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Motivated by a recent breakthrough transport experiment [Phys. Rev. B 107, 245423 (2023)] in Majorana
nanowires, we theoretically investigate local and nonlocal transport in Majorana nanowires in various disorder
regimes, correlating the transport properties with the corresponding local and total density of states as well as
various topological diagnostics. We find three distinct disorder regimes, with weak (strong)-disorder regimes
manifesting (not manifesting) topological superconductivity with clear end Majorana zero modes for longer
(but not necessarily for shorter) wires. The intermediate-disorder regime is both interesting and challenging
because the topology depends on many details in addition to the strength of disorder, such as the precise disorder
configuration and the wire length. The intermediate-disorder regime often manifests multiple effective transitions
between topological and nontopological phases as a function of system parameters (e.g., the Zeeman field), and is
consistent with the recent Microsoft experiment reflecting small topological gaps and narrow topological regimes
in the parameter space.
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I. INTRODUCTION

A recent Microsoft experiment [1] represents a break-
through in the study of topological superconductivity in Majo-
rana nanowires composed of semiconductor-superconductor
(SM-SC) hybrid structures. In particular, the experiment
reports detailed measurements of both local and nonlocal
tunneling conductances, i.e., the full four-component conduc-
tance matrix, in many nanowire samples as functions of bias
voltage, gate voltage, cutter voltage, and magnetic field, thus
producing detailed operational phase diagrams for the exis-
tence (or not) of topological superconductivity with a finite
topological gap as a function of sample, magnetic field, and
gate voltage. The extracted topological gap from the measured
nonlocal conductance is typically small (∼25 µeV), much
less than the expected pristine proximity-induced SC gap,
and not all samples manifest topological superconductivity.
The topological regime with a finite topological gap, where
it exists, is typically rather small in the magnetic-field and
gate-voltage variations, indicating limited robustness of the
topological superconductivity, most likely arising from the
unavoidable presence of unintentional random disorder in
the system [2–10]. The hallmark of this experiment (which
has never been achieved before experimentally) is the si-
multaneous observation of correlated zero-bias conductance
peaks (ZBCP) from both wire ends in the local tunneling
spectroscopy and the manifestation of approximate bulk gap
closing/opening in the nonlocal tunneling spectroscopy, as is
expected for Majorana-carrying topological systems [11–13].
The experiment extracts a topological gap from a careful
analysis of the conductance spectroscopic measurements of
all four components of the tunnel conductance as functions of
magnetic field and gate voltages.

Given the great importance of this breakthrough exper-
iment [1], which supersedes all earlier Majorana nanowire

experiments and the first Majorana measurement reporting
topological superconductivity [14], we provide in this paper
the minimal theoretically expected results for the local and
nonlocal conductance in Majorana nanowires as a function
of disorder and wire length along with a number of relevant
theoretical quantities in order to better understand the role
of disorder in the experiment as well as to put the exper-
iment in the proper context. In particular, we calculate the
total and local density of states as well as several theoretical
diagnostics for topology and Majorana zero modes such as
the transport topological invariant [8,15–17], the thermal con-
ductance [8,15], and the Majorana localization length (which
is effectively the SC coherence length) [18]. We emphasize
that experimentally only the tunnel conductance matrix is
measured directly, and our calculations of the other theoretical
quantities enable a deeper understanding of the underlying
topology as compared with the conductance. A comparison
among all these results, presented in Sec. II of this paper,
gives a nuanced view of the complicated interplay among
disorder, topology, finite wire length, and superconductivity,
showing that finite nanowires in the intermediate-disorder
regime (which is likely to be the regime of current experimen-
tal interest) is a rather complicated system to understand using
minimal physical pictures. It appears that longer wires and
less disorder are essential in obtaining a clear decisive inter-
pretation of the experimental results, although we do find that
the intermediate-disorder regime allows the existence of frag-
ile topological regimes with small gaps existing over small
regimes of experimental parameters as claimed in Ref. [1]. A
related study has recently explored the effective topological
phase diagram in depth in the intermediate-disorder regime
using realistic sample disorder [19], and our paper is com-
plementary to this study. A significant difference between
our study and this other study is that we use short-range
random disorder characterized only by the disorder strength,
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whereas the other study uses more realistic long-range dis-
order, which needs two parameters (disorder strength and
correlation length) to be characterized.

The rest of this paper is organized as follows. In Sec. II,
we provide the basic theory, describe our calculations, and
present our detailed numerical results. We conclude in Sec. III
with a detailed discussion of our results in the context of the
Microsoft experiment [1].

II. MODEL, THEORY, AND RESULTS

We use the minimal model for the SM-SC hybrid nanowire
system, where a one-dimensional (1D) SM nanowire is prox-
imitized by a SC, leading to an induced SC pairing. The
nanowire itself has Rashba spin-orbit (SO) coupling and Zee-
man spin-splitting terms in its Hamiltonian. So, the pristine
system is described by the minimal Hamiltonian Htot describ-
ing the basic system originally introduced in Refs. [14,20–23],

Htot =
(

− h̄2

2m∗ ∂2
x − iα∂xσy − μ

)
τz + VZσx + �τx. (1)

In Eq. (1), each term is unambiguous, respectively repre-
senting the 1D kinetic energy, the SO coupling, the chemical
potential (defined by the 1D carrier density and the applied
gate voltage in the nanowire), the Zeeman splitting, and the
induced gap. The �τ and �σ in Eq. (1) are the 2 × 2 matrices
representing the Nambu electron-hole SC pairing operator
and the Pauli spin operator, respectively. Note that in prin-
ciple, the various contributions (SO coupling α, Zeeman
splitting VZ, chemical potential μ, SC gap �) to Htot are
experimentally controlled, but for a given sample α and �

are fixed whereas μ and VZ are controlled experimentally
by the applied gate voltage and the applied magnetic field
respectively. To further realistically simulate the coupling
between the superconductor and semiconductor, we replace
the constant superconducting term �τx with a self-energy
term −γ ω+�0τx√

�2
0−ω2

, where γ represents the effective coupling

strength, �0 is the gap of parent superconductor at zero field,
and ω denotes the energy. However, the self-energy term only
quantitatively suppresses the superconducting gap by reduc-
ing the effective superconducting gap at zero bias from � to
γ , making our numerical result more similar to the experimen-
tal results, but does not qualitatively affect the formation of
low-energy states. In addition to the Hamiltonian parameters
entering Eq. (1), there are two other experimental parameters
to consider: the temperature (T ) and the wire length (L). We
take T = 0 throughout since the experimental temperature is
typically 20 mK (∼2 µeV), which is much lower than all the
other energy scales in Eq. (1). We vary L in order to discern
the finite-length effects on Majorana nanowire physics. We
note that our theoretical length L may not precisely be the
experimental wire length, which is determined by the details
of the experimental structures, including the locations and
actions of the various gates in the sample. The applicable
length L of the experimental wire is likely to be shorter than
the nominal physical length. Furthermore, although a more
detailed modeling of the experimental devices is possible in
principle [24–26], such as including multi-orbital effects; it is

not necessary in this paper, as we aim to provide a minimal
model that can demonstrate the physics of different disorder
regimes for short and long wires. In particular, experiments try
to be in the one-subband (i.e., one orbital) limit because this
maximizes the induced gap, and in general, the experimen-
tal parameters are unknown, making such a multi-subband
simulation not to be particularly useful since it introduces
additional unknown parameters in the theory. Therefore, it
suffices to choose 1D single-band model with only the essen-
tial ingredients included.

