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Mirror-symmetric twisted trilayer graphene (tTLG) is composed of even-parity twisted bilayer graphene
(tBLG)-like bands and odd-parity Dirac-like bands. Here, we study the mirror-symmetric and mirror-asymmetric
Hofstadter moiré (HM) fractal bands of tTLG. A quantum parity Hall state is identified in mirror-symmetric
tTLG at experimentally accessible charge densities. This mirror-symmetry-protected topological phase exhibits
simultaneous quantized Hall and longitudinal resistances. The effects of the displacement field on the HM fractal
bands of tTLG and topological phase transitions are also studied. The application of an electric displacement
field results in an emergent weakly dispersive band at the charge neutrality point for a range of twist angles. This
zero-energy state resides in the middle layer. It is isolated from the HM spectrum by an energy gap that scales
proportional to the applied displacement field, making it a prime candidate to host correlated topological states.
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I. INTRODUCTION

Moiré superlattices possess a periodicity much larger than
the underlying crystal lattice spacing and for this reason
provide an ideal test bed for investigation of the various
topological phases of Hofstadter moiré fractal patterns [1–7].
These fractals are significantly influenced by twist angles
and substrate interactions [2–4]. More importantly, electron-
electron interactions in the Hofstadter moiré bands can result
in correlated [8] and exotic topological phases [9]. Such
“twistronic” engineering of flat bands in twisted 2D crystals
is a promising route to discover novel interaction-driven cor-
related and topological phases [10–25]. A recently discovered
class of these systems is alternating twist multilayer graphene.
These systems consist of m � 3 graphene monolayers with a
twist angle (θ ) that alternates between +θ and −θ between
each successive pair of layers [26–32]. In alternating twisted
multilayer graphene, electric fields perpendicular to the sam-
ple, in addition to twist angles and substrate interactions,
can significantly modify the Hofstadter moiré fractal patterns.
This tunability of the Hofstadter moiré fractals can result
in emergent regimes that might be ideal for realizing novel
correlated and topological phases [8,9,24,25].

In this paper, we report on the topological properties and
energy bands of Hofstadter moiré fractals in twisted trilayer
graphene (tTLG). Without a displacement field, tTLG obeys
mirror symmetry [33–36]. This allows for decomposition
into tBLG-like even-parity bands and monolayer graphene
(MLG)-like Dirac odd-parity bands [26,27,32]. At high mag-
netic fields, this results in the coexistence of a tBLG-like
Hofstadter moiré pattern with an MLG-like Landau level (LL)
spectra in mirror-symmetric tTLG. The resultant even-parity
tTLG Hofstadter moiré patterns at zero displacement field are
consistent with earlier studies of the Hofstadter moiré patterns
in tBLG [2–4]. However, the tTLG Hofstadter moiré patterns
exhibit a different sequence of Chern numbers due to the
simultaneous presence of the odd-parity MLG-like LLs.

More importantly, the mirror symmetry stabilizes a
symmetry-protected topological phase, which we call the
quantum parity Hall state. It originates from counterprop-
agating branches of even- and odd-parity edge states with
different numbers of branches and opposite signs of the
Hall conductivity in each parity sector. This state is present
in the angle regimes θ ≈ 1.6◦ to 2.5◦ at accessible charge
densities in tTLG. Since mirror symmetry forbids backscat-
tering between different parity sectors, this state exhibits
simultaneous quantization of the Hall and longitudinal resis-
tances. Similar quantum Hall parity states have been identified
in ABA-stacked trilayer graphene at neutral charge density
[36,37].

In a displacement field, the Hofstadter moiré pattern is sig-
nificantly modified due to the hybridization of the tBLG-like
band with the MLG-like Landau levels (LLs). The system
exhibits a fractured Hofstadter moiré butterfly pattern, fol-
lowed by an emergent zero-energy weakly dispersive band.
This weakly dispersing flat band is pinned to the charge neu-
trality point and separated from the rest of the spectrum by a
band gap. In the angle regime θ ≈ 1.7◦ to 2.5◦, the band gap
increases linearly with the applied displacement field energy
�⊥. This is accompanied by a slight increase in the bandwidth
for the range �⊥ = 5 meV to 30 meV. This zero-energy band
resides primarily in the middle layer. Its energetic and topo-
logical properties can be tuned by the applied displacement
field, making it a promising candidate for hosting many-body
interacting ground states [9].

The paper is organized as follows. In Sec. II, we discuss the
mirror-symmetric Hofstadter moiré butterfly, its band disper-
sion, and topological properties as a function of twist angles.
Section III studies the origin and properties of the emergent
zero-energy weakly dispersive band induced by electric fields
in tTLG. Finally, in Sec. IV, we discuss the relevance of our
results to experiments on tTLG at high magnetic fields. The
details of the calculations, model Hamiltonian of tTLG, and
methods are relegated to the Appendixes.
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FIG. 1. (a) Lattice structure of twisted trilayer graphene with the
top and bottom layer rotated by θ/2 while the middle layer is rotated
by −θ/2. (b) Moiré pattern in twisted trilayer graphene with local
AA and AB stacking regions.

