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Cavity-induced charge transfer in periodic systems: Length-gauge formalism
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We develop a length-gauge formalism for treating one-dimensional periodic lattice systems in the presence
of a photon cavity inducing light-matter interaction. The purpose of the formalism is to remove mathematical
ambiguities that occur when defining the position operator in the context of the Power-Zienau-Woolley Hamil-
tonian. We then use a diagrammatic approach to analyze perturbatively the interaction between an electronic
quantum system and a photonic cavity mode of long wavelength. We illustrate the versatility of the formalism
by studying the cavity-induced electric charge imbalance and polarization in the Rice-Mele model with broken
inversion symmetry.
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I. INTRODUCTION

Controlling quantum materials and engineering new phases
of matter through a light-matter interaction is one of the most
promising research directions in condensed matter physics
[1]. In the past, light has been mainly used as a tool for probing
various properties of quantum systems, such as optical con-
ductivity, from which one may extract a huge amount of useful
information about the intricate quantum properties of the
material. However, recently the research efforts shifted from
using light as a probe to using light as a means of control [2,3].

Over recent years, there has been tremendous interest in in-
ducing novel properties in electronic systems by light, among
which it is worth noting the Floquet topological insulator
[4–7], Floquet topological superconductors [8–11], Floquet-
engineered topological band structures [12–14] in solid-state
systems and ultracold atoms [15–17]. The most interesting
phenomena usually demand strong light-matter coupling [18],
which can be achieved either by increasing the intensity of
light or by confining light within a small volume inside a
cavity [19]. With cavities, one may explore the interaction be-
tween matter and vacuum fluctuations of the resonator paving
the way for engineering [20–29] systems in thermodynamic
equilibrium in the absence of any external driving, such as,
for instance, the modification of the quantum Hall [30] and
the anomalous Hall [31] responses via resonators.

In the present work, we focus on one-dimensional quantum
systems placed in cavities and our aim is to develop a length-
gauge formalism for studying the charge transfer induced by
the cavity. The main obstacle on this route is the absence
[32] of a well-defined position operator via which the matter
couples to light in this gauge. The use of the length gauge has
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a clear advantage in that it uses a gauge-invariant observable,
the electric field [33]. However, in this gauge, the perturbation
is no longer diagonal in momentum. Additionally, the position
operator is singular in momentum space.

This is a long-standing problem [34,35], and a number of
attempts to resolve it have been made in the past. For instance,
as one of the possible ad hoc solutions, it was suggested to
restrict the application of the coordinate operator, as defined
in Eq. (9) below, exclusively within commutators. Also, the
issue with the position operator was addressed in the context
of nonlinear response theory where the electromagnetic field
is treated classically [36–40]. In this work, we present a step
towards the complete solution of this problem for a quan-
tized electromagnetic field. The key idea of our approach is
to introduce a nonuniformity in the cavity-mode profile. We
then exploit the noncommutativity of taking the uniformity
limit (rendering the mode uniform) either at the beginning or
at the end of the calculation that is based on diagrammatic
perturbation theory.

To illustrate the usefulness of our formalism, we apply it to
the calculation of the cavity-induced charge transfer leading to
charge imbalance and spontaneous polarization in the ground
state. The latter is calculated using the approach suggested by
Nourafkan and Kotliar in 2013 [41]. The similarities and dis-
crepancies between the two physical quantities are addressed.

The work is organized as follows. In Sec. II, we start with
performing the gauge transformation to switch from the ve-
locity gauge to the length gauge [42]. In Sec. III, we introduce
a spatial dependence in the vector potential to make the cavity
mode nonuniform and generalize the gauge transformation
from the previous section. In Sec. IV, we develop a diagram-
matic technique in the length gauge and apply it to study the
charge transfer in the Rice-Mele model, coupled to a cavity.
The main results of the paper are highlighted in the conclusion
section.
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II. ELECTRON-PHOTON HAMILTONIAN WITH A
CONSTANT VECTOR POTENTIAL

Our aim is to describe a sufficiently large periodic system,
such as a crystallite, a flake of 2D material, or a long quasi-1D
chain/nanotube, embedded in a microcavity that supports a
discrete set of quantum electromagnetic modes. We consider
a typical situation when, on the one hand, the system is much
larger than the crystal unit cell, and, on the other hand, it is
much smaller than the wavelength of relevant cavity modes.
The latter condition justifies the use of the dipole approxima-
tion we are using in the present work, which assumes that the
mode electric field is practically uniform throughout the sys-
tem. If the former condition is fulfilled, the bulk properties of
the system should be independent of the boundary conditions
used for the electronic coordinates. In this case, it is customary
to adopt periodic Born-von Karman boundary conditions that
greatly simplify the classification of electronic states using the
Bloch theorem.

