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Effect of magnetic field on the electronic properties of an α-T3 ring
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We consider a quantum ring of a certain radius R built from a sheet of the α-T3 lattice and solve for its spectral
properties in the presence of an external magnetic field. The energy spectrum consists of a conduction band, a
valence band, and a zero-energy flat band, all having a number of discrete levels which can be characterized
by the angular momentum quantum number m. The energy levels in the flat band are infinitely degenerate
irrespective of the value of α. We reveal a twofold degeneracy of the levels in the conduction band as well
as in the valence band for α = 0 and α = 1. However, the m = 0 level for α = 1 is an exception. Corresponding
to an intermediate value of α, namely, 0 < α < 1, the energy levels become nondegenerate. The scenario for
the degeneracy of the energy levels remains unaltered when the ring is threaded by a magnetic flux which is
an integer multiple of the flux quantum. We comment on the energy levels which are relevant for low-energy
physics by studying their radius dependence in the presence of a magnetic field. We also calculate the persistent
current, which exhibits quantum oscillations as a function of the magnetic field with a period of one flux quantum
at a particular Dirac point, which is often referred to as a valley. The total persistent current comprising the
contributions from both the valleys is zero in the cases corresponding to α = 0 and α = 1. However, the total
current oscillates with a periodicity of one flux quantum for any intermediate value of α. We also explore the
effect of a mass term (that breaks the sublattice symmetry) in the Hamiltonian. In the absence of a magnetic
field, the energy levels in the flat band become dispersive, except for the m = 0 level in the case of α = 1. In
the presence of the field, each of the flat band levels becomes dispersive for any α �= 0. Finally, we also see the
effect of the mass term on the behavior of the persistent current, which shows a periodicity of one flux quantum,
but the total current remains finite for all values of α.
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I. INTRODUCTION

Electronic properties at low dimensions with various ge-
ometries have continued to fascinate the scientific community
over the years. Among such structures quantum rings (QRs)
are widely celebrated due to their peculiar electronic prop-
erties. The fabrication of nanoscale quantum rings [1,2] in
semiconductor heterostructures has aided in the understanding
of the theoretical results on the subject [3,4]. A QR can host
persistent current [5] when it is threaded by a magnetic flux.
This persistent current is closely related to the Aharonov-
Bohm (AB) effect [6]. A reasonable number of studies [7–15]
has been devoted to confirming the existence of the persistent
current in ringlike quantum structures. The consideration of
spin-orbit interaction of mainly the Rashba type [16] has given
rise to various spectacular spin-related phenomena [17–22] in
semiconductor QRs.

With the advent of graphene [23–26], there has been
immense interest in the different nanostructures, including
QRs based on it. QRs fabricated by lithographic techniques
[27–29] provide suitable platforms to study the AB effect
experimentally. There are a number of numerical [30–40]
and analytical [41–45] studies on graphene QRs dealing with
both charge and spin persistent currents, valley splitting, etc.

*Corresponding author: tbiswas@nbu.ac.in

It has been demonstrated that graphene QRs have potential
applications in future optoelectronic [46] and interferometric
[47] devices.

On the other hand, an interesting variant of the honeycomb
structure of graphene with T3 symmetry, usually known as
the dice lattice, exists [48,49]. Here, the honeycomb lattice
is augmented by an extra site located at the center of each
hexagon. Three inequivalent sites in a unit cell effectively in-
troduce an enlarged pseudospin S = 1. It has been argued that
a particular arrangement of three counterpropagating pairs
of laser beams can produce an optical dice lattice [50] in
the cold atomic environment. It has further been proposed
that a dice lattice can be fabricated in a heterostructure of
cubic lattices, namely, SrTiO3/SrIrO3/SrTiO3 [51]. A more
generalized lattice, called the α-T3 lattice [52], demonstrates
a smooth changeover with the variation of the parameter
α from graphene (α = 0) to the dice lattice (α = 1). The
electronic dispersion of the α-T3 lattice with α = 1/

√
3 can

be realized in a Hg1−xCdxTe quantum well corresponding
to a certain critical doping [53]. Within the nearest-neighbor
tight-binding framework, the low-energy spectrum of the α-T3

lattice near a particular valley, governed by the Dirac-Weyl
Hamiltonian with an enlarged pseudospin (S > 1/2), consists
of three bands, with two dispersive bands which are linear
in momentum and a zero-energy flat band. It is well known
that the Berry phase in the α-T3 lattice is a function of α.
This variable Berry phase further causes the magnetization
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FIG. 1. (a) A schematic diagram of the α-T3 ring of radius R
subjected to a transverse magnetic field B = B0 ẑ. (b) The structure of
the α-T3 lattice is depicted in the zoomed portion. A, B, and C lattice
sites are shown by black, blue, and red dots, respectively. (c) The
zero-field bulk band structure consists of dispersive conduction and
valence bands and a nondispersive zero-energy band. The conduc-
tion band touches the valence band at the Dirac points, known as
valleys, in the first Brillouin zone. Around those points, the spectrum
becomes linearly dispersive. Here, E , kx , and ky are in arbitrary units.

to exhibit a smooth crossover from a diamagnetic (α = 0) to
a paramagnetic (α = 1) behavior across the critical value of
α, namely, αc = 0.495 [54]. A plethora of studies were per-
formed in recent years to probe various equilibrium [55–74]
and nonequilibrium [75–81] properties of the α-T3 lattice.

To the best of our knowledge, no attention has been paid
to a QR made in the α-T3 lattice, which we call an α-T3

ring. Therefore, it would be interesting to study the electronic
properties of the α-T3 ring. Particularly, we intend to see how
the energy spectrum evolves as we migrate from graphene
(α = 0) to the dice lattice (α = 1). The inclusion of an exter-
nal magnetic field would facilitate studies on the evolution of
the spectral properties, the persistent current, and the interplay
of the AB effect therein. With such a motivation, we consider
an α-T3 ring in the presence of a magnetic field and study
various properties as a function of α, which is a parameter in
this work. Finally, we also study the effect of a mass term
(which is different for different sublattices) on the spectral
properties and the corresponding persistent current.

The rest of this paper is organized in the following way.
In Sec. II we discuss various properties of the α-T3 ring,
including the energy spectrum and the persistent current. In

Sec. III, we discuss the effect of a mass term on the spectrum
as well as on the persistent current of the ring. We summarize
our results in Sec. IV.

II. THE α-T3 RING

We consider a ring of radius R in the x-y plane made
from the α-T3 lattice, as depicted in Fig. 1(a). The geometric
structure of the α-T3 lattice is shown in Fig. 1(b). A unit cell
contains three inequivalent lattice sites, namely, A, B, and C.
Sites A and B form the honeycomb structure (graphene) with
the nearest-neighbor hopping parameter t . The center site C is
connected to only three surrounding A sites with hopping αt ,
where 0 � α � 1.

Additionally, the ring is also subjected to a perpendicular
magnetic field B = B0ẑ, where B0 is a constant. Before dis-
cussing the details of the α-T3 ring, we briefly talk about the
bulk band structure of the α-T3 lattice.

