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Optical conductivity of tilted higher pseudospin Dirac-Weyl cones
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We investigate the finite-frequency optical response of systems described at low energies by Dirac-Weyl
Hamiltonians with higher pseudospin S values. In particular, we examine the situation where a tilting term
is applied in the Hamiltonian, which results in tilting of the Dirac electronic band structure. We calculate and
discuss the optical conductivity for the cases S = 1, 3/2, and 2, in both two and three dimensions in order to
demonstrate the expected signatures in the optical response. We examine both undertilted (type I) and overtilted
(type II) as well as the critically tilted case (type III). Along with the well-known case of S = 1/2, a pattern
emerges for any S. We note that in situations with multiple nested cones, such as happens for S > 1, the
possibility of having one cone being type I while the other is type II allows for more rich variations in the
optical signature, which we will label as type-IV behavior. We also comment on the presence of optical sum
rules in the presence of tilting. Finally, we discuss tilting in the α − T3 model in two dimensions, which is a
hybrid of the S = 1/2 (honeycomb lattice) and S = 1 (dice or T3 lattice) model with a variable Berry phase. We
contrast this model’s conductivity with that of S = 3/2 and S = 2 as the resultant optical response has some
similarities, although there are clear distinguishing features between these cases.
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I. INTRODUCTION

The experimental isolation of graphene [1–4] has been
remarkable due to wide-reaching implications for technolog-
ical applications, materials science, and fundamental physics.
Relevant for this work is the impact this discovery has had
on fundamental theory and developments with regard to the
emerging field of Dirac-Weyl materials. Graphene provides
a solid-state analog system for the Dirac equation of high-
energy physics [5]. This arises from the low-energy physics of
the electron dynamics in graphene which maps onto a Dirac
equation for massless fermions with spin S = 1/2. Here, how-
ever, the “spin” is actually a “pseudospin” associated with the
two hexagonal (A and B) sublattices composing the honey-
comb lattice structure of a single layer of carbon atoms. The
energy spectrum resulting from a tight-binding calculation ex-
hibits a linear dependence in the electronic wavevector in the
low-energy limit, near the corners of the first Brillouin zone
[3,6]. This appears as gapless valence and conduction cones
in the energy band structure about the charge neutrality point
(Fig. 1, top left), referred to as the Dirac cone and Dirac point,
respectively [3]. In addition, the Fermi level may be varied, us-
ing voltage gating or doping to range over this special region.
Both the band structure and the change in Fermi level with
doping have been verified in angle-resolved photoemission
[7]. This remarkable behavior has allowed for the prediction
and experimental verification of several phenomena arising
from Dirac physics, for example, the unusual quantum Hall
effect [8,9] and Klein tunneling [10,11].
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The success with graphene has given rise to research into
many variations of the classic two-dimensional (2D) Dirac
case and beyond, including three-dimensional (3D) Weyl ma-
terials and higher pseudospin values, both of interest in this
work. Possible manifestation of these variations can found
in the low-energy physics of more complicated materials
[12–17] or can potentially be designed through other sys-
tems (e.g., Ref. [18]). With the shift to materials with more
elaborate band structures, it has been observed that the Dirac
cones may be “tilted.” In this case, the Fermi surface is an
ellipse instead of a circle (type-I tilted cone) or a pair of open
hyperbola or parabola Fermi surfaces (type II or III, respec-
tively) with both an electron and a hole pocket. The possibility
of a tunable tilt via varying a transverse electric field, say,
has been suggested for 8Pmmn borophene, a material which
has been argued to be described by a 2D Dirac Hamiltonian
with an extra contribution that tilts the cones. This could
have implications for modeling black-hole physics [19]. The
ideas surrounding tilted Dirac cones have been around for
a while for both 2D and 3D cases and in a magnetic field
[20], and the tilt parameter has been predicted to have an ef-
fect on properties such as frequency-dependent spectroscopies
[21–30].

In this work we wish to examine the case of tilting for
higher pseudospin S Dirac-Weyl cones in two and three di-
mensions with specific attention to the optical conductivity
at finite frequency as this is a spectroscopy which can be
sensitive to both tilting and pseudospin S effects. Optical
spectroscopy has already been proven as an excellent exper-
imental probe of Dirac physics. There has been successful
demonstration of agreement between theory and experiment
for graphene [31–35], bilayer graphene [12,36–38], and other
materials (e.g., Refs. [39–42]).
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Untilted Dirac cones with general pseudospin have been
previously examined for predictions of finite-frequency con-
ductivity in zero magnetic field by Dóra et al. [15] and in
finite magnetic field by Malcolm and Nicol [43]. The optical
conductivity in a model which varies between the graphene
(S = 1/2) lattice to the dice or T3 (S = 1) lattice, called the
α − T3 model [44], has also been calculated for both B = 0,
finite B, and for a semi-Dirac case [45–47]. Experimental
work on a mercury-cadmium-tellurium (MCT) system [40]
led to the calculation of a 3D model for the conductivity of
Kane fermions both in zero and finite B, and it was suggested
that the low-energy physics was a 3D manifestation of the
α − T3 model for a specific α value relating to an unusual
Berry phase [41]. Our goal in this paper is to advance this
literature and to anticipate potential future developments in
materials by providing the optical fingerprints of tilted Dirac
cones in higher pseudospin S and in the α − T3 model.

This paper is organized as follows. In Sec. II, we outline the
basic theoretical approach for the starting Hamiltonian and the
method of evaluation for the conductivity. We discuss the op-
tical conductivity of untilted cones with general S in Sec. III.
Sections IV and V describe our results for the interband con-
ductivity of tilted 2D and 3D Dirac-Weyl cones, respectively,
with a specific focus on S = 1/2, 1, 3/2, and 2. Section VI de-
scribes our results for the intraband (Drude) part of the optical
conductivity. Spectral sum rules and velocity anisotropy are
discussed in Sec. VII, while the optical conductivity results
for a tilted α − T3 model are described in Sec. VIII. Finally,
Sec. IX provides the summary and concluding remarks.

II. THEORETICAL FORMALISM

The simplest low-energy band structure of Dirac-Weyl ma-
terials with general pseudospin S can be described by the
Hamiltonian [15]

Ĥ0 = h̄v�k · �S, (1)

where v is a velocity, �S = (Ŝx, Ŝy, Ŝz ) is a vector of the spin
matrices associated with spin S , and �k = (kx, ky, kz ) is the
electronic wavevector (kz = 0 in the case of a 2D material).
Note that for the case of graphene (S = 1/2), the Hamiltonian
is normally written with Pauli matrices defined with eigenval-
ues ±1 and in that case v would be vF , but here we follow
Dóra et al. [15], where these are the standard spin matrices
with the eigenvalues of Ŝz given as n = −S,−S + 1, . . . ,S .
Hence, for S = 1/2, this introduces an extra factor of 1/2,
making vF = v/2 when comparing to the graphene literature.
Including velocity anisotropy in the Hamiltonian is straight-
forward and we will provide this discussion in Sec. VII.

The general Hamiltonian given above has energy
eigenvalues

εn(�k) = nh̄vk. (2)

For n nonzero, this dispersion will give rise to a series of
nested cones depending on the S value (see Fig. 1). It will
be convenient for our discussion to separate out the conical
bands from the flat band at zero energy that occurs in the
integer spin case. Consequently, we will use the notation of
ε±λ(�k) = ±λh̄vk, where λ = 1/2, 3/2, . . . ,S for half-integer

FIG. 1. Schematic of energy band structures generated by
Eqs. (4) and (5) for the first three pseudospin values: S = 1/2
(row 1), S = 1 (row 2), and S = 3/2 (row 3). Untilted, undertilted,
and overtilted band structures are shown in columns 1, 2, and 3,
respectively.

spins and 1, 2, . . . ,S for integer spins. The flat band, which
occurs for integer spin only, is denoted as ε0(�k) = 0.

Referring to Fig. 1 (first column), we show the pattern
of energy bands for the three lowest pseudospin values. For
S = 1/2, this corresponds to a valence and a conduction Dirac
cone (indexed by n = −1/2 and 1/2), which touch at the
charge neutrality point corresponding to chemical potential
μ = 0. The S = 1 case retains the Dirac cone structure of the
previous case but now has a flat band at zero energy (the bands
are indexed by −1, 0, and 1). For S = 3/2, there is now a pair
of nested Dirac cones at positive and negative energy (indexed
by −3/2, −1/2, 1/2, and 3/2). The S = 2 case is not shown
in Fig. 1, but in this case there is a double set of cones like
the S = 3/2 case and a flat band as found for S = 1 (indexed
by −2, −1, 0, 1, and 2). For higher pseudospin, this pattern
repeats, with each new value of λ contributing an additional
valence and conduction cone.