A dipole coupling of Bloch electrons with an electromag-
netic field is commonly described using the velocity gauge.
We, therefore, start with the following generic Hamiltonian of
a periodic one-dimensional system (in the second quantization
formalism), interacting with a set of long wavelength cavity
modes [43–46] (throughout the paper, we set h̄ = 1 and use
Gaussian units),

Ĥ = Ĥel + Ĥph =
∑

k

ψ̂
†
k h(k − Â)ψ̂k

+ 1

2

∑
α

[
π̂2

α + ω2
α q̂2

α

]
, (1)

where the momentum k belongs to the Brillouin zone, ψ̂
†
k =

(ĉ†
1,k, . . . , ĉ†

M,k ) is an M-component Fermi operator, h(k) is
an M × M matrix Hamiltonian, Â = ∑

α λα q̂α is the spatially
uniform vector potential (with the factor of e/c included in it)
related to the canonical photon coordinate operator of the αth
cavity mode q̂α = (2ωα )−1/2(â†

α + âα ), expressed in terms of
standard Bose creation (â†

α) and annihilation (âα) operators,
with coupling constant λα = e

√
4πEα , where Eα is the ampli-

tude of the mode function at the system location, and π̂α is the
canonical photon momentum operator. The mode function is
related to the electric field amplitude by dividing the latter by√

ωα . For simplicity, we assume a one-dimensional electronic
system, but this is not essential and the multidimensional
generalization is straightforward. As we focus on 1D systems
here, the modes are assumed to be polarized along the chain,
and the index α labels the frequencies of the cavity. The
field is quantized in the Coulomb gauge when the dynamical
degrees of freedom correspond to the transverse components
of the vector potential Â. In contrast, the scalar potential does
not have independent dynamics as it is fixed by the charge
distribution and included in the Coulomb interaction, which
is not of concern in this work. In the dipole approximation,
Â is approximated by a constant vector, and we obtain the
Hamiltonian above.

While the velocity-gauge electron-photon coupling in
Eq. (1) looks structurally simple, using it in practice can
be very nontrivial technically. In general, in crystals, the
one-particle Hamiltonian h(k) in Eq. (1) can be highly

nonpolynomial, as is the case, for example, within the tight-
binding description of the band structure. This will make
the standard field theoretical perturbative description of such
systems enormously difficult beyond the simplest Gaussian
approximation. The formal reason is that the expansion of a
complicated function h(k − Â) in powers of the vector po-
tential Â will generate bare multileg electron-photon vertices
up to infinite order. This problem has much in common with
difficulties in the description of the nonlinear optical response
of solids using the velocity gauge [32,34,35]. A possible way
to circumvent this problem is to eliminate the vector potential
from the electronic kinetic energy by transforming the Hamil-
tonian to the length gauge.

It seems indeed formally possible to gauge away the uni-
form vector potential Â from the electronic Hamiltonian by
making the following unitary transformation (see Appendix A
for details):

eiX̂ ÂĤe−iX̂ Â, (2)

where the “center-of-mass” position operator X̂ is defined as

X̂ = i
∑

k

ψ̂
†
k ∂kψ̂k ≡

∑
k,k′

ψ̂
†
k X

k,k′
ψ̂k′ . (3)

Throughout the paper, we use the convention that boldface
symbols (e.g., h) without any indices stand for single-body
operators, which are represented by matrices in both, momen-
tum and band space; if a boldface symbol has momentum (or
band) index (e.g., hk,k′

or hn,n′ ), it means that it remains a ma-
trix in the momentum (or band) space; if the boldface symbol
has a momentum dependence in the brackets, it just implies
that the matrix is diagonal in the momentum space [i.e., for
example, hk,k′ = h(k)δk,k′ ] or if the matrix is nondiagonal in
the momentum space, then this notation implies that we take
only the diagonal part. The corresponding second-quantized
operators are denoted with hats.

Having established the notation convention, the canonical
transformation to new variables,

q̂α �→ 1

ωα

P̂α, π̂α �→ −ωαQ̂α (4)

with [Q̂α, P̂β ] = iδα,β , brings the electron-photon Hamilto-
nian to the standard length-gauge form

Ĥ =
∑

k

ψ̂
†
k h(k)ψ̂k + 1

2

∑
α

[
P̂2

α + ω2
α

(
Q̂α − λα

ωα

X̂

)2
]
,

(5)

also known as the Power-Zienau-Woolley Hamiltonian
[47,48]. Physically, the photon momentum P̂α in the length
gauge corresponds to the magnetic field, ωαQ̂α is the electric
displacement in the α mode, and λαX̂ is the polarization of the
electronic system projected onto the α mode. Accordingly, the
combination ωαQ̂α − λαX̂ , entering the last term in Eq. (5),
has the meaning of an electric field.

The interaction part of the length-gauge Hamiltonian ex-
plicitly reads

Ĥint =
∑

α

[
− ωαλαQ̂αX̂ + λ2

α

2
X̂ 2

]
. (6)
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X

FIG. 1. Electron-photon interaction vertex in the length gauge,
originating from the interaction Hamiltonian, given by Eq. (6). Here,
X is a one-particle position operator. The solid lines correspond to
electrons, while the wavy line accounts for photons.

The first term in the interaction Hamiltonian (6) describes
the standard “three-leg” fermion-boson (two fermion and one
boson operators) coupling between electrons and cavity pho-
tons. The second term accounts for a dipole self-energy which
enters as an additional instantaneous electron-electron inter-
action [49,50].

An obvious advantage of the length-gauge representation,
Eq. (5), over the velocity gauge, Eq. (1), is that the interaction
Hamiltonian given by Eq. (6) is a low-order polynomial in the
Fermi and Bose fields, which has a structure very common
in condensed matter physics. This dramatically simplifies the
application of standard field theoretical methods to the de-
scription of this system.

