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Terahertz circular dichroism in commensurate twisted bilayer graphene
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We report calculations of terahertz ellipticities in large-angle, 21.79◦ and 38.21◦, commensurate twisted
bilayer graphene and predict values as high as 1.5 mdeg in the terahertz region for this nonmagnetic material.
This terahertz circular dichroism is surprisingly large and has a magnitude comparable to that of chiral materials
in the visible region. At low frequencies, the dichroic response arises from the strong interlayer hybridization,
which allows us to probe the symmetry and strength of these couplings. Crucially, lateral interlayer translation
tunes this response, in striking contrast to the near invariance of small twist angle bilayer to interlayer translation.
We examine the magnitude and phase of the interlayer coupling for all structures containing fewer than 400 atoms
per unit cell. Finally, we find that the dichroism can be manipulated by applying an electric field or with doping.
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I. INTRODUCTION

Twisted bilayer graphene (TBG) is a chiral material whose
chirality originates with the direction of the interlayer twist.
This chirality manifests in optical measurements as a twist-
dependent circular dichroism [1]. This circular dichroism
is the natural optical activity of a time-reversal-symmetric
system and scales linearly with frequency as �d/c for thick-
ness d and speed of light c [2]. A priori, this linear scaling
should strongly suppress circular dichroism in the terahertz
spectrum. We show that while such a suppression does, in-
deed, occur when the electronic states are approximated as
Dirac fermions, this description breaks down at low-energy
scales in commensurate twisted bilayer graphene (CTBG).
In CTBG, interlayer scattering processes hybridize electronic
states [3–5], and as a consequence, a robust terahertz (THz)
dichroism occurs in these materials. In essence, the strong
interlayer hybridization preempts the Dirac approximation
at low frequencies and thereby avoids the suppression from
small photon wave vectors. At optical frequencies the effect
of interlayer hybridization is smaller, and the problem reverts
to the usual description of circular dichroism in a Dirac band,
which has been studied in previous work.

Quantitatively, we predict ellipticities as high as 1.5 mdeg
for commensurate twisted bilayer graphene in the terahertz
region. This is comparable to the peak of 4.3 mdeg observed in
incommensurate graphene bilayers [1] and 3.1 mdeg predicted
in commensurate bilayers but measured at visible frequencies
[6], in contrast to the suppression with � expected for natural
optical activity. While there is a suppression with �, at low
energies, current operator matrix elements become large and
counteract the suppression with �. Adjusted for thickness,
this terahertz circular dichroism is 26 times larger than a
similar thickness of D-glucose in the visible region [7].
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Twisted bilayer graphene is a tunable platform for realizing
exotic low-energy physics. Five years ago, superconductivity
was observed in small twist angle bilayer graphene [8,9], and
since then, many other correlated electronic phenomena have
been observed [10]. Since then, studies have looked for and
found twist-induced electronic properties in transition metal
dichalcogenide bilayers and other moiré materials [11]. Un-
til recently the primary focus in moiré materials has been
on long-repeat-period and quasiperiodic systems that natu-
rally realize long-wavelength physics such as the flat bands
[12,13] where strong-correlation physics occurs. These moiré
structures stand in sharp contrast to short-repeat-period com-
mensurate structures. In CTBG interesting non-Dirac physics
can occur, such as flat bands [14–16] and, as we study here,
interlayer hybridization on the terahertz energy scale.

Recently, large twist angle bilayer graphene has reentered
the spotlight with the observation of superconductivity [17]
and the quantum anomalous Hall effect [18] in Bernal bilay-
ers, which are the shortest-period stacked structures. CTBG,
whose twist angle leads to a periodic real-space structure,
can be viewed as inflated versions of AA and Bernal stacked
bilayer graphene with a reduced energy scale [3–5,19]. At
incommensurate angles large-angle twisted bilayer graphene’s
electronic structure can be modeled with independent Dirac
cones residing in the two layers [20–22]; this description
breaks down in commensurate structures in which recipro-
cal lattice vectors connect the valleys of the two layers and
hybridize the low-energy structure [4,23]. This hybridization
energy scale is crucial in determining the energy window over
which universal Dirac physics is violated. In the following,
we obtain the scattering amplitude and phase for all CTBG
structures with less than 400 atoms in the unit cell.

