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Valley-dependent tunneling through electrostatically created quantum dots in heterostructures
of graphene with hexagonal boron nitride
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Kelvin probe force microscopy (KPFM) has been employed to probe charge carriers in a graphene/hexagonal
boron nitride (hBN) heterostructure [Nano Lett. 21, 5013 (2021)]. We propose an approach for operating valley
filtering based on the KPFM-induced potential U0 instead of using external or induced pseudomagnetic fields in
strained graphene. Employing a tight-binding model, we investigate the parameters and rules leading to valley
filtering in the presence of a graphene quantum dot (GQD) created by the KPFM tip. This model leads to a
resolution of different transport channels in reciprocal space, where the electron transmission probability at each
Dirac cone (K1 = −K and K2 = +K) is evaluated separately. The results show that U0 and the Fermi energy EF

control (or invert) the valley polarization, if electrons are allowed to flow through a given valley. The resulting
valley filtering is allowed only if the signs of EF and U0 are the same. If they are different, the valley filtering is
destroyed and might occur only at some resonant states affected by U0. Additionally, there are independent valley
modes characterizing the conductance oscillations near the vicinity of the resonances, whose strength increases
with U0 and are similar to those occurring in resonant tunneling in quantum antidots and to the Fabry-Perot
oscillations. Using KPFM, to probe the charge carriers, and graphene-based structures to control valley transport,
provides an efficient way for attaining valley filtering without involving external or pseudomagnetic fields as in
previous proposals.

DOI: 10.1103/PhysRevB.108.085419

I. INTRODUCTION

Graphene-based materials are excellent candidates for
spintronic applications. Indeed, the presence of one or several
types of spin-orbit couplings (SOCs) [1–4] led to many ex-
perimental and theoretical studies of these materials in order
to control spin-transport properties in ultrathin spintronic de-
vices [5–7]. Besides potential use in spintronics, many recent
applications have adopted graphene as an essential material
to constitute unique (fundamental) platforms in valleytron-
ics [8–10]. In this context, investigating valley filtering in
graphene-based devices may facilitate the use of the valley
degree of freedom in k space, instead of the spin degree
of freedom, as an alternative basis for future applications in
valleytronics.

Valley filtering in graphene has been studied using quan-
tum points contacts [11] as well as the departure from the
usual linear E vs k dispersion adopted in most studies, referred
to as trigonal warping [12,13]. To our knowledge though,
there has been no experimental realization or confirmation of
the predictions. For a comprehensive account of and different
approaches to the subject, see the review [14].
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Some valley-filtering proposals have used a graphene layer,
with uniform zigzag edges, and stressed it in a particular way
that leads to the emergence of pseudomagnetic fields (PMFs)
[15–18]. It has also been shown that the valley-filtering pro-
cess might occur in a honeycomb lattice that contains a line
of heptagon-pentagon defects [19–21]. Further, recent scan-
ning tunneling microscopy (STM) and Kelvin probe force
microscopy (KPFM) experiments claimed that by breaking
the potential symmetry in the substrates of graphene-based
heterostructures, by applying real magnetic fields [4,22,23],
the valley degeneracy might be lifted if some conditions are
fulfilled. These conditions, discussed in Refs. [24–28], con-
cern the KPFM tip potential, which electrostatically defines
the GQDs, the presence or absence of a magnetic field, and
the angle of incidence of the incoming electrons.

Very recently, a nanoscale valley splitting has been ob-
served in confined states of graphene quantum dots. In this
case, the presence of a magnetic field and an STM-induced
potential, originating from the boron nitride substrate be-
neath the graphene layer, provide an alternative device for
valleytronics [25–27,29]. However, in such cases the STM
tip breaks the electron-hole symmetry and the magnetic field
breaks the time-reversal symmetry; this will lead to an inter-
play between spintronics and valleytronics.

The question then arises whether an alternative way exists
to lift the valley degeneracy without confinement, that traps
electrons around the STM potential, and without lifting the
spin degeneracy. Indeed, from an application point of view
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and for a better tunability of transport properties, one needs
to avoid the confinement of the electrons by the STM-induced
potential since they could tunnel through the induced potential
barrier and contribute to the transmitted charge or valley cur-
rent. Fortunately, several studies have shown that the presence
of a magnetic field B along with the STM-induced potential do
not always favor the confinement. For instance, in the case of
a Gaussian shaped STM potential in a weak field B, electrons
are more likely to escape into the induced potential barrier
[24]. More precisely, in a weak field B with a circularly sym-
metric potential portrayed by a Gaussian model [22,24,27,30],
the confinement leads to a compromise between the strengths
of the potential and of the field B.

