering
via the discrete energy levels dominates. For the inverse of the
sum of two matrices A and B, where A and A + B are invertible
and B has rank 1, one can write [70]

(A + B)−1 = A−1 − 1

1 + q
A−1BA−1, (B3)

where q = Tr(BA−1) �= −1. For equal couplings the matrix
B = iνπ

2 g(E )(W†W )t has rank 1, because all entries are the
same. For R = 0 we can write A = 1 and therefore

S(E ) = 1 − iπνg(E )

1 + 6iπνg(E )|tD|2 (W†W )t . (B4)

For finite R �= 0, we can write A = 1 + iπνRt and find

q = Tr(BA−1) = 3iπν|tD|2g(E ). (B5)

Note that we are including φ in the propagation along the
AB/BA interfaces and, thus, Eq. (B5) does not depend on φ.
Far from the resonance g(E ) → 0, we find B → 0, q → 0 and
therefore

S(E ) = −1 + 2(1 + iπνRt )−1 = S0. (B6)

This equation is equivalent to Eq. (7). This proves that far
from the resonance the scattering matrix is dominated by the
deflection processes. Close to the resonance, however, we
have a scattering matrix that contains both parts, the deflection
and the scattering with the energy levels. The scattering matrix
exactly at resonance g(E ) → ∞ is given in Appendix B 4.

We want to understand in which energy window the cou-
pling to the energy levels becomes relevant in the scattering
matrix. Using Eqs. (B1) and (B5), we find that we are close to
resonance if g(E )|tD|2 � h̄vF or, in other words,

�E ∼ x � |tD|2/h̄vF , (B7)

where x = 1/g(E ) and �E = E − ε or �E = E − ε − U .

2. S0 and its relation to R

As we have seen, S0 can be expressed as the product
S0 = (1 + iπνR)−1(1 − iπνR). Here, we give the R matrix as
a function of the parameters entering in the phenomenological
S matrix,

iπνR = i
1

2
√

Pd1 sin(φ)

⎛
⎝t f tl tr

tr t f tl
tl tr t f

⎞
⎠, (B8)

t f =
(

1 + 2
√

Pd1 cos(φ)
√

Pd21 − √
Pd22√

Pd21 − √
Pd22 1 − 2

√
Pd1 cos(φ)

)
, (B9)

tl =
( −1

√
Pd21 + √

Pd22

−(
√

Pd21 + √
Pd22) −1

)
, (B10)

with tl = t t
r .

3. The scattering matrix without deflection

Using the Weidenmüller formula, Eq. (8) (R = 0), results
in an S matrix that can be written as

SD =
⎛
⎝s f sd sd

sd s f sd

sd sd s f

⎞
⎠, (B11)

with

s f =
(

1 − 2iπνg(E )|tD|2
1 + 6iπνg(E )|tD|2

)
σ0 (B12)

− 2iπνg(E )|tD|2
1 + 6iπνg(E )|tD|2 σx, (B13)

sd = − 2iπνg(E )|tD|2
1 + 6iπνg(E )|tD|2 (σ0 + σx ), (B14)

where σi are Pauli matrices. With the unitary transformation
U = exp(−iπ/4σy) ⊗ 13 we find that

S̃D =
(

S1 0
0 S2

)
, (B15)

where S1 and S2 are 3 × 3 matrices. S2 has only values on the
main diagonal equal to 1 and S1 is of the form of the Efimkin-
MacDonald model [34,40]. This proves that this scattering
matrix describes a combination of three free chiral modes and
a single-channel Efimkin-MacDonald model.

4. Scattering matrix at resonance

We can rewrite the scattering matrix from Eq. (6) at reso-
nance EF = ε or EF = ε + U in the following way:

S =
⎛
⎝s f sd st

d
st

d s f sd

sd st
d s f

⎞
⎠, (B16)

with

s f =
(− 2

3 0
0 0

)
, (B17)

sd =
(

− 1
6 − 1

2
1
2 − 1

2

)
. (B18)

We plot in Fig. 8 the conductance of a network strip, where
the scattering matrix for all nodes in the strip is the one at

085431-10



LOCALIZED STATES COUPLED TO A NETWORK OF … PHYSICAL REVIEW B 108, 085431 (2023)

FIG. 8. Top: Conductance of a network strip at resonance with
the discrete levels, i.e., for EF = ε or EF = ε + U and different
values of φ. We see depending on the energy a higher or lower
conductance. The values used in the main text of ε = h̄vF /l and
ε + U = 4.25h̄vF /l are marked with vertical grey lines. Bottom:
Density of states of the same network. Peaks in the density of states
correspond to saddle points or completely flat bands in the band
structure. The latter do not contribute to the conductance.

resonance, given in Eq. (B16). That means we calculate the
conductance at resonance. The energy dependence is entering
due to the dynamical phase accumulated along the links. We
can see for different values of φ, which is accumulated along
the links, a different behavior. We see a periodic dip and peak
structure. This is in agreement with the density of states of
such a system. Big spikes in the density of states correspond
to flat bands, which are not contributing to the conductance
due to the lack of velocity of electrons in these states.