The free fermion Majorana nanowire model, as described
by Eq. (1), has been extensively studied theoretically [14]
since it was first introduced in Refs. [20–23], and leads to a
topological quantum phase transition (TQPT) for VZ = VZc =
(�2 + μ2)1/2 with VZ > VZc (VZ < VZc) being the topological
(trivial) SC phase, and the topological SC gap for VZ > VZc

being proportional to the SO coupling strength α. For long
wires, where L is much larger than the SC coherence length,
the topological SC phase with VZ > VZc hosts non-Abelian
MZMs at the wire ends. However, the situation is complex for
short wires due to the ill-defined topology resulting from the
strong hybridization between the two end MZMs [27]. Topol-
ogy applies only when the wire length is larger than the SC
coherence length (or, equivalently, the Majorana localization
length), which is inaccessible experimentally (and is likely to
be large for small induced SC gaps). Thus, although there
is no question about the emergence of topological SC and
the associated localized non-Abelian MZMs in long-pristine
nanowires in the SM-SC hybrid systems, the issue of what
happens in realistic short wires (L ∼ 1 micron) where most
current experiments are conducted remains open, particularly
since the SC coherence length in the experimental samples
is unknown. An additional complication arises from the fact
that the bulk SC in the Al film inducing the proximity effect
is quenched by Pauli blockade for a magnetic field B ∼ Bc ∼
2 − 3 T because Al spins align at this Clogston limit [28], dis-
allowing s-wave pairing. If VZc for TQPT is above or around
this bulk SC Clogston limit, the � term in Eq. (1) vanishes,
and there is no Majorana physics in the problem. In addition
to the problems of finite (and perhaps small) L and finite
(and perhaps small) Bc, which complicate experiments even
in (hypothetical) pristine samples, there is the much bigger
problem of disorder in real samples, which has hampered
progress in the subject. In fact, we have argued elsewhere that
all published Majorana nanowire experiments are dominated
by disorder and not by intrinsic topological SC [4,5,14].

The most detrimental problem, which is not included in
Eq. (1) representing pristine disorder-free systems, is the in-
evitable existence of disorder in real samples. We include
disorder in Eq. (1) by modifying the pristine chemical po-
tential to an effective chemical potential including a random
potential V (x), where V (x) denotes a disorder potential added
to the chemical potential. From prior studies, it is now known
that this chemical potential disorder is the most important
disorder in experimental samples, and therefore we include
only a random V (x) in the chemical potential [4,5,11,14,29].

Since not much is known about the actual effective disorder
in the SM-SC nanowire samples (except that disorder exists),
we make the simplest approximation for V (x) assuming it to
be an uncorrelated random Gaussian distribution with zero
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mean and a variance of σ 2, where σ then defines the effective
disorder strength,

V (x) = N (0, σ 2). (2)

Note that V (x) should be added to μ so that the corre-
sponding term in Eq. (2) becomes μ − V (x). The uncorrelated
nature of our choice for disorder is somewhat artificial since
a natural correlation length is imposed by the lattice cutoff
(10 nm here) we introduce in diagonalizing Eq. (1). The
typical lattice cutoff is of the order of 10 − 30 nm, which is
approximately consistent with the microscopic disorder esti-
mates in SM-SC systems [2,3]. One advantage of our model
is that the problem depends on only one disorder parameter,
strength, allowing a better characterization of disorder effects.
One should think of Eq. (2) simply as a model of disorder,
with values of the disorder strength σ chosen to correspond
approximately to the disorder in SM-SC nanowires, but we
make no efforts to compare with the experimental data, in-
stead focusing on how changing disorder from weak to strong
modifies the theoretical results for a qualitative understanding.

The parameters chosen for our calculations corresponding
approximately to experimental systems are as follows: the
effective mass m is 0.015 me, the chemical potential μ is
1 meV, the SOC strength α is 0.5 eV Å, the parent SC gap
�0 is 0.2 meV, the effective coupling between SC and SM γ is
0.2 meV, the disorder strength σ is 0.3 meV for weak disorder,
2.5 − 5 meV for intermediate disorder, and 10 − 30 meV for
strong disorder, T = 0, and L varies from 0.5 microns to
10 microns as shown in our results. With these choices, the
pristine TQPT is at VZc = 1.41 meV. We assume one subband
occupancy in the nanowire. We note that our choice for the
disorder strength in our short-range model is consistent with
the corresponding long-range Coulomb disorder choice in
Ref. [19] because our disorder of ∼3 meV for our discretiza-
tion scale of 10 nm in Eq. (1) corresponds roughly to the
correlated disorder of 0.5 meV used in Ref. [19]. We calculate
the transport properties using Blonder-Tinkham-Klapwijk for-
malism [30], which constructs the S matrix for the scattering
process of an incoming electron at energy E at each lead in
the system. The numerics of calculation of the S matrix is
performed with the help of a Python package Kwant [31]. To
simulate the measurements in the experiment, i.e., the four
components of the tunneling conductance matrix, we calculate
the local differential conductance (GLL = ∂IL

∂VL
and GRR = ∂IR

∂VR
)

by tracing out the S matrix describing the process of An-
dreev reflection at the lead i, i.e., Gii = 2e2

h tr([She
ii ]†She

ii ), and
nonlocal differential conductance (GLR = − ∂IL

∂VR
and GRL =

− ∂IR
∂VL

) by tracing out the S matrices describing the process
of the net transmission from lead i to the other lead j, i.e.,
Gi j = e2

h tr([See
i j ]†See

i j − [She
i j ]†She

i j ). We calculate the conduc-
tance spectrum as a function of the bias voltage Vbias and
Zeeman field VZ for each disorder configuration without any
ensemble averaging. We make no efforts to compare with
experiments; instead, we focus on broad trends in the results
as functions of disorder (σ ) and wire length (L) in order to
better understand the role of crossover physics, induced by
both disorder and wire length, in Majorana nanowires, for
a qualitative interpretation of what may be going on in the

experiment. We do not explicitly put a cutoff Bc (arising from
the bulk gap collapse) in our theory because the Microsoft
experiment is manifestly in the B < Bc regime. It should be
assumed that the topological SC and Majorana physics simply
disappear for B > Bc.