As current conservation between the source and the drain
leads of the graphene flake is desired, a STM tip is not
well suited for probing charge carriers since the current from
the source reservoir will tunnel through the tip as well. We
need an alternative method to create a graphene quantum dot
(GQD) and keep the current conserved. Fortunately, KPFM
has been recently adopted as an efficient method in which
tunneling can be neglected [31]. In contrast to STM, KPFM
can induce an electrostatic potential and form a GQD on a
surface without the effects of local tip gating. Indeed, this is so
because it is performed at slightly larger tip-sample distances,
such that tunneling and van der Waals forces are significantly
minimized [26,31].

Based on the arguments stated above and in order to
better focus on valley polarization in graphene/hBN het-
erostructures with induced quantum dots, with the electron
transmission probability accounted for K1 and K2 indepen-
dently, it is strongly recommended to avoid both confinement
and tunneling of electrons as well as lifting of the spin degen-
eracy caused by a magnetic field. Accordingly, we investigate
valley-polarized transport in a graphene monolayer placed on
top of a hBN substrate, with a voltage induced by a KPFM tip,
in the absence of a magnetic field. Further motivation for our
investigation comes from the experimental valley polarization
in MoS2 monolayers [32–34] and bismuth [35], valley trans-
port in diamond [36], and the report of valley currents [37],
and switches [9] in bilayer graphene. We hope the present
paper will lead to a new way of experimentally investigating
the valley degree of freedom using a KPFM tip.

The results are organized as follows. In Sec. II we describe
the graphene/hBN heterostructure in the presence of a quan-
tum dot created electrostatically by KPFM. We then use a
tight-binding model to investigate valley-dependent transport.
In Sec. III we present and discuss numerical results and in
Sec. IV a summary.

II. MODEL AND METHODS

We consider a graphene/hBN heterostructure as shown in
Fig. 1(a). A charge current at the graphene surface is con-
trolled by the bias voltage VB applied between the source (S)
and drain (D) leads. The KPFM tip acts as a top gate VT and
tunes the potential, which induces an electric field that forms
a stationary distribution [see Fig. 1(c)] of the charges on the
hBN substrate [24,26,27]. To evaluate the resulting screened
potential U several authors have solved the Poisson equation
self-consistently assuming a KPFM-induced voltage pulse U0

FIG. 1. Schematic of a device to operate valley filtering. In
(a) we show the device, placed on top of a hBN substrate, made of
a graphene sheet with zigzag boundaries. The insulating substrate
defines the dielectric area such as SiO2 and a back-gate substrate
(source) as Si, for instance. In (b) we show the total screened poten-
tial felt by the graphene sheet due to the stationary charge distribution
in line with experimental studies [26]. Panel (c) illustrates (1) the
stationary distribution of the charges in the hBN substrate, due to the
KPFM tip, and underneath it. (2) The sketch of the induced potential
U (r) and the Fermi energy EF where we illustrate the position of the
Dirac point for a given position r

and radius R0. At zero-magnetic field, the screened potential
U (r) is modeled by [24,26,27]

U (ri ) � U0 exp
(−r2

i /R2
0

) + U∞, (1)

where ri is the discretized distance of the graphene sites i from
the center of the KPFM tip. We denote by U0 the electric po-
tential at the center and R0 its corresponding radius. The third
term U∞ defines the background value and can be controlled
(cancelled out) by a back-gate voltage [26,27].

The model potential U , in Eq. (1), is used in a tight-binding
Hamiltonian to investigate the valley transport properties
in the presence of the tip-induced potential. We adopt a
tight-binding model in a honeycomb lattice holding a single
pz orbital per site and neglect the chemical bonding or any
modification in the atomic structure of graphene and hBN
layers [38,39]. The resulting Hamiltonian that describes the
system is given by

H = − t
∑
〈i, j〉

a†
i b j +

∑
〈i〉

�SG(a†
i ai − b†

i bi )

+
∑
〈i〉

Ui(a
†
i ai + b†

i bi ), (2)

where a†
i (b†

i ) and a j (b j ) are the creation and annihilation
operators for an electron in graphene sublattice A (B) at
sites i and j, respectively. The hopping energy is denoted
by t and the on-site term is set to zero (Fermi level). The
heterostructure introduces an additional second term �SG,
which describes the induced sublattice gap that arises mainly
from the presence of the hBN substrate beneath the graphene
layer [38,39].