We have chosen for our calculations one resonance point
inside of a conductance dip, ε = h̄vF /l , and one at a conduc-
tance peak, ε + U = 4.25h̄vF /l .

APPENDIX C: TRANSPORT CALCULATIONS

Here, we explain how we have calculated the transmission
function T (E ) for our transport calculations in Eq. (23) by the
combination of scattering matrices. We show the general idea
how to combine the first two scattering matrices. Finally, we
explain from this the recursive loop that we have implemented
for our calculations.

The first scattering matrix S1 (see Figs. 3 and 9) is given by

S1 =
(
1 0
0 S(E )

)
, (C1)

where S(E ) is given in Eq. (6). The used basis
(b(1)

1/2, b(1)
3/4, b(1)

5/6, b(1)
7/8)t = S1(a(1)

1/2, a(1)
3/4, a(1)

5/6, a(1)
7/8)t is depicted

FIG. 9. Part of the network in Fig. 3 with the basis elements for
the first two scattering matrices. a(b)(i)

x/y are the incoming (outgoing)
modes of the scattering matrix Si.

in Fig. 9. Note that the second scattering matrix S2 can be
calculated from S1 by exchanging the first and the third two
modes, i.e.,

S2 = R13S1R13, R13 =

⎛
⎜⎜⎝

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

⎞
⎟⎟⎠. (C2)

With this it connects (b(2)
1/2, b(2)

3/4, b(2)
5/6, b(2)

7/8)t =
S2(a(2)

1/2, a(2)
3/4, a(2)

5/6, a(2)
7/8)t like it is depicted in Fig. 9. Now

we need to combine these two matrices. Before we look into
that we change the basis a little bit to make the process of
combining easier. We rewrite S1, so that it fulfills(

b(1)
L

b(1)
R

)
=

(
r (1)

L t (1)
LR

t (1)
RL r (1)

R

)(
a(1)

L

a(1)
R

)
. (C3)

To bring these notations together we define

b(1)
L := (

b(1)
1,2, b(1)

5,6

)t
, b(1)

R := (
b(1)

3,4, b(1)
7,8

)t
, (C4)

a(1)
L := (

a(1)
7,8, a(1)

3,4

)t
, a(1)

R := (
a(1)

1,2, a(1)
5,6

)t
. (C5)

With that we bring the scattering matrix into a block structure
with the submatrices ri, which contain the reflection processes
to the direction i = L, R, and ti j , which contains the transmis-
sion processes from j = L, R to i = L, R, where L means left
and R means right. Note that ri and ti j are 4 × 4 matrices. Due
to the C3 symmetry of the system, we can write the reflection
matrix ri and the transmission matrix ti j in terms of three
submatrices s f , sr , and sl as

r (1)
L :=

(
0 0
sl sr

)
, r (1)

R :=
(

0 sl

0 sr

)
, (C6)

t (1)
RL :=

(
sr s f

s f sl

)
, t (1)

LR :=
(

1 0
0 s f

)
, (C7)

s f =
(

s11 s12

s21 s22

)
, sl =

(
s13 s14

s23 s24

)
= st

r, (C8)
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where si j is the matrix element of S1 in Eq. (C1).
The second scattering matrix can be written in a similar
way as (

b(2)
L

b(2)
R

)
=

(
r (2)

L t (2)
LR

t (2)
RL r (2)

R

)(
a(2)

L

a(2)
R

)
, (C9)

with

b(2)
L := (

b(2)
1,2, b(2)

5,6

)t
, b(2)

R := (
b(2)

7,8, b(2)
3,4

)t
, (C10)

a(2)
L := (

a(2)
3,4, a(2)

7,8

)t
, a(2)

R := (
a(2)

1,2, a(2)
5,6

)t
, (C11)

r (2)
L :=

(
e−ik

√
3l sr sl

0 0

)
, r (2)

R :=
(

eik
√

3l sr 0
sl 0

)
, (C12)

t (2)
RL :=

(
sl eik

√
3l s f

e−ik
√

3l s f sr

)
, t (2)

LR :=
(

s f 0
0 1

)
. (C13)

We have added in the second scattering matrix also the
transversal momentum [32] 0 � k < 2π/

√
3l . Due to the

translational symmetry in the y direction, the modes that leave
and enter Fig. 9 in the y direction are related by Bloch’s
theorem. We integrate over the transversal momentum at the
end. Now we need to know how the incoming and outgoing
modes are related. We can write

a(1)
R = αb(2)

