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Photon-assisted electron transport across a quantum phase transition
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Quantum-dot circuit quantum electrodynamics (QD-cQED) offers an important platform for achieving
photon-to-electron conversion in the linear regime, but it has been challenging to efficiently control the photocur-
rent. Here, we propose a nonlinear QD-cQED setup of a double quantum dot system capacitively coupled to a
microwave resonator containing Kerr nonlinearity. By means of the quantum master equation, we derive a general
formulation to establish the connection between photon excitation and generated photocurrent. It is revealed that
the excitation of photons undergoes a first-order quantum phase transition, which provides a mechanism to
adjust the photon-assisted electron transport and leads to an increase in the photocurrent. In contrast to the linear
QD-cQED setups, the enhancement in photocurrent benefits from the enhanced energy transfer from photon to
electron systems near the phase transition. Our results establish the quantum phase transition as an invaluable
tool for optimizing the photon-to-electron conversion in QD-cQED devices.
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I. INTRODUCTION

Hybrid devices, which couple quantum dots to microwave
photons have received great attention due to their potential
applications for controlling light-matter interactions [1–11],
which has spawned a novel field of quantum-dot circuit
quantum electrodynamics (QD-cQED). The QD-cQED not
only provides an effective way to engineer photon statistics
by tuning electron transport [12–19], but also allows one
to explore photon-to-electron conversion [20–24]. With re-
spect to the latter topic, how to control the photocurrent is
one of the central goals in the QD-cQED with a significant
practical relevance for quantum photovoltaics [20] and single-
microwave-photon detection [21–24].

So far, much work on the photon-to-electron conversion in
the QD-cQED has focused on linear microwave resonators,
which can bring the unbiased QD system out of equilibrium
in a controlled way, yielding inelastic electron transport. The
emergence of nonlinear resonators, such as waveguides, pho-
tonic crystals, and optomechanical resonators [25–27], has
been introduced to study the quantum many-body physics.
The dissipative nonlinear resonators subject to a coherent or
a squeezed driving field has been studied, the resultant large
quantum fluctuation induced by the switching between two
phases occurs, and, consequently, the first- or second-order
quantum phase transitions is observed [28–32]. The real-
ization of nonlinear QD-cQED devices is highly desirable,
therefore, it is important to develop a transparent theory for
revealing the effect of the nonlinearity-induced quantum fluc-
tuations on the photon-to-electron conversion.
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In this paper, we theoretically study the photon-assisted
electron tunneling in a specific nonlinear QD-cQED device of
a double quantum dot system capacitively coupled to a driven
microwave resonator with Kerr nonlinearity. Compared to
previous proposals, we focus explicitly on the consequences
of the photon nonlinearity for the photocurrent with the aim
to reveal the mechanism for enhancing the photon-to-electron
conversion. Based on the quantum master equation, we first
derive a general formula to connect photon excitation and
generated photocurrent. It is found that the photon excitation
exhibits a first-order quantum phase transition, which can
be used to tune the electron transport process, leading to an
enhancement of the photocurrent. This is attributed to the
enhanced energy transfer from photon to electron systems
near the phase transition.

II. MODEL

As illustrated in Fig. 1, we consider a double-quantum-dot
(DQD) system interacting with a driven microwave resonator
according to the Hamiltonian,

H (t ) = Hs(t ) + He + Hb, (1)

Hs(t ) = εd

2
(|L〉〈L| − |R〉〈R|) + td(|L〉〈R| + |R〉〈L|)

+ ωra
†
r ar + Ur

2
a†

r a†
r arar

+ 2 cos (ωLt )
√

κLṄL(a†
r + ar )

+ gr (a
†
r + ar )(|L〉〈L| − |R〉〈R|), (2)

He =
∑

k,v=L,R

εkvc†
kv

ckv +
∑

k

(tkLckL|L〉〈0|

+ t∗
kL|0〉〈L|c†

kL + tkRckR|R〉〈0| + t∗
kR|0〉〈R|c†

kR), (3)
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FIG. 1. Schematic of a nonlinear QD-cQED device. A mi-
crowave resonator with angular frequency ωr and Kerr nonlinearity
Ur is driven by an external laser field with frequency ωL and in-
coming photon rate ṄL. The coupling between the resonator and the
laser field is described by κL. Two quantum dots with level space
εd and interdot tunnel rate td, are connected to two electrodes with
chemical potential μL,R and temperature TL,R. �L,R describes the
coupling between the dots and the electrodes. The coupling between
the electronic states |L〉 and |R〉 and the resonator is characterized by
gr , whereas, in the eigenbasis the electronic states are |e〉 and |g〉 with
energies εe and εg.