II. MIRROR-SYMMETRIC tTLG HOFSTADTER
MOIRÉ BUTTERFLY

The lattice structure of the tTLG lattice exhibits mirror
symmetry about the middle layer, as indicated in Fig. 1(a).
This facilitates a description of energy bands in terms of
parity eigenstates [32,34,35]. We denote sublattice A(B) on
layer i with Ai(Bi ). The even-parity orbital combinations are
then given by (A+, B+, A2, B2) while the odd-parity orbitals
are (A−, B−), where A± = (A1 ± A3)/

√
2 and B± = (B1 ±

B3)/
√

2. We take the relative in-plane displacement d = 0
and denote the top (bottom) layers angle θ/2 while the mid-
dle layer angle −θ/2. The band dispersion due to the moiré
pattern formed at small twist angles can be captured by ex-
tensions of the Bistritzer-MacDonald (BM) Hamiltonian [10].
The BM model captures the effect of the periodic tunneling
between the layers in the AA and AB stacked regions [see
Fig. 1(b)], denoted by wAB = w = 97.5 meV and wAA = ηw

with η = 0.82, respectively (see Appendix A for the tTLG
Hamiltonian). At zero displacement fields, due to mirror sym-
metry, the Hamiltonian can be decomposed into tBLG-like
Hamiltonian with enhanced tunneling parameter w → √

2w

and an MLG-like Dirac band [27,32].
The large moiré periodicity of twisted 2D crystal results in

a fractal Hofstadter moiré (HM) bands at high magnetic fields.
We used the parity eigenstate basis to calculate the HM bands
of tTLG with the gauge choice A = B(−y, 0). The Hamilto-
nian was expressed in the basis set {|n,Yi, α, σ 〉}, where n
denotes the Landau level (LL) index at the guiding center
positioned at Yi (which corresponds to a lattice site in the
unit cell) on the sublattice α. The index σ = 1, 2, 3 denotes
the parity eigenspinors with the assignments 1 = (A+, B+),
2 = (A2, B2), and 3 = (A−, B−). The details of the calculation
are presented in Appendix A.

Our calculations for tTLG exhibited rich structures in the
HM spectrum, which can be tuned by the electric field and
twist angles. Figure 2 shows the HM butterfly for mirror-
symmetric tTLG at three representative angles (θ = 2◦, 1.6◦,
and 1.5◦). The Hall conductivity, in units of e2/h, is shown in
the spectral gaps. In Fig. 2, the even-parity bands are depicted
in blue or black, while the odd-parity bands are shown in
red. The Landau bands originating from the odd-parity sector
can be distinguished by εn ∝ √

B, while the energy of the
even-parity bands exhibit a tBLG HM fractal pattern. Similar
HM butterfly patterns for tBLG have been reported in Ref. [3].
Our even-parity band HM butterfly patterns are consistent
with these reports but now occur at twice the magnetic fields

FIG. 2. Hofstadter moiré butterfly patterns in tTLG for zero displacement field. Energy eigenvalue dispersion as a function of the applied
magnetic field at the angles (a) θ = 2◦, (b) θ = 1.6◦, and (c) θ = 1.51◦(magic angle) with w = 97.50 meV and η = 0.82. In [(a)–(c)], the
even-parity bands are denoted by black/blue, while the odd-parity bands are denoted by red. The values in the spectral gaps indicate the Hall
conductivity σxy in units of e2/h. For clarity, the details of the central band regions in [(a)–(c)] depicted in blue for even-parity bands and red
for the odd-parity bands, are magnified in [(d)–(f)].
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due to the
√

2 enhancement of the twist angle in the tTLG
even-parity sector. The HM bands of tTLG exhibit unitary
particle-hole symmetry [26,38] resulting in a symmetric spec-
trum with respect to the neutral charge density point (see
Appendix A for a discussion of this symmetry).

We primarily focused on three angles, each indicative of
three distinct regimes of the HM butterfly. A detailed ver-
sion of these central bands of the HM butterfly is shown in
Figs. 2(d)–2(f). The θ = 2◦ HM butterfly is representative of
the twist angle range θ ≈ 1.7◦ to 2.5◦. In this regime, we
found an emergent Hofstadter pattern similar to the Hofstadter
pattern of the tight-binding model for graphene. This feature
has been observed in previous studies [3], and this duality can
be proved in the weak tunneling or high magnetic field limit,
where LL mixing becomes negligible. This duality survives
even in the presence of LL mixing for this angle regime, most
likely associated with the underlying symmetries of the moiré
lattice potential. A more detailed description of this duality
will be provided elsewhere.