While the responses of TBG to linearly [24–28] and circu-
larly polarized light [1,6,24,29–31] have received substantial
attention, the terahertz response properties of TBG have been
relatively unappreciated. Ten years ago Zou et al. [32] stud-
ied the terahertz optical response of bilayer graphene, but
the samples were made by chemical vapor deposition, and
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one wavelength of light covered regions with many twist
angles. Since then, material quality and tunability have sub-
stantially improved, so probing unusual optical physics in
these samples in the terahertz region has become more prac-
tical. Experiments on the terahertz magneto-optical activity
of a monolayer [33] and terahertz circular dichroism mea-
surements in gated Bernal bilayers have subsequently been
conducted [34,35], but these studies did not take advantage
of the twist degree of freedom. Recently, Ma et al. studied
the infrared optical properties of gated, twisted double-bilayer
graphene [36]. We showed [19] that CTBG exhibits a field-
tunable band gap and has a power law divergence in the
optical conductivity at the band edge, and Ref. [37] showed
that the band gap in CTBG is tunable with strain. The results
on twisted bilayer graphene might be extended to doped semi-
conducting materials such as twisted hexagonal boron nitride
[38]. Here we show that the tunability of CTBG can be used
to selectively realize a large circular dichroism in the terahertz
region in the absence of magnetism.

In Sec. II, we present commensuration conditions, fit a
tight-binding model to obtain interlayer scattering ampli-
tudes and phases, present a symmetry-based model for the
low-energy electronic degrees of freedom, and emphasize its
salient features. In Sec. III, we present the response function
and derive current operators as they apply to this problem. In
Sec. IV, we present our main results on the optical conductiv-
ity and circular dichroism (ellipticity) in CTBG as a function
of photon frequency and perpendicular electric field.

II. MODEL

At a dense set of interlayer twist angles, twisted bilayer
graphene exhibits commensurate unit cells [39]; however,
most of these unit cells have long repeat periods and the
interlayer coherence energy scale that dictates the low-energy
band structure. This scale falls off rapidly with increasing
unit cell size [3]. Here we consider all commensurate struc-
tures with fewer than 400 atoms in the unit cell and use
a tight-binding model to determine the interlayer coupling
scale. We conclude that only the 21.79◦ and 38.21◦ structures
will exhibit interlayer coherence scales in the terahertz region,
with strong power law divergences in the optical conductivity
[19] and show measurable circular dichroic behavior in this
energy window. We then present a symmetry-based model for
the low-energy electronic behavior of CTBG. For the current
operators and optical response, proceed to Secs. III and IV,
respectively.

A. Commensuration conditions

In monolayer graphene we have primitive translation vec-
tors t (1)

1 = ae−iπ/6 and t (1)
2 = aeiπ/6; for a second graphene

monolayer with twist angle θ relative to the first layer we have
translation vectors t (2)

1 = aeiθ e−iπ/6 and t (2)
2 = aeiθ eiπ/6. The

commensuration condition is

m(1)t (1)
1 + n(1)t (1)

2 = m(2)t (2)
1 + n(2)t (2)

2 . (1)

Now, for commensuration to occur, it must be the case that
m(1) = n(2) := m and n(1) = m(2) := n [4,5], so the commen-

FIG. 1. SE-odd and SE-even commensurate twisted bilayer
graphene (CTBG) differ by a small interlayer translation; visualized
for the

√
7 × √

7 structures. (a) The SE-odd structure exhibits points
with at most C3 symmetry. (b) The SE-even structure exhibits points
with C6 symmetry. (c) Momentum space contributions to Im(σ xy )
reveal the l = 2h̄ phase winding of the wave functions about the K
point in the SE-odd structure. (d) Interlayer shift makes the wave
functions a superposition of angular momentum eigenstates, and
circular dichroism appears as visualized for the SE-even structure.

suration condition becomes

mt (1)
1 + nt (1)

2 = neiθ t (1)
1 + meiθ t (1)

2 , (2)

which means that the commensurate angles are given by

θ = Arg

(
me−iπ/6 + neiπ/6

ne−iπ/6 + meiπ/6

)
, (3)

which are indexed by m and n.
The structures are classified by their sublattice exchange

(SE) symmetries. SE-even structures have points with C6 sym-
metry, while SE-odd structures have points with at most C3

symmetry. For examples of SE-even and SE-odd real-space
structures with 28 atoms per unit cell, see Figs. 1(a) and 1(b).
SE-even structures are those for which

n − m

gcd(m, n)
mod 3 = 0 (4)

and are rotated about a point where an atom in the A sublattice
of the second layer lies above an atom of the A sublattice in
the first layer. The sublattice even structures also have places
where atoms on the B sublattices of both layers overlap [5]:
call this location rBB; then 2rBB is a point with C6 symmetry.
Both the origin and rBB are points with C3 symmetry. For the
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FIG. 2. Real-space superlattice structures of the eight smallest SE-even CTBG systems. The system with N = 4 atoms is the AA stacked
bilayer. The gray lines outline the unit cells and intersect at points of C6 symmetry. The existence of these points is key to the sublattice
symmetry; for a generic twist and shift of graphene bilayers there will be no points with C6 symmetry.