Theory and experiments have been analyzed and compared
in the presence of a STM or KPFM tip, and have shown that
the screened potential U (r) depends on the radius R0 of
the KPFM tip. For a Gaussian shape they have used the

085419-2



VALLEY-DEPENDENT TUNNELING THROUGH … PHYSICAL REVIEW B 108, 085419 (2023)

FIG. 2. Energy spectrum of a two-dimensional (2D) zigzagged
strip 3 nm wide. Panel (a) shows the spectrum in the absence of a
tip-induced potential (U0 = 0). When the Fermi energy EF is larger
than �V G/2, where �V G is the valley-mode spacing gap, the −K and
+K channels are propagating. The valence and conduction mode
spacings are denoted by δv and δc, respectively; Panels (b) and
(c) show the spectrum in the presence of an induced potential with
U0 = −0.3 eV and U0 = +0.3 eV, respectively. To see the effect of
the broken e–h symmetry and compare (a), (b), and (c), we keep
the dashed line at the reference energy EF = 0. We indicate the
difference in slope of the valence and conduction bands depending
on the sign of U0 for a given EF : we have vv < vc (U0 < 0) or vv > vc

(U0 > 0).

range 20 nm < R0 � 70 nm [25,40–42]. Similarly, we will
consider a graphene/hBN channel with zigzag edges, width
W = 110 nm, and length L = 300 nm. Further, we take
t = −2.7 eV and �SG = 29.26 meV [39,43,44], a tip radius
R0 = 55 nm, and U∞ = 0 since the value of U∞ can be
controlled by a gate voltage [26,27].

III. RESULTS AND DISCUSSION

Below we discuss how the Fermi energy EF and the in-
duced KPFM potential lead to valley filtering when only one
valley channel is active and some conditions are fulfilled/ We
compute the transmittance of each valley and show that the
relevant conditions concern mainly the signs of EF and U0

and their ranges.

A. Electron-hole symmetry broken by the KPFM tip potential

Before stepping into the process of valley filtering and
investigating the parameters that affect and monitor the valley
transport in the presence of the induced electrostatic poten-
tial, we start by showing the dispersion relation for zigzag
boundaries of the honeycomb lattice in Fig. 2. For operating
valley filtering, it is important to have propagating modes at
both valleys. This is achievable in a 2D zigzag strip, when
EF is higher than |�V G/2|, where �V G is the valley-mode
spacing gap, as shown in Fig. 2(a). For this reason, the valley-
dependent conductances in the system can be addressed
independently only beyond this limit defined by what we call
the valley-mode gap �V G with both the −K and +K channels
propagating.

Additionally, it is clearly observed from the band spectrum
in Figs. 2(b) and 2(c) that the electron-hole symmetry is
broken by the induced potential, where the conduction and
valence bands are not affected simultaneously by the same
value of induced potential U0 (nonvanishing value for the

FIG. 3. Valley conductance vs Fermi energy for positive (top)
and negative (bottom) induced potential U0 as indicated. The red and
dark blue curves show, respectively, the valley transmissions T+ and
T−. �VG is specified in the insets to all panels and the geometrical
parameters on their tops.

potential at the border of the system due to the finite size
of the system). In fact, positive values of the induced poten-
tial affect the quasiparticles for EF > 0 while the negative
ones affect them only for EF < 0. The different behaviors
of the quasiparticles at positive and negative EF , caused
by the induced potential, break the symmetry between the
quasibound states in the valence and conduction bands and
create the correct conditions for valley filtering of the prop-
agating carriers at a given k. As will be shown below, the
Fermi velocity plays a major role in selecting the valley
current

To resolve different transport channels in k space, where
the electron transmission probability of each Dirac cone is ob-
served separately, we adopt the tight-binding model in Eq. (1),
and we define the valley conductance G− and G+ related to the
current flow across the induced potential at given Dirac cones
−K and +K, respectively. More details about computing val-
ley conductance are discussed in Appendix A.