In contrast, for θ = 1.6◦, we found a spectral gap for all
magnetic fields. Similar results were obtained for the range
of angles θ ≈ 1.65◦ to 1.55◦, after which the pattern changed
significantly. At the magic angle θ = 1.51◦, the HM pattern is
modified and bears no resemblance to the Hofstadter pattern
in monolayer graphene. The bandwidth of the central bands
decreases nearly an order of magnitude when compared to the
HM pattern at θ = 2◦. Below the magic angle at θ = 1.45◦
another pattern reemerged similar to θ = 1.6◦.

In Fig. 2, the integers in the spectral gaps of the HM but-
terflies denote the Hall conductivity, σH in units of e2/h. The
numerically attained eigenfunctions were employed with the
Wilson loop procedure [39] to calculate the Chern numbers
and Berry flux (see Appendix B for details of this method).
We calculated the Hall conductivity within the larger spectral
gaps �5 meV. The Hall conductivity at the charge neutrality
point σH (εF = 0) = 0 was regularized to zero and included
the spin and valley degeneracy. The Chern numbers and Hall
conductivity of the emergent HM pattern for θ = 2◦ in the
even-parity sector of tTLG are the same as the monolayer
graphene Hofstadter butterfly. This aspect of the duality for
tBLG has been reported in Ref. [3]. However, in tTLG, the
Hall conductivity is the sum of the Hall conductivity of tBLG
even-parity HM bands and the MLG bands odd-parity LLs.

III. QUANTUM PARITY HALL EFFECT

A consequence of mirror symmetry in tTLG is a symmetry-
protected topological (SPT) phase with simultaneous quanti-
zation of the longitudinal and Hall resistance. This mirror-SPT
(mSPT) phase, which we call the quantum parity Hall phase
was identified at neutral charge density in ABA trilayer
graphene [36,37]. In tTLG, this state occurs at finite charge
density. It is marked by unequal branches of counterpropa-
gating even-parity and odd-parity edge modes associated with
tBLG-like HM bands and MLG-like LL bands. In Figs. 3(a)
and 3(b), we label the regions where the quantum parity Hall
state appears by the number of edge states associated with
each parity sector, blue(red) for even(odd) parity.

The Hall conductivity is positive(negative) for nega-
tive(positive) energies in these regions. Since the neutral

FIG. 3. Quantum parity Hall phase in the Hofstadter moiré but-
terfly patterns of tTLG for (a) θ = 2◦ and (b) θ = 1.6◦. The number
of edge states associated with the even-parity tBLG-like bands are in
blue, while the MLG-like bands are in red, in units of e2/h. (c) Edge
state schematic of the quantum parity Hall phase in a six-terminal
Hall-bar geometry at positive charge densities.

charge density is defined at zero energy, this corresponds
to a positive(negative) sign of Hall conductance for hole-
like(electron-like) charge densities. This is an essential feature
of this quantum Hall parity state in tTLG. From our calcula-
tions of Chern numbers, we only found one instance of this
state. Still, other types of mSPT phases can be realized in
regions with smaller spectral gaps �5 meV. They can be iden-
tified by negative(positive) even-parity tBLG-bands Chern
numbers at positive(negative) charge densities.

Figure 3(c) shows the edge states for the quantum parity
Hall phase in a six-terminal Hall bar geometry for positive
charge densities. Two edge modes originate from the odd-
parity LL bands (shown in red), and four counterpropagating
edge modes arise from the even-parity Hofstadter bands
(shown in blue). Since the edge states in the mirror sectors
have unequal branches of edge modes, they exhibit simulta-
neous quantized Hall and longitudinal resistances. The edge
modes are protected from backscattering by mirror symmetry.
The resistances in the Hall bar geometry can be calculated
from the Landauer-Buttiker approach [40] (see Appendix C)
for the quantum parity Hall state, giving

R14,26 = h

6e2
; R14,32 = h

9e2
; R14,14 = 4h

9e2
, (1)

where Ri j,kl is defined as the ratio of the voltage to the current
measured between the kth and the jth, with current applied
from the ith to the jth lead. The edge states of the quantum
parity Hall phase and their stability to disorder are discussed
in what follows.

The effect of bulk and edge mirror asymmetry on the
quantum parity Hall state can be estimated from general ar-
guments. To observe the quantum parity Hall states, the bulk
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FIG. 4. Hofstadter moiré butterfly patterns in tTLG for an electric displacement field strength �⊥ = 10 meV at the angles (a) θ = 2◦,
(b) θ = 1.6◦, and (c) θ = 1.51◦(magic angle) with w = 97.50 meV and η = 0.82. The values in the spectral gaps indicate the Hall conductivity
σxy in units of e2/h.

gap �QPH must be larger than the energy associated with
mirror asymmetry in realistic samples. This energy scale is
h̄vkD�θ ∼ 62.2�θ meV, where �θ is the difference between
the angle of the top and bottom layer. For the quantum par-
ity Hall state at θ ∼ 20, we estimate that the bulk gap will
survive for �θ � 0.10. This estimate decreases as the QPH
band gap reduces when the twist angle approaches the magic
angle.