SE-even structures there are

N = 4

3

m2 + m2 + mn

gcd(m, n)2
(5)

atoms per unit cell.
Complementarily, the SE-odd structures obey

n − m

gcd(m, n)
mod 3 = 1 or 2 (6)

and are likewise rotated about a point where an atom in the
A sublattice of the second layer lies above an atom of the A
sublattice in the first layer. This point has C3 symmetry and is
the point of greatest symmetry in the lattice. The structures
(m, n), with (n − m)/gcd(m, n) mod 3 = 1, and (m′, n′) =
(n, m), with (n′ − m′)/gcd(m, n) mod 3 = 2, are related by
an in-plane reflection. SE-odd structures are related to com-
mensuration partner SE-even structures by a change in twist
angle θodd = π/3 − θeven [4], an in-plane translation [19], or
in terms of m and n [5],

(
m
n

)
odd

= 1

3

( −1 1
3 − 1 1

)(
m
n

)
even

. (7)

For SE-odd structures there are

N = 4
m2 + m2 + mn

gcd(m, n)2
(8)

atoms per unit cell.
The real-space structures of the eight smallest SE-even

bilayers are plotted in Fig. 2; the SE-odd structures also

form at the same twist angle, but with an interlayer
translation.

B. Real-space translation and momentum space structure

In the superlattice heterostructure community, the prevail-
ing view is that intralayer superlattice translations are nearly
irrelevant for electronic physics [13]. While this may be true
at sufficiently large energies and at small energies in systems
with large unit cells, this is crucially not the case for large
twist angle CTBG [26]. In particular, the low-energy physics
occurs exclusively on a locus of points surrounding the K
and K ′ points [4]. This localization of states that contribute to
the low-energy properties in momentum space means that the
long-range real-space structure is important for determining
the low-energy electronic physics. In Fig. 3, we illustrate the
importance of interlayer translation in CTBG at low energies
by contrasting the low-energy and band structures for CTBG
depending on interlayer translation and on tight-binding hop-
ping range cutoff.

In the SE-odd structure, the low-energy band structure is
characterized by a quadratic band touching, as in the special
case of the Bernal bilayer. This quadratic dispersion originates
from the combination of layer Dirac fermions in l = h̄ angular
momentum eigenstates and fermions in an l = 2h̄ eigenstate.
This angular momentum results in a phase winding that leads
to an exact cancellation of the momentum-integrated Hall con-
ductivity at low energies as visualized in Fig. 1(c). To obtain
terahertz circular dichroism in these materials the low-energy
states must not be even-integer-valued angular momentum
eigenstates. This can be achieved through interlayer transla-
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FIG. 3. (a) Interlayer shift determines the low-energy band
structure, but the high-energy band structure is invariant under
shifts; visualized for the N = 28 structure where �T = (aM

1 + aM
2 )/7.

(b) While short-range hoppings are sufficient to describe high-energy
degrees of freedom, for the N = 28 structures sixth nearest neighbors
(4a0) are necessary to capture the low-energy behavior. Longer-range
hoppings are needed to describe structures with larger unit cells.

tion or the application of an electric field, as visualized in
Fig. 1(d).

C. Tight-binding model and interlayer coherence

Since these structures are commensurate and hence peri-
odic in real space, they permit a momentum space description.
While at small incommensurate angles it is possible to model
the low-energy physics twisted bilayer graphene as that of two
decoupled Dirac cones, this description breaks down since in
the SE-even structures the K valleys of the two layers are
separated by a reciprocal lattice vector, while in the SE-odd
structures the K valley of one layer and the K ′ valley of the
other layer are separated by a reciprocal lattice vector [4,5].

These interlayer scattering processes have an amplitude
V0 and modify the low-energy band structure over a scale
proportional to this interlayer coherence scale V0. It has been
found that for small commensurate unit cells V0 decays rapidly
with unit cell size [3]. Here we use a tight-binding model to
determine V0 for all commensurate structures with fewer than
400 atoms, as illustrated in Fig. 2.