Hb =
∑

α

ωαb†
αbα +

∑
α

(tαrb
†
αar + t∗

αrbαa†
r ). (4)

Here, Hs(t ) is the Hamiltonian of the DQD-resonator sys-
tem, which contains the isolate DQD, the driven resonator,
and their coupling. εd is the energy space between the two
electronic states |L〉 and |R〉, and td is the interdot tunnel
coupling. The microwave resonator is modeled by a bosonic
field with the creation operator a†

r , the angular frequency ωr,
and the Kerr nonlinearity Ur. It can be driven by a laser filed
with the frequency ωL. The coupling between the resonator
and the laser field is characterized by κL, and the rate of
incident photons is ṄL. The resonator is capacitively coupled
to the DQD with an energy-independent strength gr. He is
the Hamiltonian of the electrodes and its coupling with the
electronic states in the DQD, where c†

kv
is the creation operator

for an electron with momentum k and energy εkv , and tkv

is the tunneling amplitude between the electrode v and its
neighboring electron states. Finally, Hb is the Hamiltonian of
the bath, and its coupling with the resonator, where b†

α is the
creation operator of the photon with frequency ωα , and tαr is
the bath-resonator coupling strength.

In the eigenbasis of the DQD, the ground and excited
states are given by |e〉 = cos(θ/2)|L〉 + sin(θ/2)|R〉 and |g〉 =
− sin(θ/2)|L〉 + cos(θ/2)|R〉 with θ = arctan(2td/εd ). Under
the Born-Markov approximation, the dynamics of the DQD-
resonator system in a rotating frame is governed by the
following master equation [33–35]:

d

dt
ρ(t ) = −i[Hs, ρ(t )] + Dd[ρ(t )] + Dr[ρ(t )], (5)

where ρ(t ) is the reduced density matrix of the system and its
coherent evolution is determined by the Hamiltonian,

Hs = 	d

2
(d†

e de − d†
g dg)

+ 	ra
†
r ar + Ur

2
a†

r a†
r arar +

√
κLṄL(a†

r + ar )

− gr sin θ (a†
r d†

g de + ard
†
e dg), (6)

where d†
g = |g〉〈0| and d†

e = |e〉〈0| are the creation opera-
tors for the ground and excited states with the renormalized
energies εg = −
d/2 and εe = 
d/2, 
d = √

ε2
d + 4t2

d is the
effective energy space. 	d = 
d − ωL and 	r = ωr − ωL

are the detunings with respect to the drive frequency. The
tunneling events between the DQD and the electrodes are
described by

Dd[ρ(t )] = 1

2

∑
v=L,R

∑
i=g,e

�θ
vi{ fv (εi )D[d†

i , ρ(t )]

+ (1 − fv (εi ))D[di, ρ(t )]}, (7)

and the resonator-bath energy exchange is described by

Dr[ρ(t )] = κr

2
{nB(ωr )D[a†

r , ρ(t )]

+ [1 + nB(ωr )]D[ar, ρ(t )]}, (8)

where the superoperators act according to D[O, ρ(t )] =
2Oρ(t )O† − O†Oρ(t ) − ρ(t )O†O for the arbitrary operator
O. The electronic states in electrode v are occupied ac-
cording to the Fermi-Dirac distribution fv (εi ) = {exp[(εi −
μv )/kBTv] + 1}−1 with chemical potential μv and temper-
ature Tv . The tunneling rates of electrons are character-
ized by �θ

vi with �θ
Le = �L cos2(θ/2), �θ

Rg = �R cos2(θ/2),

�θ
Lg = �L sin2(θ/2), and �θ

Re = �R sin2(θ/2), where �v (ε) =
2π

∑
k |tkv|2δ(ε − εkv ). The average occupation of the res-

onator in equilibrium state at temperature Tr is described
by the Bose-Einstein distribution nB(ωr ) = [exp(h̄ωr/kBTr ) −
1]−1. κr (ω) = 2π

∑
α |tαr|2δ(ω − ωα ) is the dissipation rate

of the resonator. Here, we assume that �v (ε) and κr (ω) are
independent of energy and frequency.