The structure of the diagram technique based on the length-
gauge Hamiltonian is practically obvious from the form of its
interaction part, Eq. (6). In fact, it can be brought [50] to
the form identical to that for most standard fermion-boson
Hamiltonians (for instance, for electron-phonon Hamiltoni-
ans). The basic elements of the diagram technique are the
standard bare electron Green function and the following bare
photon propagator:

Dα (t − t ′) = ω2
α〈Q̂α (t )Q̂α (t ′)〉 + δ(t − t ′), (7)

which combines the effect of two interaction terms in Eq. (6).
Here, the first term ∼〈Q̂α (t )Q̂α (t ′)〉 is the bare propagator of
the photon canonical coordinate (the displacement propaga-
tor) while the second instantaneous term in Eq. (7) comes
from the second interaction term in Eq. (6). In total, Eq. (7)
describes the propagator of the cavity electric field, which
mediates the physical effective electron-electron interaction
induced by the coupling to cavity modes [50]. In the Mat-
subara frequency representation, the bare photon propagator
is the inverse Fourier transform of Dα (t − t ′) and it reads

Dα (iωn) = ω2
α

(iωn)2 − ω2
α

+ 1 = ω2
n

ω2
n + ω2

α

, (8)

where ωn = 2πn/β, are bosonic Matsubara frequencies, with
n integer and β = 1/(kBT ) the inverse temperature (kB Boltz-
mann constant). The transformation from the real frequency
representation for the bare photon propagator in the length
gauge given by Eq. (9) in Ref. [50] to the expression in Mat-
subara frequencies is done using the conventional substitution.

Within this formalism, there is only one type of three-leg
electron-photon interaction vertices, shown in Fig. 1 and de-
termined by the one-particle position operator X , as defined
in Eq. (3). Apparently, the problem of properly defining the

position operator in a periodic system is of critical importance
for the diagram technique in the length gauge as it enters the
interaction vertex. One can easily see that the operator X̂ in
Eq. (3), which generates the transformation from the velocity
to the length gauge, is identical to the position operator intro-
duced in the classic work by Bluont [51] (see also Ref. [35]).
In the Bloch representation for an infinite periodic system, this
operator takes the following form:

X k,k′
n,n′ = iδn,n′∇kδ(k′ − k) + An,n′ (k)δ(k′ − k), (9)

where An,n′ (k) = i〈un,k|∂kun′,k〉. A detailed discussion can
also be found in Ref. [52]. Unfortunately, the position oper-
ator of Eq. (9) is highly singular and not really well-defined
mathematically. In fact, it requires from the beginning to be
in the limit when the momentum space is a continuum and
should always be treated in a distribution sense. This appears
as the price to pay for the simple structure of the diagrammatic
perturbation theory in the length gauge.

In a related problem of nonlinear optical responses, the
above technical difficulties are overcome by computing the
response from the equation of motion for the density matrix.
In this formalism, the position operator defined by Eq. (9)
appears only inside commutators, which eliminates all ambi-
guities related to its singular nature. This approach has been
suggested in Ref. [32] and used subsequently by many authors
[34,35,52]. Whether a similar reformulation is possible for the
field-theoretical perturbation theory is an open question.

An alternative way to handle the problem is to redefine the
position operator appearing in the electron-photon interaction
vertex. We have seen that the position operator is a natural
generator of the transformation from the velocity to the length
gauge, that is, the transformation that gauges away the vector
potential from the electronic Hamiltonian. The simplest way
of avoiding singular distributions in the momentum space is
to consider a large, but finite system with periodic boundary
conditions over the system size L. However, by examining the
unitary transformation (2), we observe that it is not consistent
with the periodic boundary conditions for the electronic fields
ψ̂ (x) = ψ̂ (x + L). This underlines a fundamental physical
fact—a uniform vector potential can not be gauged away from
a finite periodic system. The reason is that a vector potential
with a noninteger (in units 2π ) circulation produces a non-
trivial magnetic flux (modulo flux quantum) through the ring.
It thus generates a persistent current—a physical effect that
a gauge transformation can not eliminate. Only in the strict
thermodynamic limit L → ∞ the transformation defined by
Eqs. (2) and (3) works and the constant vector potential can be
gauged away from the electronic Hamiltonian (i.e., the persis-
tent current vanishes, typically as 1/L). This can be viewed as
another side of the statement that the position operator Eq. (9)
requires a strictly infinite periodic system to be well defined.

This observation suggests a new approach for the length
gauge for a finite periodic system where we introduce a space-
dependent L-periodic pure-gauge vector potential Â(x) =
Â(x + L). At the classical level of the electromagnetic field,
such a pure-gauge potential does not cause any physical effect,
and, indeed, can be eliminated entirely from the problem by
a unitary gauge transformation on the electronic Hamiltonian,
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due to the fact that the periodic boundary conditions of the
wave functions remain satisfied.

The generator of this transformation will then be identified
as a regularized position operator. In this approach, the fol-
lowing limit, which we refer to as “continuous limit” should
be taken: the sums over momenta are replaced by integrals
accordingly, whereas the mode nonuniformity is eliminated
(we will introduce below the parameter q responsible for
the deviation of the mode profile from perfectly uniform),
preserving only the leading terms stemming from the fact that
the parameter q is L-dependent. We emphasize that L = Na
remains finite, but large and in any given order of the 1/N
expansion (see below) we employ here. Replacing sums over
momenta with integrals implies that the characteristic energy
scales of interest are larger than the level spacing, caused by
the finite size of the system.

However, as soon as we consider a quantized electromag-
netic field, Â(x) cannot be gauged away and observable effects
emerge from it in this quantum regime as will be discussed in
the following.