To investigate the dependence of the valley conductance
in terms of the Fermi energy EF and tip-induced potential
pulse U0, we consider two cases: (1) the valley conductance
is considered in terms of EF for a fixed value of U0 and (2)
the valley conductance is considered in terms of U0 for a fixed
value of EF .

B. Valley conductance in terms of the Fermi level

We have calculated the valley-dependent transmission
at each valley independently for fixed tip potential
U0 = ±25 meV and ±50 meV. The Fermi energy of the
incident electrons varies between −50 meV and +50 meV
and numerical results for the valley conductance, as a function
of EF , are shown in Fig. 3.

It is clear that by tuning the Fermi energy EF one could
operate a valley filter in a none symmetric energy range
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and within the first propagating mode defined by the energy
mode E (1)

m . Depending on the sign of the induced poten-
tial and within an energy range, only one valley channel
is allowed to pass. According to Fig. 3, the valley filter-
ing happens when EF is increased beyond the energy limit
�V G/2. We find that, for positive values of the induced po-
tential, as shown in Figs. 3(a) and 3(b), only one valley is
allowed within the energy range �V G/2 < EF < E (1)

m meV
with E (1)

m = 30 meV (50 meV) for U0 = 25 meV (50 meV).
We observe that 100%(0%) of the conductance results from
the flow of electrons at +K (−K) for positive EF , while 50%
of the conductance results from the flow of electrons at both
valleys for negative EF < −�V G/2.

The presence of the electrostatic potential induced from
the KPFM tip does affect the quasibound states in the valence
or conduction bands depending on the bias sign, as shown in
Figs. 2(b) and 2(c). Consequently, the propagating modes of
the electron quasiparticles (at positive energy) and hole quasi-
particles (at negative energy) behave differently. As a result,
valley-dependent transport, when the electron-hole symmetry
is broken, will depend on the sign of EF and U0. For instance,
for U0 > 0, at positive EF the propagating modes are affected
by the induced potential, and valley-dependent transmission
occurs EF > �V G/2. However, at negative EF the propagating
modes shift from the conduction to the valence bands, as
shown in Fig. 2(c). This interband transition is not affected by
the induced potential when U0 is positive, and hence no valley-
dependent transmission occurs at EF < −�V G/2. Similarly,
for negative induced potential, the electron propagating modes
belonging to the conduction bands are not affected while the
quasibound states in the valence bands are. Summarizing,
valley filtering happens at EF < −�V G/2 and destroyed at
EF > �V G/2.

On the basis of the above arguments, a valley-dependent
transmission, i.e., a selective population of a single valley, is
pronounced depending on the sign of U0 and EF . In more
detail, we contrast the slopes in the dispersion relations of
the valence and conduction bands according to the signs of
EF and the induced potential. This contrast does explain the
presence (absence) of valley filtering at EF > |�V G/2| for
positive (negative) values of U0. More precisely, for a given
EF this slope does affect the Fermi velocities depending on
the sign of U0 as shown in Fig. 2. To confirm this assertion, we
refer again to the dispersion relation, for zigzag boundaries,
where we express the Fermi velocity in terms of the mode
spacing δ or band gap �V G as [11]

�V G =
√

3πta/2W = π h̄v/W (3)

where v = (
√

3/2)ta/h̄ = 3 × 106 m/s is the Fermi velocity
in pristine graphene. In our case, with the tight-binding param-
eters and sample shapes specified in Sec. II, we have �V G =
50 meV, where δv = δc = �V G/3 = π h̄v/3W . Hence, the
mode spacing is straightforwardly derived from the velocity
and vice versa.

One important remark that we might also highlight from
the output of Fig. 3 is the presence of an oscillatory be-
havior that is valley dependent. Indeed, the oscillations near
the vicinity of the mode opening energy is appearing due to
the potential in the scattering region, where only few mode

(valley dependence) are affected by the potential landscape of
the GQDs and behave similarly to the Fabry-Perot oscillation
[45]. More precisely, the conductance oscillations are valley
dependent and many features of conductance oscillations are
similar to the resonant tunneling in quantum antidots [46,47].
Importantly, as shown in Fig. 3, K1 (K2) valley modes are
affected by tip-potential landscape and feature conductance
oscillations at negative (positive) Fermi levels where the res-
onance increases proportionally with induced potential and
happens only within the valley-mode gap when both EF and
U0 have the same polarity.