We use the two-center Slater-Koster-type model of pz or-
bitals on carbon atoms with hopping t (r) = Vppπ (r) + Vppσ (r)
developed and used in Refs. [12,26], where the hopping terms
are

Vppπ (r) = tppπe−(|r|−a0 )/δ

[
1 −

(
r · ez

|r|
)2

]
, (9)

Vppσ (r) = tppσ e−(|r|−d )/δ

(
r · ez

|r|
)2

(10)

FIG. 4. Representative low-energy band structures of SE-even
structures around the K point. Energies are expressed in terms of
the interlayer coherence V0 so that the structures overlap and their
universal Dirac behavior at large energies is manifest. The structures
are not all the same since the twist angle and the phase ϕ change the
band gap 2V0 sin[(ϕ − θ )/2] and low-energy dispersion. The N = 4
structure (AA bilayer, θ = 0) is gapless, while the largest gap for the
structures with fewer than 400 atoms per unit cell is 1.617V0 for the
N = 364 structure.

for hopping magnitudes tppπ = 2.7 eV and tppσ = −0.48 eV,
unit vector perpendicular to the bilayer ez = (0, 0, 1), in-
tralayer atomic spacing a0 = a/

√
3 = 0.142 nm, interlayer

spacing d = 0.335 nm, and decay length δ = 0.184a =
0.0453 nm. We provide the atomic positions for SE-even
structures in the Supplemental Material [40].

As expected, we find that there are only four bands at low
energies corresponding to the layer and sublattice degrees
of freedom. We plot the bands for representative SE-even
structures in Fig. 4. We determine the interlayer coherence
by the band gap at the K point, where the band gap is 2V0.
Additionally, there is a symmetry-allowed phase shift ϕ for
intravalley interlayer scattering (in SE-even structures), which
we determine through the band gap minimum, which is given
by 2V0 sin[(ϕ − θ )/2], where θ is the twist angle [19]. We
tabulate the results in Table I.

D. Low-energy continuum model

We have seen that the low-energy behavior of CTBG con-
sists of four bands near the Fermi energy corresponding to the
layer and sublattice degrees of freedom. These four bands are
the layer Dirac cones hybridized by interlayer scattering. If
the systems’ real-space structure has points with C6 symmetry,
it is SE even, while if it has points with C3 symmetry, it
is SE odd. In general for an arbitrary interlayer shift there
will be no points with C6 or C3 symmetry, but the behavior
in between these sublattice symmetric structures interpolates
smoothly.

In a previous work one of us derived a symmetry-based
model for these extremal cases of SE-odd and SE-even struc-
tures [4]. The model consisted of two-layer Dirac fermions
with a relative interlayer twist and symmetry-allowed inter-
layer tunneling terms. The SE-odd structures permit interlayer
intravalley scattering, while the SE-even structures permit
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TABLE I. Interlayer coherence scales and phases in C-TBG.
Energy separation, 2V0, of the Dirac points in SE-even structures
due to interlayer scattering (in meV) as determined using density
functional theory (DFT) and tight-binding (TB) methods. Structures
with N � 388 atoms per unit cell are considered. The interlayer co-
herence scale V0 decays rapidly with unit cell size, and the interlayer
coherence scale is only in the terahertz region (1 meV = 0.242 THz)
for the 28 atom unit cell. DFT calculations are from Ref. [3]. The
phase of the scattering ϕ is also determined through fitting the band
gap minimum to a symmetry-based model.

N (atoms) (m, n) Twist angle 2V0 (DFT) 2V0 (TB) ϕ (TB)

4 (1,1) 30◦ − 30◦ 675.6 0◦

28 (1,4) 30◦ + 8.21◦ 7.0 5.737 70.14◦

52 (2,5) 30◦ − 2.20◦ 0.2 0.033 109.67◦

76 (1,7) 30◦ + 16.83◦ 0.4 0.199 91.68◦

124 (4,7) 30◦ − 12.10◦ 0.1 0.004 38.26◦

148 (1,10) 30◦ + 20.57◦ 0.0 0.008 99.45◦

172 (5,8) 30◦ − 14.82◦ 3.4 × 10−5 119.12◦

196 (2,11) 30◦ + 13.57◦ 5.3 × 10−7 135.64◦

244 (1,13) 30◦ + 22.66◦ 3.3 × 10−4 103.85◦

268 (5,11) 30◦ − 5.57◦ 4.0 × 10−7 103.63◦

292 (7,10) 30◦ − 18.36◦ 6.3 × 10−6 25.11◦

316 (4,13) 30◦ + 3.99◦ 7.9 × 10−9 62.83◦

364 (8,11) 30◦ − 19.58◦ 7.6 × 10−8 118.30◦

388a (5,14) 30◦ + 0.59◦ 1 × 10−12 107.96◦

aThe N = 388 case is on the edge of 64 bit numeric precision.