In the vicinity of a particular valley (K or K ′) characterized
by the index ζ = ±1, the low-energy excitations in the α-T3

lattice can be described by the following Dirac-Weyl Hamil-
tonian:

H ζ = vF (ζπxSx + πySy), (1)

where vF is the Fermi velocity and πx and πy are the compo-
nents of the canonical momentum operator defined via π =
p + eA, where p denotes the in-plane mechanical momentum
operator and A is the vector potential. Here, the x and y
components of the pseudospin operator S associated with the
α-T3 lattice are given by

Sx =
⎛
⎝ 0 cos φ 0

cos φ 0 sin φ

0 sin φ 0

⎞
⎠

and

Sy =
⎛
⎝ 0 −i cos φ 0

i cos φ 0 −i sin φ

0 i sin φ 0

⎞
⎠,

respectively, with tan φ = α. The z component of S can be di-
rectly obtained from the commutation relation [Sx, Sy] = iSz.
The low-energy zero-field bulk band structure of the α-T3

lattice consists of two linearly dispersive bands: E±
k = ±h̄vF k

and a zero-energy flat band, E = 0, as shown in Fig. 1(c).
In general, the vector potential A corresponding to a uni-

form magnetic field B is given by A = 1
2 (B × r), where r

is the position vector. Since B = B0ẑ, we choose A in the
symmetric gauge to be A = B0/2(−yx̂ + xŷ). For our problem
it the more convenient to write A in polar coordinates (r, θ ) as
A = 1

2 rB0θ̂ .
Therefore, the Hamiltonian in Eq. (1) can be expressed in

polar coordinates as

H ζ = h̄vF

⎛
⎜⎜⎜⎝

0 cos φ e−iζθ
(
−iζ ∂

∂r − 1
r

∂
∂θ

− ieB0r
2h̄

)
0

cos φ eiζθ
(
−iζ ∂

∂r + 1
r

∂
∂θ

+ ieB0r
2h̄

)
0 sin φ e−iζθ

(
−iζ ∂

∂r − 1
r

∂
∂θ

− ieB0r
2h̄

)
0 sin φ eiζθ

(
−iζ ∂

∂r + 1
r

∂
∂θ

+ ieB0r
2h̄

)
0

⎞
⎟⎟⎟⎠.

(2)
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The eigenstates of H ζ can be obtained as

ψmζ (r, θ ) =

⎛
⎜⎝χ1(r)ei(m−ζ )θ

χ2(r)eimθ

χ3(r)ei(m+ζ )θ

⎞
⎟⎠, (3)

where the integer m labels the orbital angular momentum
quantum number and χi denotes the amplitudes corresponding
to the three sublattices. Note that the Hamiltonian H ζ com-
mutes with the z component of the total angular momentum

operator defined as Jz = Lz + Sz, where Lz = −ih̄ ∂
∂θ

is the
orbital angular momentum operator and Sz is the pseudospin
operator. Therefore, Eq. (3) is also the eigenstate of Jz.

Now, we consider a strictly one-dimensional (1D) ring of
radius R such that the radial part is frozen in the eigenso-
lution [16,18,21,37,41,42]. For the sake of the Hermiticity
of the Hamiltonian in ring geometry one should make the
replacements r → R and ∂

∂r → − 1
2R . These replacements are

also obvious because the radial momentum vanishes in the
strict 1D limit (see the Appendix for details). Therefore, the
Hamiltonian corresponding to an ideal α-T3 ring is given by

H ζ
ring = h̄vF

R

⎛
⎜⎝

0 −i
(
m + β − ζ

2

)
cos φ 0

i
(
m + β − ζ

2

)
cos φ 0 −i

(
m + β + ζ

2

)
sin φ

0 i
(
m + β + ζ

2

)
sin φ 0

⎞
⎟⎠, (4)

with β = �/�0, where � = πR2B0 is a magnetic flux
through the ring and �0 is the usual flux quantum. We obtain
the energy spectrum as

Emζ
FL = 0, Emζ

± = ± h̄vF

R
�ζ

m(α, β ). (5)

Here, �ζ
m(α, β ) is defined as

�ζ
m(α, β ) =

√
(m + β )2 + 1

4
− ζ (m + β )

1 − α2

1 + α2
. (6)

The energy spectrum in Eq. (5) for the α-T3 ring consists of
a zero-energy flat band EFL alongside a number of discrete
levels in the conduction band (E+) and the valence band (E−).

The normalized wave functions corresponding to Emζ
± in a

particular valley are obtained as


mζ
± (R, θ ) = eimθ

√
2�

ζ
m

⎛
⎜⎜⎝

∓(
m + β − ζ

2

)
cos φ e−iζθ

i�ζ
m

±(
m + β + ζ

2

)
sin φ eiζθ

⎞
⎟⎟⎠. (7)

Additionally, we obtain the wave function associated with
Emζ

FL as


mζ
Fl (R, θ ) = eimθ

�
ζ
m

⎛
⎜⎜⎝

(
m + β + ζ

2

)
sin φ e−iζθ

0(
m + β − ζ

2

)
cos φ eiζθ

⎞
⎟⎟⎠. (8)

It is interesting to note that the flat band contains infinitely de-
generate levels [see Eq. (8)]; that is, any value of the quantum
number m yields a zero-energy solution.

A. Discussion on the energy spectrum

The zero-field energy spectra in the K valley for different
values of α are shown in Fig. 2. One can easily verify the re-
sults of the graphene QR by setting α = 0 in Eqs. (5) and (6).
In this case, �ζ

m depends on the valley as �ζ
m = |m − ζ/2|.

In the K valley, the energy levels with m = 0 and m = 1 are

degenerate, and so are the levels with m = 2 and m = −1,
m = 3 and m = −2, etc. Similarly, the energy levels with
m = 0 and m = −1, m = 1 and m = −2, m = 2 and m = −3,
etc., are degenerate in the K ′ valley. However, �ζ

m becomes
valley independent, as �ζ

m =
√

m2 + 1/4, in the other limit
corresponding to α = 1. Therefore, the energy level with
m = 0 is nondegenerate, and the levels corresponding to m =
±1,±2, . . . are degenerate in both valleys. At an intermediate
value of α (0 < α < 1), all the energy levels are nondegener-
ate. Here, only the m = 0 level is valley independent, while all
the other levels depend on the valley in a complicated manner
according to Eq. (6).

Now let us discuss the case in which the α-T3 ring is
threaded by a perpendicular magnetic flux. In this case, we

(m
eV

)

FIG. 2. Zero magnetic field energy levels of the α-T3 ring as a
function of the quantum number m for (a) α = 0, (b) α = 0.5, and
(c) α = 1 in the K valley. Here, we consider R = 50 nm. The α = 0
case in (a) represents the quantum ring made of graphene, that is,
without an atom sitting in the center of the hexagon. The flat band is
missing in this case.
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(m

eV
)

FIG. 3. The energy levels of the α-T3 ring in the K valley as a
function of the quantum number m for (a) α = 0, (b) α = 0.5, and
(c) α = 1 when the magnetic field is such that β = ±4. Here, we
consider R = 50 nm. The α = 0 case in (a) represents the quantum
ring made of graphene, that is, without an atom sitting in the center
of the hexagon. Thus, the flat band is missing here.

find �ζ
m = |m + β − ζ/2| and �ζ

m =
√

(m + β )2 + 1/4 for
α = 0 and α = 1, respectively. In the case of a graphene ring
(α = 0), it is understood that the energy levels with m = −β

and m = 1 − β, m = 2 − β and m = −1 − β, m = 3 − β and
m = −2 − β, etc., in the K valley and those with m = −β and
m = −1 − β, m = 1 − β and m = −2 − β, m = 2 − β and
m = −3 − β, etc., in the K ′ valley are degenerate when β is
an integer. In the other limiting case, that is, α = 1, �ζ

m does
not depend on the valley index ζ . Here, for integer values of
β, the energy level with m = −β is nondegenerate, and the
energy levels with m = ±1 − β,±2 − β, . . . are degenerate.
For intermediate values of α, no such degeneracy exists. These
facts are clearly shown in Fig. 3. We have also verified (not
shown here) that when β deviates from an integer value,
all the energy levels becomes nondegenerate for all values
of α.