Figure 3 shows a clear asymmetry between the two valleys.
Indeed, the presence of an additional edge state mode for
one valley only explains the extra quantum of conductance
in the profile of the valley conductance. The other source
of the asymmetry is the tip-induced potential: The Fermi
velocity, at positive or negative incident energy relative to the
tip-induced potential, is no longer the same and becomes a
function of U0 (the potential decays toward the leads). For
this reason, based on the band curvature and Fermi velocity
a valley mode is allowed only if the signs of EF and U0 are
the same.

C. Valley conductance in terms of the induced potential

When a tip potential is induced, the Fermi velocity, at
positive or negative incident energy around the tip-induced
potential is no longer the same and becomes a function
of U0. Indeed, The presence of the contacts (left and right
reservoirs) makes the system finite and therefore the tip’s
induced potential does not vanish near the leads. One has
to consider that reminiscent component of the potential in
the lead and thus ends up with a band structure with differ-
ent Fermi velocities (vc, vv) at the conduction and valence
bands.

We bear in mind that the Fermi wavelength λF is inversely
proportional to the Fermi velocity vF . The conductance is very
sensitive to the variation of λF (especially for large quantum
dots). In fact, far from the modes opening, the Fermi velocity
approaches that of infinite pristine graphene and therefore it
barely varies. In contrast, near the mode opening, where the
band is highly nonlinear, the Fermi velocity varies a lot with
EF and this explains why depending on the sign of (U0 × EF ,)
λ−K

F �= λ+K
F and therefore, as we can deduce from the band

structure, the filtering can happen or not.
Now let us go back to Fig. 3 and discuss the range of valley

filtering. It is seen that by increasing the value of the induced
potential U0 from 25 meV to 50 meV, the energy range of the
valley filtering increases since the energy mode is sensitive to
the value of U0 (E (1)

m ∝ U0) and steps from 30 meV to 50 meV,
respectively. From Figs. 2 and 3, we infer that for positive
U0 and EF , the electron propagating modes are strongly af-
fected and the energy mode E (1)

m (U0 = 25 meV) �= E (1)
m (U0 =

50 meV) where the conductance exhibits a smooth less quan-
tized plateaus. For negative EF the modes are not affected
by U0 where E (1)

m (U0 = 25 meV) = E (1)
m (U0 = 50 meV), and

hence the conductance exhibits quantized plateaux at an
odd number of 2e2/h̄ where 2 stands for spin degener-
acy. However, for negative induced potential, the process is
entirely inverted because for negative EF the propagating
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FIG. 4. Real-space mapping of both valley currents [red (blue) lines show the K1 = −K (K2 = +K) current] in the presence of the induced
potential U0. Panels (a) and (b) are for negative energy, while (c) and (d) are for positive energy. The sign of U0 is set the same as that of EF .
The induced potential of the KPFM tip traps the charge in the hBN space and its effect (based on the Poisson equation) is illustrated by the
spherical shape in the middle of the graphene sample [see map in Fig. 1(b)] held a few nanometers from the surface of graphene; it decays to
zero for (x2 + y2)1/2 > R0.

modes are strongly affected whereas for positive EF they
are not.

D. Rules for operating selective valley current

The analysis of Secs. III A and III B showed that valley
filtering is allowed only when the sign of the product (EF ×
U0) is positive. Indeed, beyond the valley-mode spacing gap
(EF > �V G) in Fig. 3, we showed that a positive (light-gray
background) product leads to valley filtering of the current
while a negative one (dark-gray background) destroys the
valley filtering process. This is also shown in Fig. 4, where
we plot the valley current in terms of EF and U0 and maintain
the product EF × U0 positive.

In more detail, we set the sign of U0 the same as EF and
then select a positive (negative) value of EF between �V G/2
(−�V G/2) and E (1)

m (−E (1)
m ), cf. Fig. 3. Once these conditions

are fulfilled, we map the current of the propagating channel
at K1 = −K and K2 = +K. The corresponding current is
evaluated and mapped in Fig. 4.

