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Transient transport spectroscopy of an interacting quantum dot proximized
by a superconductor: Charge and heat currents after a switch
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We analyze the time evolution of a quantum dot which is proximized by a large-gap superconductor and
weakly probed using the charge and heat currents into a wide-band metal electrode. We map out the full
time dependence of these currents after initializing the system by a switch. We find that due to the proximity
effect there are two simple yet distinct switching procedures which initialize a nonstationary mixture of the

gate-voltage-dependent eigenstates of the proximized quantum dot. We find in particular that the ensuing
time-dependent heat current is a sensitive two-particle probe of the interplay of strong Coulomb interaction
and induced superconducting pairing. The pairing can lead to a suppression of charge and heat current decay
which we analyze in detail. The analysis of the results makes crucial use of analytic formulas obtained using

fermionic duality, a “dissipative symmetry” of master equations describing this class of open systems.

DOI: 10.1103/PhysRevB.108.085426

I. INTRODUCTION

The dynamics of strongly interacting nanoelectronic struc-
tures continues to attract experimental [1-3] and theoretical
[4,5] interest. The simplest type of nanostructure, in which
time-dependent charge currents can be observed is a meso-
scopic capacitor [6,7], a confined quantum-dot-like structure
in contact with a single electronic reservoir driven out of
equilibrium by a time-dependent gate voltage. Such nanos-
tructures can serve as single-electron sources which are of
high current interest [8—11]. Time-dependent response of such
systems is also of interest from a transport-spectroscopy per-
spective, in particular for strongly interacting quantum dots
[4,12—15], where not only transient charge currents but also
transient heat currents [16-20] reveal information that is not
accessible from the stationary state transport.

This can already be seen for the most simple realization
of an interacting, single-level quantum dot coupled to a wide-
band metal. When it is kicked out of the stationary state, the
charge current decays with a characteristic timescale denoted
y.~! which is set by the microscopic electron tunneling rate
I" but is modulated by all other parameters of the problem.
This timescale also appears in the heat current which, as
expected, features an additional timescale y,” ! because energy
is a many-particle quantity due to electron-electron interaction
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on the dot. Remarkably, this scale depends only on coupling
strength I but not on any other physical parameter [16].

This is not an isolated observation but was noted in dif-
ferent contexts [21-24]. It was subsequently shown to be a
consequence of fermionic duality [16] which is applicable to
a large class of interacting dissipative nanostructures [18,25].
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FIG. 1. Transient transport spectroscopy of a proximized quan-
tum dot: For the example shown, an initialized state at t = 0 decays
to the final 1-electron |1) state which is stationary for gate voltage
€. The initialization starts at time —#, < O from a state which before
the switch is stationary at gate voltage €y, in the example a doubly
occupied state. It is transformed to a mixture of Andreev states po,
either by a fast switch (fy < a~', bottom inset) or a slow switch
(fo > o', top inset). As explained in Sec. III, in both cases the effec-
tive description by an initial mixture of Andreev energy eigenstates
is appropriate. For the fast switch, this requires a charge and heat
current readout that is coarse grained on the timescale ! of Cooper-
pair oscillations, which is much shorter than the dissipative transport
timescale (scale yp*') on which the metal probes the proximized dot.
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This intrinsically “dissipative symmetry relation” goes be-
yond mere timescales: it expresses a very strong restriction
on the complete set of dynamical equations of an open sys-
tem. Importantly, it not only simplifies the calculation of the
time-dependent solution, but it also enables a deeper system-
atic analysis of the physical parameter dependence of this
solution [16,18,24,26-29]. In particular, it allows one to an-
alyze the amplitude functions of the dynamics which control
the nontrivial competition of the various timescales. These
amplitudes decide the actual timescale on which a system re-
sponds: a slow decay term may well have negligible amplitude
and thus be irrelevant depending on the gate voltages of the
switching procedure and other control parameters.

It is an interesting question as to how this complete picture
of the decay of currents from the quantum dot into a metal
probe is altered when it is brought into contact with reservoirs
with a more exotic structure. In this paper we consider the
case of an additional superconducting contact [30] which in
general affects the quantum dot both through the quasiparti-
cle tunnel rates and coherent pairing effects induced in the
0-2 charge sector of the quantum-dot Hilbert space. This is
highly relevant in view of the experimental advances in super-
conducting hybrid systems with quantum dots [31-35] with
controlled heat flow [36,37], fast gate control [34,38], as well
as time-resolved state readout [34]. Superconducting contacts
have also been exploited in combination with single-electron
sources [39-42]. Various ways of probing superconducting
properties were theoretically addressed via short-time (finite-
frequency) noise [43,44] or higher-order cumulants of the
short-time statistics [45] and waiting-time distributions [46].
For weak coupling to the metal, the quantum dot exhibits an
analog of Nambu-Goldstone and Higgs modes which were
recently studied, including their impact on heat transport
[47], decay timescales, and response to slow time-dependent
driving [20]. The latter response is also relevant for the
analysis of charge pumping in superconducting quantum-dot
hybrids [48-50], for AC driving and spectroscopy [51,52], and
for the adiabatic energy response [53]. Also, the dynamics
in the regime of strong coupling has been addressed (see
Refs. [54,55] and, in particular [56] where quenched dynamics
was analyzed). Finally, the dissipative spectral properties of
proximized quantum dots also enter into their open-system
topological properties of full counting statistics [57].

Clearly, for applications of such superconducting hybrid
structures it is of central importance to have a complete un-
derstanding of both timescales and amplitudes of the transport
dynamics after a basic switch illustrated in Fig. 1. This is the
scope of this paper. Our analysis focuses on the conceptually
simplest case of a single-level quantum dot proximized by a
superconductor with a large gap (no quasiparticle transport)
probed by a weakly coupled wide-band metal (only single-
electron processes). Interestingly, we find that already in this
simple case, this switching procedure itself requires special
attention since in a proximized dot, the energy eigenstates of
the proximized structure are gate-voltage dependent. We con-
sider two distinct physical preparation procedures, denoted
“fast switch” and “slow switch,” respectively, and map out
their full time evolution of charge and heat currents based
on master and transport equations derived earlier [58]. We
make use of the analytical solution of these equations reported

in a recent work [59] which did not address the specific
initialization. This work fully exploited the above-mentioned
fermionic duality which is applicable to proximized quantum
dot systems [16,18] finding that the interesting interplay of
strong repulsive interaction and strong induced superconduct-
ing pairing is exhibited only in the timescale characteristic
of the quasiparticle charge decay (y.'): similar to systems
without a superconductor, the Andreev-state parity decay time
(yp’l) is insensitive to any parameter except the metal contact
tunnel-rate constant I'. In particular, the proximity of the
large-gap superconductor is of no effect for this rate as also
noted in Ref. [20].

The present complete analysis of this solution starting from
Ref. [59] is, however, mostly concerned with the decisive
parameter dependence of the decay amplitudes and thereby
extends the transient charge and heat transport spectroscopy
in response to electrostatic switching presented in Ref. [16]
to Andreev states. This dependence becomes quite nontrivial
due to superconducting pairing: the amplitudes of the transient
charge and heat decay exhibit a variety of features which
strongly depend on the five different energy scales of the
problem and on whether the fast or slow switching procedure
is used.

The paper is organized as follows. After reviewing the
description of the proximized quantum-dot system in Sec. II,
we analyze in Sec. III two ideal experimental initialization
schemes using gate-voltage switching. In Sec. IV we review
the transport equations of Ref. [58] and analyze their solution
reported in Ref. [59] in terms of fermionic-duality dictated
variables. We then systematically discuss the time-dependent
spectroscopy in Sec. V and explain a number of salient fea-
tures in Sec. VI before concluding in Sec. VII. Throughout
the paper we use units such thatkg = 7 = |e| = 1.

II. PROXIMIZED QUANTUM DOT

Following Refs. [58,59] we describe the system sketched in
Fig. 1 using a quantum-dot Hamiltonian H, = eN + UN;N|,
with a single level € controlled by a gate voltage and Coulomb
repulsion U > 0. Here N = N; + N, is the electron num-
ber operator with N, = dd,,. The dot is tunnel coupled by
Hr =Y, JT/@n)(d}cis +Hc.) to a flat-band metallic
reservoir Hy = ¥, @kCp; Cko Which is held at temperature T
and electrochemical potential p. The electron number opera-
tor on the metal is denoted Ny = Zko CZU Cro- The quantum
dot is additionally coupled to a superconductor held at zero
electrochemical potential, us = 0. In the limit of large su-
perconducting gap exceeding coupling and temperature A >
T, T its influence on the dot is described [60—64] by a Hamil-
tonian pairing term with real-valued pairing amplitude «:

Hs = —}adld] + Hec. (1)

This effective A — oo model neglects quasiparticles in the
superconductor. Here and in Sec. IV it is important to allow «
to have an arbitrary sign but in Secs. III, V, and VI we take «
positive as usual.

The coupling of the dot to the metal probe is assumed to
be weak, both relative to the metal thermalization ' < T
and to the gap induced on the proximized dot I' <« |«]|, as
for example in a recent relevant experiment [33]. We are
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interested in the charge current Iy = 9;(Nm) (electron particle
current) and the heat current /p = 9, (Hm — ), flowing by
convention into the metal. Our goal is to understand how these
two quantities observable in the metal probe time dependently
probe the dot-superconductor system.

In the Hamiltonian describing this proximized dot,

ZE ) r|+EIZ|o @ @

the pairing generates an Andreev splitting 85 > || of the
discrete zero- and two-electron levels [65]. For o # 0 this
splitting differs from the detuning energy § as follows:

Hp = H),+ Hs =

1 § =2+ U,
E, = 5(8+T(SA), {5A _ /e T 3)

The corresponding states are hybridized into Andreev states
with isospin label T =

l—r— |0 —sign(a) T 1+r— |2)
V V 5A

= yI'/T|0) —sign(a) 7y T /T'[2).

This hybridization is maximal around the particle-hole sym-
metry point of the dot, ¢ = —U /2, where § = 0 such that the
splitting is minimal, 5, = |«¢|. Unaffected by pairing are the
one-electron states of the dot, uniform mixtures of spin states
|o), with energy

Ei=e=306-U). 5)

The charge and heat transport into the metal probe are
expected to change in two situations. First, the probabilities
featuring in the Andreev states (4) define effective rates I',

r. 1 1 s 6
: 2( +e 5A> ©)
for tunneling into state t = &£, which are plotted in Fig. 2
as function of gate voltage entering € through § [Eq. (5)].
Both rates show resonant behavior at |6] = 0 broadened by
the pairing energy |«|. (By “resonance” we refer to any pro-
nounced change, be it a step, peak, dip, or kink.) In this way
the hybridized dot model incorporates [43,60,66,67] the su-
perconductor resonance at which electron pairs are exchanged
with the quantum dot.
Second, whenever the metal electrochemical potential p
matches one of the four Andreev-transition energies

E,: =n(E; —E) = 1(nt8a + nU), 7

there is resonance with the metal broadened by its thermal
energy 7. Here T = =+ indicates the involved Andreev state
and n = £ the direction 1 2= 7 of the corresponding state
transition: The dot transition 1 = t can be realized by an
electron transfer from the metal to the dot, when u > E, ..
Importantly, due to the pairing «, each state transition 1 = 7
can also be realized by an electron transfer in the opposite
direction, from the dot to the metal, when p < Ej ;. Here and
following, the overbar indicates the opposite value, 7 = —n.
These transitions, their corresponding particle transfers, and
energy thresholds are listed Table I. The dependence of the
energy thresholds on gate voltage is also plotted in Fig. 2 and

(ii)a=U (iii) @ > U

FIG. 2. Energy thresholds E, /U for Andreev transitions and
effective rates I'; /T, as function of gate voltage € relative to ug =0
of the superconductor. Qualitatively different biasing conditions (a)—
(c) are indicated by dashed horizontal lines (gray). For weak pairing
a < U thelevels E,_ and E__ at § = 0 are split by U — «, but they
cross at |6] = U, reversing the splitting. For strong pairing |«| > U,
we always have E__ > E,_ without crossings and a minimum split-
ting of o« — U for any gate voltage. Parameters: (i) a/U = 0.2,
(ii) 1.0, and (iii) 2.0.

qualitatively different biasing conditions studied later on are
indicated. Note that the values for p that qualify as small,
intermediate, or large biases depend on the value of « as
becomes clear from Fig. 2.

III. STATE INITIALIZATION

We analyze the time-dependent transport resulting from
an initial mixture of energy eigenstates of Hp, described by
a density operator denoted py. We now discuss how such a
mixture is physically prepared by controlling experimental
parameters. This issue was left open in Refs. [58,59] where
an arbitrary unspecified mixture pg of energy states was con-
sidered.