interlayer intervalley scattering with a phase shift. Explicitly,
the Bloch Hamiltonians are, for a momentum k away from the

K point,

Hodd
k =

⎛
⎜⎜⎝

E + μ kx − iky V0 0
kx + iky E + μ 0 0

V0 0 −E + μ −eiθ (kx + iky )

0 0 −e−iθ (kx − iky ) −E + μ

⎞
⎟⎟⎠

(11)

and

H even
k =

⎛
⎜⎜⎝

E + μ kx − iky V0eiϕ/2 0

kx + iky E + μ 0 V0e−iϕ/2

V0e−iϕ/2 0 −E + μ e−iθ (kx − iky )

0 V0eiϕ/2 eiθ (kx + iky ) −E + μ

⎞
⎟⎟⎠,

(12)

where the E term corresponds to a perpendicular electric field
and the μ term is the chemical potential. In what follows we
shall use these symmetry-based models to compute the optical
response properties of the SE-odd and SE-even structures
since, for the low energies we are interested in, the difference
between these and the tight-binding models is negligible.

E. Properties of SE-odd and SE-even structures

The SE-odd and SE-even structures return to the behavior
of two decoupled layer Dirac cones outside of the energy
window given by V0 and E . This universal behavior is charac-
terized by linear dispersion and a linearly increasing density
of states (DOS), as illustrated in Fig. 5. Below this universal
regime the structures are richer.

FIG. 5. Densities of states and band structures for SE-odd and SE-even structures with perpendicular electric field strengths from 0 to
12V0/ed ≈ 0.1028 V/nm. Top row: (a) The SE-odd structure is gapless in the absence of an electric field but develops a gap that rapidly
saturates as V0

√
x2/(1 + x2), where x = 4E/V 2

0 , and two Van Hove singularities develop at the band edges. (b) The SE-odd structure in the
absence of an electric field is gapless with a quadratic band touching similar to the Bernal bilayer. (c)–(e) In the presence of an electric field,
SE-odd band structures are gapped and exhibit an avoided crossing above and below the Fermi energy corresponding to the field decoupling
the layers at the K point. Bottom row: (f) The SE-even structures are always gapped with magnitude 2V0 sin[(ϕ − θ )/2] for twist angle θ .
In the presence of an electric field, the Dirac points move away from the Fermi energy, and the band gap minima move away from the K
point linearly in field strength, leading to an enhancement of the density of states at low energies and a delayed onset of universal Dirac cone
behavior. (g)–(j) SE-even structures feature a constant gap, and the Dirac cone separation scales linearly with the electric field.
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The SE-odd structure is gapless but becomes gapped when
a perpendicular electric field is applied and exhibits Van Hove
singularities at the band edge. Above the Van Hove singularity
the DOS flattens until the system enters the universal Dirac
regime above the energy of the band gap at K .

Meanwhile, the SE-odd structure is gapped, but the band
gap at the K point increases when a perpendicular electric
field is applied. The system exhibits Van Hove singularities
at the band edge. Like in the SE-odd case, above the Van
Hove singularity the DOS flattens until the system enters the
universal Dirac regime above the energy of the band gap
at K .

III. LINEAR RESPONSE FORMALISM

We use the Kubo formula for linear response to determine
the response of CTBG to linearly and circularly polarized
light. The optical conductivity is [41]

σμν (�) = i

�

∑
s,s′

∫
BZ

d2k
(2π )2

[ f (εs) − f (εs′ )]Jμ

ss′Jν
s′s

� − (εs′ − εs) + iη
. (13)

� is the photon frequency, f (ε) = 1/(eβ(ε+μ) + 1), Jμ

ss′ =
〈us|Jμ|us′ 〉, and η is a phenomenological broadening term.
The key modification to this formalism from that for purely
two-dimensional systems is to account for the thickness of the
bilayer and the resulting phase shift of the light in the current
operators.