We investigate “tilted” cones in this work by adding an
additional term proportional to the identity operator Ŝ0 in the
Hamiltonian, which applies a tilt to the band structure. The
modified Hamiltonian is then

Ĥτ = h̄v(�k · �S + τk‖Ŝ0), (3)

where k‖ defines the tilt direction (it is convenient to choose
k‖ = kz in the 3D case, while typically kx or ky is chosen in
the 2D case) and τ is the parameter controlling the tilt. The
eigenvalues become

ε±λ(�k) = h̄v(±λk + τk‖) (4)

and, in addition for the case of integer S ,

ε0(�k) = h̄vτk‖, (5)
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so that now each pair of eigenenergies indexed by λ corre-
sponds to a pair of “tilted” 2D or 3D cones, and the flat band
is now a tilted 2D or 3D (hyper)plane (see the second and
third columns of Fig. 1 for a schematic illustration). When
the chemical potential μ is nonzero, the Fermi surfaces will
have the form of a conic section. Specifically, the undertilted
case (type I, τ < λ) produces an ellipse(oid), while the crit-
ically tilted (type III, τ = λ) and overtilted (type II, τ > λ)
cases produce open parabola(oid) and hyperbola(oid) Fermi
surfaces, respectively. The plane-type band produces a Fermi
surface that is either an open line or an open plane (dependent
on the dimensionality).

To calculate the optical conductivity, the standard Kubo
formulation is employed for the current-current correlation
function. Given ε±λ(�k), ε0(�k), and the associated eigenvectors
|±λ〉 and |0〉, the real part of the longitudinal optical conduc-
tivity σ (ω) can be computed from

σii(ω) = h̄
∑
n,n′

∑
�k, �k′

�[μ − εn′ (�k′)] − �[μ − εn(�k)]

εn(�k) − εn′ (�k′)

× πδ[h̄ω + εn(�k) − εn′ (�k′)]〈n| ĵi|n′〉〈n′| ĵi|n〉, (6)

where n and n′ index over the allowed band indices and ω is
the photon frequency. The chemical potential μ is taken to be
positive throughout this work, for notational simplicity. �(x)
and δ(x) are the Heaviside step and Dirac delta functions, re-
spectively, and ĵi = − e

h̄
dĤ
dki

= −ev̂i are the current operators.
We have taken the limit of zero temperature (T = 0) and zero
impurity scattering in order to capture the essential physics.
Finite temperature and impurity scattering serve to broaden
and smooth out sharp edges on the curves. Here, we will
solely discuss the real (absorptive) part of the conductivity;
the imaginary part can be obtained through Kramers-Kronig
evaluation.

Finally, note that throughout this work we present the op-
tical conductivity results for a single electron spin and valley.
Spin and valley degeneracy can be restored by multiplying our
results by the factors gs and gv , respectively.

As an illustrative example, the Hamiltonian, wave func-
tions, and relevant matrix elements for the tilted 3D
S = 3/2 case are presented below. Working in spher-
ical coordinates (tan ϕk = ky/kx and cos θk = kz/k), the
Hamiltonian is

Ĥτ, 3/2 = h̄vk

⎛
⎜⎜⎜⎜⎜⎜⎝

(
τ + 3

2

)
cos θk

√
3

2 e−iϕk sin θk 0 0
√

3
2 eiϕk sin θk

(
τ + 1

2

)
cos θk e−iϕk sin θk 0

0 eiϕk sin θk
(
τ − 1

2

)
cos θk

√
3

2 e−iϕk sin θk

0 0
√

3
2 eiϕk sin θk

(
τ − 3

2

)
cos θk

⎞
⎟⎟⎟⎟⎟⎟⎠

. (7)

The eigenvalues are as given by Eq. (4), and the eigenvectors are

|±1/2〉 = N±1/2

⎛
⎜⎜⎜⎜⎝

e−3iϕk sin θk/(cos θk ∓ 1)

±√
3e−2iϕk

(
1
3 ∓ cos θk

)
/(cos θk ∓ 1)

√
3e−iϕk

(
cos θk ± 1

3

)
/ sin θk

1

⎞
⎟⎟⎟⎟⎠, (8a)

|±3/2〉 = N±3/2

⎛
⎜⎜⎜⎜⎝

±e−3iϕk tan∓3(θk/2)
√

3e−2iϕk tan∓2(θk/2)

±√
3e−iϕk tan∓1(θk/2)

1

⎞
⎟⎟⎟⎟⎠, (8b)

with each N±λ denoting the normalization factors such that
each 〈±λ|±λ〉 = 1. Notice that all these eigenvectors are τ

independent and are therefore the same in the untilted limit
(this is unsurprising, given that the untilted and tilted Hamil-
tonians commute with each other and should therefore share
eigenvectors). Using these eigenvectors and the velocity oper-
ators v̂i, the relevant nonzero matrix elements entering Eq. (6)
for σzz (the tilted direction) are

|〈±λ|v̂z|±λ〉|2 = (τ ± λ cos θk )2, (9)

|〈±1/2|v̂z|±3/2〉|2 = 3
4 sin2 θk, (10)

|〈±1/2|v̂z|∓1/2〉|2 = sin2 θk, (11)

and for σxx (untilted direction),

|〈±λ|v̂x|±λ〉|2 = λ2 sin2 θk cos2 ϕk, (12)

|〈±1/2|v̂x|∓1/2〉|2 = 1
4 [3 + cos(2θk ) − 2 sin2 θk cos(2ϕk )],

(13)

|〈±1/2|v̂x|±3/2〉|2 = 3
4 |〈±1/2|v̂x|∓1/2〉|2. (14)

The matrix elements and the energy eigenvalues enter the
formula for the optical conductivity.

III. UNTILTED RESULTS

To better appreciate the effect of the tilt for higher pseu-
dospin, we first examine the optical conductivity in the
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untilted case, i.e., τ = 0. The 2D untilted case has been calcu-
lated for a general S by Dóra et al. [15]. Here, we review the
2D results and provide our results for three dimensions.

At finite μ, there are two components to the optical conduc-
tivity: The Drude (or intraband) component centered around
zero frequency, and the interband contribution at finite fre-
quency. The intraband response is associated with transitions
within an energy band right near the Fermi level. It may be
broadened into a Lorentzian form with impurity scattering
(the Drude form) or simply be a δ function at ω = 0 in the
case of the pure limit. The interband conductivity is due to the
transitions between energy bands allowed by selection rules.
In this paper, we will primarily focus on the interband form
as providing the most evident features in spectroscopy, but
we will also provide results for the intraband component and
discuss the possibility of sum rules or spectral weight transfer
between the two components.

The result for pseudospin S in two dimensions from Dóra
et al. [15] is rewritten here for T = 0 and with notation to
match our paper. The interband conductivity (per valley and
electron spin) is

σ 2D
inter (ω) = σ0

S∑
λ=λmin

λθ (λh̄ω − μ), (15)

and the intraband part is

σ 2D
intra (ω) = 2μσ0	S + 1/2
δ(ω), (16)

where σ0 = e2/8h̄, λmin = 1/2 or 1 for either half-integer
or integer S , respectively, and 	x
 is the floor function. To
recover the result for graphene, which is S = 1/2, a factor of 4
for the valley and electron spin degeneracy must be included,
and then the conductivity becomes the well-known form of
σ (ω) = 2σ0[4μδ(ω) + θ (h̄ω − 2μ)].

In the 3D case from our calculations up to S = 2, using
the conductivity formula in Eq. (6), we find the interband and
intraband parts of the conductivity are

σ 3D
inter (ω) = Aω

S∑
λ=λmin

λθ (λh̄ω − μ) (17)

and

σ 3D
intra (ω) = δ(ω)μ2A

S∑
λ=λmin

1/λ, (18)

where A = e2/(12π h̄v). This form differs from the 2D case
primarily by the effect of the electronic density of states,
which in the higher dimension provides an extra factor of ω.

In Fig. 2, we plot the 2D and 3D interband results in the
upper and lower frames, respectively, to illustrate the trend
in behavior. Aside from a flat background conductivity in
two dimensions versus a linear background in three dimen-
sions, which is due to the unique character of the linear
energy bands in Dirac-Weyl systems, the major features are
the various steps seen in the conductivity depending on the
specific pseudospin value. To best understand these structures,
we first discuss the 2D results and rehearse the case of S =
1/2 [Fig. 2(a), blue curve], where interband transitions occur
between the valence band and the conduction band. If the

FIG. 2. Interband optical conductivity due to untilted pseudospin
S cones in the (a) 2D [15] and (b) 3D cases. The vertical dashed
grey lines at h̄ω/μ = 1 and h̄ω/μ = 2 represent the absorption
steps generated by λ = 1 and λ = 1/2 cones, respectively; additional
cones for integer or half-integer spins produce absorption steps at
h̄ω/μ = 1/λ which are all below h̄ω/μ = 1.

chemical potential is nonzero then there will be filled states in
the conduction band below the chemical potential. Absorption
can only occur if the energy of an incident photon is sufficient
to promote an electron from an occupied state in the valence
band to an unoccupied state in the conduction band. As the
photon is essentially a q ∼ 0 probe for this experimental
property, there is no momentum transfer from the photon and
hence the transitions are vertical in the band structure [see
Fig. 3(a)]. The first transitions that can occur will be for a
photon energy of 2μ. Before this point, all possible transitions
from the lower cone to the upper cone are blocked by the
Pauli exclusion principle; i.e., lower-energy photons cannot
promote an electron from the lower band to the upper band
because there is no available final state for the electron in the
upper band. This is the physics behind the absorption step in
the conductivity at 2μ. Throughout this work, we assume μ is
positive for simplicity, but the results also hold for negative μ

if its absolute value is used in the presented equations. Finally,
for μ → 0, the step vanishes and we are left with constant
absorption σ0/2 for all values of h̄ω.
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FIG. 3. Schematic of smallest allowed transitions (red arrows)
between bands (blue lines) in the untilted case for (a) S = 1/2,
(b) S = 1, and (c) S = 3/2. Shaded regions represent filled electron
states up to the chemical potential μ (grey dashed line). Notice that
the smallest unblocked transitions occur at 2μ and μ in the S = 1/2
and S = 1 cases, respectively, and at 2μ/3 and 2μ in the S = 3/2
case. Here, the vertical axis is the energy scale of the bands, and the
horizontal axis is the electron wavenumber k in arbitrary units.