To estimate the effect of edge asymmetry, we model the in-
terparity channel mixing as disorder along a one-dimensional
bosonic edge, which can be characterized by a localization
length [41]. It determines the sample dimensions for which
the quantum parity Hall state can be observed. If the distance
between the leads in Fig. 3(c) is smaller than the localiza-
tion length, the transport channel becomes ballistic, and the
conductance will be given by Eq. (1). The calculation of the
localization length and its dependence on the disorder strength
will be provided elsewhere. Alternately, sharp local gates can
be used to define an electrostatic edge inside the sample, thus
preserving the requirement of mirror symmetry along these
gate-defined edges.

IV. EMERGENT ZERO-ENERGY STATE IN tTLG

The displacement field breaks mirror symmetry, hybridiz-
ing the Dirac LLs with the even-parity HM bands of the
tBLG-like even-parity sector. Figures 4(a)–4(c) show the HM
pattern in the presence of a displacement field of strength
�⊥ = 10 meV. The most striking feature is the emergence
of two spectral gaps adjacent to the charge neutrality point.
For all three angle regimes, we observed this fractured fractal
pattern in a displacement field when compared to the HM
fractal patterns in Figs. 2(d)–2(f). This is accompanied by the
emergence of a weakly dispersing zero-energy band pinned at
the charge neutrality point. This zero-energy band disperses
with a small bandwidth ≈0.1 to 0.4 meV for the twist angle
θ = 2◦. However, its bandwidth slightly increases at smaller
twist angles as a function of the magnetic field. The spectral
gap at zero-energy is given by ≈�⊥/2 for θ = 2◦, and it is
independent of the magnetic field within numerical accuracy.
This spectral gap results from a level repulsion mechanism, as
discussed below.

Another striking feature in a displacement field is a topo-
logical phase as a function of the twist angle. This is evident in
the Hall conductivity at θ = 20, 1.60 of the gapped state above
the charge neutrality point which changes from σxy = 2e2/h̄ to
σxy = −2e2/h̄ at θ = 1.510. This is accompanied by a similar
change in Hall conductivity below the charge neutrality point.
This topological transition indicates a significant band recon-
struction between the twist angles θ = 1.6◦ and θ = 1.51◦.
These transitions are associated with the Berry curvature’s
tunability and band dispersion as a function of the electric
field. This phase transition is evident in the corresponding
Wannier plots for tTLG (see Appendix B).

The most striking feature is the emergence of a zero-energy
flat band multiplet in the angle regimes θ = 1.7◦ to 2.5◦ un-
der a displacement field. This zero-energy flat band multiplet
entirely resides in the middle layer and is q-fold degenerate,
where φ = p/q is the inverse magnetic flux per unit cell. The
emergent zero-energy state results from the level repulsion
of the LL states in the top and bottom layers induced by
the displacement field, which leaves an isolated state derived
from the N = 0 LL in the A2 orbital. Below we describe the
origin of this state in more detail for the K valley. Key to this
argument is the observation that the displacement field leads
to level repulsion between A− and A+ states, which is much
greater than the interlayer tunneling-induced modification of
the A2 LL energy. The argument for the other valley K′ can be
attained by interchanging the sublattices.

We first discuss the influence of interlayer tunneling on
the n = 0 LLs on the A sublattice. We assume zero displace-
ment field and consider the chiral limit (η = 0), corresponding
to the absence of tunneling between the same orbitals (i.e.,
wA+A2 = wB+B2 = 0) in the even-parity tBLG-like bands [23].
In a magnetic field when η = 0, the N = 0 LL in valley K
lies on the sublattice A+, A2 in the even-parity sector, and A−
in the odd-parity sector. Since the N = 0 LLs are localized
on the A sublattice, there is no direct coupling between the
N = 0 LLs, as indicated in Fig. 5(a). The N �= 0 LL are
perturbatively coupled to the N = 0 LL due to wA+B2 and
wB+A2 tunneling. The effect of this tunneling can be captured
by an effective coupling λt ∝ (w/(h̄vkθ ))φ exp(−2πφ/

√
3).

In Fig. 5(a), this mixing is indicated by the dashed lines, where
we only show the coupling in valley K.
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FIG. 5. (a) Schematic representation of the coupling in the chiral
limit (η = 0) in valley K for the N = 0 with the N �= 0 LLs. The
direct coupling in N = 0 LL due to the displacement field is repre-
sented by the solid black line, while the perturbative coupling due to
tunneling between the A and B sublattices is denoted by the dashed
line. (b) Band gap as a function of the displacement field for different
values of inverse flux per unit cell φ = p/q, all energies are in meV.
All results are for the twist angle θ = 2◦.