A salient feature of our paper is the calculation of several
properties together, comparing them with each other. In ad-
dition to the local and nonlocal conductance matrix, we also
calculate two topological properties: the topological visibility
Q = det(SLL) = det(SRR) [8,15–17] and the thermal conduc-
tance κ = κ0tr(SLRS†

LR) (i �= j) [8,15], measured from both
ends of the wire. These properties define the topology and the
TQPT, respectively—the system is in the topological (trivial)
phase for Q < 0 (Q > 0) [8,15–17], and at the TQPT, the

thermal conductance κ is quantized to be κ0 = π2k2
BT

6h [8,15]
(where T is temperature, kB is the Boltzmann constant, and h
is the Planck constant). We note that in our theory, we calcu-
late κ/κ0 directly, which is well defined in the T = 0 limit. By
comparing the calculated conductance (the only experimen-
tally accessible property) with the topological diagnostics, we
are able to provide key insights into the behavior of the finite
disordered system.

In addition to the two topological properties, we also cal-
culate the Majorana localization length, which is equivalent
to the SC coherence length (ξ ), directly from the ground-state
wavefunction at a specific VZ, as shown in Appendix B. To do
this, we first obtain the wavefunction by diagonalizing the dis-
cretized version of the continuum Hamiltonian Eq. (1) in the
fermionic basis by replacing the differential operator ∂xψ (x)
with the finite difference ψ (x+a)−ψ (x−a)

2a , where the lattice con-
stant a is set to be 10 nm. We then decompose the ground-state
wavefunction from the fermionic basis into two Majorana
basis. We assume that the wavefunction in the Majorana basis,
if localized at wire ends, has an exponential decay in the form
of ∼ exp(−x/ξ ) for the left end or ∼ exp ((x − L)/ξ ) for the
right end (where L is the wire length). Finally, we select the
larger ξ extracted from the wavefunctions in the Majorana
basis from both ends. The Majorana localization length (SC
coherence length) serves to estimate L/ξ to determine if the
system is in the long-wire regime (L � ξ ), which is necessary
for the topological behavior of the MZMs.

Finally, we calculate the total density of states (DOS) ρ(E )
as a function of the energy E to identify subgap states in the
wire. To more precisely determine the position of the localized
subgap state, we also calculate the local density of states
(LDOS) ρ(E , x) as a function of both energy E and position
x. This allows us to directly visualize whether the subgap state
is located at the ends or in the bulk of the wire, which is often
the case in the presence of disorder due to the Griffiths effects
[32]. The results of the LDOS calculations can be found in
Appendix A.

Motivated by the Microsoft experiment, we consider dif-
ferent values of the wire length and disorder strength so
that we can provide insights into the topological regimes of
the experimental samples. We consider L = 0.5 − 10 microns
(from short to long limits) and disorder strengths of 0.3 meV
(weak disorder), 2–3 meV (intermediate disorder), and 10–
30 meV (strong disorder). We deliberately vary the disorder
strength by orders of magnitude so that the three regimes are
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FIG. 1. One-micron pristine wire. (a)–(d) show the local and nonlocal conductances; (e)–(h) show the LDOS at x = 0, L/2, L, and total
DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 23 (Appendix A). (i)–(l) show the topological visibility
and thermal conductance from both ends. The corresponding wavefunctions and their localization lengths at four typical VZ values, as indicated
by the colored dashed line, are presented in Fig. 44 (Appendix B).

qualitatively different, with most results focusing on the in-
termediate disorder, which we believe describes the Microsoft
experiments. All parameters other than the wire length and the
disorder strength are kept the same in all our results.

In the following sections of numerical results, we begin
with a pristine no-disorder situation as shown in Figs. 1 and 2
to review what one should expect to observe for the ideal topo-
logical Majorana physics. Next, in Figs. 3 and 4, we present

the weak-disorder situation to demonstrate the robustness of
the MZM against weak disorder in Sec. II B. Both pristine
and weak-disorder situations manifest topological supercon-
ductivity with MZMs. Then, in Sec. II C, we provide two
sets of intermediate-disorder configurations (Figs. 5–9 and
Figs. 10–12) for different wire lengths ranging from short
wires (L = 0.5 µm) to long wires (L = 10 µm) to show the
complicated topology that depends on many details, such as
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FIG. 2. Three-micron pristine wire. (a)–(d) show the local and nonlocal conductances; (e)–(h) show the LDOS at x = 0, L/2, L, and total
DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 24 (Appendix A). (i)–(l) show the topological visibility
and thermal conductance from both ends. The corresponding wavefunctions and their localization lengths at four typical VZ values, as indicated
by the colored dashed line, are presented in Fig. 45 (Appendix B).
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FIG. 3. One-micron wire in the presence of weak disorder (σ = 0.3 meV). (a)–(d) show the local and nonlocal conductances; (e)–(h) show
the LDOS at x = 0, L/2, L, and total DOS, respectively; Additional LDOS results in the bulk of the wire are presented in Fig. 25 (Appendix A).
(i)–(l) show the topological visibility and thermal conductance from both ends. The corresponding wavefunctions and their localization lengths
at four typical VZ values, as indicated by the colored dashed line, are presented in Fig. 46 (Appendix B).

wire length and disorder configurations. Finally, we provide
examples in the presence of strong disorder in Sec. II D,
where almost no signals in the local conductance and nonlocal
conductance spectra are observed, indicating the absence of
any topological superconductivity. Results presented in the
Appendix complement the results in the main text, enhancing
and clarifying the physics, and are referred to in the main text
as appropriate.