A. Gate switch and pairing

We focus on the experimental situation where the initial
state pg is prepared by switching a gate voltage. We therefore
consider possible extensions of the simple scenario analyzed
in Ref. [16] where an interacting quantum dot was probed
by a metal after a sudden change of the dot level ¢) — € as
sketched in Fig. 1. It is assumed that before this switch the
dot has decayed to its stationary mixed state at €, denoted 2.
After switching to € the dot decays to its new stationary mixed

TABLE I. Energy thresholds (2) for transitions (=) by transfer
of ¢ () from the metal to the dot.

e
Transition =

nt Threshold Rate

h
++ w2 Eq;: I 1=+
— wZE ry ~-=1
+— w2 E; r_ 1= —
—+ nzE_| r_ + =1
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FIG. 3. Transient charge transport spectroscopy (no supercon-
ductor, @ = 0). Plotted is the transient charge current Iy (0) flowing
right after a gate-voltage switch €y — ¢ in units of the tunnel rate I".
For low T <« U this results in a decay of the dot charge from a nearly
integer initial stationary value (N),, towards another nearly integer
stationary value (N),. Possible values of ((N),,, (N).) are indicated.
Red indicates positive, blue negative currents.

20°

state denoted by z. Throughout the paper we will indicate the
value of quantities such as zy before the switch, namely, at
€0, by a subscript 0 as opposed to its value after the switch,
the stationary state z at €. In addition, also the initial state
prepared by the switch pp, that we discuss here, is indicated
by a subscript 0.

As a result of this simple procedure, in the absence of
the superconductor (¢ = 0), the predictions for the charge
current decay (chosen here as one example for a transient
observable) can be analyzed using a single transient trans-
port spectroscopy plot for all possible gate-voltage switches
(see Fig. 3). This conveniently represents the results for
the transient charge current amplitude for all time-dependent
switching scenarios (gate-voltage pairs) and will be reviewed
in more detail in Sec. V. The basic idea is simple: Up to
thermal smearing nine basic switches are possible since de-
pending on €, respectively €, the stationary dot state has
(N),,, respectively (N), =0, 1, or 2 electrons. As seen in
Fig. 3, a [positive (negative)] transient charge current ensues
[red (blue)] when switching between regimes with (N), #
(N);. In the regimes (N),, = (N), there is no transient charge
current.

Interestingly, the extension of this scenario to include the
large-gap superconductor is not unique. The reason is that the
Andreev states (4) for the gate voltage before and after the
switch differ: In contrast to Eq. (4) at €, we have at ¢,

|T0) = 5[ —T%} ) — sign(a)t §|: +T%}| )
(8

denoting §o = 2¢€9 + U and 89 = \/602 + a2 In Secs. IIIB
and IIIC we discuss in detail two distinct, experimentally
relevant ways of preparing initial states by gate switching,
resulting in different transient transport.

In contrast to the no-superconductor case [16] these two
cases also differ by the timescale for probing. Indeed, it is
important to note that this requires careful discussion: we
consider switch scenarios for which the simple description
by occupations alone as in Refs. [58,59] cannot be applied
without further consideration of what aspect of the probe
currents one aims to describe. For example, if one switches
€9 — € on a timescale comparable to or smaller than the
inverse induced pairing gap «~! and at the same time aims
at a readout at timescales of the order of & !, coherent super-
positions between even-parity states would be relevant for the
system state dynamics after a gate switch (see Refs. [20,47]).
In this case, a state |ty) prepared as the stationary state
at gate voltage ¢) before the switch is a superposition, not
a mixture, of energy states |t) for the new gate voltage
€ after the switch. This happens with maximal amplitudes
if, as in Fig. 1, we start far from resonance (|8y| > ),
meaning that the stationary state before the switch is either
|—0) & 10) or |—¢) ~ |2), and then rapidly switches the gate
voltage to resonance (|6| < «) where the charge states are
uniform superpositions |0, 2) = (|+) + [—))/+/2. (Note that
up to a global phase, [2) = )"t/ %[1 + t8/8allT) and |0) =
> \/%[1 — 18/6al|T).) In this paper, we focus instead on
two experimentally relevant scenarios for which the simple
description of [58,59] remains applicable.

B. Slow switch

We first consider a situation denoted as “slow switch”
where the switching time of the gate voltage is much longer
than the pairing timescale o~!, but much shorter than the
timescale of dissipative tunneling I'"! to the probe metal. In
a realistic setting [33] with ' ~ ueV and o ~meV, this would
correspond to switching times of tens of fs. Alternatively, it
could be realized by temporarily decoupling the metal ' — 0
to prevent dissipative effects during the switching procedure,
lifting the upper limit on the switching time. During a gate-
voltage switch on a timescale much larger than o~ the states
| 7o) will evolve unitarily to |T):

[0} = [7) = U(€, €0)lm0). &)

For the example at the end of the previous section, where the
state before the switch is a pure even-parity state, this implies
that one prepares a pure energy state |tp)(to| — |T)(t| =
(10) — 712))({0] — ©(2|)/2 for T = =% as illustrated in Fig. 1
(top panel) instead of a complete mixture (as for the fast
switch in the following section). Including the odd-parity part
into our discussion, this slow switch maintains the stationary
mixing coefficients but alters the basis vectors:

1
2= aorl)(ml +2015 ) lo)o]
=% o
1
= po =) weltiel+ 2015 ) lodel. (10)
=% o

With py, we indicate the initial state of the decay dynamics,
in which the system is found at the end of the switch. Since
the slow-switch procedure generates no off-diagonal elements
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in the new, final energy basis, we can compute the ensuing
evolution and transport using the equations of Ref. [59].

C. Fast switch

The second situation we consider is denoted “fast switch”
where the gate voltage is changed on a timescale much
shorter than o~!. In this case we consider a coarse-grained
time-dependent readout in which features occurring on the
timescale o' are averaged out. For example, in Ref. [34] an
experimental readout of the time-evolution of Andreev-state
occupations was performed at a resolution of down to few
nanoseconds.

If we instantly switch the gate voltage from ¢y — ¢, the
initial state is in general a superposition of the proximized
energy eigenstates at the new gate voltage €:

) = > le)(xlg). (11

Their similarity is quantified by transition probabilities

l(T]h)|* = %[1 +17'0], ©,7'=4%+ (12)

which can be expressed in terms of a single probability-bias
parameter 6 € [—1, 1]. Inserting Egs. (4) and (8),

1 580 + o2
6 = E;rr’|(r|ré)|2 _ 2ote”

When we subsequently let the system evolve to the new
stationary situation, the state and the currents probing this
evolution will decay on a timescale I'"! while oscillating
on the much shorter pairing-induced timescale o~ since we
assume o > I' (Sec. II). For this switching procedure we
consider results of current measurements in the metal probe
which are coarse grained, namely, time averaged over these
rapid oscillations.

To describe only this longitudinal decay needed for the
coarse-grained transient currents we can modify the stationary
state prepared before the switch by keeping only the part that
is energy diagonal in the energy basis |t) affer the switch:

13)

3A8A0

)zl = > el Pl (14)

This coarse-grained description in time corresponds to fast
complete decoherence in the final energy basis. In a Bloch
vector picture this can be understood [Eqgs. (25) and (A1)] as
ignoring the rapid precession of the transverse Bloch compo-
nents (off-diagonal elements) which occurs during the slow
relaxation of the longitudinal Bloch component (diagonal
elements). Note that this does not mean that effects of super-
conducting coherence are lost (which would be decoherence
in charge basis).

Returning again to the example at the end of Sec. III A, this
fast switch procedure implies that if we switch to resonance
(]8] <« o) coming from afar (|5| > «) we consider the prepa-
ration of a completely mixed state: |t))(tj| — % > lr)(t] as
was illustrated in Fig. 1 (bottom part). Including the odd-
parity part into our discussion, the fast switch maps the
stationary probabilistic mixture in the |ty) basis before the

switch to a mixture in the basis after the switch

! / 1
0= weln)nl +215 o) o]

1
—>p=) (Z |<r|r5>|2zof/) )]+ 2015 Y lo)ol.

5)

The evolution of these initial occupations using the equa-
tions of Ref. [59] gives the coarse-grained transport current
after a fast switch g — €.

D. Time-dependent spectroscopy and pairing

Switches (10) and (15) describe the initialization of two
distinct experiments to which the description of Ref. [58]
applies. Given a fixed «, each procedure is completely char-
acterized by the pair of gate voltages (€g, €) by giving the
parameter 6 [Eq. (13)]. This allows to extend the complete
analysis of the dynamics in terms of two-dimensional spec-
troscopy diagrams [16] as in Fig. 1 to the case involving
a superconductor. A systematic comparison of the results is
warranted since for the fast switch the induced pairing o
affects both the final stationary mixed state (z) of the tran-
sient dynamics and the initial state py [prepared from the
initial stationary mixed state zp by Eq. (15)]. By contrast,
for the slow switch we lose the dependence on overlap of
initial and final energy eigenstates: Indeed, if one formally
sets 6 = 1 independent of «, €y, € such that |(1:|r(;)|2 =0
then Eq. (15) reduces to Eq. (10). This dependence on the
states is of key interest: Without the superconductor (o« = 0)
at low temperature, the states z and py are at best a mixture of
one even-parity and the odd-parity state. When we include a
superconductor and tune it to its resonance, the pairing creates
a “shortcut” in the decay sequence by connecting two even-
parity states. This effect of the superconducting coherence of
the energy states in the initial energy mixtures can effectively
counteract the time-dependent decay into the metal as we
will see.

IV. SOLUTION OF TRANSPORT EQUATIONS
A. Master equation and current formulas

Following Ref. [59] we first review the transport equa-
tions of Ref. [58] describing the setup in Fig. 1. The time
evolution of an initial state p(0) = py of the dot which is
diagonal in the energy basis follows the rate equations

dp.
dt

% = ;WIIPI - ZWILPL

Here, the time-dependent state of the proximized dot is de-
noted p(¢) and its diagonal elements p.(¢) with T = + are
the occupation probabilities of even-parity states |t) after the
switch and p,(¢) is the occupation of the odd-parity state (a
mixture of spin o =7, |). The charge and energy currents

= Wiio1 — Wiz pr, (16a)

(16b)
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flowing into the metal probe read as

Iv=>Y n[Wp. + W p]. (17)
nt
Ip = [(E. — EOW/ pc + (Ey — EOW, p1],  (18)

nt

and the heat current reads as Iy = Ig — ply. The transition
rates are Wy, =) W/ and W;; =3 W, whereas the
transport rates

Wli?r =Ty f7(Ey - — ), (19a)
W = 305 f (B - — ), (19b)

keep track of whether an electron, present in the metal with
probability f~"(x) = (e~"™/T 4+ 1)7!, is transferred to (n =
—) or from (n = +) the proximized dot from (to) the metal,
where i) = —n as before. These rates depend on E,; =
%(nuSA + nU), transition energies (7), and on I';, the effec-
tive, gate-voltage-dependent rate (6) for tunneling into energy
eigenstate T = = (see Table I).