III. REGULARIZATION OF THE POSITION OPERATOR

Below, we follow the program outlined at the end of the
previous section to construct a regularized position operator
in the electron-photon vertex. Again for the sake of simplicity,
we consider a one-dimensional system of electrons coupled
to the quantum cavity modes but now subjected to periodic
boundary conditions over a finite length L, which identify
points x and x + L. In addition, we assume the presence of
a periodic potential V (x) = V (x + a), such that the system
contains in total N unit cells, L = Na. The length of the
system is assumed to be finite but large compared to the unit
cell such that N � 1. The second-quantized Hamiltonian now
reads

Ĥ =
∫

dx

{
ψ̂†(x)

1

2m
[−i∇ − Â(x)]2ψ̂ (x)

+ V (x)ψ̂†(x)ψ̂ (x)

}
+ Ĥph, (10)

where Â(x) is a vector potential of the quantum electromag-
netic field and Hph is the photonic part of the Hamiltonian [the
same as the last term in Eq. (1)].

To formally define a finite-L analog of the length gauge, we
assume a pure-gauge vector potential Â(x) can be represented
as a gradient of an L-periodic (operator-valued) function,

Â(x) = ∇ θ̂ (x) with θ̂ (x + L) = θ̂ (x). (11)

As a simple explicit realization, which reduces to a
constant in the limit L → ∞, one can take the following
space-periodic functions:

Â(x) =
∑

α

λα (x)q̂α =
∑

α

∇θα (x)q̂α

=
∑

α

∇θα (x)
1√
2ωα

(â†
α + âα ), (12)

where

λα (x) =
√

2λα cos(qx),

θα (x) =
√

2λα

sin(qx)

q
, (13)

q = 2π l

L
.

Here, l is an integer which, for our purpose, should be taken
sufficiently small l  N to mimic a long wavelength photon
mode. For definiteness, we assume l = 1 below. The factor√

2 in the expressions for λα (x) and θα (x) comes from the
normalization of the mode function for the vector potential.
The extraction of

√
2 allows us to keep the definition of

the coupling constant λα the same as for the constant vector
potential. In other words, independently of the mode functions
we keep fixed, the space averaged field intensity ∼√〈λ2

α (x)〉,
or equivalently the space averaged photon propagator. The
finite value of q, describing the nonuniformity of the mode
profile, is not related to the mode frequency and should not be
confused with the photon momentum. The results should not
depend on the particular choice of the mode profile as long as
the limit of a uniform mode is taken at the end.

If the condition (11) is satisfied, the vector potential is
eliminated from the electronic Hamiltonian by a unitary trans-
formation,

e−iŜĤel[−i∇ − Â]eiŜ = Ĥel[−i∇],

Ŝ =
∫

dx θ̂ (x)ψ̂†(x)ψ̂ (x) =
∑

α

q̂α

∫
dx θα (x)ψ̂†(x)ψ̂ (x).

(14)

Using the Baker-Campbell-Hausdorff formula, one can show
that the field operator ψ̂ (x) maps to e−iŜψ̂ (x)eiŜ = eiθ̂ (x)ψ̂ (x),
thus preserving the boundary conditions. Since the operator
Ŝ is linear in the photon coordinates, the photon momentum
operator is transformed as

e−iŜπ̂αeiŜ = π̂α + i[π̂α, Ŝ] = π̂α +
∫

dx θα (x)ψ̂†(x)ψ̂ (x).

(15)

After the canonical transformation

q̂α �→ 1

ωα

P̂α, π̂α �→ −ωαQ̂α, (16)

the total transformed Hamiltonian ˆ̃H = e−iŜĤeiŜ takes the
form

ˆ̃H =
∫

dx ψ̂†(x)

{−∇2

2m
+ V (x)

}
ψ̂ (x)

+ 1

2

∑
α

[
P̂2

α + ω2
α

(
Q̂α − 1

ωα

P̂α

)2
]
. (17)

Here, we introduced an α component of the polarization,

P̂α =
∫

dx θα (x)ψ̂†(x)ψ̂ (x)

=
√

2λα

∫
dx

sin(qx)

q
ψ̂†(x)ψ̂ (x) ≡ λαX̂q. (18)
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The operator in the last equality can be identified as a center-
of-mass position operator adapted for a periodic system.
Equations (17) and (18) provide a consistent formulation in
terms of the length-gauge Hamiltonian, which can now be
written in any convenient representation.

In particular, we can rewrite the position operator in the
Bloch representation which is convenient to describe a pe-
riodic system. In the Bloch representation, the Fermi field
operator is written as

ψ̂ (x) =
∑
n,k

ψn,k (x)ĉn,k,

ψn,k (x) = 1√
L

eikxun,k (x), (19)

where k = 2πm/L, with m integer, takes discrete values in
the Brillouin zone, and where n is the band index, with the
following normalization conditions:∫

L
dx ψ∗

n′,k′ (x)ψn,k (x) = δk,k′δn,n′ ,

∑
n,k

ψ∗
n,k (x)ψn,k (x′) = δ(x − x′), (20)

and the anticommutation relation of Fermi operators is given
by {ĉn,k, ĉ†

n′,k′ } = δn,n′δk,k′ .
Using Eqs. (18)–(20), we write the center-of-mass position

operator in Bloch representation as

X̂q =
∑

n,n′k,k′

i√
2q

[δk′,k+q − δk′,k−q]〈un,k|un′,k′ 〉ĉ†
n,k ĉn′,k′ , (21)

where 〈un,k|un′,k′ 〉 = ∫
unit
cell

dx u∗
n′,k′ (x)un,k (x) (see Appendix B).