A. Pristine case

Figures 1(a) and 1(b) show the calculated local conduc-
tance of a relatively short Majorana nanowire (L = 1 micron
in the pristine limit, where a ZBCP appears beyond the TQPT
(VZ > 1.41 meV), indicating the presence of Majorana zero
modes localized only at wire ends, as shown in Figs. 1(e)–
1(g). In Figs. 1(c) and 1(d), we observe an apparent gap
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FIG. 4. Three-micron wire in the presence of weak disorder (σ = 0.3 meV). (a)–(d) show the local and nonlocal conductances; (e)–(h)
show the LDOS at x = 0, L/2, L, and DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 26 (Appendix A).
(i)–(l) show the topological visibility and thermal conductance from both ends. The corresponding wavefunctions and their localization lengths
at four typical VZ values, as indicated by the colored dashed line, are presented in Fig. 47 (Appendix B).
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FIG. 5. 0.5-micron wire in the presence of intermediate disorder (σ = 2.5 meV). (a)–(d) show the local and nonlocal conductances; (e)–(h)
show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 27
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends. The corresponding wavefunctions and their
localization lengths at four typical VZ values, as indicated by the colored dashed line, are presented in Fig. 48 (Appendix B).

closing and reopening below and above the TQPT at VZ =
1.41 meV in the nonlocal conductance spectra, serving as
the basis for identifying the putative TQPT in recent exper-
iments conducted by Microsoft [1]. The topological visibility
in Figs. 1(i) and 1(j) and thermal conductance in Figs. 1(k)
and 1(l) also exhibit clear transitions from +1 to –1 and a peak
quantized at κ0, respectively, at the TQPT (VZ = 1.41 meV).
All of these are typical features of Majorana zero modes in the
pristine limit.

Figure 2 illustrates similar features observed in a longer
pristine Majorana nanowire with L = 3 microns, which
exhibits a sharper transition due to the longer effective length
L/ξ . The corresponding wavefunctions and their localization
length ξ at several specific VZ (indicated by dashed lines),
presented in Figs. 44 and 45 (Appendix B), respectively,
further confirm the localization of Majorana zero modes at
the wire ends and the absence of low-energy states in the bulk
of the wire.
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FIG. 6. One-micron wire in the presence of intermediate disorder (σ = 2.5 meV). (a)–(d) show the local and nonlocal conductances;
(e)–(h) show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 28
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends. The corresponding wavefunctions and their
localization lengths at four typical VZ values, as indicated by the colored dashed line, are presented in Fig. 49 (Appendix B).
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FIG. 7. 1.5-micron wire in the presence of intermediate disorder (σ = 2.5 meV). (a)–(d) show the local and nonlocal conductances; (e)–(h)
show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 29
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends. The corresponding wavefunctions and their
localization lengths at four typical VZ values, as indicated by the colored dashed line, are presented in Fig. 50 (Appendix B).

The purposes of presenting the pristine results are the
following: (1) establishing a baseline in understanding the
realistic results in the disorder samples; (2) establishing that
even L = 1 micron should be adequate for the manifestation
of topological superconductivity and MZMs in the samples
of interest in the disorder-free situation; and (3) establishing
the salient topological features expected at the TQPT and in
the topological phase. The most important aspect of these

pristine results is that the tunnel conductance and topological
properties are consistent with each other as well as with the
density of states.

B. Weak disorder

With an understanding of the pristine limit, we demon-
strate the robustness of the MZMs against weak disorder
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FIG. 8. Three-micron wire in the presence of intermediate disorder (σ = 2.5 meV). (a)–(d) show the local and nonlocal conductances;
(e)–(h) show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 30
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends. The corresponding wavefunctions and their
localization lengths at four typical VZ values, as indicated by the colored dashed line, are presented in Fig. 51 (Appendix B).
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FIG. 9. Ten-micron wire in the presence of intermediate disorder (σ = 2.5 meV). (a)–(d) show the local and nonlocal conductances;
(e)–(h) show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 31
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends. The corresponding wavefunctions and their
localization lengths at four typical VZ values, as indicated by the colored dashed line, are presented in Fig. 52 (Appendix B).

(σ = 0.3 meV). In Figs. 3 and 4, we present the same disorder
configuration for two different wire lengths, where the longer
wire is simply a dilation of the shorter wire, with the spatial
disorder profile throughout the wire being the same.

In the presence of weak disorder, Figs. 3(a), 3(b), 4(a),
and 4(b) still show good ZBCPs in the local conductance
spectra. Additionally, the gap-closing and -reopening features
in Figs. 3(c), 3(d), 4(c), and 4(d), are also manifest, with the

only difference being the fact that the minimal gap right at
the TQPT is slightly larger than zero due to the effect of
weak disorder. In the LDOS shown in Figs. 3(e), 3(f), 4(e),
and 4(f), the low-energy states are localized at the two ends
of the wire, and no extra low-energy state is present in the
bulk. The topological visibility and thermal conductances in
Figs. 3(i)–3(l) and 4(i)–4(l) exhibit the consistent features as
in the pristine wire, which confirms the topological nature of
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FIG. 10. One-micron wire in the presence of intermediate disorder (σ = 3 meV). (a)–(d) show the local and nonlocal conductances;
(e)–(h) show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 32
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends. The corresponding wavefunctions and their
localization lengths at four typical VZ values, as indicated by the colored dashed line, are presented in Fig. 53 (Appendix B).
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FIG. 11. Two-micron wire in the presence of intermediate disorder (σ = 3 meV). (a)–(d) show the local and nonlocal conductances;
(e)–(h) show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 33
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends. The corresponding wavefunctions and their
localization lengths at four typical VZ values, as indicated by the colored dashed line, are presented in Fig. 54 (Appendix B).

the lowest state in the presence of weak disorder. We note that
weak disorder affects neither the qualitative nor the quanti-
tative aspects of the pristine topological physics with Figs. 3
and 4 looking almost identical to Figs. 1 and 2 although the
disorder strength (0.3 meV) is larger than the pristine-induced
gap (0.2 meV) at zero magnetic field. This is the robustness or
immunity expected for a topological system.

C. Intermediate disorder

Although MZMs are robust in the presence of weak dis-
order, the situation becomes more complex as the strength of
disorder increases. In this section, we focus on the intermedi-
ate level of disorder to show that the finite nanowire exhibits
intricate behaviors that are highly dependent on details such
as disorder configurations and wire length. Specifically, we
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FIG. 12. Three-micron wire in the presence of intermediate disorder (σ = 3 meV). (a)–(d) show the local and nonlocal conductances;
(e)–(h) show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 34
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends. The corresponding wavefunctions and their
localization lengths at four typical VZ values, as indicated by the colored dashed line, are presented in Fig. 55 (Appendix B).
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FIG. 13. Comparison of LDOS for weak disorder (top panel) and
intermediate disorder (bottom panel). (a) and (c) show the LDOS at
different VZ near-zero energy for the two cases; (b) and (d) show
LDOS at a specific VZ indicated by the dashed line in (a) and (c). The
parameters in (a) and (b) correspond to Fig. 4 and the parameters in
(c) and (d) correspond to Fig. 7.

choose two distinct disorder configurations (Figs. 5–9 and
Figs. 10–12), varying the wire length from extremely short
(L = 0.5 microns) to very long (L = 10 microns). We believe
that the Microsoft samples are in the intermediate-disorder
regime, but we do not know the experimental disorder con-
figuration and strength, making it difficult to say anything
definitive, quantitatively.