We next consider the impact of the displacement field on
LL energy levels. When a displacement field is applied, the A+
orbital hybridizes with the A− orbital in the odd-parity sector.
This direct coupling is shown in the solid line in Fig. 5(a).
These states gap out due to level repulsion with the energy
separation scaling as λ� ≈ �lB/(h̄v) ∝ √

φ. This level repul-
sion mechanism leaves behind the zero-energy state on the
middle layer on the orbitals A2 at zero energy. Therefore,
in the chiral limit η = 0, the emergent zero-energy state in
the HM pattern at θ = 2◦ is localized in the middle layer on
sublattice A2 in the K valley. The zero-energy level has com-
ponents N �= 0 LL due to mixing induced by the wA+B2 and
wA2B+ interlayer tunneling terms, as described in the previous
paragraph. The ratio of the interlayer tunneling λt to the dis-
placement field-induced coupling λ� scales as

√
φ exp(−φ),

which exhibits exponential suppression at low fields. This
indicates that the level repulsion mechanism dominates for
B � 40 T and results in the localization of the zero-energy
state on the middle layer.

In the chiral limit, the calculated projected weight of the
emergent zero-energy state averaged over the BZ mesh on the
N = 0 LL orbital in the middle layer was ≈80%, indicating
some mixing with higher LL in the middle layer. This mixing
can be characterized by λt and results in ≈20% mixing with
N �= 0 LL in the middle layer. While our arguments are valid
for lower magnetic fields, they had to be numerically verified
at higher values of the magnetic fields or smaller values of φ.

Although we considered the chiral limit in our description
above, we find that in both the chiral limit and for η = 0.82,
the calculated projected weight of the zero-energy state on
the middle layer was ≈1 and independent of the value of
φ. The same results are obtained for various displacement
fields. Furthermore, the calculated projected weight of the
emergent zero-energy state averaged over the BZ-mesh on the
N = 0 LL orbital in the middle layer was ≈60%, indicating
significant mixing ≈40% with N �= 0 LLs in the middle layer.

More evidence of the level repulsion mechanism can be
inferred from the behavior of the energy gap above the zero-
energy state �g as a function of the displacement field. The
energy gap �g ≈ �⊥/2 grows linearly as a function of the
displacement field [see Fig. 5(b)]. The bandwidth of the zero-
energy state �w ≈ 0.1 to 0.4 meV is much smaller than the
band gap and varies slightly with the electric field. We also
found that the Berry curvature deviation of the zero-energy
state decreases as a function of the displacement field strength
�⊥. This tunability of the Berry curvature and isolation of
the emergent zero-energy state provide ideal conditions for
realizing various interesting many-body interacting ground
states [9]. Since the emergent zero-energy state has significant
components of higher LL wavefunction, it is anticipated that
the ground state at fractional filling will most likely be a
Wigner crystal or charge density wave state [42–46]. Due to
the complexity of the computational basis, these studies must
be performed on lattice analogs of the HM pattern of tTLG.

V. CONCLUSIONS AND OUTLOOK

In conclusion, the displacement field provides an external
knob to manipulate the topological phase and energy spectrum
in the HM butterfly. The most striking is the emergence of
a zero-energy state at the charge neutrality point within an
accessible range of doping densities, whose separation from
the energy spectrum can be tuned by the displacement field.
The narrow bandwidth of the zero-energy band indicates the
possibility of strongly correlated phases such as quantum
Hall ferromagnetism [47–50], possible charge density waves
[42–46], and fractional topological insulators [9,51–55]. Fur-
thermore, the electric field can be used to access topological
transitions. This makes it possible to probe the HM butterfly
patterns in tTLG in transport or via scanning probe experi-
ments.

In addition, we discovered a symmetry-protected topo-
logical phase for the mirror-symmetric case due to unequal
counter-propagating edge modes exhibiting simultaneous Hall
and longitudinal resistances. Interactions within each sector
of the quantum parity Hall phase will most likely result in
analogs of the exotic correlated quantum Hall phases detected
in the ABA stacked trilayer graphene [36,37]. Interactions
within the Hofstadter bands will also result in topological
and correlated phases when the bandwidth is smaller than
the interaction energy scale, which generally occurs for larger
values of q. However, due to the nonmonotonic behavior as
a function of the magnetic fields, as evidenced by the fractal
nature of the HM butterfly patterns, the role of interactions
requires detailed theoretical calculations for every value of φ,
which is beyond the scope of this paper.
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APPENDIX A: tTLG HAMILTONIAN

The continuum Hamiltonian of the tTLG [10], which is
valid for small angles, θ ≈ 3◦, can be expressed in terms of
a six-component spinor, ψ