B. Solution by fermionic-duality invariance

The evolution and transport equations can be solved stan-
dardly by expanding the rate superoperator W in its three
left and right eigenvectors W = — >y, |x)(x'| where x la-
bels p (parity), ¢ (charge), and z (zero, y, = 0). The prime
distinguishes (operators corresponding to the) left and right
eigenvectors for the same eigenvalue, z # 7/, ¢ # ¢/, and p #
p’. Computing the eigenvectors and the solution in this way
leaves unexploited a strong restriction that applies to this class
of problems [16]: The rate superoperator obeys fermionic
duality

W41y, T=-[P(W+1y,2)P] (20)

with y, = I'. When instead making use of this property as
in Ref. [59] one obtains a much simpler and more insightful
form of the time-dependent solution which we review below.
For the purpose of this paper it is only relevant to note that the
duality mapping of superoperators like W involves a mapping
of the scalar parameters

X, Uoa,n)=XEU,a,p), 2n

where X = —x for x =¢,U, a, u while T and I" are un-
touched and not explicitly indicated [see [59] for discussion
of the parity operator P = (—1)" and further details]. This
suffices to introduce the appropriate duality-adapted variables
which simplify the analysis of the solution, not just its com-
putation, as much as possible. Deferring the discussion of all
involved quantities to the following, the solution of Egs. (16)—
(18) reads as

lo() ={311) + (A).114) + (p)-31p)} + 3[14)
— (A)zIp)le " [(A) 5, — (A)] + IP)e 7 {1(P) oy
— (p)o] + 2A):[(A) , — (A),1} (22)
Iv@) = (7, + Y (A)) + vle " [(A), — (A, (23)

Ip@) = — u{y, + v (A)} + {36a —UA))ye — uy}e ™

X [(A)po —{A). ]+ U)/pefy”'{ﬁ[(mpo —{(p)z]
+ 3(A):[(A) 5, — (A):1}, (24

where the energy current Ig(¢) is obtained by setting u = 0
in Ip(t). These expressions have the crucial advantage that
they express the transient dynamics in terms of stationary
expectation values of physical observables designated by
duality. These observables are the superconducting polar-
ization A =) __t|t)(r| and the fermion parity p = (—1)V
complemented by the trivial observable 1. It is well known
that a quantum state can be expressed in such a set of ob-
servables with their time-dependent expectation values as
coefficients,

o) = 1)+ (A) o) 31A) + (D)o 31P).  (25)

writing the state and the observables as supervectors:

1) =) lr)+2ID), (26a)
Ip)=>_lt)—2[D), (26b)
|A) = Zrlr). (26¢)

T

Here, however, the dynamics can be expressed in their expec-
tation values in the actual stationary state z, (o), = (e|z) and,
additionally, their values in the stationary state Z of a dual
system, (o) = (eo|z), with inverted parameters (21) and the
decay rates y. and y,." The dual quantities do not appear in the
charge current formula (23) but only enter through (A); in the
transient part of the heat current (24) via the energy current,
a two-particle observable, and contribute only when the dot is
interacting U # 0. This highlights the relevance of fermionic
duality to time-dependent many-particle transport. We found
that these expectation values can be expressed compactly in
terms of the two decay rates y. and y, and a signed transition-
rate asymmetry y; [59]:

2 2
Vs Ye = Vs
A =——, (p=1-2"—, (27a)
Ye YpYe
- =2 =2
Vs Ye = Vs
A =+—, (pz=1-2"—"", (27b)
Ye VYpYe

defining ¥ = y; and . = ¥, — ¥.. To compute the transport
currents we need aside from 8, U, and p only two further
coefficients y/ and y,. The four variables y., ys, ¥/, and y,
transform in a simple way [59] under the duality mapping
(21), explaining the simplicity of the solution formulas (22)—
(24), and are special linear combinations of the transport

'As explained in Ref. [59], using detailed balance it is possible
to express the dual stationary values (A): and (p): in terms of the
stationary values (A)., (p),. This interesting relation is, however,
nonlinear, whereas the behavior of the dual stationary values is quite
simple to physically understand since it corresponds to inversion of
the interaction energy U = —U, as explained Sec. IV C.
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rates.” Pairwise the duality invariants y,, y, and ys, y. behave
similarly,

1) )

Ve =K+ —K.,  V.=kK.+ —ks, (28a)
S N
8 i / ! 8

Vs = Kg+ —Kq Ve =K+ —Ke, (28b)
SA SA

since their “components” are the same elementary combi-
nations of reservoir occupations (anti)symmetrized over n
(particle type) and t (energy state):

= 57 3B~ ), (293)
nt

Kc/- = %Vp Z nf_n(En,r — W), (29b)
nt

= 33y I e ), (290)
nt

’Cs/ = %Vp Z Tnf_n(En,r — ). (294d)
nt

These components separate the direct resonant broadening
effect of the superconductor [§/5a, see Eq. (6)] from its in-
direct splitting effect [via the Andreev levels E, ., see Eq. (7)]
allowing a clear analysis.

The state and transport evolutions (22)—(24) after the fast
or slow switching initialization (Sect. III) are obtained by
inserting for the initial polarization and parity

(A oo = 0(A0)z:  (Ploy = (D)o (30)

Here (Ao),, and (p),, denote the stationary expectation values
at gate voltage §y (instead of &) noting that we also have
Ay (instead of A): the polarization operator is itself gate de-
pendent like the energy eigenstates [Eq. (26c)]. As shown in
Appendix A for the slow switch we need to set & = 1 whereas
for the fast switch we have 8 = Eq. (13), the overlap function
plotted as function of the gate voltages in Fig. 4. This shows
that (A),, for the fast switch is obtained from the slow switch
initial polarization (Ay),, by inverting its sign (if 0/]60| = —1,
i.e., €p and € lie on opposite sides of —U /2) and contracting its
magnitude (|0| < 1,1.e., €y or € close to —U /2 on the scale «).
The reason for this is that during a slow switch the quantum
dot has time to exchange Cooper pairs with the superconduc-
tor, and thereby maintaining the polarization, while during a
fast switch this is not possible and can lead to a switch in
polarization accounted for by the 6 factor. Therefore, due to
the superconductor, we have to carefully distinguish between
the initial value (A),, of the dynamics and the value before
the switching procedure (Ap),,. Instead, the parity can never

>The primes on y/ and y/ indicate invariant expressions entering
into the transport evolution (sensitive to electron-transfer direc-
tion), whereas the unprimed invariants y,. and y, appear in the state
evolution (insensitive to this direction) [see remarks at Eq. (30)
of Ref. [59]]. This should not be confused with the prime distin-
guishing left and right eigenvectors for the same eigenvalue of the
time-evolution kernel: (¢’| vs |c) (eigenvalue y.) and (p'| vs |p)
(eigenvalue y,).

(i) a/U = 0.2

(iii) /U = 2.0

e/U
=)

eo/U eo/U

FIG. 4. Overlap factor (13) for the fast-switch initial condi-
tion (30) depending on initial and final gate voltage (red = +1,
blue = —1). The horizontal line cuts are taken at positions indicated
by arrows with corresponding color. We show the cases of weak (i)
and strong (iii) pairing labeled as in Fig. 2 and following.

be changed by the coherent Cooper-pair exchange with the
superconductor.

C. Duality-invariant variables

The analysis of the transport dynamics thus boils down to
systematically understanding just four duality invariants (28).
To facilitate later analysis we first establish their dependence
on the physical parameters. They are plotted in the first four
rows of Fig. 5 as function of the experimentally controllable
gate and bias voltage using the same color scale. Since the
metal probes the modification of the quantum dot’s decay by
the superconductor, we plot all quantities versus € — w and
versus i < 0.

We first comment on the overall structure which will
translate to later figures showing the stationary observables
and transient current amplitudes. Columns (i)—(iii) show the
development from weak to strong pairing relative to the inter-
action. The Coulomb-blockade (CB) regime (—U < € — u <
0) stands out in all quantities as the vertical strip for « < U
and is visible for any « at sufficiently large bias. The su-
perconductor resonance (¢ = —U/2) appears in these plots
as the diagonal line —yu = € — u + U/2 (dashed line in row
1) hitting the CB regime at ¢ =0 and bias |u| =U/2. It
broadens with increasing « since it derives from the effective
couplings I"; (see Fig. 2).

By contrast, the sharp changes occurring at gate voltages
where the conditions for resonances involving Andreev states
are met, E, ; = u (dashed curves in row 1) map out in a
skewed fashion the spectrum in Fig. 2. Here and in the follow-
ing we choose a sufficiently low temperature 7/U = 0.015
such that the Andreev features can be identified by sharp
changes in color plots and by clear steps in line cuts. Their
vertical asymptotes (¢ — u = 0 and € — u 4+ U = 0) are the
CB-like Andreev transitions. The diagonal asymptotes have
half the bias slope [(¢e — n)/2 =—p and (e —u+U)/2 =
—u] of the superconducting resonance. These non-CB-like
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(i) a/U =0.2

(i) /U =1.0 ‘ (iil) /U =2.0__

¥e/T
(decay rate)

7s/T
=)
(decay rate = -1 >
)
asymmetry) >
0 >
0.5
0.0
—0.5
-2
/T

(transport rate)

.

\ 1.0
4

- 0.5

0.0

7e/T - .
(transport rate = 1 >
3
asymmetry) c
0
(4):

(polarization)

(4)z
(polarization
dual system)

(p)=
(parity
dual system)

2
(e=p)/U (e —p)/U

FIG. 5. Invariants and stationary observables versus gate voltage € —  and bias ;< 0 for « values of Fig. 2. Line cuts in even rows are
taken at arrows indicated in odd rows with same color. In row 1 the superconductor resonance (dashed line € — u = —p — U/2) and Andreev
resonances (dashed curves where u = E, ; for n, T = %) are indicated.

Andreev transitions become prominent for strong pairing
« 2 U where the electron and hole components in the effective
tunnel rates I' 1 in the transition rates start to have comparable
weight (see Fig. 2). Importantly, this does not imply that

Andreev transitions show up in all invariants and observables
that depend on them: this depends strongly on the quantity
considered and on the bias regime. The same applies to the
superconductor resonance.

085426-8



TRANSIENT TRANSPORT SPECTROSCOPY OF AN ...

PHYSICAL REVIEW B 108, 085426 (2023)

Specifically, the rate of decay y. =), W, /2 plotted in
Fig. 5 equals an average of transition rates of the master
equation (16). Whenever some transition T — 1 is enabled
it will show up cumulatively in y,. Since for any parameters
(U = 0) y, is bounded as follows [59]:

%yp <Ye < Vp» (€2))

it always has a magnitude that is comparable to the other,
constant decay rate y, = I'. Transient measurements will thus
always probe the interesting interplay of their two timescales.
We see in Fig. 5(i) that for weak pairing y, can achieve the up-
per bound y, ~ y, (dark red) for a fixed gate-voltage interval,
whatever the bias. This is the CB regime, where transitions to
even-parity Andreev states are suppressed, while transitions
from these states to the odd-parity state |1) are enabled. Here
y. is enhanced and the stationary system is singly occupied,
|z) 2 |1). For strong pairing in Fig. 5(iii) y. ~ y,/2 (light
red) is instead suppressed at low bias to its lower bound for
any gate voltage due to the pairing gap ~c« induced on the
quantum dot, favoring the even-parity state |—). At interme-
diate bias y. interpolates smoothly between the two bounds
when varying € — u, interrupted by sharp steps whenever a
transition involving an Andreev state is disabled or enabled.

The invariant y, = > tW; /2 is the transition-rate asym-
metry taking on both negative and positive values in Fig. 5
to favor transitions starting from t = + over transitions from
T = — or vice versa. It is thus associated with the polarization
of the even-parity energy states [which is proportional to it,
see Eq. (27a)]. It is suppressed to zero (white) whenever
Ye &y, in the first row of plots due to the bound [59]

Vsl < Ve Vp — Ve (32)

It is also suppressed along the superconducting resonance
where |7) & %|—) + %H—) is unpolarized (white) interpolat-
ing between |+) (blue) and |—) (red) on either side.

The transport invariant y, = Y _ntW, /2 connects decay
of the polarization to transient charge current (23) [see also
Eq. (36) below]. In contrast to the decay rates, it is roughly
antisymmetric, showing a sign change between large positive
and negative detuning € — p in Fig. 5. Unlike all other invari-
ants, the superconductor resonance survives in the CB regime
where y/ is not suppressed.

Finally, the invariant y/=)"_nW; /2 enters into the
charge current, which is also the only way in which it enters
into the heat current (24) via the contribution —uly(¢): It is
not related to the energy current [59]. Figure 5 shows that it
is likewise roughly antisymmetric: At sufficiently high bias
|| > « it always inverts sign in the CB regime throughout
which it vanishes, unlike y;. For strong pairing it instead
inverts sign at the superconducting resonance at low bias.

D. Stationary local observables

Using the invariants is now straightforward to understand
the parameter dependence of expectation values of the observ-
ables p and A appearing in the solutions (22)—(24). They are
plotted in the remaining rows of Fig. 5 and can be explained
using the first four rows.

The stationary polarization (A), = —y,/y. is nonzero
whenever the transition rate asymmetry y; is nonzero, and
is amplified in magnitude whenever the decay rate y,. is re-
duced. One sees that for strong pairing the system always
prefers to be in the |—) state, (A), = —1 (blue) except for
at high bias, where even the excited state |+) can be fa-
vored, (A), = 1 (red). Likewise the stationary parity (p), =
1 =22 — y2)/(vpy.) may be understood: Having maximal
positive parity, (p), = 1 (red), requires saturation of the bound
(32), |ys| = y., which happens in the light red and light blue
areas of the y, plot. Negative parity (p), = —1 (blue) in-
stead requires y; = 0 (white) together with y, = y,, (dark red)
and occurs only in the CB regime. The blue areas clearly
indicate the Coulomb blockade favoring single-occupation
characterized by odd parity (p), = —1 and (A), = 0. Zero
parity (p), = 0 (white) occurs at the thermally sharp crossover
to the CB-like regime (blue), but also at superconducting
resonance where y; = 0 (white) and y. = y,/2 (light red). At
the superconducting resonance all states are equally probable,
leading to (p), = 0 and (A), = 0.