Without the electron-photon coupling for gr = 0, upon
adjusting the driven strength the steady state of the nonlin-
ear resonator system may undergo a sudden jump, which
is manifested in a discontinuity in the photon density of
the resonator. It realizes a dissipative quantum phase tran-
sition in nonequilibrium steady states [28–30,36–40]. When
we consider extended systems as described by the nonlinear
QD-cQED in Fig. 1 with gr �= 0, such nonlinear resonator
systems can unlock their potential in the photon-assisted
electron transport. The photon jumps are, thus, expected
to regulate the photocurrent flowing through the DQD
system.

III. RELATION OF PHOTON EXCITATION
AND ELECTRON TRANSPORT

We are interested in the electron transport excited by
the driven resonator. For μL = μR = 0 and Tv = Tr = 0,
an electron can be injected from one electrode to level g, it
can tunnel to level e by absorbing a photon from the driven
resonator and then tunnel to another electrode. Hence, the
electron transport and, thus, the electrical current in the DQD
system can be generated, which is similar to the conventional
photon-assisted tunneling where the electrons are coupled
to the electromagnetic fields with classical or quantum
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description [20,24,41,42]. The time evolution of the average
value of the DQD and photon operators are given by

d

dt
〈NQ〉 = (

�θ
Lg + �θ

Rg

)〈σ0〉 − (
�θ

Le + �θ
Re

)〈σe〉, (9)

d

dt
〈σz〉 = − i[2gr sin θ (〈a†

r d†
g de〉 − 〈ard

†
e dg〉)]

− (
�θ

Lg + �θ
Rg

)〈σ0〉 − (
�θ

Le + �θ
Re

)〈σe〉, (10)

d

dt
〈a†

r ar〉 = − i[
√

κLṄL(〈a†
r 〉 − 〈ar〉)

− gr sin θ (〈a†
r d†

g de〉 − 〈ard
†
e dg〉)] − κr〈a†

r ar〉,
(11)

where NQ = |e〉〈e| + |g〉〈g|, σz = |e〉〈e| − |g〉〈g|, σe = |e〉〈e|,
and σ0 = |0〉〈0| with the constraint |0〉〈0| + |g〉〈g| + |e〉〈e| =
1. The expectation value of a system operator is calculated by
〈O〉 = Tr{Oρ(t )}. The rate of change in the DQD population
determines the particle current,

d

dt
〈NQ〉 = IL(t ) − IR(t ), (12)

where IL(t ) and −IR(t ) are the currents from left and right
electrodes, and Eq. (9) gives

IL(t ) = �θ
Lg〈σ0〉 − �θ

Le〈σe〉, (13)

IR(t ) = −(
�θ

Rg〈σ0〉 − �θ
Re〈σe〉

)
. (14)

In the steady state for t → ∞, the photocurrent can be defined
as Ipe := −eIR, which is given by Eqs. (9)–(11),

Ipe = e

(
�θ

Re

�θ
Le + �θ

Re

− �θ
Rg

�θ
Lg + �θ

Rg

)

× (
√

2κLṄL〈pr〉 + κr〈a†
r ar〉), (15)

where pr = i(a†
r − ar )/

√
2 is the momentum operator of the

resonator. Ipe > 0 indicates the electron transport from right
to left, whereas, Ipe < 0 corresponds to the opposite process.
To this extent, the relation between the photocurrent and the
photon excitation is established.