As by construction q = 2π/L, the limit of an infinite system
L → ∞ (or constant vector potential) corresponds to q → 0.

The position operator defined above in Eq. (21) is a many-
particle operator, which is a sum of one-particle operators with
matrix elements

X k,k′
n,n′ = i√

2q
[δk′,k+q − δk′,k−q]〈un,k|un′,k′ 〉, (22)

where k and n are the first indices of the matrix, k′ and n′ are
the second indices. Equation (22) defines a regularized posi-
tion operator entering the electron-photon interaction vertex.
Thus, at all intermediate steps, we can assume a discretized
momentum space and q = 2π/L, while the limit of large L is
taken at the end of the calculations.

IV. DIAGRAM TECHNIQUE IN THE LENGTH GAUGE

In this section, we introduce and illustrate the diagram
technique in the length gauge using the position operator of
Eq. (21). First, we discuss the approximation adopted in this
paper to demonstrate applications of the formalism. Next,
we show how to calculate the dressed photon propagator
and the cavity-induced correction to the expectation value
of an arbitrary operator. Finally, we illustrate the application
of the proposed diagram technique calculating macroscopic
polarization and charge imbalance for the Rice-Mele model
embedded in a single-mode cavity.

XX

FIG. 2. Dyson equation for the dressed photon propagator in the
RPA. Here, X is a one-particle position operator, given by Eq. (22).
The wavy line and double wavy line are bare photon propagators
given by Eqs. (7) and (8) and dressed photon propagator given
by Eq. (23), respectively. The solid lines are bare electron Green
functions, given in Eq. (25).

A. General formulation of the diagram technique
in the length gauge

1. Random phase approximation

In the present work, for all specific calculations, we adopt
an approximation that can be viewed as an analog of the ran-
dom phase approximation (RPA) in the theory of an electron
gas. In the path integral formulation, it is equivalent to the
Gaussian approximation for the description of electromag-
netic fluctuations. We note that at the Gaussian level, the
calculations are also feasible in the velocity gauge [53,54].
However, using the proposed diagram technique in the length
gauge, one can easily include any desirable contribution be-
yond the RPA.

Diagrammatically, the RPA corresponds to the dressing
of the photon propagator by bare empty polarization loops,
neglecting vertex corrections, see Fig. 2. After that, when
computing observables, one performs the expansion in powers
of the dressed photon propagator and keeps the lowest or-
der contribution. Assuming that the electron-photon coupling
strength is inversely proportional to the square root of the
mode volume λ ∼ 1/

√
Vmode ∼ 1/

√
N the above expansion

generates the expansion in powers of 1/N .
For an electronic system embedded in a cavity, in the

formal limit of N → ∞, the RPA gives the exact [55] result
(though strong electron-electron interaction may affect the
validity of this statement [56]). This can be understood by
analyzing the order of magnitude of the polarization diagrams
in the RPA series, Fig. 2. Each bubble without vertices in the
limit of a large system is proportional to N because, by going
to this limit, we replace the summation over the wave vectors
by integration as follows:

∑
k

→ Na

2π

∫ π
a

− π
a

dk.

Each vertex gives an interaction constant λ, which is
proportional to 1/

√
N (due to the normalization of the elec-

tromagnetic cavity mode). Finally, in the RPA, each bubble
has two vertices. As a result, all diagrams in the RPA series
are of the order of unity—the factors of 1/N from the vertices
in the corners are compensated by the factors of N from the
summation over the electronic excitations in the bubbles. Any
additional diagram on top of the RPA, e.g., vertex insertions
bring more vertices and thus more factors of 1/N per bubble,
uncompensated by the summations over the electronic states.
Therefore their contribution vanishes in the limit N → ∞. A
similar argumentation regarding the importance of the term
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∼Nλ2 in the limit of infinite N is given in Ref. [57]. As the
rescaled coupling constant λ

√
N is not the small parameter of

our perturbative expansion, it can be large, allowing one to
consider the (ultra) strong coupling limit.

The significance of the contribution 1/N was also dis-
cussed in a number of other works from a slightly different
point of view [53,58,59]. For instance, in Refs. [53,59], it
was pointed out that it is necessary to consider Gaussian
fluctuations at 1/N order in addition to the mean-field Hamil-
tonian, which diagrammatically means keeping the terms of
the lowest order in the dressed photon propagator.

Here we note that we are interested in the lowest order
correction to the ground state properties of the electronic
system, which is O(1/N ). This correction vanishes in the strict
thermodynamic limit (in contrast to the photon counterpart).
Thus, strictly speaking, we are studying the cavity effect on
electronic systems of large but finite sizes. We note that the
foregoing statement (vanishing cavity effect in the thermody-
namic limit) may need modification when excited states of the
electronic system are involved [60].

2. Dressed photon propagator in the RPA

Let us discuss how to perform the calculations in the RPA
and start with the dressed photon propagator. The dressed pho-
ton propagator in the RPA is given by the infinite geometric
series of diagrams, which can be written in the form of a
Dyson equation represented in Fig. 2.