As illustrated in Fig. 4, the valley filtering process is
operative due to the positive sign of the product EF × U0.
Interestingly, the currents for both positive and negative EF

are equal, but the opposite energy sign shifts the valleys with
only one valley allowing current to flow and the other one
blocking it. Hence, depending on EF and U0, one can break
the valley degeneracy and generate a valley-polarized current.
This is an important result as it leads to valley selection by
changing either U0 or a bias gate, which shifts EF or changes
its sign.

Below we will show that the valley filtering can also take
place for some potentials and either sign of the product EF ×
U0. This valley filtering does correspond to resonances with
some states affected by the induced potential.

E. Valley filtering and resonances

As mentioned above, the tip-induced potential U (r) breaks
the symmetry between the valence (EF < 0) and conduction
(EF > 0) bands and the valley-polarized conduction becomes
sensitive to its sign and strength for a given EF > 0. In
Figs. 5(a) and 5(b) we show the conductance as a function
of U0.

First, as in Sec. III B, the results show that the valley
filtering depends on the sign of the product EF × U0, which is
the key point for breaking the valley degeneracy and creating
a valley-polarized current. For instance, for EF × U0 > 0 and
at EF = −30 meV, the conductance is polarized for U0 in the

FIG. 5. Valley conductance vs tip-induced potential for negative
(a) positive (b) Fermi level EF . Panels (c) and (d) show the corre-
sponding local density of resonant states. U0 and EF have opposite
signs.
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range −60 meV < U0 < −�V G/2 with only the K1 = −K
channel conducting. However, for EF = +30 meV the valley-
selecting process is reversed and only the K2 = +K channel
is conducting for U0 in the range −�V G/2 < U0 < +60 meV.

Second, for EF × U0 < 0 the obtained results show valley
antiresonances (and resonances) where the conductance drops
to zero with respect to valley conductance at only one Dirac
cone (K1 or K2). This process can be justified due to val-
ley confinement, [26,48,49]. In fact, quasibound states have
been observed in Klein QDs, KQD being/called the region
in which these quasibound states are localized. In our case
such a confinement can be more precisely explained by the
interference between the wave functions of the reflected and
incident electrons that results in the formation of standing
waves. In fact, a similar confinement has also been observed
in graphene nanoribbons with an inhomogeneous out-of-plane
Gaussian deformation of the strain with circularly symmetric
geometry [15], where an enhancement of the density of states
occurs in the strained region and leads to a decrease in the
conductance.

In our case we have more insight into the confined states
since we can distinguish the wave function by its valley index.
This allows us to investigate valley signatures of transport in
confined geometries, where we observe that the enhancement
of the LDOS in the GQD region is valley dependent and
accompanied by a decrease or increase in the conductance,
signaling the presence or absence of a valley current.

More precisely, to show the presence of confined states we
employ the kernel polynomial method (KPM) to numerically
compute the local density of states (LDOS) using Chebyshev
polynomials [50,51] along with damping kernels [50] as re-
cently provided by a Pybinding package [52]. To compute
the LDOS we count the sites contained within the shape of
the induced potential, determined by (x2 + y2)1/2 < R0. We
observe that the electrons are almost localized at induced
potential landscape, where the superposition of the confined
states give rise to features of vortex pattern, which does appear
at the induced potential boundaries.

The same remarks as in Fig. 4, can be drawn from Figs. 5(c)
and 5(d) where the LDOS for K1 = −K and K2 = +K are
equal, where the opposite energy sign shifts only the valleys
with only one valley confined. Hence, depending on EF and
U0, one can break the valley degeneracy and generate valley
confined states when the product EF × U0 is negative.

The resonance at U0 = +59.25 meV (U0 = −59.25 meV)
occurs for negative (positive) EF and results from confined
states of the quasibands in the valence (conduction) band.

The main point here is that we confirm and show that the
states in the case U0 = +59.25 meV (U0 = −59.25 meV) are
indeed resonant states with a high local density within the area
that defines the GQDs. In our case, the interference might
happen inside the induced island due to the shape of GQDs
with specific values of induced potential.