L , a(2)
L = β1b(1)

R , (C14)

α = ei El
2h̄vF (12 ⊗ eiφ/2σz ), (C15)

βn = ei El
h̄vF (12 ⊗ eiφσz )

× (exp[(−1)n+1(2n − 1)iπ�/2�0σz] ⊗ 12). (C16)

The matrix βn contains the phase φ due to the momentum
difference, the dynamical phase, and the Peierls phase due to
the magnetic field of a mode traversing from one node to the
next. The matrix α contains the phase φ and the dynamical
phase of a mode traversing in the x direction. Therefore, it
does not accumulate a Peierls phase due to the used gauge
A = Bxey. The parameter n ∈ N will be counted up for every
combining step.

With that we can eliminate b(1)
R and b(2)

L in Eqs. (C3) and
(C9) with Eq. (C14). We find

b(2)
R = t (2)

RL β1Q1t (1)
RL a(1)

L + (
r (2)

R + t (2)
RL β1Q1r (1)

R αt (2)
LR

)
a(2)

R ,

(C17)

b(1)
L = (

r (1)
L + t (1)

LR αQ2r (2)
L β1t (1)

RL

)
a(1)

L + t (1)
LR αQ2t (2)

LR a(2)
R ,

(C18)

Q1 = [
1 − r (1)

R αr (2)
L β1

]−1
, Q2 = [

1 − r (2)
L β1r (1)

R α
]−1

.

(C19)

Using Eqs. (C17) and (C19) we write the new S matrix as(
b(1)

L

b(2)
R

)
=

(
rL tLR

tRL rR

)(
a(1)

L

a(2)
R

)
, (C20)

with

rL = r (1)
L + t (1)

LR αQ2r (2)
L β1t (1)

RL , (C21)

rR = r (2)
R + t (2)

RL β1Q1r (1)
R αt (2)

LR , (C22)

tLR = t (1)
LR αQ2t (2)

LR , (C23)

tRL = t (2)
RL β1Q1t (1)

RL . (C24)

With that we have everything to define our general proce-
dure: First we define the scattering matrix and the previously
mentioned submatrices. Then we set in the first step

rL = r (1)
L , rR = r (1)

R , tLR = t (1)
LR , tRL = t (1)

RL , (C25)

which defines the first slice of the network with the first
scattering matrix [see Eq. (C3)]. In the next step we calculate
with the initial conditions in Eq. (C25) the submatrices of the
combined scattering matrix of the first and second slice by

rL,n = rL + tLRαQ(2)
n,br (2)

L β1tRL, (C26)

rR,n = r (2)
R + t (2)

RL β1Q(2)
n,arRαt (2)

LR , (C27)

tLR,n = tLRαQ(2)
n,bt (2)

LR , (C28)

tRL,n = t (2)
RL β1Q(2)

n,atRL, (C29)

with

Q(x)
n,a = [

1 − rRαr (x)
L βn

]−1
, (C30)

Q(x)
n,b = [

1 − r (x)
L βnrRα

]−1
, x = 1, 2. (C31)

The index n counts the step in the loop and also where we
are in the network, which is important for the Peierls phase
[see Eq. (C16)]. In the first step it will be n = 1. The third
scattering matrix is the same as the first. Therefore, the com-
bining procedure is similar. We exchange the matrices with the
upper index (2) with (1) and use the already combined part for
the matrices with upper index (1) in Eqs. (C21)–(C24). That
means

rL,n+1 = r (n)
L + t (n)

LR αQ(1)
n+1,br (1)

L β2t (n)
RL , (C32)

rR,n+1 = r (1)
R + t (1)

RL β2Q(1)
n+1,ar (n)

R αt (1)
LR , (C33)

tLR,n+1 = t (n)
LR αQ(1)

n+1,bt (2)
LR , (C34)

tRL,n+1 = t (2)
RL β2Q(1)

n+1,at (n)
RL . (C35)

With that we have implemented the combining procedure for
a system with size L = 1l . To enlarge it further we repeat this
process. That means we set

rL = rL,n+1, rR = rR,n+1, (C36)

tLR = tLR,n+1, tRL = tRL,n+1, (C37)

and repeat Eqs. (C26)–(C35) with n → n + 2 and so on until
we reach the desired length of the network strip.

At the end we can calculate the transmission function per
unit cell by

T (E ) = (
√

3l/2π )
∫ 2π/

√
3l

0
dkTr[t†

RLtRL]. (C38)
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Note that the transmission function for the whole system and
therefore the conductance is the same for both valleys in the

limit of W � L, where W is the width and L is the length of
our system [32].
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