From the Dyson equation, the dressed photon propagator
in the RPA is found as

D(iωn) = D0(iωn)

1 + D0(iωn)�(iωn)
, (23)

where D0(iωn) = ω2
n/(ω2

n + ω2
0 ) is the bare photon propagator

in the length gauge in Matsubara frequencies, Eq. (8), where
ω0 is the frequency of the cavity mode (we assume that the pa-
rameters of the cavity are chosen such that only a single mode
is relevant). In the equation above, �(iωn) is the polarization
operator in Matsubara frequencies given by

�(iωn) = − g2
0

Naβ

∑
iεm

Tr [G0(iεm + iωn)XG0(iεm)X ], (24)

where g0 = λ
√

Na and we remind the reader that β−1 ∑
iεm

reduces to
∫

dεm/(2π ) at zero temperature. Here, Tr denotes
the standard trace operation in momentum and band index
space. The minus sign follows from the standard diagram
rules for fermions in Matsubara representation, where εm =
(2m + 1)π/β, with β = 1/kBT the inverse temperature and m
integer, are fermionic Matsubara frequencies. We note that, as
a result of the normalization convention for Bloch functions
given by Eq. (20), all k summations in the present paper
appear without an extra factor of 1/(Na).

Using the spectral representation for the bare electron
Green function in the Bloch wave basis,

Gk,k′
0n,n′ (iεm) = δn,n′δk,k′

iεm − εn,k
, (25)

where εn,k are the energy eigenvalues of the unperturbed
electronic Hamiltonian, and using the matrix elements of the

position operator given by Eq. (22), the expression for the
polarization operator �(iωn) can be rewritten as

�(iωn) = g2
0

Naβ

∑
iεm

∑
n1,n2
k1,k2

1

2q2

[
δk2,k1+q − δk2,k1−q

]

× 〈
un1,k1

∣∣un2,k2

〉 1

iεm − εn2,k2

[
δk1,k2+q − δk1,k2−q

]
× 〈

un2,k2

∣∣un1,k1

〉 1

i(εm + ωn) − εn1,k1

. (26)

Considering that for arbitrary large, but finite L, k is dis-
crete, and q = 2π/L is finite as well, we obtain only two
nonzero terms in Eq. (26). And after the summation over one
of the wave vectors, we get the following expression:

�(iωn) = − g2
0

Naβ

∑
iεm

∑
n1,n2,k

1

2q2

∣∣〈un1,k+q

∣∣un2,k
〉∣∣2

× 1

iεm − εn2,k
· 1

i(εm + ωn) − εn1,k+q
+ (q → −q).

(27)

After the summation over electron Matsubara frequencies
iε and taking the continuous limit of the multiband electronic
system, we obtain the following expression:

�(iωn) = −g2
0

∑
n1,n2

∫ π
a

− π
a

dk

2π

∣∣〈un1,k

∣∣∂kun2,k
〉∣∣2

× nF
(
εn2,k

) − nF
(
εn1,k

)
ω2

n + (
εn2,k − εn1,k

)2

(
εn2,k − εn1,k

)
, (28)

where nF(εn,k ) is the Fermi-Dirac distribution. Here, we used
that nF(εn,k ± iωn) = nF(εn,k ) as exp(±iβωn) = 1.

From the expression for the dressed photon propagator [see
Eq. (23) with the polarization operator given by Eq. (28)],
we can straightforwardly obtain the photon spectral function.
An example (photon spectral function for the SSH model
[61] embedded in a cavity) of applying the proposed diagram
technique in the length gauge for its calculation can be found
in Appendix C. It agrees with results obtained by Dmytruk and
Schiro in Ref. [54] using mean-field theory with the addition
of Gaussian fluctuations in the velocity gauge.

3. Correction to one-particle observables

Next, we calculate the correction to the expectation value
of an arbitrary one-particle operator in the RPA due to the
interaction of electrons with photons for a one-dimensional
insulating electronic system embedded in a one-mode cavity.

In general, the average value of a one-particle operator

V̂ =
∑
n,n′
k,k′

Vk,k′
n,n′ ĉ

†
n,k ĉn′,k′ (29)

can be written in terms of the one-particle Green functions as
(see Appendix D)

〈V̂ 〉 = 1

β

∑
iεm

Tr[VG(iεm)], (30)
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XX
V

FIG. 3. Diagrammatic correction to the average value of an ar-
bitrary operator V̂ in the length gauge in the RPA. The analytical
expression corresponding to the diagram is given in Eq. (31). Here,
X is the one-particle position operator given by Eq. (22), V is
defined in Eq. (29). Solid lines denote the bare electron Green
functions, see Eq. (25). The double wavy line is a dressed photon
propagator in the RPA given by Eq. (23). The Hartree diagram
is identically zero because the photon propagator vanishes at zero
frequency. This fact physically reflects the vanishing mean photon
electric field in equilibrium.

where G(iεm) is a dressed electron Matsubara Green
function.

As we have discussed above in Sec. IV A 1, within the
length gauge formalism, the leading RPA correction to an
observable is given by a diagram of the lowest order in the
dressed photon propagator. The corresponding diagrammatic
correction term for an observable related to an operator V̂ ,
which involves two vertices in terms of the position operator
X , is shown in Fig. 3. Analytically, the cavity-induced correc-
tion to the observable V̂ takes the following form:

δV = − g2
0

Naβ2

∑
iεm,iωn

Tr{D(iωn)G0(iεm)

× XG0(iεm + iωn)XG0(iεm)V}. (31)

This expression can be evaluated in the same way as the
polarization operator above. Details of the calculation and the
final result for an arbitrary operator diagonal in k space can
be found in Appendix E. These results will be used in the next
section for calculating the cavity-induced charge imbalance in
a one-dimensional model.