Since we are dealing with electron-hole broken symmetry,
positive and negative energy bands are affected independently
by the induced potential. Also, since the ribbon width W is
finite, the momentum is discretized. Therefore, the antires-
onances for EF × U0 < 0 [dark-gray area in Figs. 5(a) and
5(b)], can be clearly identified and appear nearly periodic.
Since EF does affect the set of discrete values in momentum

FIG. 6. Polarization vs Fermi energy for (a) negative and (b) pos-
itive induced potential.

space, we can state that different values of EF lead to a
different set of resonances with their number depending on
the values of EF and W .

F. Robustness of valley filtering against disorder and strip width

Operating valley filtering controlled by either U0 or EF

must be robust against a disorder potential. For this purpose,
in Fig. 6, the valley polarization is plotted as a function of EF

in the presence of an on-site disorder of strengths Di. The rel-
evant Hamiltonian is HD = H + ∑

〈i〉 Di(a
†
i ai + b†

i bi ), where
H is defined in Eq. (2) and Di are numbers randomly dis-
tributed in the range [−D0,+D0]. We will consider a strong
disorder 5U0 < D0 < 15U0. We notice that the disorder does
not affect the polarization even for values stronger than D0 =
15U0. For all considered disorder strengths, Fig. 6 shows that
a valley filtering is always present and robust against on-site
disorder.

Additionally, we have also considered the effect of the
ribbon width and plotted, in Fig. 7, the valley conductance
versus EF for several widths W , determined by the ratio r =
W/R0, for a Gaussian shape with R0 = 35 nm. We focus on
the side on which EF × U0 > 0 and valley filtering operates

FIG. 7. The top panels show the valley conductance, at K2 in
(a) and at K1 in (b), vs EF for several widths W determined by
r = W/R0. The bottom panels show the polarization vs EF for several
values r.
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as discussed previously. We notice that the valley filtering
is more evident for r � 1. More precisely, for r = 0.6, 0.7,
0.8, we have, respectively, the energy ranges −0.72 � E �
+0.72,−0.64 � E � +0.64, and −0.58 � E � +0.58 meV,
where the +(−) signs are for U0 = +25 meV (U0 =
−25 meV), respectively. From Figs. 7(a) and 7(b), we can
see that the conductance plateaux are flatter for r < 1 than
for r > 1. Additionally, from Figs. 7(c) and 7(d) we clearly
observe that by increasing the ratio r the energy range of
controlling the valley filtering decreases and it might vanish
for r > 1 since EF falls between 0 and �V G/2. More pre-
cisely, for r > 1 the polarization drops and we have P < |1|
for EF > |�V G/2|.

Regarding the sample shape, what matters most is not the
width W of the sample, but the ratio r = W/R0. If R0 is much
smaller than W, the valley filtering will be destroyed since
the electrons will be scattered from the sample edge and will
not feel the screened potential; then both valleys contribute
to the current. For this reason valley filleting is destroyed as
discussed in Fig. 7. Additionally, the choice of W also matters
since it is very important to keep the range of EF within a
few meV. That is, we avoid using a narrow width and consider
only the case W 	 a so that the mode spacing gap is a few
meV wide as specified after Eq. (3).

IV. SUMMARY AND CONCLUSIONS

We presented an approach for operating valley filtering
based on the KPFM-induced potential that opens various
roads to experimental verification. Using such an electrostatic
potential, instead of PMFs induced from nanobubbles, we can
operate or destroy the valleys filtering depending on the signs
of the electron energies and the induced potential. A positive
sign of their product (U0 × EF > 0) allows operating valley
filtering, and the bias voltage, which controls the energy sign,
shifts the valleys with only one of them allowing current to
flow and the other one being blocked.

We have also noticed the presence of conductance oscil-
lations near the vicinity the mode opening energy, which are
valley dependent and whose strength is proportional to that of
the induced potential within the mode-spacing gap. These os-
cillations are similar to those in resonant tunneling in quantum
antidots and to the Fabry-Perot ones. Furthermore, valley po-
larized currents can occur for negative products U0 × EF < 0.
In such a case the valley filtering does correspond to reso-
nances; some states are affected by the induced potential and
only propagating states belonging to one valley confined in
the induced GQDs occur.

The proposed contribution suggests an alternative way to
experimentally realize valley-polarized currents in electrostat-
ically created quantum dots on graphene/hBN heterostruc-
tures. Within this framework, the induced potential together
with the sign and the range of the incident electron energies
directly affect the behavior of the setup. With these factors
in mind, one can conveniently exploit both valley confine-
ment and valley filtering in devices where the simulation
discloses possible functionalities within a few meV of energy
range.