A. Current operators

We consider a current operator that is composed of currents
in the top and bottom layers with a phase shift for the separa-
tion of the layers d , as first presented by Suárez Morell et al.
[29]:

Jμ = Jμ
T ei �

c d + Jμ
B , (14)

where the current operators in the layers are Jμ
T (B) =

PT (B)(∂Hk/∂kμ), where PT (B) are the projectors onto the sites
in the top layer T and bottom layer B, respectively. We con-
sider the response to first order, and �d 	 c, so we expand
the exponent to linear order,

Jμ = Jμ
T (1 + i �

c d ) + Jμ
B . (15)

For the longitudinal components of σ , the response to zeroth
order is nonvanishing, while the first-order response vanishes
due to time-reversal symmetry (TRS) [29], so the matrix ele-
ments are

Jμ

ss′J
μ

s′s =
∑

l,l ′∈{T,B}
〈us|Jμ

l |us′ 〉〈us′ |Jμ

l ′ |us〉, (16)

which for Jμ

lin = ∂Hk/∂kμ gives the typical expression

Jμ

ss′J
μ

s′s = ∣∣〈us|Jμ

lin|us′ 〉∣∣2
. (17)

Now, the transverse components vanish to zeroth order
since CTBG is nonmagnetic [29], so we consider the first-

order contributions

Jμ

ss′Jν
s′s = i �

c d〈us|Jμ
T |us′ 〉〈us′ |Jν

T |us〉
+ i �

c d〈us|Jμ
T |us′ 〉〈us′ |Jν

B |us〉
+ i �

c d〈us|Jμ
B |us′ 〉〈us′ |Jν

T |us〉. (18)

When μ �= ν, we have
∑

s,s′ 〈us|Jμ
T |us′ 〉〈us′ |Jν

T |us〉 = 0
since the monolayer has no thickness. Swapping
indices and accounting for the Fermi functions and
that in the presence of TRS,

∑
ss′ 〈us|Jν

T |us′ 〉〈us′ |Jμ
B |us〉 =

−∑
ss′ 〈us|Jμ

T |us′ 〉〈us′ |Jν
B |us〉 for μ �= ν, we have [29,30]

Jμ

ss′Jν
s′s = 2i �

c d〈us|Jμ
T |us′ 〉〈us′ |Jν

B |us〉, (19)

where summing this expression over s and s′ will give us
the same linear order Hall response as for the full current
operators.

IV. CIRCULAR DICHROISM AND OPTICAL
CONDUCTIVITY

An experimentally accessible measure of circular dichro-
ism and natural optical activity is ellipticity, which measures
the conversion of linearly polarized light to elliptically polar-
ized light [6,29,30]. In terms of the optical conductivity the
ellipticity is

ψ = Im(σ xy)

2 Re(σ xx )
, (20)

which is large when Im(σ xy) is large and Re(σ xx ) is small. For
an analysis of the ellipticity that takes into account the finite
thickness of the bilayer, see the Appendix.

In the preuniversal Dirac regime, the application of an
electric field results in a flat density of states for an en-
ergy range about the Fermi energy that leads to Re(σ xx ) that
falls off as �−2. Combining Re(σ xx) with Im(σ xy), which
is constant in �, results in an ellipticity that grows as �2

in the presence of a field. The application of larger fields
extends the range of this preuniversal regime, and the peak
magnitude scales linearly in E . At visible photon energies the
application of an electric field can also be used to enhance
and tune the circular dichroism, although the field dependence
is complicated by the number of bands available to resonant
transitions.

Now we have expressions that we can integrate to obtain
the optical conductivity. The expression for the Hall con-
ductivity includes the effect of the phase difference of light
in the two layers, which is the origin of the circular dichroism
in these materials.

We numerically integrate the continuum models using a
discretized momentum space mesh for the SE-odd and SE-
even models, both with and without doping, as a function of
photon frequency and perpendicular electric field. We con-
sider the response at a temperature of T = 4 K and use a
broadening of η = 1 meV. We plot the results in Fig. 6, where
the middle and bottom rows display the imaginary part of the
Hall conductivity and real part of the longitudinal conductiv-
ity, respectively. Line plots of the ellipticity at fixed electric
field strengths are plotted in Fig. 7.