Continuing to the S = 1 case (orange curve), a similar
absorption step at h̄ω = μ = μ/λ to the constant value σ =
σ0λ = σ0 is present (λ = 1 cones and a flat band form the
band structure here). The energy of this step now corresponds
to the energy required to transition from the flat band to
the upper cone at the Fermi level, while all lower-energy
transitions are Pauli blocked [Fig. 3(b)]. Note that there is
no additional transition step between the cones themselves
(which would appear at h̄ω = 2μ), illustrating the selection
rule that electrons may only transition between neighboring
bands.

To further illustrate the pattern, the S = 3/2 case (green
curve) shows absorption steps at h̄ω = 2μ/3 and h̄ω = 2μ,
or at h̄ω = μ/λ for the allowed values λ = 3/2 and λ = 1/2,
respectively. The second step is the same transition between
λ = 1/2 cones as in the S = 1/2 case, while the first step cor-
responds to an additional transition from the upper λ = 1/2
cone to the upper λ = 3/2 cone [Fig. 3(c)]. The S = 2 case
(violet curve) has two upper cones, two lower cones, and a
flat band. Transitions will occur from the flat band to the
λ = 1 cone just as seen in Fig. 3(b) for S = 1 and so there is
an onset of absorption at h̄ω = μ. An additional channel for
absorption opens for transitions from the λ = 1 cone to the
λ = 2 cone analogous to the upper cone-to-cone transitions
for S = 3/2. This will give rise to a step at h̄ω = μ/λ = μ/2.
It clear that multiple steps can occur because an extra channel
of absorption will result with each additional band in the band
structure. The pattern emerging is that the number of steps in-
dicates the number of energy bands crossing the Fermi level at
finite μ. Note that the overall constant background for h̄ω > μ

(for integer S) and h̄ω > 2μ (for half-integer S) is given by
σ0S (S + 1)/2 and σ0[4S (S + 1) + 1]/8, respectively, and is
equivalent to the μ → 0 limit [15].

While the discussion here may seem somewhat theoretical,
it is worthwhile to imagine the possibility of using a higher
pseudospin system (such as 3/2) for a type of practical device
where variation of incident light is used to switch the conduc-
tivity of a device from “off” to “on,” and the “on” state could
have multiple levels of conduction.

Much of the discussion above also applies to Fig. 2(b)
showing the 3D case up to S = 2. Just like the 2D case,
steps appear at each energy h̄ω = μ/λ, and each transition
now contributes a λ-dependent slope (instead of constant ab-
sorption) above the step due to the 3D density of states. The
dashed lines in Fig. 2(b) represent the μ = 0 curves and result
from the saturated slope from all transitions together at each
S . If we examine the case of S = 2 (violet curve), as an
example, we note that with finite μ, the two sections of the
curve have different slopes, but that both linear sections will
extrapolate to the origin. This is an important point as there are
experimental data in the literature, for a number of systems,
where the data show linear curves but with intercepts that are
negative (e.g., Refs. [39,42]). It has been a source of research
to understand this effect, which cannot be generated easily in
any model, although in a tilted cone model, as we discuss here,
such behavior can be shown to occur. It is important to have
this untilted 3D case for reference in what is to be presented
later in this paper.

IV. TILTED 2D INTERBAND RESULTS

Having set the foundation for the fingerprints expected in
the optical conductivity in two and three dimensions, we now
turn to the case of a 2D tilted band structure, focusing on the
interband results. Using Eq. (6), we have evaluated the optical
conductivity for tilted 2D S = 1/2, 1, 3/2, and 2 and find the
general pattern is given by

σ 2D
i (ω) = σ0

S∑
λ=λmin

λF2D
i (λ, ω), (19)

where i = (‖,⊥) refers to a photon polarization parallel or
perpendicular to the tilt direction, respectively, and F2D

i (λ, ω)
is τ dependent and given below for the different types of tilt-
ing. Following what others have done for S = 1/2 [24,25,48],
we define

G±(x) = 1

π
(arcsin(x) ± x

√
1 − x2) (20)

and

ξ±λ = μ ± h̄ωλ

h̄ωτ
. (21)

Then for τ < λ (“undertilted,” type-I cones),

F2D
‖ (λ, ω) =

⎧⎪⎨
⎪⎩

0, h̄ω � μ

λ+τ
1
2 − G+(ξ−λ), μ

λ+τ
< h̄ω � μ

λ−τ

1,
μ

λ−τ
< h̄ω,

(22a)

F2D
⊥ (λ, ω) =

⎧⎪⎨
⎪⎩

0, h̄ω � μ

λ+τ
1
2 − G−(ξ−λ), μ

λ+τ
< h̄ω � μ

λ−τ

1,
μ

λ−τ
< h̄ω.

(22b)
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FIG. 4. Frequency-dependent interband optical conductivity for
slightly tilted (type-I) 2D Dirac materials with pseudospin S = 1/2,
1, 3/2, and 2, where we have set τ = 0.2. We present the conductiv-
ity parallel (σ 2D

‖ , red) and perpendicular (σ 2D
⊥ , blue) to the direction

of the tilt. Notice that each step in the τ = 0 case (Fig. 2) has been
broadened in a direction-dependent manner.

For τ > λ (“overtilted,” type-II cones), we have

F2D
‖ (λ, ω) =

⎧⎪⎨
⎪⎩

0, h̄ω � μ

τ+λ
1
2 − G+(ξ−λ), μ

τ+λ
< h̄ω � μ

τ−λ

G+(ξ+λ) − G+(ξ−λ), μ

τ−λ
< h̄ω,

(23a)

F2D
⊥ (λ, ω) =

⎧⎪⎨
⎪⎩

0, h̄ω � μ

τ+λ
1
2 − G−(ξ−λ), μ

τ+λ
< h̄ω � μ

τ−λ

G−(ξ+λ) − G−(ξ−λ), μ

τ−λ
< h̄ω.

(23b)

Finally, for λ = τ (“critically tilted,” type-III cones), we ob-
tain

F2D
‖ (λ, ω) =

{
0, h̄ω � μ

2λ
1
2 − G+(ξ−λ), μ

2λ
< h̄ω,

(24a)

F2D
⊥ (λ, ω) =

{
0, h̄ω � μ

2λ
1
2 − G−(ξ−λ), μ

2λ
< h̄ω.

(24b)

Setting λ = 1/2 in the above equations reproduces the well-
known tilted S = 1/2 (“tilted graphene”) case. While the
transitions for S = 1/2 are between the two bands indexed
by λ = 1/2 (i.e., ε−1/2 and ε+1/2), it is important to note that,
for higher S values, transitions occur between neighboring
bands. In the S = 3/2 case, for example, transitions between
the ε+1/2 and ε+3/2 bands account for the F2D

i (λ = 3/2, ω)
contribution.

The final results evaluated from Eq. (19) for “undertilted”
S = 1/2, 1, 3/2, and 2 systems (i.e., τ < λ for all λ) are
presented in Fig. 4. Notice that each step appearing in the
τ = 0 case of Fig. 2(a) (at allowed values of h̄ω = μ/λ) is
now split into two key energy scales at h̄ω = μ

λ+τ
and μ

λ−τ
. For

undertilted cones, these two scales correspond to the energies

FIG. 5. Schematic diagram of photon transition energies be-
tween bands (blue lines) to the Fermi level (grey dashed line) in
the tilted S = 3/2 case, plotted in (a) the k⊥ plane and (b) the k‖
plane. Transition energies are denoted by red arrows and labeled with
their length. Note that transitions occur in the k‖ plane with lengths
μ/(λ ± τ ), while the band structure in the k⊥ plane appears the same
as the untilted case (and these transitions are therefore unaffected by
the tilt).

of the smallest and largest vertical transitions which end at the
Fermi energy μ. Figure 5 shows a schematic diagram of these
transitions. Along the k⊥ axis [Fig. 5(a)], the band structure is
unaffected by the tilt; the k‖ axis [Fig. 5(b)], however, reveals
the key energy scales in the optical conductivity spectrum. For
photon energies below μ

λ+τ
, all transitions are Pauli blocked,

while above μ

λ−τ
, all transitions are available and the contribu-

tion to the optical conductivity from those transitions saturates
at the untilted value λσ0. Between these key energies, the
conductivity is polarization (direction) dependent. Wild et al.
[25] explain this directional dependence in the S = 1/2 case
via momentum alignment and the elliptical shape of the Fermi
surface; we provide a similar phrasing of this argument below,
generalizing to the higher pseudospin cases.