Band gap tuning with magnetic field for this type of system
can attract a lot of attention in absorption and emission spectra
studies, where the lowest energy gap results in a strong signal
in experiments. Motivated by this, let us define the energy gap
in a particular valley ζ as �E ζ = Emζ

+ − Emζ
− . Its minimum

value in the K valley is plotted as a function of β in Fig. 4.
�E oscillates periodically with β. The period of oscillation is
β = 1. This is because the minimum magnetic field required
to transfer an electron from one angular momentum state to
the subsequent angular momentum state is such that β = 1.
For α = 0 and α = 1, �E is symmetric about β = 0. How-
ever, �E is not symmetric about β = 0 for an intermediate
value, such as α = 0.5. Note that the energy gap at β = 0
(zero magnetic field) is independent of α.

In order to ascertain the size dependence of the spectral
properties, let us briefly discuss how the energy levels of the
ring depend on the radius R. It is clear from Eq. (6) that �ζ

m
is independent of R in the absence of the magnetic field (since
R enters through the flux, � threads the ring), which leads

−1 0 1
β

0

5

10

15

Δ
E

(m
eV

)

(a) α = 0.0

−1 0 1
β

10

15

(b) α = 0.5

−1 0 1
β

15

20

(c) α = 1.0

FIG. 4. The minimum value of the energy gap �E = Em
+ − Em

−
in the K valley as a function of β for (a) α = 0, (b) α = 0.5, and
(c) α = 1. Here, we consider R = 50 nm.

to the 1/R dependence of the energy levels irrespective of
the value of α. The above scenario is altered significantly
in the presence of a magnetic field. Figure 5 shows the R
dependence of a few energy levels for both valleys considering
B0 = 5 T and α = 0.5. Comparing Figs. 5(a) and 5(b) we
conclude that all the energy levels become valley dependent
in the presence of the magnetic field. Each of the levels shows
a nonmonotonic behavior as a function of the radius R. In
the limit of small R, all the energy levels vary inversely with
R. On the other hand, the energy scales as E ∼ |evF B0R|/2
in the limit of large R. However, the criterion of R be-
ing “large” depends on m, which can be understood in the
following way.

The energy level attains an extremum (the minimum for the
conduction band and the maximum for the valence band) at a
particular value of R, namely, R = R0, which can be obtained

0 20 40 60
R (nm)

−150

−100

−50

0

50

100

150

E
(m

eV
)

(a)

K

0

1

−1

2

−2

0 20 40 60
R (nm)

(b)

K′

0

1

−1

2

−2

FIG. 5. Dependence of energy levels on the radius R of the α-T3

ring depicted for both valleys. We consider B0 = 5 T and α = 0.5.
Note that the valley degeneracy is lifted.
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∼ √
m
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|m|

5
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eV
)

m < 0

(c)

∼ 1/
√|m|

FIG. 6. (a) Dependence of energy levels on the radius R of the
α-T3 ring in the K valley considering large m values. We consider
B0 = 5 T and α = 0.5. (b) Minimum value of the energy as a
function of m considering m > 0. Here, we find Emin ∼ √

m. (c) Min-
imum value of the energy as a function of m when m < 0. In this case,
we obtain Emin ∼ 1/

√|m|.

by setting

dEmζ
±

dR

∣∣∣∣∣
R=R0

= 0. (9)

Using Eqs. (5) and (9), we find R0 as

R0 =
√

2l0

(
m2 − mζ

1 − α2

1 + α2
+ 1

4

) 1
4

, (10)

where l0 = √
h̄/(eB0) is the magnetic length. For a fixed

B0, R0 mainly depends on m, ζ , and α. In the two
limiting cases, namely, α = 0 and α = 1, we have R0 =
l0

√
2m − ζ and R0 = √

2l0(m2 + 1/4)1/4, respectively. For
a given magnetic field, R0 scales with m as R0 ∝ √|m|
when m is large enough. This feature is shown in Fig. 6(a),
where we present the radius dependence of a few pos-
itive energy levels with relatively large m, namely, m =
−50,−40,−30,−20,−10, 10, 20, 30, 40, 50 in the K valley
for α = 0.5 and B0 = 5 T. It is clear that the condition for
which one can consider R to be large depends on m explic-
itly. More specifically, for an arbitrarily large value of R,
we can always find an m which corresponds to the energy
minimum. The scaling of the minimum energy with m also
depends on the sign of m. For instance, Emin ∝ 1/

√|m| when
m is negative. On the other hand, for positive m, we have
Emin ∝ √

m. These scaling features of Emin are depicted in
Figs. 6(b) and 6(c). Therefore, the low-energy states in the K
valley are actually the states characterized by large negative
m values. It is also worth mentioning here that by reversing
the sign of either the valley index ζ or the magnetic field B,
one can have Emin ∝ 1/

√
m for m > 0 and Emin ∝ √|m| for

m < 0.

B. Persistent current

Next, we discuss the behavior of the persistent current in
the α-T3 ring. The persistent current is the equilibrium current
flowing along the angular direction in a QR when it is threaded
by a magnetic flux. Proper knowledge of it aids in quantifying
the energy spectrum near the Fermi energy. This current can
be calculated using the relation jx(y) = vF [†Sx(y)]. Using
this definition, the radial and angular currents are further ob-
tained as jr = vF [†Sr] and jθ = vF [†Sθ], respectively.
Here, Sr and Sθ are given by Sr = Sx cos θ + Sy sin θ and Sθ =
−Sx sin θ + Sy cos θ . Although the radial current vanishes, we
calculate the angular current in a particular valley as

jζ = vF

2�
ζ
m

[
2ζ (m + β ) − 1 − α2

1 + α2

]
. (11)

The total angular current is composed of the contributions
from the individual valleys as given by j = jK + jK′ . The
expression for the persistent current given in Eq. (11) can also
be obtained using the definition j = −∑

m,ζ
∂E
∂�

within the
framework of the linear response theory, where the sum runs
over all the occupied states. In Fig. 7, we show the variation
of the persistent current with β for different values of α. The
persistent current is periodic in β with a period of β = 1.
The oscillation pattern of the current corresponding to α = 0
is completely different than that for α = 1. Furthermore, the
individual contributions arising from different valleys are ex-
actly equal and opposite for both α = 0 and α = 1, which
causes the total persistent current to vanish. The persistent
current also vanishes in the individual valleys when β = 0 for
α = 1. The case for an intermediate α, that is, 0 < α < 1, is
more interesting. Here, the currents from individual valleys do
not compensate each other, which results in a nonvanishing to-
tal persistent current. It is also noteworthy that the current in a
particular valley does not vanish even when β is equal to zero,
which gives rise to a total nonvanishing current corresponding
to zero magnetic flux.