IV. ENHANCING PHOTOCURRENT
BY QUANTUM PHASE TRANSITION

Obviously, Eq. (15) describes the contribution to Ipe due
to the joint DQD-electrode coupling ratio �c = �θ

Re/(�θ
Le +

�θ
Re) − �θ

Rg/(�θ
Lg + �θ

Rg) and the photon excitation Nre =√
κLṄL〈pr〉 + κr〈a†

r ar〉, respectively. For a given θ , �L 	 �R

or �L 
 �R will significantly reduce �c and, thus, Ipe. To
optimize the photocurrent, we consider symmetric DQD-
electrode couplings and take �L = �R = �0 thereby �c =
− cos θ and Ipe = −e cos θNre. Moreover, when θ = 0 in-
duced by td = 0, the photocurrent vanishes due to Nre = 0 as
indicated by Eq. (11). A further inspection of Eq. (15) reveals
that, under the external coherent driven, the excited resonator
dominates the photocurrent. It is possible to optimize the
photon-to-electron conversion by engineering the resonator.

Here, we focus on how to control the photon-to-electron
conversion by Kerr nonlinearity, and its effect on the

FIG. 2. (a) Mean photon number 〈a†
r ar〉 as a function of the

drive strength FL =
√

κLṄL. The analytical solution is calculated
by Eqs. (11) and (16). (b) Similar to (a), but for the photocurrent
versus FL. The inset in (b) shows the transport process in the eigen-
basis. (c) Wigner functions for FL = 2.42κr , FL = 3.02κr , and FL =
3.62κr The other parameters are εd = 4.84 GHz, td = 3.96 GHz,
κr = 0.025 GHz, ωr = 
d, gr = 0.7κr , ωL = 
d + 3κr , Ur = 0.25κr ,
and �0 = 0.8κr .

photocurrent is encoded in the resonator momentum,

〈pr〉 =
√

2 Im

[
Ur〈a†

r a†
r ar〉 +

√
κLṄL − gr sin θ〈d†

e dg〉
	r + iκr

2

]
,

(16)

where we first investigate the case for Ur = 0 and

gr = 0, then 〈pr〉 = −κr

√
κLṄL/[

√
2(	2

r + κ2
r
4 )], 〈a†

r ar〉 =
κLṄL/(	2

r + κ2
r
4 ), and Ipe = 0. As shown in Fig. 2(a), a triv-

ial excitation dominated by the laser field with 〈a†
r ar〉 ∝ F 2

L
can be achieved, which is consistent with the numerical
solution. For gr �= 0 and Ur = 0, our model recovers the con-
ventional photon-to-electron configuration where the relation
of 〈a†

r ar〉 ∝ F 2
L is almost not affected by the electron-photon

interaction, and a similar behavior also holds in the photocur-
rent in Fig. 2(b). However, for gr �= 0 and Ur �= 0, we access
a discontinuous jump in 〈a†

r ar〉 and may, hence, enhance
the photocurrent Ipe. Note that, Ipe > 0 means the electrons
move from right to left, resulting from the processes with
tan2(θ/2) < 1 in the inset of Fig. 2(b).

The discontinuous jump relevant to our model is criti-
cal in revealing the occurrence of the nonlinearity-enhanced
photocurrent. Although the changes in 〈a†

r ar〉 can capture
the discontinuous jump, whereas, the mechanism cannot be
assessed by simply measuring 〈a†

r ar〉. Thus, we introduce
the Wigner function [43,44], defined by W (x, p) = 1

π

∫ 〈x +
ξ |ρ|x − ξ 〉e−2ipξ dξ to reveal such a excitation mechanism
of the resonator. The Wigner distributions in Figs. 2(c)–2(e)
are shown before, near, and after the discontinuous jump,
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FIG. 3. (a) Performance of photon-to-electron conversion ηpe as
a function of the drive strength FL for indicated values of the electron-
photon strength gr . (b) Similar to (a), but for ηpe versus FL for
indicated values of the detuning 	r with 	d = 	r . (c) Similar to (a),
but for ηpe versus FL for indicated values of the electronic dephasing
γφ with γge = 0.05κr . (d) Similar to (a), but for ηpe versus FL for
indicated values of the electronic relaxation γge with γφ = 0.2κr . The
other parameters are the same as in Fig. 2.

respectively. Before and after the discontinuous jump, the
Wigner distribution shows a transition between two regions
in phase space. Near the discontinuous jump, two peaks in
the Wigner distribution develop as a consequence of the
optical bistability. This qualitatively confirms the presence
of the first-order quantum phase transition, similar to that
observed in a laser-driven Kerr cavity [28–30,38–40]. We
can, therefore, attribute the enhanced photocurrent to the
nonlinearity-induced first-order quantum phase transition. To
be specific, 〈a†

r ar〉 and 〈pr〉 undergo such a phase transition
by tuning FL, and the joint effect indicated by Eq. (15) allows
the transition of Ipe thereby enabling the enhancement of the
photon-to-electron conversion.