To analyze the solutions (22)—(24) we furthermore need
the expectation values of the same quantities with respect to
the dual stationary state 7 which are also plotted in Fig. 5.
These can be obtained in a similar way: For the dual stationary
polarization (A); = y,/7. we need to consider the plots of the
dual invariants s = y; and y. = ¥, — .. The latter is simply
obtained by recoloring dark red — white in the y, plot. Out-
side the CB regime if y; # 0, this leads to the result that the
dual polarization equals (A); = =£1 (red/blue) when y; and y,
have the same (opposite) sign. If y; — 0 then (A); = 0 with
one important exception that one should note carefully: when
¥ achieves its upper bound y, (dark red) in the CB regime
Ve = ¥p — V. (not shown) vanishes in exactly the same way as
ys. As a result their ratio (A); ~ 1 and shows no signature of
Coulomb blockade.

Likewise, the dual stationary parity (p): = 1 —2(7> —
773)/()/,,)76) is now always positive and maximal (p); =1
since for the absolute values the upper bound |y = |ys| =
Ve = ¥p — Ve 1s always achieved: in these regions invert-
ing the y, plot colors (by swapping dark red with white)
gives the y, plot. This holds true except at the supercon-
ducting resonance where (p); = —1 since y; vanishes but y,
does not.

The distinct behavior of these dual expectation values can
be understood intuitively using fermionic duality following
Refs. [16,28]: For the dual system all energy parameters are
inverted, in particular, the interaction U = —U < 0is attrac-
tive, a well-known situation [68]. As a result, even without
a superconductor, the dual system favors even occupation,
i.e., it exhibits no Coulomb-blockade stabilizing odd occu-
pation explaining why the stationary parity (p); = 1 is even,
allowing (p); = 0 only at the superconductor resonance. Fur-
thermore, the energy inversion of the dual model instead
favors the (in the actual model) highest-energy state |[+) to be
occupied, explaining predominance of polarization (A); = 1,
requiring a sufficiently large bias to access negative polariza-
tion (A); = —1, both opposite to the behavior of the actual

Z

system.
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() a/U =0.2 (ii) a/U =1.0 (iii) /U =2.0
In(c0)/T
—2

D
B
0
0.5 1
-2 0 2 4 -2 0 2 4 -2 0 2 4
(e—n)/U (e—n)/U (e—m)/U

FIG. 6. Stationary charge current Iy (co) in units of I as function of gate and bias voltage. Parameters and conventions are the same as in
Fig. 5. Note the faint Andreev resonances occurring at low bias || < U fora < U.

E. Stationary charge and heat current

The stationary charge and heat current are proportional
Ip(00) = —uy(00) since the stationary energy current van-
ishes I (c0) = 0. This reflects that the Cooper pairs carrying
the stationary particle current do not transfer energy with
respect to ug = 0. It implies that the study of /p(c0) provides
no advantage over Iy(oco) for probing the properties of the
proximized dot [59], in contrast to the transient currents dis-
cussed later on. The parameter dependence of the stationary
current can be understood in a similar way as the observables
discussed in Sec. IV D. The stationary charge current

Iy(00) =y + ¥{(A): (33)

flowing into the metal probe for u < O is plotted in Fig. 6
(see Refs. [43,60,66,67], for similar results). By Eq. (33) its
behavior is understood by combining the plots of y/, y,; and
(A), in Fig. 5.

For strong pairing in Fig. 6(iii), the current is suppressed
below a bias voltage threshold for any gate voltage (magenta
line cut): here the nonzero transport invariants y/ and y, are
equal but cancel out in Eq. (33) since the stationary system
is fully polarized, (A), = —1. For weak pairing in Fig. 6(i),
the current is also suppressed below a bias threshold but for
a different reason: even though transport invariant y, is now
nonzero, both y/ and the polarization (A), vanish in the CB
regime. As a result, the current displays a “resonance with a
hole” (green, magenta line cuts).

By contrast, for strong pairing, the charge current in
Fig. 6(iii) shows a regular resonance peak at intermediate bias
as expected for the pair resonance (green, orange line cut) but
its tails are “stepped” due to a pair of Andreev transitions.
Figure 5 shows that at high bias y is nonzero at the super-
conducting resonance and cannot be canceled out in Eq. (33)
by the product of (A); and y; which are both zero at the
resonance. The broad resonance makes visible that another
pair of Andreev transitions is activated, causing the curve to
look like a “stepped pyramid.”

The line cuts also show that the gate-voltage dependence
is clearly nonsymmetric about the superconductor resonance
(6 = 0) and Iy becomes symmetric in § only for © — 0. By

expressing the invariants in their components (29),

e — Yy Kok — Kok 52
I(oo) = TXEZTelt  BeBe Z B (1__>7 (34)
Ve Ke + 5K

we can in fact extract a symmetric Lorentzian-peak § depen-
dence 1 —8%2/83 = &?/(8% + &) of width «/2 discussed in
prior works [43,60,66,67]. Our compact analytical expression
brings out how this peak is nontrivially modified due to the
bias asymmetry and stepped Andreev transitions.

F. Transient charge current

The transient charge current has single-exponential time
dependence

In(t) — Iy(00) = ae™ . (35)

Due to this simple form the charge-decay timescale is set
by the invariant y, and the initial value of the transient,
In(0) — Iy(00) = a completely characterizes the visibility of
the transient charge current. The amplitude

a=y[{A)p, — (A):] (36)

is governed by transport invariant y; which has the same «
components as the decay rate y. [Eqs. (28) and (29)]. Clearly,
the transient charge current (35) only probes the dot’s initial
excess polarization (A),, relative to the final one (A),. The
parameter dependence of a for two possible switch scenarios
is analyzed in Secs. V and VL.

G. Transient heat current

The transient heat current features a more intricate depen-
dence on both the initial state and on time, requiring some
preliminary analysis before exploring its parameter depen-
dence in Secs. V and VI. This derives from the fact that the
dot energy Hp is a two-particle quantity, in contrast to charge,
allowing to probe the full correlated proximized dot state.
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1. Dependence on initial state

To highlight the dependence on the initial state, the tran-
sient heat current can be decomposed as

Io(t) = Ig(00) = Ig.A(D[(A) 5, — (A):]+1o p/(O[(P)y — (P):]

(37
into transient heat current contributions flowing in response
to an initial excess of quantities A and p on the proximized

dot relative to their final stationary values. The prefactors are
given by

IpA(?)
1 C
= ‘[5A -U (1 - V—e*”‘””) (A>zi|)/c —uyl pe,
2 yp
(33)
Io p(t) = Uype ™" (39)

The transient heat current thus probes both the decay of the
initial excess of polarization and parity. It is possible to pre-
pare a suitable energy mixture |pg) for which these responses
can be measured separately using the basic physical initial-
ization procedures (30) considered here. Examples of such
special slow or fast switches can be found by plotting the
excess ratio [(A),, — (A):1/[{p)p, — (P):] (not shown).

For initial states with (A),, = (A), the second term in
Eq. (37) constitutes the full heat current with a response
Ip ,(t) that depends only on the interaction U and the bare
coupling y, = I'. It is independent of all other parameters, in
particular, the pairing « induced by the superconductor. By
contrast, for initial states with {p), = (p). only the first term
in Eq. (37) contributes which depends nontrivially on all pa-
rameters. Interestingly, the sign of the interaction contribution
to Ip.4(t) is reversed at a time t; € [yp_', v~ '] given by

o= 1H(Vp/Vc)
| = —2prres

. (40)
Yp — Ve
2. Nonmonotonic dependence on time

To focus on the dependence on time we instead write

Ip(t) — Ip(00) = ace " + a,e™ ™, 41)
with constant amplitudes given by

ac = {3(8a — UA)2)ve — ny }[(A) — (A):]. 42)
ap = vpU{3[(Phe — ()] + 34A):[(A) 0, — (A):]} 43)
= U (pzl po)- (44)

Although the proximized dot is expected to have two
timescales based just on the Hilbert space dimension and con-
straints,® one cannot tell that both are actually relevant except
by computing their amplitudes. Equations (42) and (43) show
that the interaction U is required for the second timescale y,

3Two real parameters remain based on the Liouville-space dimen-
sion 3 and 1 constraint of trace preservation.

to appear besides y. (a, = 0 for U = 0) extending a similar
result of Ref. [16].

The double-exponential transient heat current (41) can ex-
hibit nonmonotonic decay since the amplitudes a. and a,
may have opposite sign. In fact, there are two types of such
behavior. First, the transient Ip(t) — Ip(00) will pass through
zero at time

o = nap/a) )

Yp — Ve

whenever this expression is positive. In this case the fast parity
decay (y,) has a larger amplitude than the slow charge decay
(y.) with opposite sign, 0 < —a./a, < 1. It will therefore
initially push the transient through zero, causing the heat cur-
rent to intersect its stationary asymptote once Ip(fp) = Ip(00)
before decaying to it from the opposite side. The presence of
such a zero implies that there is a local extremum, either a
maximum or a minimum, at later time.

However, a local extremum can also occur at a time which
is positive,

£ = ln[_(ypal’)/(ycaC)] = t() + 1, (46)

Yp — Ve

whenever 0 < (—y.a.)/(ypa,) < 1. In this case the initial
rate of change of the parity decay dominates that of the op-
posing charge decay (d/dt)ape™ """ |;=0 > —(d/dt)ace™""|;=o
without necessarily inducing the transient current to pass
through zero. Although 7y is negative in case there is no
passage of the transient through zero [Eq. (45)] it can still
be compensated by ¢, the positive time (40) at which the
interaction contribution to Iy 4(t) reverses its sign [Eq. (38)],
to achieve r, > 0.

We stress that the scales 7y, t, and #, characterizing the
transient heat current profile in time are not any of the
expected timescales of the state evolution (y,', y, ') but
functions of these (¢;) and of their amplitudes (ty, t,). They
emerge only due to nonzero interaction U. A simple quantifier
of a nontrivial interaction-induced profile of the transient heat
current is provided by its extremal value at #, relative to its
initial value:

folt) ~Ia(00) _ (1 1c) 470

Ip(0) — Ip(c0) "\, a,

which depends only on ratios of decay rates x = y./y, and
amplitudes y = a./a, through the function (y < 0)

(1 —x). (47b)

+1

The possible values of R are plotted in Fig. 7 as function of the
two ratios with possible line shapes. The sign of R indicates
the type of nonmonotonicity and its magnitude quantifies its
degree.* For y < —1/x (gray area) and y > 0 (not shown)
there is no extremum. We thus see that the initial value of

R(x.y) = (—y0)T5 —
y

“For the special case of complete initial cancellation a. = —a,
the value |R| diverges [see Fig. 7(c), inset with green curve]. In
this case one can use the extremal value of the transient relative
to a, to characterize the nonmonotonicity [Ip(t;) — Ip(c0)]/a, =
xM0=9(1/x — 1), depending only on x = ¥./¥,.
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y=ac/a,

0 0.5 1
T =Ye/Yp

FIG. 7. Possible values of nonmonotonicity quantifier R
[Eq. (47)] as function of the possible values of the ratio of decay
rates and of amplitudes. The insets show the different nonmonotonic
profiles of the transient heat current as function of time for decay
with a zero (red, —1 <y < 0), for decay without a zero (blue
—1/x <y < —1), and an intermediate case (green, y = —1). In the
latter case the heat current is purely transient (initial zero and finally
Zero).

transient heat current /p(0) — Ip(00) = a. + a,, does not char-
acterize the visibility of the transient heat current because a.
and a, can partially cancel. Instead, one needs the extremal
value relative to the initial value, given by R.

V. TRANSIENT SPECTROSCOPY

We now give a systematic overview of the predictions as
function of the experimentally controllable initial and final
gate voltages, while stepping through qualitatively distinct
bias voltages (always choosing values p < 0 as before). This
analysis is done for the qualitatively different cases of weak
(¢ =0.2U) and strong pairing (o = 2.0U) relative to the
interaction, the parameters typically fixed in experiment. We
compare with the no-superconductor case [16] which is first
briefly reviewed. Throughout this section we consider as be-
fore a fixed low temperature 7 = 0.015U to enable a clear
analysis of the results: We thus always have « > T such that
the transitions involving Andreev states (split by «) appear
as sharp features in contrast to the superconductor resonance
(broadened by o). In Sec. VI we provide a detailed explana-
tion of all effects described here and we will discuss how they
evolve with temperature 7.