B. Application of the diagram technique—charge
imbalance and polarization

Now we illustrate the introduced diagram technique by ap-
plying it to the Rice-Mele model [62] placed in a single-mode
cavity, where we evaluate two physical quantities of interest in
the lowest order of perturbation expansion in the light-matter
coupling: the charge imbalance and the macroscopic polariza-
tion, both in the dielectric (insulating) regime. The considered
system is schematically shown in Fig. 4, and its electronic part
is described by the Hamiltonian,

Ĥel =
∑

m

{(b̂†
mb̂m − ĉ†

mĉm) + t1(ĉ†
mb̂m + b̂†

mĉm)

+ t2(ĉ†
mb̂m+1 + b̂†

m+1ĉm)}, (32)

where 2 is the difference between the on-site energies of
the two types of sites (b and c sites), t1 and t2 are the hopping
amplitudes with Fermi operators, b̂m, ĉm, corresponding to the

FIG. 4. Schematics of Rice-Mele model placed in a single-mode
cavity. The right and left black bars indicate the cavity boundaries.
Here, 2 is the difference between the on-site energies of the two
types of sites b and c. The distances from the site b to the nearest cite
c on the right (left) is equal to d1 (d2). The corresponding hopping
amplitudes are t1 (blue) and t2 (green).

two sites. Introducing the Fourier transformations

b̂m = N−1/2
∑

k

b̂keik(am−d1 ),

ĉm = N−1/2
∑

k

ĉkeikam, (33)

we obtain the Rice-Mele Hamiltonian in Fourier representa-
tion,

Ĥel =
∑

k

ψ̂
†
k h(k)ψ̂k,

h(k) =
(

 t1eikd1 + t2e−ikd2

t1e−ikd1 + t2eikd2 −

)
, (34)

where k belongs to the Brillouin zone, ψ̂
†
k = (b̂†

k, ĉ†
k ), d1 and

d2 are the distances between sites b and c and sites c and
b, respectively, and a = d1 + d2 is the lattice period of the
system. We note that in the absence of a cavity, we can make
a unitary transformation and obtain an alternative form of the
Rice-Mele Hamiltonian

h̃(k) =
(

 t1 + t2e−ika

t1 + t2eika −

)
, (35)

which is sometimes more convenient for calculations. How-
ever, in the presence of a cavity, such a unitary transformation
would also change the photon propagator, so in our calcu-
lations, we use the Rice-Mele Hamiltonian in the form of
Eq. (34).

The Rice-Mele model has a symmetric spectrum, i.e.,
ε+,k = −ε−,k ≡ εk , which is found from the Schrödinger
equation

h(k)|u±,k〉 = ε±,k|u±,k〉, (36)

where |u±,k〉 are Bloch eigenstates for the upper (+) and lower
(–) bands, respectively.

First, we calculate the correction to the charge imbalance.
By definition, the charge imbalance is the charge difference
between the sites b and c,

ρ̂ = e

N

∑
m

(b̂†
mb̂m − ĉ†

mĉm). (37)
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In Fourier representation, the equation above becomes

ρ̂ = e

N

∑
k

(b̂†
kb̂k − ĉ†

k ĉk ). (38)

Obviously, the charge imbalance is an operator that is diagonal in k space, so we can use the expression obtained for the
cavity-induced correction to an arbitrary operator diagonal in k space (see Appendix F) and, as a result, the charge imbalance
correction takes the form

δρcav = eg2
0

N

∫ π
a

− π
a

dk

2π
[�+,+(k) − �−,−(k)] |〈u+,k|∂ku−,k〉|2 1

β

∑
iωn

D(iωn)
ω2

n − 4ε2
k(

ω2
n + 4ε2

k

)2

+ 2
eg2

0

N

∫ π
a

− π
a

dk

2π
Re[�+,−(k)(〈u+,k|∂ku+,k〉 − 〈u−,k|∂ku−,k〉)〈u−,k|∂ku+,k〉] 1

β

∑
iωn

D(iωn)
1

ω2
n + 4ε2

k

+ 2
eg2

0

N

∫ π
a

− π
a

dk

2π
Re

[
〈u−,k|∂ku+,k〉εk ∂k

(
�+,−(k)

εk

)]
1

β

∑
iωn

D(iωn)
1

ω2
n + 4ε2

k

, (39)

where �+,+(k), �−,−(k), and �+,−(k) are matrix elements of
the one-particle charge imbalance operator �(k) in the Bloch
wave basis, D(iωn) is the dressed photon propagator given by
Eq. (23) with the polarization operator Eq. (28).

To proceed, we have evaluated Eq. (39) numerically and
the result of the calculation is presented in Fig. 5. In the
present work, the energies are measured in units of ω0 (cav-
ity frequency) and lengths are measured in the units of a
(period of the electronic system). In particular, Fig. 5 shows
the dependence of the charge imbalance δρcav induced by the

(a)

(b)

FIG. 5. The dependence of the cavity-induced charge imbalance
correction δρcav given by Eq. (39) (black solid curve) and the charge
imbalance ρ0 given by Eq. (40) (blue dashed curve) for the Rice-Mele
Hamiltonian coupled to a cavity: (a) on , where 2 is the difference
between the on-site energies of the two types of sites, and (b) on the
hopping amplitude t2. Parameters: t1 = 1, g0 = 0.8, d1 = d2 = 0.5,
(a) t2 = 0.8, and (b)  = 0.5.

coupling to the cavity, on , see Fig. 5(a), and on the hop-
ping amplitude t2 (with t1 fixed), see Fig. 5(b), respectively.
Suppose  takes large values in comparison to the other
parameters of the system. In that case, the electronic system
is nearly not affected by the presence of the electromagnetic
field, so the correction to the charge imbalance due to the
interaction of the electronic system with the electromagnetic
field is negligibly small. From Fig. 5(a), it is seen that δρcav →
0 in the limit  → ±∞. In the opposite limit ( = 0), there
is no charge imbalance because the two types of sites have
the same energies. In the same way as for large values of
, the charge imbalance correction δρcav tends to zero in the
limit t2 → ∞. The limit t2 → 0 corresponds to the case of N
separate dimers.