In the undoped systems the behavior is largely set by the
band gap minimum where there is a power law divergence, as
reported in our previous work [19], and the band gap at the
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FIG. 6. Ellipticity ψ and optical conductivity σ in SE-odd (21.79◦) and SE-even (38.21◦) CTBG as a function of frequency and
perpendicular electric field. The undoped systems exhibit sizable circular dichroism at large electric field and a corresponding frequency,
as seen in the dark blue and red regions in (a) and (g). For 2V0 = 5.737 meV, the frequencies range from 0 to 6.9 THz, and the applied
fields range from 0 to 0.17 V/nm. Up to a change in the scattering phase ϕ, the results can be applied to other commensurate structures by
changing V0. The dashed blue lines are the band gap minimum, the dashed red lines are the band gap at K , and the dashed gray lines are
μ ± �/2. (a) Ellipticity is largest in the region before universal Dirac behavior at large fields and grows as �2 to a peak that scales as E .
(b) The imaginary part of the Hall conductivity is positive below the band gap minimum, negative above it but below the band gap at K , and
tends to zero in the universal Dirac regime. (c) The real part of the longitudinal conductivity peaks at the band gap minimum and exhibits a
power law divergence [19] before decaying as �−2 when the transitions are between regions with flat densities of states and finally exhibiting
twice the universal Dirac conductivity for the bilayer. (d) Upon doping, the hybridized states at low energy are filled and do not contribute to
circular dichroism. (e) The only nonvanishing part of Im(σ xy ) is at the band gap at the K point, which probes only the low-energy behavior. (f)
The doped systems exhibit a Drude peak at low frequency and a subuniversal plateau at e2/4h̄ corresponding to photons probing only one of
the Dirac cones; at higher frequencies transitions probe both Dirac cones, and the conductivity becomes 2e2/4h̄. (g) As in the SE-odd case,
the ellipticity is largest in the region before the universal Dirac regime, and the ellipticity grows as �2 to a peak that scales with E . (h) Im(σ xy )
exhibits the same features as in the SE-odd structure, but with a flipped sign, and an additional crossover in sign as the system approaches
universal Dirac behavior. (i) Re(σ xy ) exhibits the same features as in the SE-odd structure once the different band gap is taken into account.
(j)–(l) Upon doping, the behavior of the SE-even structure is similar to that of the SE-odd structure once one accounts for the shifted band gap,
where only the transitions probing the gap at K contribute to the ellipticity.

K point, which dictates the onset of universal Dirac behav-
ior. Between these two gaps Re(σ xx ) falls off as �−2, while
Im(σ xy) is constant in �, leading to an ellipticity that grows
as �2 to a peak whose magnitude scales as E . In the universal
regime Im(σ xy) asymptotes to zero, while Re(σ xx ) saturates
to 2e2/4h̄: twice the optical conductivity of the monolayer. In
the doped systems the nonuniversal behavior is hidden in the
Fermi sea, and the ellipticity is suppressed and emerges only
at the Fermi surface in the form of transitions at the K point.

The ellipticity at low frequencies is suppressed by the Drude
peak. At finite, but small, frequencies only one Dirac cone is
probed, so the real part of the optical conductivity assumes the
value of the monolayer. At higher frequencies the universal
optical conductivity of the bilayer is recovered.

We find that the ellipticity is large in the THz region in
CTBG when the doping allows the non-Dirac cone structure
to be probed, and this ellipticity is enhanced through the
application of an electric field.
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FIG. 7. Ellipticity ψ in undoped (a) SE-odd and (b) SE-even
structures dependent on perpendicular applied field. Note that for
field strengths above the interlayer coherence scale V0 the ellipticity
scales roughly linearly in field.

V. CONCLUSION

Circular dichroism in the absence of magnetism is sup-
pressed as �, so a priori it seems that terahertz circular
dichroism due to natural optical activity should be vanish-
ingly small. We showed that in contrast to this picture, the
coherent superposition of contributions to circular dichroism
in CTBG leads to terahertz circular dichroism comparable to
the circular dichroism of CTBG at photon energies two orders
of magnitude larger [1,6]. At low energies CTBG has valley
symmetry because the valleys are separated by a reciprocal
lattice vector. This symmetry ensures that the contributions
to the circular dichroism add instead of cancel. Additionally,
the magnitudes of the matrix elements contributing to this
response are large as a result of interlayer hybridization over a
range set by an interlayer coherence scale. We determined this
interlayer coherence scale for all CTBG structures with fewer
than 400 atoms in the unit cell and found that the 28 atom unit
cell structures are the most conducive to the presentation of
terahertz circular dichroism.