We start with the extremely short wire (L = 0.5 micron)
as shown in Fig. 5. We find that a ZBCP, which may
even be correlated from both ends, can appear in the lo-
cal conductance spectrum below the putative TQPT at VZ =
1.41 meV [Fig. 5(b)] with considerably higher conductance
above 2e2/h, which is a characteristic feature of disorder-
induced ZBCPs [5]. This is not the usual MZM-induced
ZBCP, which cannot exceed 2e2/h. Beyond the TQPT at VZ =
1.41 meV, however, the local conductance spectra from both
ends show ZBCP quantized at 2e2/h corresponding to good
ZBCPs. In the nonlocal conductance spectra, as shown in
Figs. 5(c) and 5(d), we observe a clear gap-closing feature but
no gap reopening even though the topological visibility indi-
cates a nontrivial topology beyond VZ = 1.4 meV in Figs. 5(i)
and 5(j), and the first excited state inside the continuum spec-
trum is gapped from the zero-energy MZM as shown in the
total DOS in Fig. 5(h). The thermal conductance manifests a
weak TQPT at best. The absence of gap reopening is due to
the significant finite-size effect in such a short wire, leading to
a large overlap of MZMs from both ends of the wire, as shown
in Fig. 48 (Appendix B). Furthermore, this large overlap is a
result of the MZMs extending to the bulk regime of the short
wire, which is also confirmed by the LDOS, where Majorana
oscillations are apparent even in the middle of the wire. We

find that in addition to the localized states at two wire ends
as shown in Figs. 5(e) and 5(g), the LDOS in the middle of
the wire ρ(E , L/2) [Fig. 5(h)] is also finite near-zero energy.
Therefore, the significant finite-size effect makes the usual
diagnostics for topology confusing in short wires, i.e., the
phase transition in the topological visibility not being sharp,
and thermal conductances not vanishing beyond the TQPT at
around VZ = 1.4 meV [Figs. 5(k) and 5(l)].

As the nanowire length increases, the finite-size effect be-
comes less severe, and the phase transition becomes sharper,
as shown in Figs. 6(i) and 6(j) for a one-micron wire. How-
ever, the gap reopening feature remains absent, as shown in
Figs. 6(c) and 6(d). The gap size beyond TQPT is very small,
and it does not increase as the Zeeman field increases. This
feature is similar to the results from the recent Microsoft
experiment [1]. The minimal topological gap provides little
protection to the MZMs, rendering them susceptible to local
disorder in the bulk of the wire. We also note that the LDOS
near-zero energy is finite throughout the wire as shown in
Figs. 6(e)–6(g) in contrast to the pristine and weak-disorder
limit where the LDOS near-zero energy has a finite value
only at wire ends. This implies a considerable amount of
disorder-induced near-zero energy subgap fermionic Andreev
bound states throughout the wire, considerably suppressing
topological physics as well as interpretation of data because
of considerable sample-to-sample variations arising from the
specific mesoscopic disorder configuration.

For an even longer wire, such as a 1.5-micron wire in Fig. 7
(see also Fig. 8 in this context), an important feature to note is
that while we do find an operational topological gap beyond
the TQPT in the nonlocal conductance, as shown in Figs. 7(c)
and 7(d), we do not observe the existence of isolated MZM
due to the Griffiths phase physics [32] of disorder-induced
low-energy DOS throughout the wire (and not just at the
ends), implying multiple MZMs along the wire in the bulk.
[This is even more evident in a direct comparison between a
weak-disorder case (top panel in Fig. 13) and an intermediate-
disorder case (bottom panel in Fig. 13). In Figs. 13(a) and
13(c), we plot the average LDOS near-zero energy as a func-
tion of Zeeman field, and find that weak disorder only shows
the localization of low-energy states at the wire ends, while
the intermediate disorder can host multiple low-energy states
localized in the bulk of the wire.] This implies that, in the
presence of intermediate disorder, even if a fragile topological
gap is present, as shown in Figs. 7(c) and 7(d), there could be
too many low-energy states throughout the wire as shown in
Fig. 13(d). In contrast, the low-energy state in the presence of
weak disorder only has two peaks localized at the wire ends
as shown in Fig. 13(b). In addition, the fluctuations of the
topological visibility in Figs. 7(i) and 7(j) between +1 and
–1 indicate the multiple effective transitions between topo-
logical and nontopological phases as Zeeman field increases.
This situation is qualitatively similar to what is observed in
the Microsoft experiment, where small isolated patches of
topological gaps are reported in the parameter space, implying
multiple TQPTs.

For an extremely long wire, such as a ten-micron wire
shown in Fig. 9, we observe the appearance of ZBCPs in the
local conductance spectra, as shown in Figs. 9(a) and 9(b)
without evidence of gap closing and reopening due to the
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FIG. 14. One-micron wire in the presence of intermediate disorder (σ = 5 meV). (a)–(d) show the local and nonlocal conductances;
(e)–(h) show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 35
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends.

disorder. In this long-wire limit, intermediate disorder effec-
tively breaks the nanowire into several segments, making the
nonlocal transmission between the leads almost impossible.
The basic problem is that the two ends are now more distant
from each other than the disorder-induced mean-free path,
making it impossible for nonlocal conductance to manifest
itself. Similarly, we also find a plethora of low-energy states
throughout the wire as shown in Fig. 9(h) in the total DOS
(and in Fig. 31 of Appendix A). Nevertheless, the topological
visibility in Figs. 9(i) and 9(j), and the thermal conductance

in Figs. 9(k) and 9(l) still indicate one sharp TQPT at VZ =
1.41 meV. This is an important point: Even when the system
may be topological, as implied by the topological invariants,
the nonlocal conductance may not manifest any typological
gap if the mean-free path is shorter than the nominal wire
length in disordered systems. Thus, the measured topological
gap in the nonlocal conductance becomes increasingly mean-
ingless in longer wires.