Four facts assist with qualitatively understanding the shape
of the optical conductivity curves. First, the energy difference
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FIG. 6. Schematic diagram of the Pauli-blocked transitions (grey
shaded area) for an undertilted cone indexed by λ, plotted on top
of concentric (constant transition energy) circles. Regions of the
circles are color coded red or blue to represent transitions which
contribute strongly to σ‖ or σ⊥, respectively. Blue (σ⊥-dominant)
transitions are unblocked first at h̄ω = μ/(λ + τ ), followed by ‘red
(σ‖-dominant) transitions near μ/λ (at which point half of the possi-
ble transitions are unblocked), while all transitions are finally freed at
h̄ω = μ/(λ − τ ).

between neighboring bands is always |εn − εn±1| = h̄vk irre-
spective of the tilt τ . This means that one can draw concentric
circles of electron transitions (indexed by a constant value
of k) which all have the same vertical energy distance to
the next-neighboring cone (see Fig. 6). Although each tran-
sition may differ from the others as to its starting and end
points in the band structure, each contributes to the opti-
cal conductivity σ (ω) at the same specific photon frequency
ω. It is important to emphasize that these circles do not
refer to a surface of equal electron energy on a particular
band, but rather to a collection of (blocked or unblocked)
vertical transitions corresponding to the same photon fre-
quency. Second, the velocity matrix element between the
cones 〈n|v̂α|n ± 1〉 is τ independent, meaning that the tilt
does not affect the wavefunction-overlap part of the Kubo
formula [Eq. (6)]. Third, a constant optical response with
increasing photon energy implies that these concentric circles
of potential equal-energy transitions each contribute the same
total optical response when they are fully unblocked. Finally,
electrons in Dirac-Weyl systems respond for interband tran-
sitions most strongly to photons polarized perpendicularly to
their wavevector. In particular, electrons on the k‖ axis only
contribute to σ⊥, and vice versa.

Taken together, these facts imply that “how much” of
a concentric transition circle is unblocked, and “where”
in k space the unblocked parts of the circle are, can explain the
direction-dependent shape of the optical conductivity curves.
Figure 6 is a schematic diagram showing a discretized set
of these transition circles, which are color coded to repre-
sent transitions which contribute strongly to σ⊥ (blue) or σ‖
(red) corresponding to their colors in the optical conductivity

curves; superimposed on these circles are Pauli-blocked tran-
sitions (grey shaded area), with the black outline representing
the Fermi surface. (It is useful to focus on the S = 1/2
case in Fig. 4 when connecting this schematic to the optical
conductivity curves, where the distinctive features of each
polarization are well resolved.) The circles in Fig. 6 with a
radius below μ

λ+τ
are fully blocked, and there are therefore no

transitions for photon energies below this limit. Just above this
radius, only “blue” (σ⊥-contributing) states are unblocked,
corresponding to the strong jump towards half of the saturated
response in σ⊥ and essentially no response in σ‖ near this
point. As the circles approach a radius of μ/λ, half of the
“red” (σ‖-contributing) transitions also become unblocked;
exactly half of the blue and half of the red portions are free,
and the two polarization directions therefore have an equiva-
lent response at this point. Moving past μ/λ, red transitions
continue to be freed while the blue transitions to the left in
Fig. 6 are still blocked (σ⊥ lags behind σ‖) until we approach

μ

λ−τ
. At this radius, all red transitions have been activated

(σ‖ is nearly constant at its saturated value) while the last
of the blue transitions are quickly freed (σ⊥ has a very large
slope and quickly catches up to its saturated value). Above
this radius, all transitions are unblocked and both polarization
directions yield their saturated, untilted value.

Returning to Fig. 4, we note that S = 1/2 and S = 1 have
similar shapes; however, they do not scale onto each other. A
factor of 2 may be used to adjust the crossing points at h̄ω = μ

and 2μ to be the same, and to scale the saturated backgrounds
to match, but the broadening of the S = 1/2 curve is larger
than the S = 1 curve. This is a distinguishing feature between
the two S values which may be relevant should insufficient
information be available about μ or the saturated background
scale. Likewise in a comparison of S = 3/2 with S = 2, the
pair of curves cannot be scaled on top of each other.

The behavior of overtilted cones (with open Fermi sur-
faces) can also be understood physically via this momentum
alignment phenomenon [25]. The S = 3/2 and S = 2 cases
discussed here are particularly interesting, since a scenario
where one cone is overtilted and the others are undertilted
(or where both are overtilted) can easily be constructed by
tuning the tilt parameter τ . These different scenarios can lead
to a range of varied optical fingerprints as the two distinct
responses mix. We refer to this scenario as type IV. In Fig. 7,
we present optical conductivity results for 2D S = 3/2 ma-
terials with at least one overtilted cone, showing some of
these possible optical fingerprints (for the undertilted case, see
Fig. 4). Notice that while the general shape of σ‖ is relatively
steady (monotonic increasing), σ⊥ is much more varied and
shows multiple instances of changing curvature and slope.
To provide intuition about this more complicated behavior,
Fig. 8 presents only σ⊥, decomposed into the contributions
from the transitions ending at the λ = 1/2 and λ = 3/2 cones
(black dashed and dotted lines, respectively). In the overtilted
λ = 1/2 case, both conductivity polarizations are zero up
to h̄ω = μ

τ+λ
just as in the undertilted case; however, F‖ is

monotonic and asymptotically increases (see Fig. 7), while
F⊥ switches from increasing to asymptotically decreasing
after the upper energy scale or breakpoint at h̄ω = μ

τ−λ
(see

Fig. 8, dashed curves). The momentum alignment argument
shows that for overtilted cones, the low-energy breakpoint
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FIG. 7. Interband optical conductivity of type-IV overtilted 2D
S = 3/2 Dirac materials, illustrating some potential optical finger-
prints. For 1/2 < τ < 3/2 [e.g., (a) τ = 0.7 and (b) τ = 1.2], only
the λ = 1/2 set of cones is overtilted. For τ > 3/2 [e.g., (c) τ = 1.8],
however, both sets are overtilted.

still corresponds to the first unblocked transitions (which are
still “blue,” and why the low-energy behavior below h̄ω =

μ

τ−λ
appears similar to the undertilted case) but now the up-

per breakpoint corresponds to the photon energy at which
transitions begin to be lost due to the valence band’s open (hy-
perbolic) Fermi surface. The states which are “lost” earliest
are also blue, i.e., contribute strongly to σ⊥ and only weakly
to σ‖, producing the observed sharp drop in σ⊥ while leav-
ing σ‖ relatively unaffected. This more complicated behavior
in the S = 3/2 case is therefore due to the interplay between
the different energy breakpoints. An illustrative example is the
τ = 1.0 case [Fig. 8(b)], which shows a cusp in the combined
conductivity where the two upper breakpoints are equal at
h̄ω = 2μ [how these breakpoints interact for τ different from
1 is shown in Figs. 8(a) and 8(c)]. The case where both cones
are overtilted [Fig. 7(c)] shows two drops corresponding to
“losing” transitions in both cones. Further discussion of the
generic behavior of Fi(λ, ω) in the under- and overtilted cases
is presented in Appendix B.

FIG. 8. Optical conductivity perpendicular to the tilt direction in
the 2D S = 3/2 case, where the total conductivity (solid blue curve)
has been decomposed into the λ = 1/2 (dashed curve) and λ = 3/2
(dotted curve) contributions. To illustrate the interaction between the
different energy scales or breakpoints, we present the cases of (a) τ =
0.9, (b) τ = 1.0, and (c) τ = 1.1. In all three plots, the λ = 3/2 cones
are undertilted while the λ = 1/2 cones are overtilted, showing the
varied responses that are possible in this intermediate case.

In experiment, these more varied behaviors may allow the
sample’s tilt orientation to be distinguished. However, the pure
and zero-temperature results presented here will be subject
to some degree of broadening in experimental results, which
may obscure some of the fine spectral details. In Appendix A,
we give a brief discussion of how the S > 2 cases, in particu-
lar, are likely to be affected by this.

V. TILTED 3D INTERBAND RESULTS

The interband optical conductivity of 3D materials with
a set of untilted S = 1/2 Weyl cones is similar to that pro-
duced by the 2D case; the response is still zero up to a step
at h̄ω = 2μ (due to Pauli blocking) but above this step the
spectrum is now linear instead of constant due to the increased
dimensionality reflected in the density of states [39]. Tilted
3D S = 1/2 materials have been found to show a similar
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polarization-dependent splitting behavior to their 2D coun-
terparts [26,27,48]. We have verified these S = 1/2 results
and explicitly calculated the optical conductivity of the tilted
S = 1, 3/2, and 2 cases. In this section, we present and dis-
cuss those results.