To sum up, we find that valley is controlled by the sign
of U0 × EF . The results of the present study simply provide

an alternative approach, that can facilitate the development of
valleytronic devices. For other possible ways to achieve valley
filtering, we refer to the review [14].
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APPENDIX A: VALLEY-DEPENDENT TRANSMISSION
AND POLARIZATION

Below we briefly describe the derivation of the valley-
dependent transmittance and polarization expressions. The
propagating modes in the leads can be selected depending
on their velocity and momentum direction [53,54]. This is
achieved using the Kwant functionalities [55] that couple the
propagating modes with the scattering region and therefore al-
low the evaluation of valley transport properties. We consider
only propagating modes and assume that valley modes are de-
fined based on propagating states �(v < 0) [55]. These states
are characterized by both degrees that contain the two valleys
K1 [obtained from �(k < 0, v < 0)] and K2 [obtained from
�(k > 0, v < 0)] in the graphene lead [18]. Once the valley
states are defined, we resolve different transport channels in
reciprocal space, with the electron transmission probability
at each Dirac cone computed separately. Within the Green’s
function approach [56,57] the valley-resolved channels lead
to the total transmittance of electrons T = T−K + T+K , where
the valley transmittance T±K given by

T m,n
±K = Trace[G±K�mG†

±K�n], (m, n = L, R). (A1)

The Green’s function matrices are given by

G(ε,±K) = [(ε + ιη)I − Hh(±K) − �]−1 (A2)

and

� = ι(� − �†). (A3)

� is the imaginary part of the self-energy of the contact
given by coupling, independently, the scattering region (de-
fined by the Hamiltonian Hh) with each valley mode. For
more details see Refs. [18,58]. Once the valley-dependent
transmission is derived, we define the valley conductance
G− and G+ at the Dirac cones −K and +K, respectively
as G± = (e2/h)T±K. To obtain both valley modes and en-
sure valley-resolved channels, we consider the propagating
modes for EF > abs(�V G/2) (cf, Fig. 2). After obtain-
ing them the two valleys can be separated depending on
their momentum sign. The resulting valley polarization is
obtained as

P = T−K − T+K

T−K + T+K
. (A4)

For P = ±1 the electrons are localized entirely at the ±K
valley and full polarized transmittance is ensured. P = 0 cor-
responds to unpolarized electrons.

We might also obtain the local density of states (LDOS) at
a given sample site i as

LDOS(E ) =
∑

l

|〈i|l〉|2δ(E − El ), (A5)
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the energy E is the energy of the confined states where the
summation is over all electron eigenstates |l〉 = c†

l |0〉 of the
Hamiltonian H in Eq. (2) with energy El . The quantity in
Eq. (A5) is numerically computed using Chebyshev polyno-
mials [50,51] and damping kernels [50].

APPENDIX B: VALLEY CURRENT MAPPING

We adopt the procedure detailed in the Kwant package
[55]. The density operator and continuity equation are ex-
pressed as

ρq =
∑

a

�∗
aHh

q �a,
∂ρa

∂t
−

∑
b

Ja,b = 0. (B1)

Hh is the Hamiltonian of the heterostructure in the
scattering region whose size is N1 × N2 sites and
�(v < 0) is the eigenstate of the propagating mode of
the graphene’s lead whose size is N1. Here q defines all

sites or hoppings in the scattering region and Jab is the
current.

For a given site of density ρa, we sum over its neighboring
sites b. Then the valley current Jab

±k takes the form

Jab
−K = �∗(k < 0, v < 0)

⎛
⎝i

∑
γ

H∗h
abγ Hh

aγ − Hh
aγ Habγ

⎞
⎠

× �(k < 0, v < 0), (B2)

and

Jab
+K = �∗(k > 0, v < 0)

⎛
⎝i

∑
γ

H∗h
abγ Hh

aγ − Hh
aγ Habγ

⎞
⎠

× �(k > 0, v < 0), (B3)

where Hab is a matrix with zero elements except for those con-
necting the sites a and b. In this case, the hopping matrices in
the heterostructure are obtained from the first term of Eq. (2).
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