−1
0

1
j K

/v
F

(a) α = 0.0

−1
0

1
j K

′ /
v F

−2 0 2
β

−1
0

1
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v F

−0
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0.
0

0.
5

(b) α = 0.5
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. 5
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(c) α = 1.0

− 0
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0.
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−1
0

1
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′

FIG. 7. Persistent current as a function of β =�/�0 for (a) α=0,
(b) α = 0.5, and (c) α = 1. The first row is for the K valley, the
second row is for the K ′ valley, and the third one is for the total of
the two valleys.
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III. MASS TERM

In this section, we are interested to see the effect of a mass term [82,83] on the low-energy spectrum of the α-T3 ring,

M =
⎛
⎝δ 0 0

0 0 0
0 0 −δ

⎞
⎠. (12)

Note that M can be thought to break the sublattice symmetry by including a different on-site potential in each of the A,
B, and C sublattices. With this, the effective Hamiltonian for the α-T3 ring in the presence of an external magnetic flux
becomes

H ζ
δ = h̄vF

R

⎛
⎜⎝

δ0 −i
(
m + β − ζ

2

)
cos φ 0

i
(
m + β − ζ

2

)
cos φ 0 −i

(
m + β + ζ

2

)
sin φ

0 i
(
m + β + ζ

2

)
sin φ −δ0

⎞
⎟⎠, (13)

where δ0 = Rδ/(h̄vF ). The energy eigenvalues are obtained as

Emζ

k = 2

√
Pζ

m

3
cos

[
1

3
cos−1

(
3Qζ

m

2Pζ
m

√
3

Pζ
m

)
− 2πk

3

]
, (14)

where k = 0, 1, and 2 are associated with the conduction band, the flat band, and the valence band, respectively. Here,

Pζ
m = h̄2v2

F

R2

(
δ2

0 + �ζ
m

2)
,

and

Qζ
m = δ

h̄2v2
F

R2

[
1 − α2

1 + α2

{
(m + β )2 + 1

4

}
− ζ (m + β )

]
.

The normalized wave functions can be written in the form


mζ

k (R, θ ) = Nζ

k eimθ

⎛
⎜⎜⎜⎝

−i h̄vF
R

(
m + β − ζ

2

)(
Emζ

k + δ
)

cos φ e−iζθ

Emζ

k

2 − δ2

i h̄vF
R

(
m + β + ζ

2

)(
Emζ

k − δ
)

sin φ eiζθ

⎞
⎟⎟⎟⎠,

with

Nζ

k = 1√
h̄2v2

F
R2

[(
Emζ

k + δ
)2(

m + β − ζ

2

)2
cos2 φ + (

Emζ

k − δ
)2(

m + β + ζ

2

)2
sin2 φ

] + (
Emζ

k

2 − δ2
)2

. (15)

A. Discussion of the energy spectrum

It is easy to confirm the results of Zarenia et al. [41]
for graphene (α = 0) from Eq. (14). Figures 8 and 9 show
the radius dependence of the zero-field energy levels in both
valleys for α = 0.5 and α = 1, respectively. We consider two
different values of the mass term, namely, δ = 50 meV and
δ = 100 meV. The effect of the mass term on the energy
spectrum is mainly twofold. First, it introduces gaps in the
spectrum, i.e., a gap between the conduction band and the flat
band and one between the flat band and the valence band.
Second, it makes the flat band (k = 1) dispersive; that is, a
nonzero group velocity is associated with each of the levels
therein, which will contribute to the transport properties of the
system. The energy levels with small m values corresponding
to k = 0, k = 1, and k = 2 merge to δ, 0, and −δ, respectively,
in the limit of large R, as is evident from Figs. 8 and 9.
This merging of levels is also true for large m in the case
of α = 1, which we discuss in the next paragraph. In the
small-R limit, the energy levels belonging to k = 0 and k = 2

are inversely proportional to R irrespective of α. However,
the levels associated with k = 1 deviate significantly from the
1/R dependence for both values of α. For a given k value,
the energy levels in the K valley are related to those in the
K ′ valley as Em(+ζ )

k = E−m(−ζ )
k . Thus, the scenario is identical

in the other valley, except m reverses its sign. When α = 1
(Fig. 9), we have Emζ

0 = −E−mζ
2 in a particular valley ζ ,

which is in direct contrast to the earlier result corresponding
to δ = 0 (see Sec. II A). In the flat band (k = 1), we find
that the level with m = 0 remains flat with zero energy and
the other levels satisfy Emζ

1 = −E−mζ
1 . In the case of α = 0.5

(Fig. 8), the above-mentioned features are absent. In addition,
the m = 0 level in the flat band is no longer flat. It shifts down
towards negative energy at small values of R. By inspecting
both Figs. 8 and 9, we can also note that all the energy levels
are nondegenerate for all values of α except for α = 0 [41],
which can be attributed to the presence of the mass term δ.

Here, we would like to point out some features of
the zero-field energy spectrum in the limit of large m. In
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FIG. 8. Zero-field energy levels as a function of radius R for α = 0.5 in both valleys considering δ = 50 meV and δ = 100 meV.
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FIG. 9. Zero-field energy levels as a function of radius R for α = 1 in both valleys considering δ = 50 meV and δ = 100 meV.
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FIG. 10. Finite-field energy levels in the K-valley as a function of R in the presence of the mass term δ = 50 meV for (a) α = 0.5 and
(b) α = 1. Here, we consider B0 = 5 T.

the case of α = 1, we have �ζ
m ∼ m, Pζ

m ∼ h̄2v2
F m2/R2, and

Qζ
m ∼ −ζ h̄2v2

F δm/R2 when m is large. Let us now define

Iζ
m = 3Qζ

m

2Pζ
m

√
3

Pζ
m

.

For large m, we obtain Iζ
m ∼ −3

√
3ζRδ/(2h̄vF m2). Consid-

ering typical values of the parameters, R = 200 nm, δ =
50 meV, and m=30, we can verify that 3

√
3ζRδ/(2h̄vF m)

< 1. Therefore, we have Iζ
m → 0 when m is sufficiently large.