A. No superconductor “o — 0”

We start from the well-understood no-superconductor case
studied in Ref. [16] which is included in our results [59]
by considering the fast switch and formally taking « — 0 in
Egs. (23) and (24). All possible transient charge and heat cur-
rent experiments can be analyzed by plotting the amplitudes
a, a., and a,, for all initial and final gate-voltage pairs ey —
and € — pu as in Fig. 8. Experimentally, these amplitudes can
be extracted by fitting the transient currents. In a second step,
we combine these with the dependence of the decay rates y,

tI
0 2 4 6 8 10

|

Aln(t)/T[1
0.5
0

Alq()/(P0) [ 15

1.0

0.5

—— )
)/ (TU)

—

1-3-2-10 1
(eo — p)/U

32210 1 2 0
(0o —w)/U

2

FIG. 8. Quantum dot probed by metal (no superconductor). Left:
Amplitudes for charge a and heat current a. and a, as function
of gate-voltage pair (€, €) defining a switch. Center: Vertical line
cuts through the points with the corresponding color. Right: Full
transients at these points and initial transient heat current Aly(0) =
a. + a, versus gate voltages. Gray dashed lines indicate the gate
voltages bounding the Coulomb-blockade regime (—U < € < 0).

and y, on final gate voltage € — u to analyze the possible
directly accessible transient currents Aly(t) = Iy(t) — Iy(00)
and Aly(t) = Ip(t) — Ip(oco). These are plotted in Fig. 8 as
function of time for a selection of gate-voltage points.

In the no-superconductor case, we see in Fig. 8 that for
switches from low to high gate voltage, expelling electrons
from the dot, the charge amplitude a = Aly(0) takes constant
positive values (red) on well-defined plateaus with sharp, ther-
mally broadened boundaries. For these switches the transient
charge current (=particle current) monotonically decays into
the metal whereas for opposite switches it flows out (blue).

The heat amplitudes a., a, show linear and constant be-
havior, respectively, as function of the final value ¢ —
(black line cut in Fig. 8), except for a surprising thermally
broadened jump at € — u = —U/2 (not to be confused with
the superconductor resonance € = —U/2 later on). When
added together to obtain the initial transient a. + a, = Alp(0)
(black dashed line cut) these opposite jumps cancel out to give
a smooth dependence on € — v (lower right panel in Fig. 8).
At later times Aly(t) develops a kink in the € — p dependence
[not shown, see Sec. VIB, Fig. 14(a)]. The transient heat
current Aly(t) decays monotonically with ¢ for all switches,
just like Aly(t), despite the occurrence of opposite signs of
ac (blue) and a, (red) (see Sec. IV G). This is always the
case for thermal broadening much smaller than the interac-
tion (T < U). Here, without superconductor, a nonmonotonic
transient heat current is possible but only when the thermal
broadening is comparable with interaction (T ~ U) which
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corresponds to cooling the metal noting that Ip(co) = 0. This
is discussed in Appendix C and in Ref. [26] for two biased
normal contacts.

Finally, when comparing the results with and without su-
perconductor one should keep in mind that within the range
of validity of our approach even the case of weak pairing
a K U is not a “weak perturbation” continuously connected
to the no-superconductor case: Clearly, we cannot send ¢ — 0
without violating the assumption I' < o made in Sec. II.
This is potentially confusing since one can extract the no-
superconductor result from our formulas by formally sending
o — 0 for the fast switch when carefully canceling discontin-
uous contributions® (see the detailed discussion in Ref. [59]).

B. Weak pairing (¢ < U)

We now turn to the effects introduced by the superconduc-
tor focusing first on the amplitudes of the transient response.
The pairing o > 0 enters in two ways: through the invariants
(combinations of transition rates) and the choice of fast vs
slow switch (the initial state). We thus need to consider the
amplitudes of the transients for both fast and slow switch since
they lead to different results. Together with their ratio, they are
plotted in Fig. 9 in groups of three rows to facilitate compar-
ison. Furthermore, the presence of the biased superconductor
leads to stationary nonequilibrium currents: the stationary par-
ticle current Iy(oo) 2 0 for —u 2 0 (see Fig. 6 for u < 0)
and therefore we always have Ip(00) = —uly(co) = 0 (Joule
heating). As for the no-superconductor case the transient heat
current may reverse in time for 7 ~ U but now also for T «
U (see Secs. IVG and VD). Thus, in Fig. 9, a positive heat
current amplitude (red) only indicates that it initially favors a
transient heat current in the direction of the stationary flow;
vice versa, a negative amplitude (blue) indicates that an initial
transient is favored which flows against the stationary heat
current. The bias p also modifies how these transient currents
approach their stationary values. In Figs. 9(a)-9(c) we thus
have to consider the qualitatively different biasing situations
that we identified earlier in Fig. 2. Additional cases (a") and
('), lying closer to the thresholds of Fig. 2, are shown in
Fig. 9 (dashed panel borders) for better interpolation of the
u dependence.

1. Fast switch

We first discuss results for high bias plotted in Fig. 9(a),
where the various contributions are clearly separated. For the
weak-pairing regime we are focusing on now, this corresponds
to |u| > U/2 (see Fig. 2). The fast-switch amplitudes (rows
1, 4, 7) show the signature of the no-superconductor case (the
pattern of Fig. 8). This is modified by the superconductor by a
pronounced cross-shaped resonance with a horizontal (along
the initial €y axis) and vertical part (along the final € axis).

5In [59] this is analytically verified using that in our duality-
invariant formulation discontinuities are “automatically” collected.
By contrast, for the slow switch, not well defined for o« — 0, the
results do not connect to result of Ref. [16] as expected (there is no
anticrossing state to follow adiabatically).

Final superconductor resonance (horizontal) ®. For any
fast switch where the final gate voltage is resonant with the
superconductor (¢ = —U/2) there is a horizontal feature of
small width @ < U starting at marker ©. For the charge
amplitude a this is a dip, a suppression of a relative to the
no-superconductor background. It goes all the way to zero
implying zero transient charge current, Iy () — Iy(co) = 0 for
t > 0. Likewise, one heat current amplitude is completely
suppressed at this horizontal feature a. ~ 0.

As a result, if the final gate voltage is resonant with the su-
perconductor the transient heat current is entirely given by the
remaining two-particle contribution Iy (t) — Ip(00) = aye™ """
originating from the energy-current part of Eq. (24). The di-
rection of this remaining transient current varies horizontally
along this feature as function of the initial gate voltage: For
€0 — p < —U the amplitude a, also shows a positive dip
(light red) relative to the no-superconductor background (dark
red) but it is not fully suppressed. For €y — n > 0, instead
there is a positive peak where a, takes on the same value
(light red) on top of the zero background (white) (except
around € = €y where trivially a, = a. = a = 0 since we do
not switch). This corresponds to a transient heat current with
the stationary flow into the metal. By contrast, in the initial CB
regime —U < ¢y — u < 0, a, shows a negative peak (blue) on
the zero background (white) corresponding to a transient heat
current against the stationary flow. The values taken by the
different amplitudes a, a., and a,, at this horizontal resonance
in Fig. 9(a) are shown by a horizontal line cut (magenta) in
Fig. 9(e) taken along this feature.

Initial superconductor resonance (vertical) @. For any fast
switch where the initial gate voltage is resonant with the
superconductor (g = —U/2), the no-superconductor back-
ground is also interrupted but in a different way. This vertical
feature starts at marker @ in Fig. 9(a). The values of the
amplitudes along this vertical feature are shown in Fig. 9(d) by
a vertical line cut (magenta). In this case, the charge amplitude
a shows a dip in the (now negative) no-superconductor back-
ground (blue) suppressing it either to zero (—U < € — u < 0)
or to only half its value (¢ — u < —U). In the remaining case
(e — > 0) there is now a positive (red) peak on the zero no-
superconductor background (white) (except trivially around
€ = €y, the crossing with the vertical resonance). The heat am-
plitude a. likewise shows only partial suppression when the
background is nonzero (¢ — < —U) and a positive resonant
peak (red) when the background is zero (¢ — i > 0). Only in
the final CB regime (—U < € — u < 0) do we have a. ~ 0
and thus again a “pure” two-particle transient heat current.
This remaining contribution and its amplitude a,, are strictly
positive along the entire vertical resonance [except trivially at
€ = ¢g = 0] [see vertical line cut (magenta) in Fig. 9(d)]. The
apparent lack of any effect of the interaction U on the value
of a, along the vertical initial resonance, unlike the horizontal
final resonance (blue CB feature), is surprising and will be
explained in Sec. VI.

We now follow these resonances as we step through the
qualitatively distinct bias values in columns (a)—(c) in Fig. 9.
We see that the vertical initial superconductor resonance @
in a disappears from all amplitudes when it hits the initial
CB regime (—U < €y — u < 0) as one might have expected
since interaction dominates pairing (¢ < U). One might also
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FIG. 9. Weak pairing (@ = 0.2 U): charge (heat) amplitudes a (a. and a,) in units of coupling y, = I (x interaction energy U) (see main
text for description of the layout). Vertical (horizontal) line cuts in column (d) [(e)] share the vertical (horizontal) gate voltage axis with
columns (a)—(c). Horizontal (vertical) arrowheads in (a)—(c) indicate where vertical (horizontal) line cuts in (d) [(e)] are taken. The shorter
(longer) dashed lines indicate the gate-voltage positions of the Andreev (superconductor) resonances. At the diagonal we trivially do not
switch and the ratio of amplitudes (0/0) is not defined (gray line in rows 3,6,9).
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expect that the horizontal resonance disappears but this does
not happen. For the charge current amplitude a the dip O
persists, a = 0 at e = —U /2, no matter how small the nonzero
pairing « is.® It moves through the initial CB regime —U <
€9 — 1 < 0 as we vary the bias |u| down to zero.

Similarly, the heat current amplitude a, shows a zero with
sign change which slides through this regime when lowering
the bias. Also for amplitude a, the superconductor resonance
is not absent: Upon lowering ||, when the superconduc-
tor resonance hits the CB regime, the plateau step (red) at
€ — 1 = 0in (b), it starts dragging this step downward in (b’),
until the step reaches € = —U/2 for ¢ = 0 in (c). This sliding
of the step through the CB regime is the signature of the
superconductor resonance in a,. Altogether, as emphasized
at the end of Sec. V A, for low bias the weak-pairing results
o K U are not a slight perturbation of the no-superconductor
result despite the first appearance of a. and a,, at u© = 0. The
same conclusion follows at high bias || > U.” The subtle
reason for the close resemblance of a. and a, at u =0 in
Fig. 9(c) to the no-superconductor result in Fig. 8 is that in
the latter case a. and a, are already suppressed at € — u =
—U/2 as mentioned in Sec. V A. This hides the signature of
the superconductor resonance at € = —U /2 which for u = 0
happens to occur at the same position.

2. Slow switch

We now inspect the results in Fig. 9 for the slow switch
(rows 2, 5, 8) guided by the ratio of the slow- and fast-switch
results plotted in the same figure (rows 3, 6, 9). We see
that in extended regions the amplitudes for the slow switch
are suppressed (white areas) where those for the fast switch
are not. However, marker ® indicates extended gate voltage
regimes in which also the reverse can happen, i.e., the slow
switch amplitudes survive while the fast switch amplitudes
are suppressed (dark green and red in ratio plots). For high
bias (a)-(a’) we observe the following: whenever for the fast
switch the vertical superconductor resonance appears as a
peak (ep = —U/2) rising from the zero background, the slow-
switch result continues as a plateau (u <€y < —pu —U/2
noting —u > U/2). Instead, whenever for the fast switch the
superconductor resonance appears as a dip [vertically (hor-
izontally)], dropping to zero from the nonzero background,
the slow switch results continues as a zero plateau [¢y >
(e > w)]. Despite these differences, precisely along both the
vertical and horizontal resonances in Fig. 9(a) [magenta line
cuts in Figs. 9(d) and 9(e)] the slow- and fast-switch results
for a and a,, coincide. For a, this holds only along the vertical
resonance.

®In the limit @ — 0 the experimental measurement time for resolv-
ing this feature diverges (see Fig. 1) since our results are valid only
for « > I'. As mentioned, this is formally reflected by the results
becoming noncontinuous functions of gate voltages.

"In Fig. 9(a) amplitudes a and a,, resemble the no-superconductor
result in Fig. 8 for gate voltages far away from the superconductor
resonance. However, it is now the heat current amplitude a, that looks
completely different.