To characterize the ability of the phase transition to adjust
the photocurrent, the performance can be quantified by the ra-
tio between the electron transport with Ur and the one without
Ur ,

ηpe = Ipe(Ur �= 0)

Ipe(Ur = 0)
, (17)

as displayed in Fig. 3(a). Varying gr does not shift the phase
transition point at FL ≈ 3κr , where ηpe > 1 is achieved. When
gr is increased, we observe a decrease in ηpe around the
phase transition. This can be revealed by another expression

for the photocurrent Ipe = ie�cgr sin θ (〈a†
r d†

g de〉 − 〈ard†
e dg〉),

indicating that Ipe increases to some extent with increasing gr

for both Ur = 0 and Ur �= 0. Figure 3(b) shows ηpe versus
FL for different 	r’s. The value of ηpe around the phase
transition significantly increases with 	r , and the maximum
position is shifted toward large values of FL. This is because
the phase transition point can be adjusted by 	r as indicated
by Eqs. (11) and (16). We further discuss how the performance
Ipe is affected by the electronic dephasing and relaxation,
which can be characterized by Dφ[ρ(t )] = (γφ/2)[σz, ρ(t )]
and Dge[ρ(t )] = (γge/2)[d†

g de, ρ(t )] with the rates γφ and
γge. By adding Dφ[ρ(t )] and Dge[ρ(t )] into Eq. (5), we find
that the enhanced photocurrent near phase transition is robust
with respect to the electronic dephasing and relaxation as
shown in Figs. 3(c) and 3(d).

V. ENERGY TRANSPORT

The DQD and the laser-driven resonator only exchange
energy rather than the electron. Thus, the mechanism of
the phase-transition enhanced photocurrent can be revealed in
the energy transport process where the energy flux through the
DQD is given by [45]

Ėd = Tr

{
dρ(t )

dt
Hd

}
=: Jpe(t ) + JL(t ) + JR(t ), (18)

where Hd = 	d(d†
e de − d†

g dg)/2. Jpe(t ) is the DQD-resonator
interaction energy and can be expressed as

Jpe(t ) = igr sin θ	dTr{(ard
†
e dg − a†

r d†
g de )ρ(t )}, (19)

whereas, JL,R(t ) is the DQD-electrode exchange energy,

Jv (t ) = −	d

2
Tr

{(
�θ

vgσ0 + �θ
veσe

)
ρ(t )

}
, v = L, R. (20)

For gr = 0, the resonator is disconnected from the unbiased
DQD, such that the DQD-resonator energy exchange van-
ishes. For gr �= 0, connecting the resonator to the DQD allows
DQD-resonator energy exchange to occur. From Eq. (11),
Jpe(t ) can be rewritten as Jpe = 	d(

√
2κLṄ〈pr〉 + κr〈a†

r ar〉)
in the steady state for t → ∞. We observe that the resonator
excitation 〈pr〉 and 〈a†

r ar〉 in Jpe, which are similar to that
described for Ipe, have the effect of engineering energy trans-
port. In Fig. 4, we plot Jpe and Je(= JL + JR) versus FL with
gr �= 0 for Ur = 0 and Ur �= 0. For Ur = 0, a trivial energy
transport with Jpe ∝ F 2

L is observed. However, for Ur �= 0,
Jpe is increased in the vicinity of the additional transition,
and Jpe(Ur �= 0)/Jpe(Ur = 0) in the inset can highlight such
an enhancement. We can interpret this phenomenon as the
phase-transition enhanced energy transport. Note that, the
first law of thermodynamics, indicated by Jpe + Je = 0, al-
ways holds for both Ur = 0 and Ur �= 0. Clearly, the phase
transition induced by resonator engineering can be used to
enhance the energy transfer from photon to electron systems,
thus, achieving an enhancement of the photon-to-electron
conversion.