†
K = (φ†

1,K, φ
†
2,K, φ

†
3,K ), at the Dirac

point K+,

H =
⎛
⎝hθ + �1 T (r) 0

T †(r) h−θ + �2 T †(r)
0 T (r) hθ + �3

⎞
⎠, (A1)

where h±θ = D(θ )[−ı h̄v(ξσx∂x + σy∂y)]D†(θ ) denotes the
Dirac Hamiltonian on the rotated Brillouin zone (BZ), with
D(θ ) = exp(ıσzθ/2), σi denotes the Pauli matrix acting on
the sublattice degree of freedom. ξ = ±1 denotes the Dirac
points corresponding to different valleys at the BZ momentum
Kξ = 4π/3a(ξ, 0). The momentum space tunneling matrix
elements T (r) = ∑3

n=1 T̂neıqn·r can be expressed in terms the
matrices T̂n with

T̂n = w(ηÎ + cos ((n − 1)φ0))σ̂x + sin ((n − 1)φ0)σ̂y) (A2)

where φ0 = 2π/3, and the tunneling parameters are wAB =
w = 97.5 meV, wAA = ηw with η = 0.82. The tunneling
matrices are related by C3z symmetry of the lattice via
unitary operator U3z(φ0) = exp(iσzφ0/2). The momentum
transfer vectors associated to the honeycomb moiré lattice
q1 = kθ (0,−1), q2 = kθ (

√
3/2, 1/2), q3 = kθ (

√
3/2,−1/2),

where kθ = 4π/(3aM ) is the distance between the mini-Dirac
points and aM = a0/(2 sin(θ/2)) is the moiré lattice spacing
with a0 = 0.246 nm.

In the parity basis, the tTLG Hamiltonian becomes

H (w, η,�±) =
⎛
⎝hθ + �+

√
2T (r) �−√

2T †(r) h−θ + �2 0
�− 0 hθ + �+

⎞
⎠,

(A3)
where �± = (�1 ± �3)/2 and from now on we take �2 = 0.
The above Hamiltonian in Eq. (A3) is expressed in terms of a
six-component spinor basis (A+, B+, A2, B2, A−, B−), where
A± = (A1 ± A3)/

√
2 and B± = (B1 ± B3)/

√
2 have even (+)

and odd (−) parity with respect to this mirror symmetry, while
the middle layer, A2 and B2 orbitals have even (+) parity.

For all our calculations, we make the zero-angle approxi-
mation, which corresponds to the choice D(θ ) ∼ I valid for
small angles θ � 50. This gives h±θ = −ı h̄v(ξσx∂x + σy∂y),
with a small (1%) change in the accuracy of the energy eigen-
values for small angles. The Hamiltonian in Eq. (A3) exhibits
a unitary particle-hole symmetry. This unitary particle-hole
symmetry �PH is generated by ıτy ⊗ I, where τy acts
on the even-parity tBLG component of the Hamiltonian.
This unitary particle-hole symmetry can be expressed as
�PH H (r)�−1

PH = −H (−r). This unitary particle-hole symme-
try must be distinguished from the chiral symmetry at η = 0.
This chiral symmetry is expressed as �CH�−1

C = −H , where

FIG. 6. Mirror-symmetric bands of tTLG at the magic angle
(a) θ = 1.51◦ and (b) θ = 2◦ with even-parity tBLG-like bands in
blue and the monolayer Dirac-like bands in red at �− = 0. The
dashed line corresponds to the same angles with mirror symmetry
broken (�− = 10 meV) by the presence of the electric field.

�C = ⊗3
i=1σz and σz acts on the sublattice degrees of freedom

in each layer. We refer the reader to Ref. [38] for a complete
discussion of the discrete symmetries of tBLG.

Due to the enhanced tunneling in the tBLG-like sector,
the first magic angle occurs at θM = 1.51◦ = 1.05◦√2 with
a bandwidth ≈0.5 meV. Figures 6(a) and 6(b) show the en-
ergy bands of tTLG at the first magic angle θ = 1.51◦ and
θ = 2◦. In Figs. 6(a) and 6(b), the even-parity energy bands
are plotted in blue, and the odd-parity energy bands are plotted
in red. The odd-parity band exhibits a Dirac-like dispersion,
while the even-parity bands exhibit the energy dispersion of
tBLG. When the mirror symmetry is broken, for instance, by
applying a displacement field �⊥ = 10 meV the even- and
odd-parity bands hybridize, as indicated by the black dashed
line in Figs. 6(a) and 6(b).

To calculate the HM-bands of tTLG, we worked in the par-
ity eigenstate basis, and the Landau gauge A = B(−y, 0) with
the basis choice {|n,Yi, α, σ 〉}, where n denotes the Landau
level (LL) index at the guiding center positioned at Yi (which
corresponds to a lattice site in the unit cell) on the sublattice
α. The index σ = 1, 2, 3 denotes the even(odd)-parity eigen-
spinors with the assignments 1 = (A+, B+), 2 = (A2, B2), and
3 = (A−, B−).