The circular dichroic response can be enhanced through the
application of an electric field and is suppressed with doping.
The strengths of the applied electric fields we studied here are
comparable to those applied in real devices [36], and the fre-
quencies studied here are accessible to contemporary photon

FIG. 8. Geometry considered in the Appendix. The finite thick-
ness of the bilayer is treated by using a transfer matrix method.

sources. Circularly polarized terahertz light may be useful for
identifying chiral chemical molecules with low-energy excita-
tions such as vibrational modes. We presented commensurate
twisted bilayer graphene as a tunable platform to achieve large
terahertz circular dichroism in the absence of magnetism.
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APPENDIX: EFFECT OF FINITE BILAYER THICKNESS

The analysis presented in the main text is based on an
approximate solution to Maxwell’s equations [6,29,30]. A
more precise formulation incorporates the boundary effects
on the bilayers [42–45]. We present the salient features from
Ref. [45] and work in units of conductivity, where σ0 = e2/4h̄.
The natural quantity to investigate is the electric field ampli-
tudes on the two sides of the bilayer:(

E+
3 (z2)

E−
3 (z2)

)
= M31

(
E+

1 (z1)

E−
1 (z1)

)
, (A1)

where E± are propagating from and towards the light source,
respectively, and

M31 = MB
32MA

32M2MB
21MA

21 (A2)

is the transfer matrix that takes fields from one side of the
bilayer to the other. See Fig. 8 for an illustration of the bilayer
and its three regions. The transfer matrices for the electric field
at normal incidence are given by [45]

MB
32 =

(
τ 0 τ 0

− n3
2α

σ0τ
0 − σ xx

(2,2)τ
0 n3

2α
σ0τ

0 − σ xx
(2,2)τ

0

)−1

, (A3)

MA
32 =

(
τ 0 τ 0

− n2
2α

σ0τ
0 + (

σ xx
(1,2)τ

0 − iσ xy
(1,2)τ

2
)†

e−in2�d/c n2
2α

σ0τ
0 + (

σ xx
(1,2)τ

0 − iσ xy
(1,2)τ

2
)†

ein2�d/c

)
, (A4)

M2 =
(

ein2�d/cτ 0 0

0 e−in2�d/cτ 0

)
, (A5)
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FIG. 9. Ellipticity of the commensurate bilayers depending on photon energy � and perpendicular electric field strength E , accounting for
the finite thickness of the bilayer. Note the strong quantitative agreement with the results when the bilayer thickness is taken to be small (see
Fig. 6).

MB
21 =

(
τ 0 τ 0

− n2
2α

σ0τ
0 − (

σ xx
(1,2)τ

0 − iσ xy
(1,2)τ

2
)
ein2�d/c n2

2α
σ0τ

0 − (
σ xx

(1,2)τ
0 − iσ xy

(1,2)τ
2
)
e−in2�d/c

)−1

, (A6)

MA
21 =

(
τ 0 τ 0

− n1
2α

σ0τ
0 + σ xx

(1,1)τ
0 n1

2α
σ0τ

0 + σ xx
(1,1)τ

0

)
, (A7)

where τ 0 and τ 2 are Pauli matrices, α ≈ 1/137 is the
fine-structure constant, n1 = n2 = n3 = 1 are the indices of
refraction, and σ

μν

(l,l ′ ) is the conductivity generated by Jμ

l and
Jν

l ′ . Note the addition of a longitudinal “drag” term σ xx
(1,2)

which vanishes in the approximations of the main text.
From these expressions we can obtain the reflection and

transmission coefficients

r = −(
M22

31

)−1
M21

31 (A8)

t = −(
M−1

31

)22
, (A9)

where superscripts 1 and 2 refer to the corresponding 2 × 2
blocks of M31. The reflectance and transmittance are

R = |rE+
1 |2

|E+
1 |2 , (A10)

T =
∣∣∣∣n3

n1

∣∣∣∣ |tE+
1 |2

|E+
1 |2 , (A11)

and the absorbance is

A = 1 − (R + T ). (A12)

We consider these quantities for EL = (1, i)/
√

2 and ER =
(1,−i)/

√
2, where the circular dichroism is

CD = AL − AR

AL + AR
(A13)

and the ellipticity is

ψ = �d

2c
CD. (A14)

When we calculate this ellipticity, we find that it has all of
the same qualitative characteristics as exhibited in the main
text in Fig. 6, as visualized in Fig. 9, but that the magnitudes
of the peaks are slightly rescaled due to the drag conductivity
σ xx

(1,2).
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