In addition to the first intermediate-disorder configura-
tion, we also present a second-disorder configuration in the
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FIG. 15. Three-micron wire in the presence of intermediate disorder (σ = 5 meV). (a)–(d) show the local and nonlocal conductances;
(e)–(h) show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 36
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends.
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FIG. 16. Ten-micron wire in the presence of intermediate disorder (σ = 5 meV). (a)–(d) show the local and nonlocal conductances; (e)–(h)
show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 37
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends.

intermediate regime with a slightly stronger disorder strength
of σ = 3 meV and wire lengths ranging from one micron
(Fig. 10) to three microns (Fig. 12). However, the key features
are consistent with the results in Figs. 5–9, with a fragile
topological gap in nonlocal conductance and numerous low-
energy states throughout the wire. These results suggest that
the intermediate-disorder regime is complex and can lead to
multiple effective transitions between topological and non-
topological phases as system parameters change. We believe
that this complex situation applies qualitatively to the current

Majorana experiments. In particular, multiple TQPTs in the
parameter space with topological and nontopological patches
residing close by are observed in the Majorana experiment.
Our results indicate that multiple TQPTs with an increasing
magnetic field may be generic in the intermediate-disorder
regime.

On the other hand, if disorder strength continues to in-
crease beyond σ = 3 meV, we find the wire will finally enter
the trivial regime. We present two sets of results for a disorder
strength of σ = 5 meV in a one-micron, three-micron, and
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FIG. 17. One-micron wire in the presence of intermediate disorder (σ = 5 meV). (a)–(d) show the local and nonlocal conductances;
(e)–(h) show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 38
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends.
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FIG. 18. Three-micron wire in the presence of intermediate disorder (σ = 5 meV). (a)–(d) show the local and nonlocal conductances;
(e)–(h) show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 39
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends.

ten-micron wire as shown in Figs. 14–16 and Figs. 17–19,
respectively. We find that although short wires can still mani-
fest features akin to the situation at σ = 2–3 meV and reflect
misleading topological effects, such as the peak in the thermal
conductance [see Figs. 14(k), 14(l), 17(k), and 17(l)], the long
wires essentially already enter the nontopological regime (see
Figs. 16 and 19). This transition indicates the trivial nature
of the wire as disorder strength increases, in sharp contrast to
the previous weaker-disorder case (σ = 2.5 meV), as shown

in Figs. 5–9, which is essentially topological in the long-wire
limit (see Fig. 9). In fact, this is the crossover regime from
intermediate to strong disorder, a regime that we will discuss
in detail in the following section.

D. Strong disorder

Finally, we study the scenario of strong disorder in a rela-
tively long wire with L = 3 microns. In most cases with strong
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FIG. 19. Ten-micron wire in the presence of intermediate disorder (σ = 5 meV). (a)–(d) show the local and nonlocal conductances; (e)–(h)
show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are presented in Fig. 40
(Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends.
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FIG. 20. Three-micron wire in the presence of strong disorder (σ = 30 meV) without any signals. (a)–(d) show the local and nonlocal
conductances; (e)–(h) show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the wire are
presented in Fig. 41 (Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends.

disorder (σ = 30 meV), both local and nonlocal conductances
mostly show no signals as shown in Figs. 20(a) and 20(b) and
Figs. 20(c) and 20(d), respectively. Although the total DOS in
Fig. 20(h) indicates the existence of low-energy states due to
random disorder in the bulk, these states are not necessarily
localized at the wire ends, as shown in Figs. 20(e)–20(g).
Furthermore, the absence of phase transitions in the topolog-
ical visibility and thermal conductances in Figs. 20(i)–20(l)

suggests that the system remains topologically trivial in the
presence of strong disorder.

In some rare cases, the lowest-energy state can be acci-
dentally localized at the end of the wire, resulting in a ZBCP
in the local conductance spectra, as shown in Figs. 21(a) and
21(b). (These are what we have referred to as “ugly” ZBCPs
elsewhere [5].) However, this end localization does not neces-
sarily indicate the existence of topological superconductivity.
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FIG. 21. Three-micron wire in the presence of strong disorder (σ = 30 meV) with signals in the local conductance. (a)–(d) show the local
and nonlocal conductances; (e)–(h) show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the
wire are presented in Fig. 42 (Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends.
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FIG. 22. Three-micron wire in the presence of strong disorder (σ = 30 meV) with signals in the local conductance. (a)–(d) show the local
and nonlocal conductances; (e)–(h) show the LDOS at x = 0, L/2, L, and total DOS, respectively. Additional LDOS results in the bulk of the
wire are presented in Fig. 43 (Appendix A). (i)–(l) show the topological visibility and thermal conductance from both ends.

Instead, these states are just accidentally localized at the wire
ends in addition to those states localized in the bulk of the
wire. Through finetuning and postselection such ZBCPs may
be experimentally observed, but this is not connected with
topological physics and is a manifestation of disorder-induced
Andreev bound states. The topological visibility and thermal
conductance in Figs. 21(i)–21(l) also confirm the trivial nature
of the system in the presence of strong disorder. In addition,
we find strong disorder-induced subgap conductance features
from both ends in the disorder configuration of Fig. 22, which,
however, are not ZBCPs. In general, Andreev bound states in
the strong-disorder case may induce subgap local conductance
features, but this is not an indicator of topology at all. Al-
though finetuning and postselection can occasionally produce
ZBCPs, sometimes even with approximate quantization, in the
strong-disorder case, this is accidental arising entirely from
disorder, as we have discussed in detail elsewhere [2,4,5].

We do believe that most of the reported Microsoft data
are not in this strong-disorder regime, although most earlier
Majorana experiments in the literature are [14].

We show in Figs. 56 and 57 in Appendix C our results for
the disorder strength of 10 meV, which are essentially iden-
tical to the results for the 30 meV disorder thus establishing
that the strong-disorder situation comes into play already for
disorder ∼10 meV (or lower). This is perhaps not surprising
because this disorder strength is already roughly 50 times the
induced zero-field gap.