From Eq. (14), we find the energy levels when R is large
enough,

Emζ

k ∼ 2δ√
3

cos

(
π

6
− 2πk

3

)
. (16)

It is now obvious from Eq. (16) that Emζ
0 → δ, Emζ

1 → 0,
and Emζ

2 → −δ. In other words, the levels with large m be-
longing to k = 0, k = 1, and k = 2 also merge with δ, 0,
and −δ, respectively, at large R when α = 1. However, the
scenario is different for α = 0.5. In this case, we obtain
Iζ
m ∼ 9

√
3Rδ/(10h̄vF m) for large m. For the parameter values

chosen earlier, we have Iζ
m < 1. It is now straightforward to

obtain the energy spectrum in limit of large R as

Emζ

k ∼ 2δ√
3

cos

(
θ0 − 2πk

3

)
, (17)

where θ0 depends on R, δ, and m explicitly.
In Fig. 10, we show the R dependence of the energy levels

with small m values in the K valley in the presence of a
magnetic field, where we have chosen, B0 = 5 T. The qual-
itative features of the energy spectrum deviate significantly
from the zero magnetic field case. Here, all the energy levels
are nondegenerate for all values of α. Unlike the B0 = 0 case,
we can observe that Em

0 �= −E−m
2 , Em

1 �= −E−m
1 , and there is

a distortion of the m = 0 flat-band energy level for α = 1
[Fig. 10(b)]. In addition, the levels in the k = 1 band merge
with zero energy at large values of R. However, this is not
the scenario for intermediate values of α, namely, α = 0.5
[Fig. 10(a)], where the levels in the dispersive flat band do
not merge to zero energy at large R. The energy levels in the
conduction band and in the valence band depend on R in a
fashion similar to that in the case of δ = 0 (see Fig. 5).

B. Persistent current

Here, we also study the effect of the mass term on the
variation of the persistent current. The persistent current in
a particular valley and in a particular band now acquires the
following form:

jζk = 2vF
h̄vF

R
Nζ

k

2(
Emζ

k

2 − δ2
)[

(m + β )Emζ

k + δ(m + β )
1 − α2

1 + α2
− ζ δ

2
− ζEmζ

k

2

1 − α2

1 + α2

]
. (18)
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FIG. 11. Persistent current as a function of β = �/�0 for
(a) α = 0, (b) α = 0.5, and (c) α = 1. The first row is for the K
valley, the second row is for the K ′ valley, and the third one is for
the total of the two valleys. Here, we have considered the mass term
δ = 50 meV and the radius R = 10 nm.

We can verify the results of the persistent current computed
in Ref. [41] for graphene from Eq. (18) by setting α = 0 and
an appropriate value of δ considered there. The persistent
current in a particular valley is calculated from the contri-
butions from the conduction band (k = 0) and distorted flat
band (k = 1) as jζ = jk=0

ζ + jk=1
ζ . The total angular current

comprising contributions from both the valleys is given by
j = jK + jK′ . It is worth mentioning that the distortion of the
energy levels in the flat band gives rise to finite persistent
current, unlike in the case with no mass term (δ = 0). In
Fig. 11, we show the variation of the persistent current with
β considering δ = 50 meV and R = 10 nm. The introduction
of the mass term completely changes the oscillation pattern of
the persistent current from the case of δ = 0 (see Fig. 7). The
currents in different valleys are no longer equal and opposite,
which results in a nonvanishing total persistent current for all
values of α. Further, the current in a particular valley and the
total current oscillate periodically in β with periodicity β = 1.
Here, the total persistent current at β = 0 (no magnetic field)
is zero for all values of α �= 0.

IV. SUMMARY AND OUTLOOK

In summary, we investigated the electronic properties of
the α-T3 ring analytically within a simple toy model. Par-
ticularly, we were interested in the behavior of the energy
spectrum, the persistent current, and the size dependences of
the spectral features as one interpolates between graphene
(α = 0) and the dice lattice (α = 1). Ignoring the radial de-
pendence of the ring allowed us to overlook the boundary
effects. We list a number of observations in the following.
Confinement of the carriers in the ring leads to energy quan-
tization characterized by the angular momentum quantum
number m. As a result, we obtained discrete levels correspond-

ing to both the conduction and valence bands. However, the
flat band consists of a huge number of zero-energy degenerate
levels which are insensitive to an applied magnetic field too.
In the zero-field case, all the energy levels in the conduction
or valence band depend inversely on the radius R of the ring
independent of values of α. Furthermore, there is a degeneracy
in the energy levels corresponding to α = 0. However, for
an intermediate value of α, namely, 0 < α < 1, the energy
levels become nondegenerate. Interestingly, this degeneracy
is restored in the case of α = 1 except for the m = 0 level.
We also found that the valley degeneracy is broken for all
values of α such that α �= 1. When the ring is subjected to
a perpendicular magnetic field, the energy levels follow a sub-
stantial deviation from their typical 1/R dependence. In the
large-R limit the energy level scales as E ∼ R, while at small
R, it still behaves as 1/R. The minimum energy gap between
the conduction and valence bands oscillates periodically as a
function of the magnetic flux � with a period equal to one
flux quantum �0. We also calculated the persistent current,
which exhibits �0 periodic oscillations in individual valleys,
reminiscent of the Aharonov-Bohm oscillations. The total per-
sistent current comprising both valley vanishes for both α = 0
and α = 1 as a consequence of exact compensation of the
contributions from two valleys. But when 0 < α < 1, the total
current is nonzero, and it undergoes �0-periodic oscillations.
Interestingly, we observed a nonzero persistent current at zero
magnetic field. We also discussed the effect of an effective
mass term on the energy spectra. In the absence of magnetic
field, the mass term makes the flat band dispersive in the
small-R limit, except for the m = 0 band corresponding to
α = 1. A magnetic field alters the situation significantly by
making all the levels in the flat band dispersive for all values
of α �= 0. With the mass term, the persistent current is again
periodic with a period of one flux quantum, but the oscilla-
tion pattern is completely different from the previous case
(zero mass). However, there is a finite contribution from the
distorted flat band in the persistent current. Finally, the total
current is nonzero for all values of α. As a possible extension
of our work, one could consider an α-T3 ring connected to
external leads in order to investigate ballistic transport through
the structure. In the presence of a perpendicular magnetic
field, the conductance of the ring would exhibit quantum os-
cillations as the Fermi energy is varied. It would be interesting
to see how these oscillations evolve over the entire range of
α.
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APPENDIX: JUSTIFICATION OF THE
SUBSTITUTION ∂

∂r → − 1
2R

The problem of the non-Hermiticity of the quantum ring
Hamiltonian appears when the two-dimensional Hamilto-
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nian contains a term linearly proportional to the momentum
[16,41,42]. To bypass such ambiguity, the substitution ∂

∂r →
− 1

2R is necessary, as mentioned earlier [16,41,42]. However,
there is a nice argument in support of that substitution. It
is based on the appropriate form of the radial momentum
operator in two dimensions.

Note that the operator Pr = r·p
r is not Hermitian, i.e., P†

r �=
Pr . Therefore, the radial momentum operator can be written
in the symmetric form

pr = 1

2
(Pr + P†

r ) = 1

2

(
1

r
r · p + p · r

1

r

)
. (A1)

Let us examine the action of pr on a differentiable function
of r, say, g(r). We obtain

prg(r) = − ih̄

2

[
∂g

∂r
+ ∇ ·

(
rg

r

)]
= −ih̄

[
∂

∂r
+ 1

2r

]
g(r).

Therefore, the radial momentum operator in two dimen-
sions is identified as

pr = −ih̄

(
∂

∂r
+ 1

2r

)
. (A2)

For the case of a 1D quantum ring, the radial motion is
essentially frozen, that is, pr = 0. Therefore, the substitution
∂
∂r → − 1

2R is justified.

[1] A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M.
Garcia, and P. M. Petroff, Spectroscopy of Nanoscopic Semi-
conductor Rings, Phys. Rev. Lett. 84, 2223 (2000).