Similar to Eq. (19), our calculations for a 3D material with
pseudospin up to S = 2 allows us to arrive at a general form
for the optical conductivity which can be written as

σ 3D
i (ω) = Aω

S∑
λ=λmin

λF3D
i (λ, ω). (25)

For an undertilted (type I, τ < λ) cone, we have in the 3D case

F‖(λ, ω) =

⎧⎪⎪⎨
⎪⎪⎩

0, ω � μ

λ+τ

1
4

(
ξ 3
−λ − 3ξ−λ + 2

)
,

μ

λ+τ
< ω � μ

λ−τ

1,
μ

λ−τ
< ω,

(26a)

F3D
⊥ (λ, ω) =

⎧⎪⎪⎨
⎪⎪⎩

0, ω � μ

λ+τ

1
8

(−ξ 3
−λ − 3ξ−λ + 4

)
,

μ

λ+τ
< ω � μ

λ−τ

1,
μ

λ−τ
< ω.

(26b)

For overtilted (type II, τ > λ) cones, we have

F3D
‖ (λ, ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, ω � μ

τ+λ

1
4

(
ξ 3
−λ − 3ξ−λ + 2

)
,

μ

τ+λ
< ω � μ

τ−λ

1
4

(
ξ 3
−λ − 3ξ−λ

−ξ 3
+λ + 3ξ+λ

)
,

μ

τ−λ
< ω,

(27a)

F3D
⊥ (λ, ω) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, ω � μ

τ+λ

1
8

(−ξ 3
−λ − 3ξ−λ + 4

)
,

μ

τ+λ
< ω � μ

τ−λ

1
8

( − ξ 3
−λ − 3ξ−λ

+ξ 3
+λ + 3ξ+λ

)
,

μ

τ−λ
< ω.

(27b)

Finally, the critically tilted (type III, τ = λ) case can still be
viewed as the limiting case of the overtilted result, where the
upper energy scale approaches infinity, yielding

F3D
‖ (λ, ω) =

{
0, ω � μ

2λ

1
4

(
ξ 3
−λ − 3ξ−λ + 2

)
,

μ

2λ
< ω,

(28a)

F3D
⊥ (λ, ω) =

{
0, ω � μ

2λ

1
8

(−ξ 3
−λ − 3ξ−λ + 4

)
,

μ

2λ
< ω.

(28b)

The same pattern as in the 2D case (Sec. IV) emerges in
Eqs. (26)–(28). Taking λ = 1/2, these forms reduce to those
found in the literature for S = 1/2 [26,27,48]. We plot and
discuss the features of F‖ and F⊥ for generic λ, with compar-
ison to the 2D case, in Appendix B [26,27,48].

Figure 9 compares the interband conductivity results for
3D materials for the cases of S = 1/2, 1, 3/2, and 2 cones.
Due to the linear background, the structure provided by the tilt
is more difficult to discern, and the primary effect is to modify

FIG. 9. Frequency-dependent interband optical conductivity for
slightly tilted (type-I) 3D Weyl materials with pseudospin S = 1/2,
1, 3/2 and 2, where we have set τ = 0.2. Notice that we see a similar
directional dependence of features as in the 2D case (Fig. 4) but that
the directional dependence is less prominent due to the linear optical
background.

more directly the slope of the curves; σ‖ and σ⊥ are therefore
less distinct. As a result of the tilt causing broadening to
the vertical steps seen in the untilted case shown in Fig. 2(b),
the tilted curves will appear to have additional quasilinear line
segments and the quasilinear sections of the curves arising
from tilting will appear to extrapolate to negative intercepts
rather than to the origin. These features may aid with the
interpretation of such behaviors seen in some experiments. At
this point, we wish to reiterate that our results are presented
for T = 0. With sufficient temperature the kink structure can
be smoothed out as seen in Fig. 3 of Ref. [49] for T = 0.4μ;
however, for T = 0.01μ the kink structure is still seen. Ex-
periments on graphene, done at 45 K and with μ > 100 meV,
give T < 0.04μ, indicating that it is possible for Dirac-Weyl
systems to be in a regime where structure might be seen.

Just like in the 2D case, the optical conductivity can show
type-IV “mixing” between different behaviors (undertilted,
critically tilted, and overtilted) in the S = 3/2 and S = 2
cases. Figure 10 demonstrates some of these potential finger-
prints for S = 3/2. It is clear that the multiple slopes seen in
the undertilted case are gone and the net effect is to see some-
thing approaching a single quasilinear curve extrapolating to
a negative intercept. These results also show that σ‖ and σ⊥
are still similar in magnitude and slope in much of the plotted
range [with the exception of the extremely overtilted τ = 1.8
case, Fig. 10(c)]. As a result, it may prove difficult in exper-
iment to confidently resolve the tilted and untilted directions
using only interband optical conductivity measurements.

VI. INTRABAND RESULTS

The low-frequency (Drude) part of the optical conductivity
is due to intraband energy transitions at the Fermi level. In this
section, we present this low-frequency portion of the optical
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FIG. 10. Interband optical conductivity for type-IV overtilted 3D
S = 3/2 Weyl materials, analogous to Fig. 7 [i.e., [(a), (b)] results
for one undertilted and one overtilted cone, and (c) results when both
cones are overtilted]. For comparison, the dashed lines plot saturated
slope from all transitions in the undertilted case.

conductivity in both two and three dimensions (including a
tilt), which was calculated alongside the interband results
using Eq. (6). The net result is given in terms of a sum of
Drude weights W for each band which crosses the Fermi
level, i.e.,

σi(ω) = δ(ω)

⎛
⎝Wi(0)δ	S
,S +

S∑
λ=λmin

Wi(λ)

⎞
⎠, (29)

where the forms for the W ’s are different for two and three
dimensions (see below). Here, the first term is contributed by
the planar band (if it exists, i.e., the S must be an integer) and
the second term is a sum over the (tilted) conical bands. In the
case of undertilted cones, the Fermi surface of the conduction
band is closed (and the valence band has no free states) so
a closed-form result can be directly obtained. However, for
overtilted (critically tilted) cones, each band contributes an

open hyperbolic (parabolic) Fermi surface, with intraband
transitions allowed for all states out to infinity; the planar band
also contributes an infinite linear (2D) or planar (3D) Fermi
surface for all values of τ . A momentum cutoff must therefore
be introduced to obtain closed-form results in these cases. A
model yielding a more detailed structure of the complete band
structure of a material beyond the low-energy Dirac-Weyl
approximation is therefore required to obtain a full picture of
a given material’s Drude response.

In the following, for clarity, we introduce a normalized
τλ = τ/λ and μλ = μ/λ. The closed-form 2D undertilted
(type I, τλ < 1) intraband results can be calculated without
reference to a cutoff, and are given by

W 2D
‖ (λ) = 4σ0λμλ

τ 2
λ

(
1 −

√
1 − τ 2

λ

)
, (30a)

W 2D
⊥ (λ) = 4σ0λμλ

τ 2
λ

1 −
√

1 − τ 2
λ√

1 − τ 2
λ

. (30b)

Notice that in the limit τλ → 0, Eqs. (30a) and (30b) yield
W 2D

(‖,⊥)(λ) = 2μσ0 irrespective of any specific λ, as expected.
In the cases of the tilted planar band and the cones which are
critically tilted or overtilted, the introduction of a cutoff � is
required to obtain closed-form results. For overtilted cones,
we follow Tan et al. [24] and define

A(μ, τ,�, λ) = �

μλτλ

∑
χ=±

√
1 −

(
μλ − χ�

τλ�

)2

, (31)

B(μ, τ,�, λ) = 1

τ 2
λ

∑
χ=±

χ ln

[
τ 2
λ + χ

μλ − χ�

�

+
√

τ 2
λ − 1

√
τ 2
λ −

(
μλ − χ�

�

)2]
, (32)

C(μ, τ,�, λ) = 1

τ 2
λ

∑
χ=±

arccos

(
μλ − χ�

τλ�

)
. (33)

The results for the type-II, τλ > 1, case are therefore

W 2D
‖ (λ) = 4σ0λμλ

[(
τ 2
λ − 1

)
A(μ, τ,�, λ)

+
√

τ 2
λ − 1B(μ, τ,�, λ) + C(μ, τ,�, λ)

]
,

(34a)

W 2D
⊥ (λ) = 4σ0λμλ

[
A(μ, τ,�, λ) + 1√

τ 2
λ − 1

B(μ, τ,�, λ)

−C(μ, τ,�, λ)

]
. (34b)

For critically tilted (type III, τλ = 1) cones, we have

W 2D
‖ (λ) = 4σ0λμλ

1

π
arccos

(
μλ − �

�

)
, (35a)

W 2D
⊥ (λ) = 4σ0λμλ

2

π

⎡
⎣

√
2� − μλ

μλ

− arccos

√
μλ

2�

⎤
⎦.