III. DISCUSSION AND CONCLUSIONS

We have provided for Majorana nanowires, as functions
of disorder and system length, detailed theoretical results for
the experimentally measured local and nonlocal conductance
tunnel conductance (i.e., the four components of the conduc-
tance matrix) as well as four strictly theoretical quantities;

density of states, Majorana localization length, transport topo-
logical invariant, thermal conductance. By comparing these
eight different properties in the weak-, intermediate-, and
strong-disorder regimes, we conclude that the recent break-
through Microsoft experiment is in the intermediate-disorder
regime where the effective disorder strength is larger than
the induced superconducting gap, but perhaps not so large
as to completely suppress the topological properties as in the
strong-disorder regime. The weak-disorder regime, character-
ized by a disorder strength comparable to or less than the
induced gap, manifests topology essentially identical to the
pristine case, reflecting the robustness of topology to local per-
turbations. The intermediate-disorder case is complex, with
many competing factors complicating a simple interpretation
of the conductance data. There may be multiple transitions be-
tween topological and nontopological phases with increasing
Zeeman splitting because of the presence of disorder-induced
multiple Majorana modes throughout the bulk. The nonlo-
cal conductance may not manifest any gap closing and/or
opening at all because of disorder. Since experimentally only
conductance can be measured and not any topological invari-
ants, it may be a challenge to infer the nature of topology
in particular samples in the intermediate disorder situations
although there are situations, depending sensitively on wire
length and disorder configurations, where topology manifests
itself clearly for intermediate disorder.

We note that the three disorder regimes
(weak/intermediate/strong) are not sharply divided, and
are just smooth crossovers with their boundaries being
dependent on many energy parameters of the pristine system:
induced gap, gap of the parent SC, SO coupling, chemical
potential, Zeeman splitting, temperature, etc. Many of these
energy scales are unknown in the experimental nanowires,
making it a challenge for determining the precise boundaries
between weak/intermediate/strong-disorder regimes. This
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is why we provide a great deal of theoretical results varying
the disorder strength so that the appropriate disorder regime
can be discerned qualitatively by comparing experiment
and theory directly. In general, the weak-disorder regime
is characterized by disorder strength being of the order of
the SC gap (or less), whereas the strong-disorder regime
arises for disorder much larger than the induced gap. The
details, however, also depend on other energy scales in the
problem, particularly, the chemical potential. This makes it
impossible to give precise numbers for these different disorder
regimes. In general, when the mean-free path is much larger
(smaller) than the wire length, the system is weakly (strongly)
disordered, but the current experiments seem to fall in the
intermediate regime where the mean-free path is of the order
of the wire length. We also mention that in the multi-subband
situation, when several subbands are occupied in the system
(a situation we do not explicitly consider in the current
paper), an intrinsic disorder arises because of the randomness
in the energy levels associated with these subbands, further
complicating the disorder estimates [33,34].

We believe that the recent Microsoft experiment mostly ex-
plores the intermediate-disorder regime, whereas, by contrast,
all earlier Majorana experiments were in the strong-disorder
regime where topology does not exist. Future progress de-
pends on reducing experimental disorder further so that the
samples are in the weak-disorder regime where topology will
be manifest and obvious. Experiments going beyond conduc-
tance, where topology itself can be directly explored (e.g.,
thermal conductance, braiding), will be enormously helpful
at this point.
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APPENDIX A: LDOS IN THE BULK OF THE WIRE

In this Appendix, we present more results in Figs. 23–43
for the local density of states in the bulk of the wire, located at
one-third and two-thirds of the wire length, in addition to the
LDOS results shown in the main text.
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FIG. 23. (a) and (b) show the LDOS at L/3 and 2L/3 in a one-
micron pristine wire corresponding to Fig. 1.
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FIG. 24. (a) and (b) show the LDOS at L/3 and 2L/3 in a three-
micron pristine wire corresponding to Fig. 2.

0 1 2
VZ (meV)

−0.2

0.0

0.2

E
(m

eV
)

(a)
10−2 100

ρ(E, L/3)

0 1 2
VZ (meV)

(b)
10−2 100

ρ(E, 2L/3)

FIG. 25. (a) and (b) show the LDOS at L/3 and 2L/3 in a
one-micron wire in the presence of weak disorder (σ = 0.3 meV)
corresponding to Fig. 3.
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FIG. 26. (a) and (b) show the LDOS at L/3 and 2L/3 in a
three-micron wire in the presence of weak disorder (σ = 0.3 meV)
corresponding to Fig. 4.
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FIG. 27. (a) and (b) show the LDOS at L/3 and 2L/3 in a 0.5-
micron wire in the presence of intermediate disorder (σ = 2.5 meV)
corresponding to Fig. 5.
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FIG. 28. (a) and (b) show the LDOS at L/3 and 2L/3 in a one-
micron wire in the presence of intermediate disorder (σ = 2.5 meV)
corresponding to Fig. 6.
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FIG. 29. (a) and (b) show the LDOS at L/3 and 2L/3 in a 1.5-
micron wire in the presence of intermediate disorder (σ = 2.5 meV)
corresponding to Fig. 7.
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FIG. 30. (a) and (b) show the LDOS at L/3 and 2L/3 in a three-
micron wire in the presence of intermediate disorder (σ = 2.5 meV)
corresponding to Fig. 8.
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FIG. 31. (a) and (b) show the LDOS at L/3 and 2L/3 in a ten-
micron wire in the presence of intermediate disorder (σ = 2.5 meV)
corresponding to Fig. 9.
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FIG. 32. (a) and (b) show the LDOS at L/3 and 2L/3 in a one-
micron wire in the presence of intermediate disorder (σ = 3 meV)
corresponding to Fig. 10.
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FIG. 33. (a) and (b) show the LDOS at L/3 and 2L/3 in a two-
micron wire in the presence of intermediate disorder (σ = 3 meV)
corresponding to Fig. 11.
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FIG. 34. (a) and (b) show the LDOS at L/3 and 2L/3 in a three-
micron wire in the presence of intermediate disorder (σ = 3 meV)
corresponding to Fig. 12.
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FIG. 35. (a) and (b) show the LDOS at L/3 and 2L/3 in a one-
micron wire in the presence of intermediate disorder (σ = 5 meV)
corresponding to Fig. 14.
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FIG. 36. (a) and (b) show the LDOS at L/3 and 2L/3 in a three-
micron wire in the presence of intermediate disorder (σ = 5 meV)
corresponding to Fig. 15.
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FIG. 37. (a) and (b) show the LDOS at L/3 and 2L/3 in a ten-
micron wire in the presence of intermediate disorder (σ = 5 meV)
corresponding to Fig. 16.
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FIG. 38. (a) and (b) show the LDOS at L/3 and 2L/3 in a one-
micron wire in the presence of intermediate disorder (σ = 5 meV)
corresponding to Fig. 17.
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FIG. 39. (a) and (b) show the LDOS at L/3 and 2L/3 in a three-
micron wire in the presence of intermediate disorder (σ = 5 meV)
corresponding to Fig. 18.