[2] A. Fuhrer, S. Luscher, T. Ihn, T. Heinzel, K. Ensslin, W.
Wegscheider, and M. Bichler, Energy spectra of quantum rings,
Nature (London) 413, 822 (2001).

[3] T. Chakraborty and P. Pietiläinen, Electron-electron interaction
and the persistent current in a quantum ring, Phys. Rev. B 50,
8460 (1994).

[4] V. Halonen, P. Pietiläinen, and T. Chakraborty, Optical-
absorption spectra of quantum dots and rings with a repulsive
scattering centre, Europhys. Lett. 33, 377 (1996).

[5] M. Büttiker, Y. Imry, and R. Landauer, Josephson behavior
in small normal one-dimensional rings, Phys. Lett. A 96, 365
(1983).

[6] Y. Aharonov and D. Bohm, Significance of electromagnetic
potentials in the quantum theory, Phys. Rev. 115, 485 (1959).

[7] H. F. Cheung, Y. Gefen, E. K. Riedel, and W. H. Shih, Persistent
currents in small one-dimensional metal rings, Phys. Rev. B 37,
6050 (1988).

[8] H. F. Cheung, Y. Gefen, and E. K. Riedel, Isolated rings of
mesoscopic dimensions. Quantum coherence and persistent cur-
rents, IBM J. Res. Dev. 32, 359 (1988).

[9] H. F. Cheung, E. K. Riedel, and Y. Gefen, Persistent Currents
in Mesoscopic Rings and Cylinders, Phys. Rev. Lett. 62, 587
(1989).

[10] L. P. Lévy, G. Dolan, J. Dunsmuir, and H. Bouchiat, Magne-
tization of Mesoscopic Copper Rings: Evidence for Persistent
Currents, Phys. Rev. Lett. 64, 2074 (1990).

[11] G. Montambaux, H. Bouchiat, D. Sigeti, and R. Friesner, Persis-
tent currents in mesoscopic metallic rings: Ensemble average,
Phys. Rev. B 42, 7647(R) (1990).

[12] V. Chandrasekhar, R. A. Webb, M. J. Brady, M. B. Ketchen,
W. J. Gallagher, and A. Kleinsasser, Magnetic Response of a
Single, Isolated Gold Loop, Phys. Rev. Lett. 67, 3578 (1991).

[13] Y. Avishai, Y. Hatsugai, and M. Kohmoto, Persistent currents
and edge states in a magnetic field, Phys. Rev. B 47, 9501
(1993).

[14] G. Bouzerar, D. Poilblanc, and G. Montambaux, Persistent
currents in one-dimensional disordered rings of interacting elec-
trons, Phys. Rev. B 49, 8258 (1994).

[15] D. Mailly, C. Chapelier, and A. Benoit, Experimental Observa-
tion of Persistent Currents in GaAs-AlGaAs Single Loop, Phys.
Rev. Lett. 70, 2020 (1993).

[16] F. E. Meijer, A. F. Morpurgo, and T. M. Klapwijk, One-
dimensional ring in the presence of Rashba spin-orbit interac-
tion: Derivation of the correct Hamiltonian, Phys. Rev. B 66,
033107 (2002).

[17] J. Nitta, F. E. Meijer, and H. Takayanagi, Spin-interference
device, Appl. Phys. Lett. 75, 695 (1999).

[18] B. Molnar, F. M. Peeters, and P. Vasilopoulos, Spin-dependent
magnetotransport through a ring due to spin-orbit interaction,
Phys. Rev. B 69, 155335 (2004).

[19] D. Frustaglia and K. Richter, Spin interference effects in
ring conductors subject to Rashba coupling, Phys. Rev. B 69,
235310 (2004).

[20] P. Földi, B. Molnar, M. G. Benedict, and F. M. Peeters, Spin-
tronic single-qubit gate based on a quantum ring with spin-orbit
interaction, Phys. Rev. B 71, 033309 (2005).

[21] P. Földi, O. Kalman, M. G. Benedict, and F. M. Peeters, Quan-
tum rings as electron spin beam splitters, Phys. Rev. B 73,
155325 (2006).

[22] B. Berche, C. Chatelain, and E. Medina, Mesoscopic
rings with spin-orbit interactions, Eur. J. Phys. 31, 1267
(2010).

[23] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y.
Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov,
Electric field effect in atomically thin carbon films, Science 306,
666 (2004).

[24] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Two-dimensional gas of massless Dirac fermions in graphene,
Nature (London) 438, 197 (2005).

[25] Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Ex-
perimental observation of the quantum Hall effect and
Berry’s phase in graphene, Nature (London) 438, 201
(2005).

[26] V. P. Gusynin and S. G. Sharapov, Unconventional Integer
Quantum Hall Effect in Graphene, Phys. Rev. Lett. 95, 146801
(2005).

[27] S. Russo, J. B. Oostinga, D. Wehenkel, H. B. Heersche, S. S.
Sobhani, L. M. K. Vandersypen, and A. F. Morpurgo, Observa-
tion of Aharonov-Bohm conductance oscillations in a graphene
ring, Phys. Rev. B 77, 085413 (2008).

[28] M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer,
K. Ensslin, and T. Ihn, Investigation of the Aharonov-Bohm
effect in a gated graphene ring, Phys. Status Solidi B 246, 2756
(2009).

085423-10

https://doi.org/10.1103/PhysRevLett.84.2223
https://doi.org/10.1038/35101552
https://doi.org/10.1103/PhysRevB.50.8460
https://doi.org/10.1209/epl/i1996-00350-5
https://doi.org/10.1016/0375-9601(83)90011-7
https://doi.org/10.1103/PhysRev.115.485
https://doi.org/10.1103/PhysRevB.37.6050
https://doi.org/10.1147/rd.323.0359
https://doi.org/10.1103/PhysRevLett.62.587
https://doi.org/10.1103/PhysRevLett.64.2074
https://doi.org/10.1103/PhysRevB.42.7647
https://doi.org/10.1103/PhysRevLett.67.3578
https://doi.org/10.1103/PhysRevB.47.9501
https://doi.org/10.1103/PhysRevB.49.8258
https://doi.org/10.1103/PhysRevLett.70.2020
https://doi.org/10.1103/PhysRevB.66.033107
https://doi.org/10.1063/1.124485
https://doi.org/10.1103/PhysRevB.69.155335
https://doi.org/10.1103/PhysRevB.69.235310
https://doi.org/10.1103/PhysRevB.71.033309
https://doi.org/10.1103/PhysRevB.73.155325
https://doi.org/10.1088/0143-0807/31/5/026
https://doi.org/10.1126/science.1102896
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04235
https://doi.org/10.1103/PhysRevLett.95.146801
https://doi.org/10.1103/PhysRevB.77.085413
https://doi.org/10.1002/pssb.200982284


EFFECT OF MAGNETIC FIELD ON THE ELECTRONIC … PHYSICAL REVIEW B 108, 085423 (2023)

[29] M. Huefner, F. Molitor, A. Jacobsen, A. Pioda, C. Stampfer, K.
Ensslin, and T. Ihn, The Aharonov-Bohm effect in a side-gated
graphene ring, New J. Phys. 12, 043054 (2010).

[30] P. Recher, B. Trauzettel, A. Rycerz, Ya. M. Blanter, C. W. J.
Beenakker, and A. F. Morpurgo, Aharonov-Bohm effect and
broken valley degeneracy in graphene rings, Phys. Rev. B 76,
235404 (2007).