For a and a, it may also happen that the slow and fast
switches have comparable amplitudes but with the opposite
sign (light red in ratio plots). At low bias at the horizontal
superconductor resonance in a there is a sign change as func-
tion of € for the slow switch, but not for the fast switch. For
a. this is the other way around. Note in particular that a, does
not even have a zero at the resonance for the slow switch. As
a result for u© = 0 the slow-switch result for these amplitudes
does not even qualitatively resemble the no-superconductor
result, even for small @ < U, in contrast to the case of the
fast switch (where, as discussed, “only” a superconductor
resonance feature of small width remains). Despite the large
areas of identical response (light green in ratio plots) there are
thus significant differences between the two types of transient
experiments, as intuitively expected, due to the possibility of
exchanging Cooper pairs with the superconducting contact
during a slow switch as discussed in detail in Sec. VI A.

Finally, the completely white panels for a, highlight that
there are bias regimes where the slow-switch response is en-
tirely thermally activated even though the induced gap « is
small (¢ < U). The amplitudes are exponentially suppressed
and only become visible in these panels when temperature
is increased, resulting in nonmonotonic 7 dependence (see
Sec. VI). For the low temperature chosen here, a,, is essen-
tially zero for all possible switches until both Andreev energy
thresholds become accessible for bias |u| > U going from
(b) — (@’). This differs strongly from the fast-switch result
for a,.

C. Strong pairing (o« > U)

So far only the two CB-like Andreev transitions had an
effect on the amplitudes, both for the fast and slow switches.
These show up as steps in a and steps or zeros in a.. The
other two Andreev transitions (Fig. 5) had no noticeable ef-
fect despite being sharply defined by the low temperature
(T <« ). This changes when the pairing & dominates over
the interaction U'.

1. Fast switch

In Fig. 10 in column (a) we again first discuss the results for
large bias || = o = 2U, where the effects are well separated.
The superconductor resonance is broadened due to the 10-fold
increase of o with respect to the weak-pairing regime just
discussed, but it can still be made out (longer gray dashed
indicator). It requires little further discussion noting that the
diagonal suppression (white) is trivial (¢y = €, no switch oc-
curring). The superconductor resonance persists in Fig. 10 as
we step through distinct biasing conditions (a) — (a’) — (b),
and, as before, the vertical resonance disappears at low bias
for (b') — (¢).

On this smooth background, the splitting of Andreev levels
due to strong pairing « (Fig. 2) now becomes apparent: In
Fig. 10 there are sharp Andreev-state transitions (short gray
dashed indicators), which are only thermally broadened (T «
«), counting four transitions marked @ in (a), two marked
® in (b), and strictly none in (c). These Andreev transitions
induced by the metal probe appear both in the initial and final
gate-voltage dependence of the fast switch. As expected from
Fig. 5, we see for large bias in Fig. 10(a) that the left/lower
two Andreev transitions coincide with the prominent CB
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FIG. 10. Strong pairing (¢ = 2.0 U): see caption of Fig. 9 and the main text.

resonances of the no-superconductor case whereas the
right/upper two are only weakly visible. Upon lowering the
bias the former CB-like Andreev resonances shift significantly
and one by one merge with their latter Andreev partners
and disappear, going from (a’) — (b) and from (b’) — (c),
respectively. For a, in particular in (b) between these two

mergings there is a pronounced horizontal suppression at the
superconductor resonance. Finally, at © = 0 in (c) there are
strictly no such resonances left. This is intuitively expected
from Fig. 2(iii): at © = 0 and o > U the pairing dominates
over interaction and induces a gap on the hybridized dot of
order @ > U > T, destroying Coulomb blockade.
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FIG. 11. Weak pairing (o« = 0.2U): transient heat current Aly(0) = Ip(0) — Ip(co) at ¢ = 0 in units I' U as function of gate voltages for
fast switch (row 1) and slow switch (row 2) where for the slow switch case (c) is left out (transients entirely thermally activated, essentially zero
at this value of T, see Sec. V B 2). The side panels show full heat current transients Al,(¢) in the same units (units 'U) and, for comparison,
the charge current transient Aly(¢) (units I") for selected triples of points marked in the main color-plot panels. All side panels share the same
axis ticks. In the lower left panels, for Aly(¢) the magenta curves lie on top of the black curves, hiding the latter, unlike Fig. 12 where they are

distinct.

Finally, to identify more precisely which effects are due
to interaction it is useful to compare with the U = 0 limit.
Inspection of the fast-switch results for U = 0 shown in
Appendix B reveals that cases (b)-(b’) and (¢) of Fig. 10
essentially survive for U = 0 on top of a no-superconductor
background which exhibits no Coulomb blockade. By con-
trast, in (a) and (a’) of Fig. 10 the two-fold degeneracy of
the Andreev transitions of the U = 0 case is prominently
broken by the interaction. See Ref. [59] for further analytical
comparison with the U = 0 limit.

2. Slow switch

In Fig. 10 inspection of the results for the slow switch
shows that much of the comparison with the fast-switch
results from the weak-pairing case in Fig. 9 carries over
with two notable exceptions: First, the regions where the
slow-switch result survives while the fast-switch result is sup-
pressed (dark red and green in the ratio plots) are much more
prominent (see regions marked by ®).

Second, there are now additional white panels in column
(c): in these bias regimes the slow-switch amplitudes a and a,
are entirely thermally activated, in addition to a,, remaining
essentially zero at the considered low temperature until the
first Andreev pair becomes accessible for intermediate bias as
we move (¢) — (b'). This leads to similar nonmonotonic T’
dependence (see Sec. VIB).

D. Transient charge and heat current

We now put the amplitudes together with the decay rates
and outline the results for the directly accessible currents in
Figs. 11 and 12. For selected points (indicated in green, black,
and magenta) in the main panels we show the full transient
charge and heat currents for both the fast and slow switches.

For the single-exponential transient charge current
Aly(t) = Iy(t) — Iy(00) = ae™ ' the decay rate y. was al-

ready mapped out in Fig. 5. As in Sec. V A, the sign of
the initial transient Aly(0) = a decides whether the transient
current goes with (red) or against (blue) the stationary charge
flow. If Aly(0) = 0 (white) initially then it stays zero due to
the single exponential form Aly(t) = 0 for ¢+ > 0. The initial
transient Aly(0) = a was already plotted in Figs. 9 and 10
and the selected points considered here are also indicated
there. For weak pairing the side panels in Fig. 11 show full
transients Aly(¢) for these points. We see in particular at high
bias that as one steps through the superconductor resonance
outside the final CB regime (black points) the transient current
is first comparable to the no-superconductor value (first point)
then suddenly suppressed (second point on the resonance) and
then comparable again (the curve related to the third point
coincides with the one of the first, hiding it). This is clearly
distinct from the no-superconductor case in Fig. 8 (black
points). The same happens when stepping through the reso-
nance inside the initial CB regime (green points). As the bias
is decreased, this suppression at the superconductor resonance
is lifted. Finally, stepping through the resonant peak (magenta
points) occurring on top of the zero background the charge
current amplitude stays small but, interestingly, reverses sign.
In Fig. 12 we show that for strong pairing these effects are
qualitatively similar but more pronounced.

The double-exponential transient heat current Alp(t) =
Ip(t) — Ip(00) = ace™" + ape™ " showcases interesting de-
viations from the simple behavior of the charge current for
both the fast and slow switches. The initial transient value
Alp(0) = a. + a, is plotted in the main panels of Figs. 11
and 12 together with full transients for the same selections of
points. Extreme deviations occur in particular for switching
gate voltages for which the initial transient is zero Alp(0) =0
(ignoring again trivial zeros at €y = €). In this case this does
not imply that Aly(¢) stays zero as discussed in Secs. IVG
and V A. Indeed, the side panels for weak pairing and more
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FIG. 12. Strong pairing (¢ = 2.0U): transient heat current (see caption of Fig. 11). The ticks on all the side panels showing complete
transients are again the same, but the value is different from that used in Fig. 11.

pronounced for strong pairing exemplify switches for which
the response is initially zero, then develops a transient, and
finally again goes to zero without sign change. We refer to
these as “initially zero transients.” Close to such gate-voltage
points the direction of the transient heat current relative to
the transient charge current can even reverse in time: whereas
the two-particle contribution a,e” """ causes the transient heat
current at t = 0 to flow opposite to or along with the transient
charge current, due to a.e "' it reverses at intermediate times
to flow along or opposite to it (see Sec. IVG2 and Fig. 7).
That the stationary charge and heat current can flow both in
the same or in the opposite direction due to competition of
electron and hole contributions is of course well known, but
here we see the nontrivial dynamics of this competition.

We further observe for the fast switch in Figs. 11 and
12 (top panels) that as one steps through the superconductor
resonance (black and green points) the heat current tran-
sient is nonzero at the superconductor resonance, as noted in
Sec. VB 1, in contrast to the charge current which vanishes
there. The sign of this two-particle energy current at the super-
conductor resonance can be strongly negative, both in Figs. 11
(blue along narrow lines) and 12 (blue in extended regions).
Here the superconductor leads to a transient cooling effect
relative to the dominating stationary heating of the metal.
As one steps through the resonance here (green points) the
transient heat current profile changes from positive decay (first
point) to an initially zero transient (second point) to negative
decay (third point) and then back (last two points). For the
slow switch in Figs. 11 and 12 (lower panels) the heat current
vanishes along a horizontal line close to the superconductor
resonance. Stepping through the resonance at high bias at var-
ious positions (black, green, and magenta points) we likewise
find initially zero transients and reversals which disappear
with decreasing bias.

VI. DISCUSSION OF FEATURES

In this final section, we explain the main features identified
in the above overview using essentially the understanding of

the stationary problem. We furthermore investigate the tem-
perature dependence of the results.

A. Gate-voltage dependence at low temperature

The behavior of the invariants (28), observables (27), and
overlap (13) was already explained in terms of the stationary
behavior of the system and its dual system in Sec. IV C. We
now in turn use this to explain the quite complex dynamic
response results of Sec. V for both types of switches using our
duality-based formulas (23) and (24). We focus on the depen-
dence on the initial and final voltages defining the switch. In
Sec. VI A 1-3 we first consider weak-pairing results for which
the effects are clearly distinguishable and Andreev transitions
which are CB-like are well defined. We will indicate by “~”
those results that hold to a good approximation in this regime.
These provide the underlying structure of the strong-pairing
results in Sec. VI A 4 on which we comment at the end.

1. Transient charge current amplitude a (« < U)

For the charge current amplitude a = y,[(Ao),, — (A);]
[Eqg. (36)] the dependence on the final gate voltage (¢) at the
superconducting resonance is dominated by the vanishing of
the prefactor y;, the invariant accounting for electron-hole
asymmetry relevant for transport: y; = 0 if and only if € =
—U/2 [Fig. 5(1)]. This explains the existence of the horizontal
resonance in a in Figs. 9 and 10 and its effect on Iy in Figs. 11
and 12, independent of the type of switch. Its occurrence is
also independent of the bias, whether ¢ = —U/2 lies in the
final CB regime (—U < € — u < 0) or not. [Such dependen-
cies would instead enter via the factor (Ag),, — (A), but are
irrelevant since y; = 0.]

By contrast, the initial gate-voltage dependence (¢(p) en-
ters the charge amplitude a only through (A), = 0(Ao),
(since y, is €y independent). Therefore, whether a vertical
superconductor resonance exists or not now depends on the
bias regime. For large bias || > U/2 the initial polarization
(Ap),, changes sign at e = —U /2 as seen in Fig. 5(i) (replace
€ — ¢ in the plot of (A),). We thus have a vertical super-
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FIG. 13. Effective energy (48) in units of the interaction energy U as function of gate and bias voltage. Parameters and conventions are the

same as in Fig. 5.

conductor resonance in a at which the amplitude takes the
nonzero value a = —y;(A), (unless trivially € = €p). For low
bias |u| < U/2, where interaction dominates over pairing,
the superconductor resonance instead lies inside the initial
CB regime throughout which (Ag),, = 0 [see Fig. 5(i)], and
therefore there is no special feature at €9 = —U /2.