The moiré hopping pattern determines the Hamiltonian
periodicity as opposed to the moiré unit cell [2]. The moiré
hopping pattern has a larger periodicity, exactly six times the
periodicity of the moiré unit cell AMh = 3

√
3a2

M [2], where
aM � a0/θ for small angles with a0 = 0.246 nm. The HM
bands are calculated for rational values of flux per unit cell;
with our choice of the unit cell, the inverse flux per unit cell
is given by φ = 2π l2

B/(3
√

3a2
M ) = p/q, where p and q are co-

primes. The magnetic field is B = 4B0θ
2/φ, where B0 = 1 T

and θ is expressed in degrees.
The matrix elements in the basis set can be calculated

from the Hamiltonian H . The matrix element associated to the
diagonal Hamiltonian defined as H0 = H (0, 0, 0) are given by

〈n,Yi, A, σ |H0|m,Yj, B, σ ′〉 = ε0
√

nδn,m+1δi jδσσ ′, (A4)

where ε0 = √
2h̄v/lB. It is important to point out that since

the nth LL on sublattice A couples to the (n + 1)th LL on
sublattice B, for a finite LL cutoff N , the N th LL on sublat-
tice A shows up at zero energy, due to numerical truncation
of the Hilbert space. To circumvent this issue, we used an
asymmetric cutoff in our calculations and included the LL
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orbitals, n = 0, . . . , N − 1 on sublattice A and n = 0, . . . , N
on sublattice B. Of course, the situation is reversed in the
other valley, and the Hamiltonian is just the transpose of the
Hamiltonian in the valley K.

The tunneling matrix elements are only nonzero for LL
wavefunctions between the spinors σ = 1, 2. Furthermore,
due to the spatial dependence of the tunneling matrix elements
different guiding centers Yj are coupled with different σ in-
dices. The tunneling matrix elements T (r) in the LL basis can
then be expressed as

T (r) =
∑
j,k

∑
n,m

[T̂1;α,β�1;nm( j, k)|n,Yj, α, 1〉〈m,Yj, β, 2|

+ T̂2;αβ�2;nm( j, k)|n,Yj, α, 1〉〈m,Yj+1, β, 2|
+ T̂3;αβ�3;nm( j, k)|n,Yj, α, 1〉〈m,Yj−1, β, 2|], (A5)

where

�1;nm( j, k) = Fnm

(
q1lB√

2

)
e− 4π ıp

q j−ı 2√
3

k1 , (A6)

�2;nm( j, k) = Fnm

(
q2lB√

2

)
e

π ıp
q (2 j+1)+ ı√

3
k1+ık2 , (A7)

�2;nm( j, k) = Fnm

(
q3lB√

2

)
e

π ıp
q (2 j−1)+ ı√

3
k1−ık2 , (A8)

where k = (k1, k2) is defined in units of � = (
√

3/2)kθ l2
B =

3(p/q)aM . With this parametrization, the magnetic BZ (mBZ)
is given by k1 ∈ [0, 6π/(

√
3φ)) and k2 ∈ [0, 2π/q) in units of

� = 3(p/q)aM .
The LL form factors Fn,n′ (x) are given by

Fn,n′ (z) =
⎧⎨
⎩

√
n′!
n! (ız�)n−n′

Ln−n′
n′ (z2)e−z2/2 n � n′,√

n!
n′! (ız)n′−nLn′−n

n (z2)e−z2/2 n′ > n,
(A9)

where z = zx + ızy with z2 = z2
x + z2

y and Ln−n′
n′ are the as-

sociated Laguerre polynomials. The scaling of the tunneling
matrix elements is primarily determined by the exponential
factor exp (−(kθ lB)2/4) ∼ exp(−2πφ/

√
3), where φ is the

inverse flux per unit cell. The diagonal factors scales as Fnn ∝√
φ exp(−2πφ/

√
3), whereas the off-diagonal factors obey

Fnm ∝ φ(|n−m|)/2 exp(−2πφ/
√

3). Even though LL mixing is
suppressed at low magnetic fields (or equivalently at higher
values of φ), the LL spacing also reduces as 1/

√
φ. Therefore,

several LLs must be included to achieve convergence.
To achieve convergence, our LL cutoff was determined by

N = 20(max(w, h̄vkθ )/ε0)2, where ε0 = √
2h̄v/lB with h̄v ≈

596 meV nm. The dimension of the matrix for tTLG graphene
for a given value of φ per valley is Ndim = 6q(N + 1/2). The
tTLG Hamiltonian was diagonalized over a 10 × 10 discrete
mBZ mesh to calculate topological properties and a smaller
mesh to generate the HM butterfly patterns.

APPENDIX B: TOPOLOGICAL PROPERTIES
OF tTLG HM BUTTERFLY

Here, we review our procedure for calculating the topolog-
ical properties. The Bloch function for the λith HM bands in

tTLG can be expressed as

uλi (k) =
q,N∑

m=1,n

gλi,n,m(k)
∑

l

φn
(
x − k2l2

B − �(m + lq)
)

× exp

(
ı
�y

l2
B

(m + lq)

)

× exp (−ık1(x − �m − q�l )), (B1)

where φn corresponds to the Harmonic oscillator wavefunc-
tion and gλi,m,n(k)’s are obtained numerically. The Chern
number of the bands is calculated using the lattice gauge the-
ory method introduced in Ref. [39]. For the case of Eq. (B1),
there are two contributions to the Chern number, one associ-
ated with the lattice eigenvectors gλi,m,n(k), the lattice Chern
number C̃λ. In contrast, the other is associated with the band-
folded LL wavefunctions φn.