(35b)
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Finally, the planar band contributes

W 2D
‖ (0) = 4σ0μ

1

π

√
�2τ 2

μ2
− 1 �(� − μ/τ ), (36a)

W 2D
⊥ (0) = 0, (36b)

for all values of τ , where the Heaviside function ensures that
the planar band only contributes if the linear Fermi surface is
within the cutoff.

The 3D undertilted Drude weights are

W 3D
‖ (λ) = 3

2
Aλ

μ2
λ

τ 3
λ

[
ln

(
1 + τλ

1 − τλ

)
− 2τλ

]
, (37a)

W 3D
⊥ (λ) = 3

4
Aλ

μ2
λ

τ 3
λ

[
ln

(
1 − τλ

1 + τλ

)
+ 2τλ

1 − τ 2
λ

]
. (37b)

Unlike the 2D case, these 3D undertilted results are λ depen-
dent in the limit τλ → 0, yielding W 3D

(‖,⊥)(λ) = μ2A/λ. The
overtilted results are

W 3D
‖ (λ) = 3

2
Aλ

μ2
λ

τ 3
λ

[
ln

(
�2

μ2
λ

)
+ ln

(
τ 2
λ − 1

)

+ �2

μ2
λ

(
τ 2
λ − 1

)2 + 3 − τ 2
λ

]
, (38a)

W 3D
⊥ (λ) = 3

4
Aλ

μ2
λ

τ 3
λ

[
ln

(
μ2

λ

�2

)
− ln

(
τ 2
λ − 1

)

+ �2

μ2
λ

(
τ 2
λ − 1

) − τ 2
λ − 3

τ 2
λ − 1

]
. (38b)

The critically tilted case yields

W 3D
‖ (λ) = 3

2
Aλμ2

λ

[
ln

(
2�

μλ

)]
, (39a)

W 3D
⊥ (λ) = 3

4
Aλμ2

λ

[
2�

μλ

− ln

(
2�

μλ

)
− 1

]
. (39b)

Finally, the hyperplanar band yields

W 3D
‖ (0) = 3

4
A

μ2

τ

[
�2τ 2

μ2
− 1

]
�(� − μ/τ ), (40a)

W 3D
⊥ (0) = 0, (40b)

for all values of τ . Note that the flat band for both dimension-
alities only contributes to W‖.

For the case of tilted S = 1/2, we recover similar results to
Ref. [48]. Using the results presented here and those derived
for the interband conductivity in the previous sections, we
can now discuss the implications, in the undertilted case, for
optical sum rules in the following section.

VII. VELOCITY ANISOTROPY AND SUM RULES

The results presented so far in this work have been for
materials with isotropic cones with an added tilting term, i.e.,
where the Fermi velocity in the untilted Hamiltonian is the
same in all directions; however, both 2D and 3D materials may
also have anisotropic tilted cones. Additionally, the optical
conductivity results presented in previous sections can follow
sum rules for spectral weight transfer and other interesting
mathematical relations which may allow for the extraction of

information from the optical data. In this section, we discuss
these issues. When discussing sum rules, we focus on only
untilted and undertilted cones, as the open Fermi surface in the
overtilted case prevents a coherent analysis; the basic effect of
anisotropy, however, holds for all tilt phases.

To model anisotropic cones, we consider a modification to
Eq. (3) of the form

Ĥ = h̄(vxkxŜx + vykyŜy + vzkzŜz + vτ k‖Ŝ0), (41)

where we have use the notation of tilt velocity vτ in place
of vτ of Eq. (3). The ki and k‖ are as defined previously.
From this we calculate the conductivity, which we will label
by σ̃ii(ω). For vx = vy = vz = v, we recover Eq. (3) and our
previous conductivity results σii(ω). In the case of velocity
anisotropy, previous authors (e.g., Refs. [25,48]) have shown
that in the 2D spin-1/2 case,

σ̃ii(ω) = v2
i

vxvy
σii(ω), (42)

and for 3D spin-1/2 case,

σ̃ii(ω) = v2
i v

vxvyvz
σii(ω). (43)

We have verified that the same result extends to higher pseu-
dospin. In the untilted and undertilted cases, the qualitative
effect of this anisotropy is to provide a directional depen-
dence to the saturated optical background at large h̄ω beyond
h̄ω = 2μ (for half-integer pseudospin) or h̄ω = μ (for integer
pseudospin). These differing backgrounds may make experi-
mental analysis more subtle, but these simple changes from
the isotropic behavior at large ω mean that relatively simple
rules may allow the data to be remapped back to an isotropic
case.

Graphene is known to have an optical sum rule; any “miss-
ing” spectral weight in the interband portion due to a finite
chemical potential μ is transferred to the intraband weight.
This is a statement that the integral over the entire conduc-
tivity yields the same value independent of μ [50]. This sum
rule has also been found to be valid in the undertilted spin-1/2
case for both the 2D and 3D cases [26]. For the S = 3/2 case,
we can immediately confirm that this sum rule holds in both
polarization directions. Indeed, we can write the sum rule for
each undertilted cone (λ > 0) as

W 2D
i (λ) = 2λσ0

∫ μ/(λ−τ )

0

[
1 − F2D

i (λ, ω)
]
dω, (44)

W 3D
i (λ) = 2λA

∫ μ/(λ−τ )

0
ω

[
1 − F3D

i (λ, ω)
]
dω. (45)

For S = 1 and 2, however, the Drude contribution from the
cones completely accounts for the missing interband spectral
weight; the planar band’s excess contribution in the k‖ direc-
tion therefore breaks this sum rule, while it is preserved in k⊥
directions [since W‖(λ = 0) �= 0 while W⊥(λ = 0) = 0]. The
Fermi surface provided by the tilted planar band is now an
open one (a line in two dimensions, for example). A broken
sum rule along one direction but not in perpendicular direc-
tions is a characteristic of integer S . Generally, these results
are anisotropy independent, since a multiplicative factor is
simply applied to parts of the conductivity in each direction.
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For undertilted cones, the ratio of different directions’ ve-
locities vi/v j can be extracted from the high-frequency optical
conductivity (where the constant or linear background is satu-
rated), since √

σ̃ii(ωs)

σ̃ j j (ωs)
= vi

v j
, (46)

where ωs represents a frequency at which the response is
saturated (constant or linear for two or three dimensions,
respectively). In the 2D case, a corollary is that√

σ̃ii(ωs)σ̃ j j (ωs) = σ (ωs), (47)

i.e., the saturated isotropic conductivity can be extracted from
the two anisotropic directions [in the 3D case, the right-hand
side of Eq. (47) would be altered to σ (ωs)v/v� where � �= i
or j]. Additionally, another combination that we have found
which may be useful for experimental analysis is one that uses
the tilt-broadened region. Defining

Iii(m) =
∫ ωmax

ωmin

σ̃ inter
ii (ω)

ωm
dω, (48)

then √
I⊥(m)

I‖(m)
= v⊥

v‖
, (49)

where m = 2 or 3, for two or three dimensions, respectively.
Here, ωmin, and ωmax are the lowest- and highest-energy
breakpoints in the optical conductivity spectrum. This is based
on the result that for two dimensions,∫ ωmax

ωmin

F2D
i (λ, ω)

ω2
dω = h̄τ

μ
, (50)

and for three dimensions,∫ ωmax

ωmin

ωF3D
i (λ, ω)

ω3
dω = h̄τ

μ
, (51)

recalling in this latter case that the conductivity has an ex-
tra factor of ω in front of the sum over λ in Eq. (25) that
needs to enter the integral, which we make explicit here.
Moreover, these results also imply that for two dimensions,
Iii(2)/σ̃ii(ωs) = h̄τ/μ, and likewise for three dimensions,
ωsIii(3)/σ̃ii(ωs) = h̄τ/μ, which could be another way of
extracting the information on the tilt parameter using the
weighted integration of the broadened region in ratio with the
higher-frequency saturated background value.

VIII. TILTED α − T3 MODEL

As discussed previously, a nearest-neighbor tight-binding
hopping model applied to the honeycomb lattice results in
the S = 1/2 model at low energy. Likewise, the S = 1 case
can arise from a similar analysis on a dice (or T3) lattice. The
α − T3 model [44] interpolates between the honeycomb and
dice lattices by introducing a variable hopping parameter αth
(0 � α � 1) linking one set of sites in the dice lattice, whereas
the other linkages have a hopping parameter th [see inset of
Fig. 11(c)]. Here, we add to previous literature on this model

FIG. 11. Interband optical conductivity of undertilted α − T3

model. (a) τ = 0, showing the untilted energy scales and back-
grounds for different values of α. The inset is a diagram of the
interband transitions, which are now allowed from cone to cone or
from the flat band to a cone (Ref. [45]). Fixing τ = 0.2 (undertilted),
we show varying α: (b) α = 0.2 and (c) α = 0.6. Inset in (c) is the
α − T3 lattice, with solid lines representing linkages with a hopping
parameter th and dashed lines a hopping parameter αth.