We next explain how the signature of both the horizontal
and vertical superconductor resonances depends on the switch
type [Eq. (30)]. For large bias, we observed in Sec. VB that
these resonances have the signature of a peak or dip for the
fast switch, but an onset of a plateau for the slow switch. This
difference hence occurs when the superconductor (vertical
or horizontal) resonance lies outside the (initial or final) CB
regime and it is governed only by the excess-polarization fac-
tor (A),, — (A); = 0(Ao),, — (A), (it is irrelevant that y| =0
precisely at the horizontal resonance). For switches between
non-Coulomb-blockaded regions, the polarizations (Ag),, or
(A), in the vicinity of the superconductor resonance at €y =
—U/2, respectively € = —U/2, always take nonzero values.
Moving € or € across the superconductor resonance changes
either the sign of (Ag), or (A);, leading to (Ag), ~ (A),
on one side and to (Ag),, & —(A),; on the other side of the
resonance. For the slow switch (6 = 1), this leads to the
cancellation of the two terms on one side, such that a =0
and to the terms adding up to a # 0 on the other side. We
thus have a transition to a plateau. In contrast, for the fast
switch not only (Ay),, or (A),, but also & changes sign when
moving across this resonance (see Fig. 4). This leads to having
either cancellation or addition on both sides of a resonance:
we thus have a dip or peak on a constant background. This
different behavior of the prefactor (Ag),, — (A), for switches
between non-Coulomb-blockaded even-parity regimes is intu-
itively expected, due to the possibility of exchanging Cooper
pairs with the superconducting contact during a slow switch
thereby retaining the initial polarization (see Sec. IV B) .

Finally, for low bias || < U/2 we observed in Sec. VB
that only the horizontal resonance € = —U /2 survives. It lies
inside the initial CB regime as explained at the beginning of
this section (by the vanishing of y;). In this case we addition-
ally noted in Fig. 9(c) that the charge amplitude a changes sign
across the resonance for the slow switch (resonant step) but
not for the fast switch (leaving a resonant dip). This difference

is explained in a similar way by the excess polarization factor
for which we have (Ag),, — (A); = 6 here since (A), =0 at
e =—=U/2 for |u| <U/2 and (Ap);, = 1 (outside the initial
CB regime). Thus, a = y,6: for the slow switch (6 = 1) the
amplitude maps out the alternating electron-hole sign of y,
around € = —U/2 giving the sign change [(Ao),, is € inde-
pendent], but for the fast switch the 6 function (13) cancels
this sign change producing a resonant dip.

2. Transient heat current amplitude a, (« < U)

The heat current amplitudes a. and a,, in Figs. 9 and 10 and
Ip in Figs. 11 and 12 allow a similar detailed understanding.
For the amplitude a, = Eesr Yc[(Ao0) 5, — (A);] [Eq. (42)], we
additionally need to consider the effective energy

Eep = 584 — U(A)2) — uy/ve. (48)

This energy prefactor is plotted in Fig. 13 and can be un-
derstood as before from Fig. 5(i). It is responsible for the
appearance of additional zeros and sign changes in the am-
plitude a. as function of the final gate voltage €, depending on
the bias and pairing. The switch-specific explanations of the
vertical resonance for a, follow from consideration of the ini-
tial gate-voltage dependence of (A),, — (A). alone, exactly as
for the charge amplitude a in this case (Egf Y. 1S € indepen-
dent). Indeed, comparing with Eq. (36) we see that the ratios
plotted in Figs. 9 and 10 are the same, determined only by
the excess polarization ratio: a(slow)/a(fast) = a.(slow)/a.
(fast) = [{A);, — (A):1/[6(A);, — (A).].

To understand the existence of the horizontal resonance
we need to consider the final gate-voltage dependence of two
factors [y, > 0 plays no role in this, cf. Eq. (31)]: In Fig. 13(i)
we see that at high bias, the effective energy E.¢ has three
zeros (red curve), two at the CB-like Andreev transitions
(e — u &~ —U and 0) and one at the superconductor resonance
€ ~ —U/2. Thus, for this case the heat current amplitude
a. at the superconductor resonance € = —U/2 always shows
a zero, irrespective of the type of switch. By contrast, for
low bias, the zero at the superconductor resonance always
disappears from E.¢ (orange and blue curve), leaving only
the two CB-like Andreev zeros in Fig. 13(i). Therefore, at
low bias, the factor (A),, — (A); = 0, analyzed at the end of
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Sec. VIA 1, decides whether or not a. vanishes at the su-
perconductor resonance € = —U /2. We thus have a, & E. 6
which shows one zero for the fast switch, but no zero for
the slow switch. This explains why only for the fast switch
we have a. ~ 0 along the horizontal resonance ¢ = —U/2
for all biases as noted in Secs. VB 1 and V B 2. This leaves
the pure two-particle transient heat current Aly(t) = a,e™ "
whose amplitude we analyze next.

3. Transient heat current amplitude a, (a < U)

The explanation of the behavior of amplitude a,/y,U =
Y{p)py — (P)e] + H(A):[{A0) ., — (A).] [Eq. (43)] involves
the competition of two-particle contributions of excess parity
and excess polarization, which, interestingly, is modulated by
the stationary polarization (A); of the dual system.

Superconducting resonance in a,. We first discuss the su-
perconductor resonance focusing on the high-bias case where
it is independent of the switch type (magenta a,, line cuts in
Figs. 9 and 10).

At the horizontal resonance € = —U/2 we have (p), =
0 = (A), and additionally (A); =0 by Fig. 5(1) such that
a,/(ypU) ~ }T(p)m maps out the parity of the actual sta-
tionary system. As expected, as function of €y, it exhibits
signatures of Coulomb blockade: a,/(y,U) = :I:}t outside (in-
side) the initial CB regime. As observed in Secs. VB 1 and
V B 2, this holds for both the slow and fast switches. The
reason is that the factor (A);: = 0 cancels out the switch-
dependent contribution (A),, = 0{Ap),,. Since we found that
along this horizontal resonance a. = 0, the Coulomb blockade
enters the transient heat current only through the pure two-
particle contribution Alp(t) = a,e™"".

At the vertical resonance ¢y = —U /2, we have (p),, =0 =
(Ao),, for |u| > U in Fig. 5(i), such that again the switch

dependence then drops out. We get a,/(y,U) = —[%(p)Z +
1

5(A)z(A) ] = %(p)z, where the last equality is a nontrivial
relation between stationary observables of the actual and the
dual model, holding for any set of parameters [Eq. (44) of
Ref. [59]]. Thus, along the vertical superconductor resonance
ap/yyU = %(p)z is constant as function of €. This seems to
defy simple explanation in terms of the repulsive interaction
of the actual system or by the promotion of even-parity states
by the pairing « since it already holds for weak pairing relative
to interaction (and continues to hold for strong pairing). This
value of a, instead maps out the stationary parity of the dual
system, which by Fig. 5(i) equals (p); = 1 everywhere (except
trivially at the crossing € = ¢y = —U/2 where we do not
switch). Clearly, this observable cannot show any signature of
repulsive Coulomb blockade as explained in Sec. IV C. The
surprising lack of an effect in a,, along the vertical resonance
in the final CB regime, noted in Secs. VB 1 and V B 2, thus
receives a very simple physical explanation by duality. In the
observable transient heat current /y(¢) the repulsive Coulomb-
blockade effect is instead expressed through a, which sharply
changes as function of ¢ along the vertical resonance, van-
ishing in the final CB regime (—U < € —u < 0). In this
regime the resulting pure two-particle transient heat current
Aly(t) = ape™ " nevertheless probes exclusively the parity
of the attractive interaction in the dual model.

Plateaus of a,. It remains to explain how the plateau
values of a, arise from the competition between parity and
polarization. The excess parity (p),, — (p); is easily under-
stood and does not depend on the type of switch [Eq. (30)].
At low bias |u| < U/2 and weak pairing o < U, we see in
Fig. 5(i) that each parity takes the value 1 outside the CB
regime and —1 inside. We thus have (p),, — (p); =2 if €
(ep) lies inside the CB regime and ¢ (¢) lies outside of it. For
all other switches (p),, — (p); = 0 at low bias. At high bias
|p| = U /2 this result still holds with one exception: the parity
can vanish at the superconductor resonance now lying outside
the CB regime, as discussed above. The excess polarization
term (A)z[(Ao),, — (A);] now brings in a dependence on the
switch type:

Slow switch. At low bias for the slow switch (0 = 1) the
dual polarization equals (A); =~ 1 for all € by Fig. 5(1). We
also see that (Ag),, — (A); =~ 1~ %[(p)p0 — (p),] if € ()
lies inside the CB regime and ¢ (¢) lies outside it. Thus, the
excess polarization and excess parity cancel out to give a, ~ 0
for all gate voltages, as long as the temperature is low. The
complete suppression of a, for the slow switch observed in
Sec V B 2 thus arises from this competition of polarization and
parity and leads to thermally activated behavior illustrated in
Sec. VIB.

At high bias, inspection of Fig. 5(i) shows that two things
change in the gate-voltage plane: we can have dual po-
larization (A); &~ —1 and simultaneously (A), &~ 41 in the
horizontal strip 4 < € < —=U/2 in Fig. 9 and we can have
(Ag),, ~ +1 in the vertical strip p < €y < —U/2. Inside
these regimes a nonzero value of a, is possible which turns
out to always be a,/y,U ~ 1: we either have (A)z[(Ag),, —
(A).] ~ 2 and no excess parity {p), — (p); ~ 0,8 or we have
(A)z[(Ao)p, — (A);] & 1 and excess parity (p),, — (p); & 2.0
In the remaining two cases in these regimes one still obtains
ap, & 0.'0 This explains how the suppression of ap just dis-
cussed is lifted when the bias voltage makes positive values
of the polarization and negative values of the dual polarization
accessible. Outside these strips the situation is the same as for
low bias and the cancellation to a, ~ 0 persists.

Fast switch. Finally, it remains to explain which modifica-
tions to the above occur for the fast switch reminding that the
excess parity (p),, — (p). is the same for both switch types.
The switch-dependent excess polarization term is only mod-
ified with respect to the slow-switch result in regimes where
we have 6 &~ —1. At low bias, where (A); & 1, these modi-
fications occur in just two cases.!! First, if € lies inside the
CB regime and ¢ lies outside it, then (Ag),, — (A); = —6 and
(P)py — {P): = 2 using Fig. 5(i). Thus, a,/(Uy,) = (1 —0)/2
which is a unit step located at e = —U /2. This is the signature

8Cases to consider: (Ag),, & —1,(A),~1, (A): =1 and (Ap),, ~ 1,
(A), = -1, {A); = 1.

“Cases to consider: (Ag),, ~ 1, (A), 0, (A); ~ 1.

Cases to consider: (Ag), ~ 1, (A),~1, (A);~—1 and
(Ao)yy =0, (A), = 1, {A): = — L.

Tn one further case a deviation from the slow switch could oc-
cur but it does not: (iii) For € > —U/2 > p outside CB regime
[(A). ~ 1, (A); = 1] and ¢, inside the CB regime [(A),, ~ 0] the
switch dependence cancels out: (Ag),, — (A), = —(A). ~ 1.

e

1%

4
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FIG. 14. Temperature dependence of amplitude a in units of I' and a., a,, and Aly in units of I' U for (a) fast switch, (b) slow and
fast switches (same), and (c)—(e) slow switch. In all figures the tick-mark distance on the vertical axis equals 0.25 and zero is indicated
by a horizontal gray line. In (a) and (b) the dashed curves are offset for clarity (see text). The leftmost two vertical gray lines indicate the
Coulomb-blockade regime —U < € — u < 0 and the right vertical gray line marks the position of superconducting resonance € = —U/2,

respectively €g = —U/2.

of the superconductor resonance shifting relative to the final
CB regime (—U < € — u < 0) with varying the bias as ob-
served in Sec. V B 1. Second, if € and ¢, lie on opposite sides
of the CB regime then (Ag),, — (A); = —(Ag),, — (A); =2
while (p),, — (p); =0. Thus, a,/(Uy,) = 2, implying that
the plateau reached after the step in (i) continues outside the
CB regime as observed in Sec. V B 1. Finally, for high bias we
note that the superconducting resonance does not lead to the
onset of plateaus for a,, for the fast switch (see Sec. III C).

4. Strong pairing (o« > U)

The explanation of the gate-voltage dependence for weak
pairing « < U focused on the superconductor resonance, the
only pronounced feature. As observed in Sec. V C there are
two main changes for strong pairing o > U: Quantitatively,
the superconductor resonance gets broadened, smoothening
the features explained earlier. Qualitatively new is the onset
of the Andreev resonances (@, @ in Fig. 10). Their appear-
ance at low temperature is directly understood from their
appearance in the duality invariants and stationary observables
in Fig. 5(iii) as sharp steps which was already explained in
Sec. IV C.