Our results rely on the Kerr-like nonlinearity of the
resonator, which is of immediate relevance to real physical
systems, such as Fabry-Pérot microcavities filled by nonlinear
medium [46], semiconductor microcavities [29,38], on-chip
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FIG. 4. Energy fluxes Jpe and Je as a function of the drive strength
FL for different values of gr and Ur . The inset shows Jpe(Ur �=
0)/Jpe(Ur = 0). The other parameters are the same as in Fig. 2.

superconducting nonlinear resonators [47], and quantum
circuits [48,49]. The driven-dissipative Kerr models for
studying the out-of-equilibrium critical behaviors have been

realized experimentally [29,30,38,50]. When such systems
are capacitively coupled to a DQD system [3,23,51], the
nonlinear QD-cQED devices and, thus, the photon-assisted
electron transport becomes possible, enabling highlight the
nonlinear effects.

VI. CONCLUSIONS

We propose a nonlinear QD-cQED setup consisting of
a double quantum dot system and a nonlinear microwave
resonator and reveal that the photon excitation undergoes a
first-order quantum phase transition, and it can be used to tune
the inelastic electron transport in quantum dots. The photocur-
rent is enhanced around the phase transition since the energy
transfer from photon to electron systems is increased. Our
results pave the way to control photon-to-electron conversion
by the quantum phase transition in QD-cQED devices.
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[48] S. Rebić, J. Twamley, and G. J. Milburn, Giant Kerr Nonlinear-
ities in Circuit Quantum Electrodynamics, Phys. Rev. Lett. 103,
150503 (2009).

[49] A. Blais, A. L. Grimsmo, S. M. Girvin, and A. Wallraff, Circuit
quantum electrodynamics, Rev. Mod. Phys. 93, 025005 (2021).

[50] Z. Geng, K. J. H. Peters, A. A. P. Trichet, K. Malmir, R.
Kolkowski, J. M. Smith, and S. R. K. Rodriguez, Universal
Scaling in the Dynamic Hysteresis, and Non-Markovian Dy-
namics, of a Tunable Optical Cavity, Phys. Rev. Lett. 124,
153603 (2020).

[51] A. Stockklauser, V. F. Maisi, J. Basset, K. Cujia, C. Reichl, W.
Wegscheider, T. Ihn, A. Wallraff, and K. Ensslin, Microwave
Emission from Hybridized States in a Semiconductor Charge
Qubit, Phys. Rev. Lett. 115, 046802 (2015).

085430-6

https://doi.org/10.1103/PhysRevB.87.035429
https://doi.org/10.1103/PhysRevA.95.012325
https://doi.org/10.3390/s20144010
https://doi.org/10.1038/s41467-021-25446-1
https://doi.org/10.1103/PhysRevB.106.205135
https://doi.org/10.1038/nature01452
https://doi.org/10.1038/nature08524
https://doi.org/10.1038/nphoton.2015.65
https://doi.org/10.1103/PhysRevA.95.012128
https://doi.org/10.1103/PhysRevLett.118.247402
https://doi.org/10.1126/sciadv.abe9492
https://doi.org/10.1103/PhysRevA.95.013812
https://doi.org/10.1103/PhysRevA.103.033711
https://doi.org/10.1007/BF01608499
https://doi.org/10.1088/0305-4470/13/2/034
https://doi.org/10.1103/PhysRevA.82.063815
https://doi.org/10.1038/s41567-017-0020-9
https://doi.org/10.1103/PhysRevA.98.042118
https://doi.org/10.1103/PhysRevA.102.052202
https://doi.org/10.1103/PhysRevB.53.1050
https://doi.org/10.1103/PhysRevB.58.12993
https://doi.org/10.1016/j.cpc.2012.02.021
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1103/PhysRevA.74.063823
https://doi.org/10.1103/PhysRevLett.36.1135
https://doi.org/10.1103/PhysRevX.9.021049
https://doi.org/10.1103/PhysRevLett.103.150503
https://doi.org/10.1103/RevModPhys.93.025005
https://doi.org/10.1103/PhysRevLett.124.153603
https://doi.org/10.1103/PhysRevLett.115.046802