[31] D. S. L. Abergel, V. M. Apalkov, and T. Chakraborty, Interplay
between valley polarization and electron-electron interaction in
a graphene ring, Phys. Rev. B 78, 193405 (2008).

[32] M. M. Ma, J. W. Ding, and N. Xu, Odd-even width effect on per-
sistent current in zigzag hexagonal graphene rings, Nanoscale 1,
387 (2009).

[33] T. Luo, A. P. Iyengar, H. A. Fertig, and L. Brey, Effective time-
reversal symmetry breaking and energy spectra of graphene
armchair rings, Phys. Rev. B 80, 165310 (2009).

[34] J. Wurm, M. Wimmer, H. U. Baranger, and K. Richter,
Graphene rings in magnetic fields: Aharonov-Bohm effect
and valley splitting, Semicond. Sci. Technol. 25, 034003
(2010).

[35] C. H. Yan and L. F. Wei, Size effects in Aharonov-Bohm
graphene rings, J. Phys.: Condens. Matter 22, 295503 (2010).

[36] B.-L. Huang, M.-C. Chang, and C.-Y. Mou, Persistent currents
in a graphene ring with armchair edges, J. Phys.: Condens.
Matter 24, 245304 (2012).

[37] D. R. da Costa, A. Chaves, M. Zarenia, J. M. Pereira, Jr.,
G. A. Farias, and F. M. Peeters, Geometry and edge effects
on the energy levels of graphene quantum rings: A comparison
between tight-binding and simplified Dirac models, Phys. Rev.
B 89, 075418 (2014).

[38] A. López, N. Bolívar, E. Medina, and B. Berche, Equilibrium
currents in a Corbino graphene ring, Condens. Matter Phys. 17,
33803 (2014).

[39] M. Omidi and E. Faizabadi, Energy spectrum and persistent
current in an armchair hexagonal graphene ring in the presence
of vacancies, Rashba and Zeeman interactions, Eur. Phys. J. B
88, 30 (2015).

[40] F. R. V. Araújo, D. R. da Costa, A. J. C. Chaves, F. E. B. de
Sousa, and J. M. Pereira, Jr., Modulation of persistent current in
graphene quantum rings, J. Phys.: Condens. Matter 34, 125503
(2022).

[41] M. Zarenia, J. M. Pereira, A. Chaves, F. M. Peeters, and G. A.
Farias, Simplified model for the energy levels of quantum rings
in single layer and bilayer graphene, Phys. Rev. B 81, 045431
(2010).

[42] M. Zarenia, J. M. Pereira, A. Chaves, F. M. Peeters, and G. A.
Farias, Erratum: Simplified model for the energy levels of quan-
tum rings in single layer and bilayer graphene, Phys. Rev. B 82,
119906(E) (2010).

[43] M. Zarenia, J. M. Pereira, Jr., F. M. Peeters, and G. A. Farias,
Electrostatically confined quantum rings in bilayer graphene,
Nano Lett. 9, 4088 (2009).

[44] N. Bolívar, E. Medina, and B. Berche, Persistent charge and
spin currents in the long-wavelength regime for graphene rings,
Phys. Rev. B 89, 125413 (2014).

[45] M. Mirzakhani, D. R. da Costa, and F. M. Peeters, Isolated
and hybrid bilayer graphene quantum rings, Phys. Rev. B 105,
115430 (2022).

[46] M. Samal, N. Barange, D.-H. Ko, and K. Yun, Graphene
quantum rings doped PEDOT:PSS based composite layer for

efficient performance of optoelectronic devices, J. Phys. Chem.
C 119, 19619 (2015).

[47] D. J. P. de Sousa, A. Chaves, J. M. Pereira, Jr., and G. A.
Farias, Interferometry of Klein tunnelling electrons in graphene
quantum rings, J. Appl. Phys. 121, 024302 (2017).

[48] B. Sutherland, Localization of electronic wave functions due to
local topology, Phys. Rev. B 34, 5208 (1986).

[49] J. Vidal, R. Mosseri, and B. Doucot, Aharonov-Bohm Cages
in Two-Dimensional Structures, Phys. Rev. Lett. 81, 5888
(1998).

[50] D. Bercioux, D. F. Urban, H. Grabert, and W. Hausler, Massless
Dirac-Weyl fermions in a T3 optical lattice, Phys. Rev. A 80,
063603 (2009).

[51] F. Wang and Y. Ran, Nearly flat band with Chern number C = 2
on the dice lattice, Phys. Rev. B 84, 241103(R) (2011).

[52] E. Illes, Properties of the α-T3 model, Ph.D. thesis, University
of Guelph, 2017.

[53] J. D. Malcolm and E. J. Nicol, Magneto-optics of massless Kane
fermions: Role of the flat band and unusual Berry phase, Phys.
Rev. B 92, 035118 (2015).

[54] A. Raoux, M. Morigi, J. N. Fuchs, F. Piechon, and G. Montam-
baux, From Dia- to Paramagnetic Orbital Susceptibility of
Massless Fermions, Phys. Rev. Lett. 112, 026402 (2014).

[55] E. Illes, J. P. Carbotte, and E. J. Nicol, Hall quantization and
optical conductivity evolution with variable Berry phase in the
α-T3 model, Phys. Rev. B 92, 245410 (2015).

[56] T. Biswas and T. K. Ghosh, Magnetotransport properties of the
α-T3 model, J. Phys.: Condens. Matter 28, 495302 (2016).

[57] D. F. Urban, D. Bercioux, M. Wimmer, and W. Hausler, Barrier
transmission of Dirac-like pseudospin-one particles, Phys. Rev.
B 84, 115136 (2011).

[58] E. Illes and E. J. Nicol, Klein tunneling in the α-T3 model, Phys.
Rev. B 95, 235432 (2017).

[59] S. K. F. Islam and P. Dutta, Valley-polarized magnetoconduc-
tivity and particle-hole symmetry breaking in a periodically
modulated α-T3 lattice, Phys. Rev. B 96, 045418 (2017).

[60] T. Biswas and T. K. Ghosh, Dynamics of a quasiparticle in
the α-T3 model: Role of pseudospin polarization and transverse
magnetic field on zitterbewegung, J. Phys.: Condens. Matter 30,
075301 (2018).

[61] J. D. Malcolm and E. J. Nicol, Frequency-dependent po-
larizability, plasmons, and screening in the two-dimensional
pseudospin-1 dice lattice, Phys. Rev. B 93, 165433 (2016).

[62] A. Balassis, D. Dahal, G. Gumbs, A. Iurov, D. Huang,
and O. Roslyak, Magnetoplasmons for the α-T3 model with
filled Landau levels, J. Phys.: Condens. Matter 32, 485301
(2020).

[63] A. Iurov, G. Gumbs, and D. Huang, Many-body effects and
optical properties of single and double layer α-T3 lattices,
J. Phys.: Condens. Matter 32, 415303 (2020).

[64] A. Iurov, L. Zhemchuzhna, G. Gumbs, D. Huang, D. Dahal,
and Y. Abranyos, Finite-temperature plasmons, damping, and
collective behavior in the α-T3 model, Phys. Rev. B 105, 245414
(2022).