One additional feature remains to be explained. For the
slow switch at low bias, we observed only for « > U a com-
plete suppression of the amplitudes a and a.. Since these
are proportional to the excess polarization (Ag),, — (A). this
follows from the lifting of the Coulomb blockade at low bias
giving equal stationary polarizations (Ag),, = (A), = —1 for
all €y, €, which cancel if 6 = 1. This cancellation can only be
undone by thermal activation. (By contrast, a, is suppressed
by cancellation of two-particle contributions and occurs

already for small pairing @ < U, see end of previous section.)
For the fast switch a and a, are likewise suppressed at low bias
except in those regions where the switch-dependent parameter
6 < 0 spoils cancellation of terms leading to nonzero a and a..
Their signs equal the sign of y; and E. > 0, respectively.

B. Temperature effects

The weak-coupling results (23), (24), and (30) describe
the transient response including the competition of pairing
and thermal fluctuations for 7, @ > I" focusing on 7 K< U.
With increasing temperature it becomes more difficult to
disentangle the variety of features that we were able to dis-
cern so far and we highlight some interesting aspects of the
T dependence. One should remember that our infinite-gap
approximation results (no quasiparticles) are applicable to
real, finite-gap superconductors only at temperatures 7 < A
(Sec. II) (no quasiparticles).

1. Robustness against thermal fluctuations

An immediate question concerns the robustness of the
discussed features against temperature increase. The features
due to non-Coulomb-blockade type of Andreev transitions are
directly sensitive to thermal smearing as seen in Fig. 14. Like
any other transition induced by the metal, the relevant thermal
energy scale is 47, the width of the Fermi-function step.

By contrast, Figs. 14(a) and 14(b) illustrate that the various
signatures of the superconductor resonance for both the fast
and slow switches (peaks and dips or plateau steps, respec-
tively) do not change their width as function of gate voltage as
T is increased; the width is instead . Throughout all panels,
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curves computed at the same temperature have the same color.
The line cuts plotted in Fig. 14(a) are taken vertically through
€0 — pm = —3U in the fast-switch plots of Fig. 9 and in the
bottom panel show that the dip at € = —U/2 in a, and a,
(indicated by the marker ®) is clearly unaffected by tem-
perature. Therefore, at this position the same holds for the
resulting transient heat current Alp(t) at small, intermediate,
and large times (ty, =0, 1,4). In particular, in the plot of
Aly(t) in the upper panel, the four curves for different tem-
peratures lie almost exactly on top of each other.

Figure 14(b) shows the T dependence of amplitude a,, for
high bias || > U/2. It is taken along the horizontal super-
conductor resonance [cut through marker O in Fig. 9(a), top
panel in Fig. 14(b)] and along the vertical one [cut through
marker @ in Fig. 9(a), bottom panel in Fig. 14(b)]. These are
the same for both the fast and slow switches. As mentioned in
Sec. VIA, this essentially maps out the parity of the actual
and dual system, respectively. Indeed, along the horizontal
resonance the interaction U > « causes a sign inversion of the
parity a,/(y,U) = (p)./4 in the CB regime, which is lifted
with increasing T'. This determines the transient heat current
Alp(t) at all times since at the superconductor resonance
€ = —U/2, a. is suppressed for all ¢y as illustrated in the
top panel of Fig. 14(b) (offset dashed curves for ry, = 1).
As mentioned earlier, along the vertical resonance there is
surprisingly no signature of the interaction in a,/(y,U) =
(p):/4 = % [vertical red line in Fig. 9(a)] but such a feature
seems to develop with increasing T. This is immediately
understood by duality: the effect of the attractive interaction
U = —U in the dual model, leading to a constant (p); = 1
(see Fig. 5), is suppressed with increasing temperature. The
signature of the actual interaction U > « on the transient heat
current Aly(t) is instead imprinted by a. (not shown). When
it is combined to obtain Aly(¢) [offset dashed curves bottom
panel of Fig. 14(b)] its temperature dependence cancels out
features developing in a,,.

Finally, we have verified that at higher temperatures
(T/U =~ %) the spectroscopy plots in Figs. 11 and 12
still exhibit pronounced lines of gate-voltage points around
the superconductor resonance (e.g., the magenta points)
where Aly(0) = a. + a, vanishes nontrivially by cancellation
(white line segments). Here the full transients remain strongly
nonmonotonic as in Sec. V D. Interestingly, this effect now
coexists with the different nonmonotonicity effects which oc-
cur also without the superconductor at this high temperature
(see Appendix C).

2. Entropic resonance shifts linear in temperature

The temperature evolution of the line cuts of amplitudes a,
and a,, in Fig. 14(a) displays another interesting thermal effect
(lower panel): Already for small increasing temperatures, the
positions of the features in the CB regime deviate noticeably
from the energy thresholds. This shift is linear in 7'. All other
features in the plot remain unaffected up to 7 < 0.15U (first
4 deep blue line cuts). This shift is a well-known general
phenomenon [69,70] for stationary transport through weakly
coupled systems with transition rates of varying magnitudes
[71,72] and indeed occur in the stationary results in Fig. 6(i)

at || < U/2 when increasing T (not shown). They call for
extra care in both experimental and theoretical analysis since
the naive direct identification of measured and computed data
with energy thresholds can be misleading, resulting in ap-
parent inconsistencies when varying temperature [70]. These
shifts can be attributed to the different degeneracy of the
eigenstates of the proximized dot. Indeed, such shifts have
recently been exploited to measure the entropy associated
with the level degeneracy in quantum dots [73,74].

Our results show that such shifts also occur in the res-
onant parameter dependence of time-dependent response of
transport to a switch and turn out to be present even in the
no-superconductor limit. They have received little attention
so far, whereas their effect on slowly driven transport dynam-
ics has been considered [75,76]. Our duality-based formulas
(22)—(24) rationalize their occurrence since they express the
transient response in terms of stationary observables of the
system and the dual system which we know exhibit such
shifts. What is quite subtle here is that the significant shifts
for a. and a, occurring in the first four curves (lower panel)
cancel out to produce the same transient: In the upper panel
of Fig. 14(a) the transients Aly(¢) collapse to essentially the
same curve on short, intermediate, and long times. This can-
cellation of the temperature-dependent contributions to a. and
ap occurs in the CB region where the charge rate y, saturates
the bound y,,. The only remainder of the sharp steps in a., a,
in the transient heat current is a kink at the onset of the CB
regime which becomes more pronounced with time and is
visible for both weak and strong pairings.

3. Activation by thermal fluctuations

Finally, the question of thermal activation came up in
Sec. V: for low bias, the slow-switch amplitudes can be en-
tirely suppressed at low temperature 7 << U. In Figs. 14(c)—
14(e) we show that temperature indeed activates these
amplitudes. Further increase of 7' Z U again suppresses the
activated features by thermal smearing as usual. This gives
distinct nonmonotonic dependencies on T reflecting the dif-
ference of the effects: @ and a. are suppressed at low T
only for strong pairing (Sec. VC). This is expected intu-
itively due to the gap opening up xa (strongly affecting all
the invariants in Fig. 5 that determine these amplitudes). By
contrast, a, is suppressed at low T already for small pairing
a < U (Sec. VB) due to a subtle cancellation of two-particle
contributions (end of Sec. VIA) and remains suppressed
fora > U.

In contrast to the slow switch, the decay after the fast
switch does not require thermal activation. This is due to the
fact that fast switches lead to a nonvanishing excess polariza-
tion essentially whenever at the initial gate voltage the dot is
empty and at the final gate voltage it is doubly occupied in the
stationary state or vice versa. In this case, the initial state has a
|+) component, the decay of which results in a transient heat
current with a two-particle component for o # 0. For these
switches, the excess parity is always zero and cannot cancel
out the excess polarization. Therefore, the fast-switch ampli-
tudes have nonzero contributions in low-temperature regimes
where the slow-switch amplitudes are fully suppressed.
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VII. SUMMARY

We analyzed transient charge and heat transport spec-
troscopy where a weakly coupled metal probes an interacting
quantum dot which is proximized by a large-gap superconduc-
tor. We used our single encompassing formula of Ref. [59],
involving the stationary Andreev polarization and parity, to
analyze the rich variety of behaviors of this system of high
current interest. This allows us to identify the contributions
of the two decay modes of the dissipative dynamics. We
focused on initial states which are mixtures of Andreev states,
and showed how these can be prepared in two ways, using
either a fast or a slow gate-voltage switch (fp < ™!, re-
spectively 7o > a~!). These define distinct experiments and
we exhaustively investigated the ensuing transient charge and
heat transport on the background of their stationary finite-bias
currents.

(0 —w)/U (e0 — u)/U

For weak pairing relative to the interaction (o < U) the
superconductor pair resonance is the main feature occurring
alongside Coulomb-blockade transient responses. It appears
when switching the quantum dot’s symmetry point either
towards or away from alignment with the superconductor irre-
spective of the alignment with the metal probe. We found that
at this resonance the transient heat current can be dominated
by its two-particle parity amplitude reflecting the importance
of electron pairs. The pairing leads to pronounced signatures
in the charge and heat current decay.

For strong pairing (o« > U) additional thermally sharp fea-
tures, induced by the metal probe, appear on the smooth
background of the now broadened pair resonance. These cor-
respond to transitions to Andreev states and show up pairwise
with energies clearly split by the repulsive interaction, lead-
ing to a complex bias-voltage dependence of the transient
response.
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FIG. 15. No interaction (U = 0): charge (heat) amplitudes a (a.) in units of coupling y, = I" (x interaction energy U) (see caption of

Fig. 9 and main text for description of the layout).
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The superconductor furthermore induces nontrivial
double-exponential heat current decay profiles already
at low temperature relative to the interaction (T < U).
Remarkably, these can feature a local maximum and also a
preliminary crossing of the stationary value already at short
times. This effect is clearly tied to the pairing induced by the
superconductor and its interplay with the interaction and the
transport bias. It is distinct from similar effects which occur
without a superconductor at higher temperature (7" ~ U)
which we found here and that went unnoticed in Ref. [16].

In some parameter regimes of the slow-switch response
we identified blocking of the amplitudes. For strong pairing
this is due to the induced gap and we find that temperature
activates the transient behavior in these regimes. Interestingly,
the two-particle heat amplitude already shows such blocking
and activation for weak pairing leading to similar nonmono-
tonic 7' dependence. Finally, we found that significant shifts
of resonant features with a strong linear temperature depen-
dence [69-74] can occur in the two amplitudes of transient
response, but these features remarkably cancel out in the total
observable heat current.

With the continuing progress in detecting the charge and
energy of individual electrons in a time-resolved manner
[77-79] in semiconductor nanostructures, our results motivate
extension of these experimental works to hybrid supercon-
ducting systems.
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APPENDIX A: INITIAL CONDITION

Equation (30) is obtained by expanding the initial state, ex-
pressed in the form of Eq. (25), as follows: For both switches,
the change of the gate voltage 6o — § leads to a change of the
basis from {|1), |Ag), |p)} — {I1), |A), |p)} where Ay and A
are the different polarization operators at gate voltage § and
80, respectively. This amounts to

|20) = $11) + (Ao)z 2 140) + (P)zy 31P)

— 1p0) = $I11) + 0(A0)z 31A) + (P 31p) (A1)

for the fast switch (15), and yields the result for the slow
switch (10) when setting & = 1. Here we have used %(Ale) =

i | 2
3 2 TT(TITg) = 5 D T [{TTg) | = 6.
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FIG. 16. Same as Fig. 8 but for intermediate temperature 7 = U.
For higher temperatures 7 >> U the cooling effect stays [blue area in
Aly(0)] but all nonmonotonicity of the transients /y(t) disappears
(Sec. IVG2).

APPENDIX B: NO INTERACTION (U = 0)

In Fig. 15 we show how the strong-pairing results in Fig. 10
are modified when setting U = 0. To facilitate comparison
with Fig. 9 we continue using U of the interacting case as
a reference energy for the case U = 0 to normalize €y — u,
€ — U, 1, and « in the plot. The weak-pairing results for
U = 0 are similar (not shown): the superconductor resonance
seen in Fig. 9 is sharpened and while Andreev transitions are
suppressed.

APPENDIX C: TRANSIENT HEAT CURRENT
REVERSAL (T ~ U)

In Fig. 16 we illustrate how the no-superconductor results
(¢ = 0) in Fig. 15, characteristic for T <« U, change when
the thermal broadening becomes comparable to the interaction
T ~ U. Note that although U starts to be dominated by tem-
perature here it is crucial for the reversal effect (transient heat
current initially negative turns positive) since for U = 0 the
transient heat current is single exponential and monotonically
decaying. Note, however, that for U = 0 the transient heat
current can still be negative all the time without reversing
(not shown). Interestingly, this is a cooling effect in the total
heat current since the stationary heat current is zero in this
single-terminal case.
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