[45–47] by calculating the optical conductivity arising from
the α − T3 Hamiltonian with the inclusion of a tilting term:

Ĥα-T3 = h̄vF k

⎛
⎜⎜⎝

0 e−iϕk cos θ 0

eiϕk cos θ 0 e−iϕk sin θ

0 eiϕk sin θ 0

⎞
⎟⎟⎠

+ h̄vF k cos ϕkτ Ŝ0, (52)

where α = tan θ and cos ϕk = kx/k. The first term in Eq. (52)
is the untilted α − T3 Hamiltonian, while the second term
applies the tilt in the x direction. (Note the notational use
of θ and ϕ is reversed to that of Ref. [45].) The resulting
eigenvalues are those of the tilted 2D, S = 1 case,

εn(�k) = h̄vF k(τ cos ϕk + n), (53)
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where n = 0,±1, while the wavefunctions are unchanged
from the untilted α − T3 case (cf. Ref. [45]),

|0〉 =

⎛
⎜⎜⎝

sin θeiϕk

0

− cos θe−ϕk

⎞
⎟⎟⎠, |±〉 = 1√

2

⎛
⎜⎜⎝

cos θeiϕk

±1

sin θe−iϕk

⎞
⎟⎟⎠. (54)

The relevant matrix elements for our calculation of the optical
conductivity are

|〈0|v̂x|0〉|2 = τ 2, (55)

|〈±|v̂x|±〉|2 = (τ ± cos ϕk )2, (56)

|〈0|v̂x|±〉|2 = 1
2 sin2(2θ ) sin2 ϕk, (57)

|〈∓|v̂x|±〉|2 = cos2(2θ ) sin2 ϕk, (58)

and

|〈0|v̂y|0〉|2 = 0, (59)

|〈±|v̂y|±〉|2 = sin2 ϕk, (60)

|〈0|v̂y|±〉|2 = 1
2 sin2(2θ ) cos2 ϕk, (61)

|〈∓|v̂y|±〉|2 = cos2(2θ ) cos2 ϕk . (62)

In this model, in spite of the band structure appearing the
same as the S = 1 case, transitions can now occur between
the cones, in addition to those between the flat band and a
cone [see inset schematic in Fig. 11(a)]. Notice that elements
associated with a transition between the two cones have a
factor of cos2(2θ ) associated with them, while those asso-
ciated with a transition between the flat band and the cones
come with a factor of sin2(2θ ); these factors are responsible
for modulating the cone-to-cone and flat-to-cone portions of
the conductivity, respectively. The intraband elements are θ

independent, a characteristic of the α − T3 model.
We proceed to calculate the optical conductivity using

Eq. (6). The resulting interband conductivities are

σα−T3
xx (ω) = σ0

(
1
2 cos2(2θ )F2D

‖ (1, ω, 2μ)

+ sin2(2θ )F2D
‖ (1, ω, μ)

)
, (63a)

σα−T3
yy (ω) = σ0

(
1
2 cos2(2θ )F2D

⊥ (1, ω, 2μ)

+ sin2(2θ )F2D
⊥ (1, ω, μ)

)
. (63b)

The first and second terms in Eqs. (63a) and (63b) are the
cone-to-cone and flat-to-cone type contributions, respectively.
We have used F2D

i (1, ω, 2μ) to indicate that the form for
F2D

i (λ, ω) from Sec. IV should be used here but with all
occurrences of μ replaced by 2μ. This reflects that the band
structure is still the same as the tilted S = 1 case and hence
λ = 1, but that transitions occur between the valence and
conduction cones and start at 2μ [see inset of Fig. 11(a)]. The
respective Drude weights are α independent, and are

W α−T3
xx = W 2D

‖ (1) + W 2D
‖ (0), (64a)

W α−T3
yy = W 2D

⊥ (1), (64b)

i.e., they are the same as the S = 1 case (as expected, since the
matrix elements are independent of α and the band structure
is the same).

Figure 11 plots the interband part of the conductivity in the
undertilted case [Eqs. (63a) and (63b)]. In Fig. 11(a), we seek
to orient the reader with respect to the α dependence of the
step heights and optical backgrounds by plotting the untilted
case (τ = 0) with various values of α. Notice that α = 0 and
α = 1 reproduce the S = 1/2 and S = 1 interband results,
respectively, while for intermediate values of α the optical
conductivity interpolates between these two cases using the
Berry-phase-dependent prefactors cos2(2θ )/2 and sin2(2θ ),
where the Berry phase �B = π cos(2θ ) [45,47]. Figures 11(b)
and 11(c) show a similar comparison for the τ = 0.2 case,
where we have taken α = 0.2 and α = 0.6, respectively (a
previous mapping between massless Kane fermions and the
α − T3 model using α = 1/

√
3 ≈ 0.6 motivates this latter

choice [41]). The flat step heights here are the same as in
the untilted cases, with the characteristic splitting of energy
scales and directional dependence that we expect for tilted
cones. Notice, however, that the broadening caused by the
tilted energy scales about h̄ω = 2μ in Fig. 11(b) is not as wide
as seen in the S = 1/2 case plotted in Fig. 4. This broad-
ening in the α − T3 model is set by λ = 1 and hence is less
broad than it would be for λ = 1/2. This makes clear that the
tilted α − T3 model is not truly a weighted sum of S = 1/2
and S = 1, but is based on the S = 1 case with additional
allowed cone-to-cone transitions.

The optical “fingerprints” produced here are similar to the
S = 3/2 or S = 2 cases (see Appendix A for a discussion of
pseudospin beyond S = 2) in that the spectrum is composed
of exactly two “steps” in the untilted conductivity spectrum.
However, the location of these steps and the heights of each
step will distinguish α − T3-type fingerprints from both the
S = 3/2 and S = 2 cases. In the tilted α − T3 case, the break-
points are centered around h̄ω = μ and h̄ω = 2μ, and the
relative flat step heights are set by the value of α. The break-
points for each “pure” pseudospin are also centered around
particular values, but the relative step heights are uniquely
determined by the particular value of S . In the S = 3/2 case,
the two flat steps have a relative height of 3:1 (ratio of first to
second), and the breakpoints are centered around h̄ω = 2μ/3
and h̄ω = 2μ. The S = 2 case has equal-height (1:1) steps,
with breakpoints centered around h̄ω = μ/2 and h̄ω = μ.
Optical conductivity measurements not fitting these particular
results cannot be attributed to one of these single S-value
cases; however, the tilted α − T3 model may provide an alter-
nate explanation. Most distinctively, the first flat step for the
α − T3 case may be smaller than the second, e.g., for τ = 0.2
[Fig. 11(b)]. Notice that the ratio between step locations in
h̄ω based on τ = 0 for S = 2 is the same as for α − T3 (i.e.,
they are a factor of 2 apart), and hence the ratio of step heights
must be relied upon as a distinguishing attribute if the chem-
ical potential μ for the system is unknown. The approximate
values of α needed to give the same step-height ratios as for
S = 3/2 and S = 2 are α ≈ 0.47 and 0.32, respectively.

To emphasize the distinction between the α − T3 and
S = 3/2 cases, Fig. 12 compares the τ dependence of the
α = 0.2 case. Note that the τ = 0.4 case [Fig. 12(a)] is still
undertilted, but does not show two distinct flat “steps” in the
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FIG. 12. Interband optical conductivity of α − T3 model com-
paring under- and overtilted signatures, for fixed α = 0.2 and varying
τ : (a) τ = 0.4, (b) τ = 1.1, and (c) τ = 1.8.

conductivity spectrum like the τ = 0.2 case [see Fig. 11(b)]
due to the interplay between the breakpoints. The overtilted
cases [Figs. 12(b) and 12(c)] also show similar signatures to
the S = 3/2 cases where both cones are overtilted, though
rules similar to the undertilted cases regarding absorption
heights and breakpoint locations apply here. A particularly
interesting feature of these plots is that the weaker first step
has introduced a kink at low frequency in the σxx (i.e., σ‖,
red) curves. This kink is characteristic of the activation of the
second transition type, and is “smoothed out” in cases where
the first step is higher (e.g., the “pure” pseudospin cases seen
earlier) due to the resolution of the plots.

Additionally, the spectral weight transfer sum rule still
holds for the conical band part of the Drude weight at any
undertilted value of τ (at a given value of α; different values of
α have different saturated backgrounds and therefore different
spectral weight transfer). The net result is therefore a violation
of the sum rule in the tilted direction but not in the untilted
direction, just as in the S = 1 case.