The lattice Chern number for M-band multiplet with col-
lection of bands with indices λM = (λ1, λ2, . . . , λM ) and
M-mulitple Bloch wavefunctions (uλ1 , uλ2 , . . . , uλM ) we cal-
culated the Bloch band Chern number C̃λM of the multiplet,

C̃λ = 1

2π ı

∑
ki

∏
�

det

[
GλM (ki )GλM (ki + μ̂)

det
∣∣GλM (ki )GλM (ki + μ̂)

∣∣
]
, (B2)

where GλM (ki ) = (gλ1 (ki ), gλ2 (ki ), . . . , gλ1 (kM )) is the Nd ×
M matrix composed of the amplitude of the Bloch band
wavefunction. Since our basis set comprises LLs, each band
folded LL contributes to the Chern number by 1/q. The total
Chern number is the sum of the lattice Chern number and LL
contribution associated with the multiplet,

Cλ = C̃λ + M

q
. (B3)

The total Chern number Cλ is always an integer.

APPENDIX C: WANNIER DIAGRAMS

Figures 7(a) and 7(b) show the Wannier plots in the ab-
sence of any displacement field, where mirror symmetry is
exact, for θ = 2◦and θ = 1.51◦, respectively. The slope of the
straight lines corresponds to the Hall conductivity as indicated
by Streda’s formula n̄ = σ φ̄ + c, where n̄ = n/n0 refers to
the normalized number density (n0 is the total density that
includes the spin and valley degeneracy), φ̄ refers to the tight
binding alpha φ̄ = 1/(6φ), σ denotes the Hall conductivity,
and c denotes the intercept. The blue lines guide the eye
and indicate Streda’s formula applied to the HM pattern of
tTLG. The high density of states in the wedge-shaped region
in Figs. 7(a) and 7(b) is due to the simultaneous presence of
the odd-parity zeroth LL.

Figures 7(c) and 7(d) show the Wannier plots for �⊥ =
10 meV for θ = 2◦and θ = 1.51◦, respectively. The wedge
shape region at charge neutrality has reduced intensity, indi-
cating a gap opening in the presence of a displacement field.
Additionally, the odd-parity Landau bands become weakly
dispersive due to mixing with the even-parity tBLG en-
ergy bands. A displacement field can tune this topological
transition; it can be identified in the Wannier plots as a
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FIG. 7. Wannier plots for θ = 2◦ [(a),(c)] and θ = 1.51◦

[(b),(d)] with displacement field �⊥ = 0, 10 meV. The straight blue
lines are drawn from the Streda formula. We have only shown them
for hole-HM bands. The sharp density of state features at the charge
neutrality point is associated with the LL of odd-parity Dirac band
of tTLG. As the gate voltage is applied, these sharp features in the
density of states disappear due to mixing with Hofstadter energy
bands. The absence of a white gap in the wedge-shaped region at
the charge neutrality point indicates this.

more prominent downward sloping −2(2) lines on the elec-
tron(hole) regions at the magic angle in Fig. 7(d).

APPENDIX D: LANDAUER-BUTTIKER THEORY

Consider a quantum parity Hall phase with m right-moving
and n left-moving channels protected by mirror symmetry in a
Hall bar geometry setup, as shown in Fig. 8. The current into
the ith lead Ii can be expressed as

Ii = e2

h

∑
j

(Ti jVj − TjiVi ), (D1)

where Ti j is the transmission probability of the current from
the jth lead to the ith and Vi is the potential associated with
the ith lead [40].

We assume perfect contacts, i.e., Ti j = 1, and that the cur-
rent is applied to the first lead and drained from the fourth

FIG. 8. Edge state schematic of the quantum parity Hall phase in
a six-terminal Hall-bar geometry. The m right-moving electrons are
indicated in blue, and the n left-moving electrons are shown in red.

lead. The rest are floating contacts and act as voltage probes
giving I2 = I3 = I5 = I6 = 0. We can write I1 = −I4 = I be-
cause of the charge conservation. The voltages in terms of
the current can be determined by solving the linear system
of equations,

V1 = − h

e2

(
n2

m3 + n3

)
I, (D2)

V2 = h

e2

(
m − n

m2 − mn + n2

)
I, (D3)

V3 = h

e2

(
m2 + mn − n2

m3 + n3

)
I, (D4)

V4 = h

e2

(
m

m2 − mn + n2

)
I, (D5)

V5 = h

e2

(
mn

m3 + n3

)
I, (D6)

with V6 = 0. The resistance Ri j,kl is defined as the ratio of the
voltage to the current measured between the kth and the jth,
with current applied from the ith to the jth lead gives

R14,26 = R14,35 = h

e2

(
m − n

m2 − mn + n2

)
, (D7)

while

R14,32 = R14,56 = h

e2

(
mn

m3 + n3

)
, (D8)

and

R14,41 = h

e2

(
m2 + mn + n2

m3 + n3

)
. (D9)
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