APPENDIX B: WAVEFUNCTIONS AND LOCALIZATION
LENGTH

In this Appendix, we present the corresponding wave-
functions and their localization lengths. In Figs. 44–55, we
show the amplitude of the wavefunction of the lowest state
as |�|2 (solid black line). Additionally, we decompose �

into the two Majorana basis, with γ1 (red solid line) and
γ2 (blue solid line) representing each basis. The localiza-
tion length is estimated by fitting the spatial profile of the
envelope of |γ1|2 (red dashed line) and |γ2|2 (blue dashed
line) using an exponential function as indicated by the dashed
line. For some figures [e.g., Fig. 46(b)], the absence of the
dashed line is because the state is not localized at the wire
ends.

APPENDIX C: ADDITIONAL RESULTS IN THE PRESENCE
OF STRONG DISORDER

In this Appendix, we additionally show two sets of re-
sults in the presence of a fixed disorder configuration with
σ = 10 meV for a one-micron short wire and a three-micron
long wire. These results are consistent with those discussed in
the main text but use a smaller disorder strength with σ = 10
meV for a one-micron short wire (Fig. 56) and a three-micron
long wire (Fig. 57).
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FIG. 40. (a) and (b) show the LDOS at L/3 and 2L/3 in a ten-
micron wire in the presence of intermediate disorder (σ = 5 meV)
corresponding to Fig. 19.
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FIG. 41. (a) and (b) show the LDOS at L/3 and 2L/3 in a
three-micron wire in the presence of strong disorder (σ = 30 meV)
corresponding to Fig. 20.
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FIG. 42. (a) and (b) show the LDOS at L/3 and 2L/3 in a
three-micron wire in the presence of strong disorder (σ = 30 meV)
corresponding to Fig. 21.
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FIG. 43. (a) and (b) show the LDOS at L/3 and 2L/3 in a
three-micron wire in the presence of strong disorder (σ = 30 meV)
corresponding to Fig. 22.
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FIG. 44. The Majorana localization lengths are shown for four different VZ (1.25 meV, 1.5 meV, 2 meV, and 2.2 meV), corresponding to
four linecuts (green, cyan, yellow, and pink) in a one-micron pristine wire (see Fig. 1). The energy of the lowest subgap state is denoted by E .
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FIG. 45. The Majorana localization lengths are shown for four different VZ (1.7 meV, 1.9 meV, 2.3 meV, and 2.5 meV), corresponding to
four linecuts (green, cyan, yellow, and pink) in a three-micron pristine wire (see Fig. 2). The energy of the lowest subgap state is denoted by E .
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FIG. 46. The Majorana localization lengths are shown for four different VZ (1 meV, 1.25 meV, 1.5 meV, and 2 meV), corresponding to four
linecuts (green, cyan, yellow, and pink) in a one-micron wire in the presence of weak disorder (σ = 0.3 meV, see Fig. 3). The energy of the
lowest subgap state is denoted by E .
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FIG. 47. The Majorana localization lengths are shown for four different VZ (1 meV, 1.25 meV, 1.5 meV, and 2 meV), corresponding to four
linecuts (green, cyan, yellow, and pink) in a three-micron wire in the presence of weak disorder (σ = 0.3 meV, see Fig. 4). The energy of the
lowest subgap state is denoted by E .
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FIG. 48. The Majorana localization lengths are shown for four different VZ (1 meV, 1.25 meV, 1.5 meV, and 2 meV), corresponding to four
linecuts (green, cyan, yellow, and pink) in a 0.5-micron wire in the presence of intermediate disorder (σ = 2.5 meV, see Fig. 5). The energy of
the lowest subgap state is denoted by E .
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FIG. 49. The Majorana localization lengths are shown for four different VZ (1.6 meV, 1.8 meV, 2 meV, and 2.2 meV), corresponding to
four linecuts (green, cyan, yellow, and pink) in a one-micron wire in the presence of intermediate disorder (σ = 2.5 meV, see Fig. 6). The
energy of the lowest subgap state is denoted by E .
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FIG. 50. The Majorana localization lengths are shown for four different VZ (1.55 meV, 1.75 meV, 1.9 meV, and 2.2 meV), corresponding
to four linecuts (green, cyan, yellow, and pink) in a 1.5-micron wire in the presence of intermediate disorder (σ = 2.5 meV, see Fig. 7). The
energy of the lowest subgap state is denoted by E .
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FIG. 51. The Majorana localization lengths are shown for four different VZ (1.6 meV, 1.8 meV, 2.15 meV, and 2.3 meV), corresponding to
four linecuts (green, cyan, yellow, and pink) in a three-micron wire in the presence of intermediate disorder (σ = 2.5 meV, see Fig. 8). The
energy of the lowest subgap state is denoted by E .
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FIG. 52. The Majorana localization lengths are shown for four different VZ (1.6 meV, 2 meV, 2.15 meV, and 2.3 meV), corresponding to
four linecuts (green, cyan, yellow, and pink) in a ten-micron wire in the presence of intermediate disorder (σ = 2.5 meV, see Fig. 9). The
energy of the lowest subgap state is denoted by E .
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FIG. 53. The Majorana localization lengths are shown for four different VZ (1.25 meV, 1.5 meV, 2 meV, and 2.2 meV), corresponding to
four linecuts (green, cyan, yellow, and pink) in a one-micron wire in the presence of intermediate disorder (σ = 3 meV, see Fig. 10). The
energy of the lowest subgap state is denoted by E .
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FIG. 54. The Majorana localization lengths are shown for four different VZ (1.6 meV, 1.8 meV, 2 meV, and 2.2 meV), corresponding to four
linecuts (green, cyan, yellow, and pink) in a two-micron wire in the presence of intermediate disorder (σ = 3 meV, see Fig. 11). The energy of
the lowest subgap state is denoted by E .
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FIG. 55. The Majorana localization lengths are shown for four different VZ (1.7 meV, 1.9 meV, 2.3 meV, and 2.5 meV), corresponding to
four linecuts (green, cyan, yellow, and pink) in a three-micron wire in the presence of intermediate disorder (σ = 3 meV, see Fig. 12). The
energy of the lowest subgap state is denoted by E .
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FIG. 56. One-micron wire in the presence of strong disorder (σ = 10 meV). (a)–(d) show the local and nonlocal conductances; (e)–(h)
show the LDOS at x = 0, L/2, L, and total DOS, respectively; (i)–(l) show the topological visibility and thermal conductance from both ends.
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FIG. 57. Three-micron wire in the presence of strong disorder (σ = 10 meV). (a)–(d) show the local and nonlocal conductances; (e)–(h)
show the LDOS at x = 0, L/2, L, and total DOS, respectively; (i)–(l) show the topological visibility and thermal conductance from both ends.
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