IX. SUMMARY

In conclusion, we have calculated the absorptive,
frequency-dependent longitudinal conductivity for Dirac-
Weyl Hamiltonians representing different pseudospin S

values, where a tilting term is included. The additional term
has the effect of tilting the band structure. We have reviewed
the case of S = 1/2 for both two and three dimensions to
set the stage for the explicit calculations and discussion that
we provide for S = 1, 3/2, and 2, in order to demonstrate the
signatures of tilting for higher pseudospin. Undertilted (type
I), overtilted (type II), and critically tilted (type III) cases have
been presented. In addition, we define a fourth scenario, which
we call type IV, unique to higher S having multiple nested
cones, such as S = 3/2 and S = 2, where one cone may be
identified as undertilted while a second cone is overtilted,
thus showing an admixture of type-I and type-II fingerprints.
This case illustrates the rich behavior that can occur in the
optical response. We also note that the cases of S = 1 and
S = 1/2 can show similar qualitative behavior, but the en-
ergy scales will be different as well as the high-frequency
saturated background. Likewise, a similar statement holds
for comparing S = 3/2 and S = 2, etc. If knowledge of the
chemical potential or the overall absolute value of the satu-
rated conductivity is not known, then it may be difficult to
provide an exact determination in experiment without further
input from theory or other measurements. In the case of three
dimensions, the extra linear background which modifies the
conductivity tends to obscure the more subtle details of the
effects of tilting and the resulting behavior is most likely to
be seen as a series of quasilinear- or linear-in-ω responses,
where at low energy the slope of the curve has a negative
intercept. This is important as negative intercepts have been
seen in experiments on possible Dirac-like materials and this
effect cannot be produced in a simple Dirac model with no
tilting. The number of linear sections seen in the conductivity
curve will depend on the pseudospin value, but for S = 1 and
S = 1/2, only the lowest segment has a negative intercept and
the higher segment extrapolates to the origin. For S = 3/2
and above, other segments of the curve will display a negative
intercept. This is to be contrasted to the case without tilting in
the band structure, where for any S value, all linear segments
will extrapolate to the origin. Our results are for the pure
limit, but impurity scattering will only produce a shift upwards
towards a positive intercept, never a negative one.

As we have provided the interband and intraband conduc-
tivity for higher pseudospin cases discussed here, we also
examined the possibility of sum rules or spectral weight trans-
fer for finite μ. We have found that the standard optical sum
rule for transfer of spectral weight, with doping μ, contin-
ues to hold for undertilted S = 1/2 and higher half-integer
S values in both the parallel and perpendicular directions. In
the case of integer S , the sum rule will hold in the perpendic-
ular direction but will not hold in the parallel direction. This
violation occurs due to the tilted flat band providing an open
Fermi surface which, like the overtilted cases, cannot obey the
sum rule.

Finally, we examined the α − T3 model which is a hybrid
of S = 1/2 and 1 behaviors, resulting from a modification of
an intersite hopping term in the dice lattice with a parameter
α. This model has a variable Berry phase and has found
some possible support in experiment. In our results, we have
found that the α − T3 optical response can have some simi-
larities with both the S = 2 and S = 3/2 cases, but there are
important differences in the details. Once again, if knowledge
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FIG. 13. Untilted 2D interband optical conductivity for pseu-
dospin up to S = 7/2, depicting the pattern of absorption steps
beyond S = 2. The top curve (magenta) is for S = 7/2, followed
in descending order by S = 3 (brown), 5/2 (red), 2 (violet), 3/2
(green), 1 (orange), and finally S = 1/2 (blue) shown in the low-
est curve. As S increases, the high-energy saturated conductivity
increases and new steps appear at each new allowed value for h̄ω =
μ/λ. Note that the height of the lowest energy step is Sσ0 [15]. The
vertical grey dashed lines indicate h̄ω = μ and 2μ, for reference,
with integer and half-integer S saturating for h̄ω > μ and h̄ω > 2μ,
respectively.

of the value of the chemical potential and the overall saturated
background is lacking, it may be difficult to differentiate be-
tween S = 2 and the α − T3 model for the case of α ∼ 0.3.
For the case of S = 3/2, ratios of important energy scales
will allow for a distinction between the α − T3 model and
S = 3/2.

In summary, while materials with different pseudospin-S
character are mainly discussed within the realm of theory, it is
hoped that providing the expected optical fingerprints of these
models will aid in the eventual characterization of new materi-
als. Optical response has been one of the important successful
probes of graphene and excellent agreement between theory
and experiment has been demonstrated.
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APPENDIX A: HIGHER PSEUDOSPIN BEYOND S = 2

In this Appendix, we comment on the case of general
pseudospin S > 2. As discussed in Sec. III, Dóra et al. [15]
have calculated the optical conductivity of an untilted 2D
Hamiltonian with general pseudospin S and the result is
summarized by Eqs. (15) and (16). In Fig. 13, we plot
the interband result for pseudospin up to S = 7/2. All in-
teger values of S will display a step at h̄ω = μ due to a

flat-band-to-cone transition involving the λ = 1 cone, while
for all half-integer S cases, λ = 1/2 cone-to-cone tran-
sitions give rise to a step at 2μ. It is clear from this
figure that for large values of S , the primary modification
is at lower energies h̄ω < μ, where new steps in the op-
tical conductivity spectrum appear at h̄ω = μ/λ, with the
effect of a “bunching up” of steps at lower energy as
S increases. Each additional step is due to the opening of a
new set of transitions occurring between neighboring bands
with higher λ label. As the model Hamiltonian discussed in
this work will only apply as a low-energy theory, and μ, as
discussed here, would then be an energy scale smaller than
the cutoff energy of the theory, we expect that these addi-
tional steps might be quite close in energy. Consequently, in
any experiment involving real materials, these steps may be
difficult to resolve due to additional broadening introduced
by finite temperature and impurity scattering. Furthermore,
as we have seen in Sec. IV, tilting introduces more energy
scales about these steps along with a broadened conductivity
curve related to the tilting parameter. Moreover, when the
3D case is included (Sec. V), the linear background further
suppresses these features. Hence, we expect that even if such
an experimental system could be found or engineered to have
higher pseudospin beyond S = 3/2 or 2, it is less likely it
could be verified via optical experiments. As a result, in this
work, we have only provided explicit results and discussion
for S up to 2. From the cases we have examined, the pattern is
clear for how additional bands for higher S will contribute and
this is summarized in Eqs. (15)–(18), for 2D and 3D untilted
cases, Eqs. (19) and (25) and the following equations for 2D
and 3D cases with a tilt, and Eq. (29) and the following for the
Drude weights for all cases.

APPENDIX B: GENERIC FORM OF Fi(λ, ω)

In Secs. IV and V, we provided formulas for the conduc-
tivity written in terms of a quantity Fi(λ, ω) for two and three
dimensions, respectively. These forms for the case of S = 1/2
(λ = 1/2) have been presented and plotted in previous litera-
ture (subject to accounting for a slightly different statement of
the parameters in the starting Hamiltonian) [48]. The optical
conductivity results we present in this work are dependent
on different values of λ which control the (untilted) slope
of the different cones in the band structure. Hence, in this
Appendix, for completeness, we plot and discuss the generic
ω-dependent and λ-dependent weighting functions F⊥,‖(λ, ω)
for the 2D and 3D tilted cases presented in Eqs. (22)–(24)
and Eqs. (26)–(28), respectively. The admixture of the various
regimes shown here gives rise to the rich structure seen in the
conductivity predicted for higher pseudospin S systems.

Figure 14 presents the generic behavior of F2D
i (λ, ω),

where Fig. 14(a) reiterates the behavior of undertilted cones
[Eq. (22)], while Figs. 14(b) and 14(c) both show the results
for overtilted cones [Eqs. (22) and (23)]. For λ < τ < 2λ

[Fig. 14(b)], the two conductivity polarizations are equal at
h̄ω = μ/λ, as found for the undertilted case [Fig. 14(a)], but
for τ > 2λ [Fig. 14(c)] they do not cross at this point since
the upper breakpoint is below λ/μ (i.e., we begin to “lose”
blue transitions before half of the red transitions are acti-
vated; see Fig. 6 discussion). The critically tilted τ = λ case
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FIG. 14. The generic form of F2D(λ, ω) versus h̄ω for general λ. Shown are three key regimes for the tilt parameter τ , compared to the
untilted result (dashed curve): (a) τ < λ, (b) λ < τ < 2λ, and (c) τ > 2λ.

(type III, not shown) can be understood as the limiting case
of the regular overtilted behavior, where the upper breakpoint
approaches infinity.

For the 3D case, we have plotted F3D
i (λ, ω) in Fig. 15.

Note that the linear background of the conductivity curves
is not present here as that dependence enters as a prefactor
to F3D

i (λ, ω) in the conductivity equation. Hence, Fig. 15
allows a more interesting comparison with the 2D case and
demonstrates that there is more than an overall ω factor af-
fecting the 3D conductivity. The two polarization directions
are still less distinct here than in the 2D case (Fig. 14) but

similar momentum-alignment-defined trends to those from
the 2D case are present in both the under- and overtilted
cases (though the four-dimensional energy-momentum space
required to discuss these results in the same language as Fig. 6
inhibits a similar visualization).

These plots of the Fi(λ, ω) for general λ in two and three
dimensions can be used to visualize expected structures in
the conductivity, resulting from the superimposed response of
each λ-based component as it relates to τ . An example of the
breakdown of this underlying structure was shown in Fig. 8 of
the main text.

FIG. 15. As in Fig. 14 but now for three dimensions, F3D(λ, ω) is plotted versus h̄ω. The final conductivity, based on this function, will
have an additional factor of ω due to the dimensionality of the electronic density of states.
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