[65] E. Illes and E. J. Nicol, Magnetic properties of the α-T3

model: Magneto-optical conductivity and the Hofstadter butter-
fly, Phys. Rev. B 94, 125435 (2016).

[66] A. D. Kovacs, G. David, B. Dora, and J. Cserti, Frequency-
dependent magneto-optical conductivity in the generalized α-T3

model, Phys. Rev. B 95, 035414 (2017).

085423-11

https://doi.org/10.1088/1367-2630/12/4/043054
https://doi.org/10.1103/PhysRevB.76.235404
https://doi.org/10.1103/PhysRevB.78.193405
https://doi.org/10.1039/b9nr00044e
https://doi.org/10.1103/PhysRevB.80.165310
https://doi.org/10.1088/0268-1242/25/3/034003
https://doi.org/10.1088/0953-8984/22/29/295503
https://doi.org/10.1088/0953-8984/24/24/245304
https://doi.org/10.1103/PhysRevB.89.075418
https://doi.org/10.5488/CMP.17.33803
https://doi.org/10.1140/epjb/e2014-50607-1
https://doi.org/10.1088/1361-648X/ac452e
https://doi.org/10.1103/PhysRevB.81.045431
https://doi.org/10.1103/PhysRevB.82.119906
https://doi.org/10.1021/nl902302m
https://doi.org/10.1103/PhysRevB.89.125413
https://doi.org/10.1103/PhysRevB.105.115430
https://doi.org/10.1021/acs.jpcc.5b05225
https://doi.org/10.1063/1.4973902
https://doi.org/10.1103/PhysRevB.34.5208
https://doi.org/10.1103/PhysRevLett.81.5888
https://doi.org/10.1103/PhysRevA.80.063603
https://doi.org/10.1103/PhysRevB.84.241103
https://doi.org/10.1103/PhysRevB.92.035118
https://doi.org/10.1103/PhysRevLett.112.026402
https://doi.org/10.1103/PhysRevB.92.245410
https://doi.org/10.1088/0953-8984/28/49/495302
https://doi.org/10.1103/PhysRevB.84.115136
https://doi.org/10.1103/PhysRevB.95.235432
https://doi.org/10.1103/PhysRevB.96.045418
https://doi.org/10.1088/1361-648X/aaa60b
https://doi.org/10.1103/PhysRevB.93.165433
https://doi.org/10.1088/1361-648X/aba97f
https://doi.org/10.1088/1361-648X/ab9bcb
https://doi.org/10.1103/PhysRevB.105.245414
https://doi.org/10.1103/PhysRevB.94.125435
https://doi.org/10.1103/PhysRevB.95.035414


ISLAM, BISWAS, AND BASU PHYSICAL REVIEW B 108, 085423 (2023)

[67] Y. R. Chen, Y. Xu, J. Wang, J. F. Liu, and Z. Ma, Enhanced
magneto-optical response due to the flat band in nanoribbons
made from the α-T3 lattice, Phys. Rev. B 99, 045420 (2019).

[68] L. Chen, J. Zuber, Z. Ma, and C. Zhang, Nonlinear optical
response of the α-T3 model due to the nontrivial topology of
the band dispersion, Phys. Rev. B 100, 035440 (2019).

[69] D. O. Oriekhov and V. P. Gusynin, RKKY interaction in a doped
pseudospin-1 fermion system at finite temperature, Phys. Rev.
B 101, 235162 (2020).

[70] O. Roslyak, G. Gumbs, A. Balassis, and H. Elsayed, Effect of
magnetic field and chemical potential on the RKKY interaction
in the α-T3 lattice, Phys. Rev. B 103, 075418 (2021).

[71] J. Wang, J. F. Liu, and C. S. Ting, Recovered minimal conduc-
tivity in the α-T3 model, Phys. Rev. B 101, 205420 (2020).

[72] B. Dey, P. Kapri, O. Pal, and T. K. Ghosh, Unconventional
phases in a Haldane model of dice lattice, Phys. Rev. B 101,
235406 (2020).

[73] J. Wang and J. F. Liu, Quantum spin Hall phase transition in the
α-T3 lattice, Phys. Rev. B 103, 075419 (2021).

[74] M. Islam and P. Kapri, Electrical and thermal transport through
α-T3 NIS junction, J. Phys.: Condens. Matter 35, 105301
(2023).

[75] B. Dey and T. K. Ghosh, Photoinduced valley and electron-hole
symmetry breaking in α-T3 lattice: The role of a variable Berry
phase, Phys. Rev. B 98, 075422 (2018).

[76] B. Dey and T. K. Ghosh, Floquet topological transition in the
α-T3 lattice, Phys. Rev. B 99, 205429 (2019).

[77] A. Iurov, G. Gumbs, and D. Huang, Peculiar electronic states,
symmetries, and Berry phases in irradiated α-T3 materials,
Phys. Rev. B 99, 205135 (2019).

[78] M. A. Mojarro, V. G. Ibarra-Sierra, J. C. Sandoval-Santana,
R. Carrillo-Bastos, and G. G. Naumis, Electron transitions for
Dirac Hamiltonians with flat bands under electromagnetic ra-
diation: Application to the α-T3 graphene model, Phys. Rev. B
101, 165305 (2020).

[79] L. Tamang, T. Nag, and T. Biswas, Floquet engineering of low-
energy dispersions and dynamical localization in a periodically
kicked three-band system, Phys. Rev. B 104, 174308 (2021).

[80] Z. P. Niu and S. J. Wang, Valley polarized transport and negative
differential resistance in an irradiated α-T3 lattice, J. Phys. D 55,
255303 (2022).

[81] L. Tamang and T. Biswas, Probing topological signatures in
an optically driven α-T3 lattice, Phys. Rev. B 107, 085408
(2023).

[82] E. V. Gorbar, V. P. Gusynin, and D. O. Oriekhov, Electron
states for gapped pseudospin-1 fermions in the field of a charged
impurity, Phys. Rev. B 99, 155124 (2019).

[83] X. Ye, S. S. Ke, X. W. Du, Y. Guo, and H. F. Lu, Quan-
tum tunneling in the α-T3 model with an effective mass term,
J. Low Temp. Phys. 199, 1332 (2020).

085423-12

https://doi.org/10.1103/PhysRevB.99.045420
https://doi.org/10.1103/PhysRevB.100.035440
https://doi.org/10.1103/PhysRevB.101.235162
https://doi.org/10.1103/PhysRevB.103.075418
https://doi.org/10.1103/PhysRevB.101.205420
https://doi.org/10.1103/PhysRevB.101.235406
https://doi.org/10.1103/PhysRevB.103.075419
https://doi.org/10.1088/1361-648X/acae13
https://doi.org/10.1103/PhysRevB.98.075422
https://doi.org/10.1103/PhysRevB.99.205429
https://doi.org/10.1103/PhysRevB.99.205135
https://doi.org/10.1103/PhysRevB.101.165305
https://doi.org/10.1103/PhysRevB.104.174308
https://doi.org/10.1088/1361-6463/ac5992
https://doi.org/10.1103/PhysRevB.107.085408
https://doi.org/10.1103/PhysRevB.99.155124
https://doi.org/10.1007/s10909-020-02440-3