For the unperturbed case, the nonmonotonic dependence
of charge imbalance on the hopping amplitude, t2 (see the
blue dashed curve in Fig. 5) can be explained by analyzing
the analytical expression

ρ0 = 1

β

∑
iεm

Tr [�(k) G0(k)]

= − e

N

∑
k

√
2 + t2

1 + t2
2 + 2t1t2 cos (ka)

. (40)

Here, for the operators diagonal in momentum space, the trace
operation Tr also includes the summation over a wave vector
k (in addition to the summation over band indices). When
cos (ka) > 0 in Eq. (40), the dependence of the integrand on
t2 is monotonically decreasing, while for cos (ka) < 0, the
dependence is nonmonotonic and has a maximum. Therefore,
summing over all the states of the system, we still have a
maximum in the dependence of the charge imbalance on t2.
The sign of the charge imbalance is positive, which follows
from its definition Eq. (37): indeed, as e < 0 and the energies
of the c sites are lower than the energies of the b sites, one
immediately concludes that more charges will be accumulated
on the c sites.

The correction to the charge imbalance δρcav qualitatively
behaves quite differently from the charge imbalance ρ0 it-
self. Its dependence on the hopping amplitude t2 is also
nonmonotonic but the peak is shifted and substantially more
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X

X
X X

X XJ J Jhξhξ hξ

FIG. 6. Correction to the zero momentum component of the cor-
relation function C (ξ )

ĴĤ ′ (iνm ) in the RPA, the real space representation
of the correlation function is defined in Eq. (43). Here, X is a
one-particle position operator given by Eq. (22), J is a one-particle
current operator, h′

ξ is a functional derivative with respect to the
adiabatic parameter ξ (t ). The double wavy line is a dressed photon
propagator given by Eq. (23). The solid line denotes a bare electron
Green function.

pronounced, which can serve as a means of distinguishing the
correction from the bare contribution. The physical reason for
the modification of the charge imbalance is the polaron effect
[63] (Sec. 7.1.2), which, in our case is induced by the vacuum
fluctuations of the cavity mode, making it akin to the Lamb
shift. Namely, the electrons get dressed by the cavity photons
and thus become heavier (which in terms of systems on a
lattice implies that the hopping amplitudes decrease).

We would like to emphasize the difference between charge
imbalance and polarization. In the modern (by now standard)
theory [64–66], the change in polarization δP in a periodic
system is found by computing the current flowing through the
unit cell when some parameter ξ (t ) in the Hamiltonian Ĥ (ξ )
is changed adiabatically from some initial to a final value,

δP =
∫ t f

ti

J (t )dt . (41)

The current J (t ) can be calculated within linear response
theory [41,67] to the perturbation of an adiabatic parameter
ξ (t ) and, in this case, is described by the Kubo formula,

J (t ) = C(ξ )
ĴĤ ′ (iνm)δξ (t ), (42)

where C(ξ )
ĴĤ ′ (iνm) is a zero-momentum component of the

Fourier transform in Matsubara representation of the retarded
correlation function,

C(ξ )
Ĵ (r)Ĥ ′(r′ )

(t − t ′) = −iθ (t − t ′)〈[Ĵ (r, t ), Ĥ ′
ξ (r′, t ′)]〉

ξ
. (43)

Here we assume the perturbation in the form δξ (t ) =
δξ exp (−iνt + ηt ) with ν being the real frequency related to
the Matsubara frequencies νm and η an infinitesimal positive
number. In the above equation, Ĥ ′

ξ is a functional derivative of
the Hamiltonian with respect to the adiabatic parameter ξ (t ),
Ĵ is a current operator, and 〈. . .〉ξ denotes the averaging with
respect to the instantaneous spectrum. The correction to the
correlation function C(ξ )

ĴĤ ′ (iνm) in the RPA is shown in Fig. 6 as
a sum of diagrams. It can be obtained from Fig. 3 if we replace
V to J , where J is defined by Ĵ = ∑

n,n′
∑

k Jn,n′ (k)ĉ†
n,k ĉn′,k ,

and perturb all three Green functions in turns.
In Ref. [41], Nourafkan and Kotliar formulated a dia-

grammatic approach for the calculation of the polarization
correction using the Kubo formula written as

J (t ) = i

(
∂

∂iνm
C(ξ )

ĴĤ ′ (iνm)

)∣∣∣∣∣
νm=0

δξ̇ , (44)

which is obtained from Eq. (42) in the limit of ν → 0 (static
distortion). Furthermore, it was shown that the derivative of
the polarization with respect to an adiabatic parameter can be
written as (see Eq. (5) in Ref. [41])

∂P

∂ξ
= i

e

2N

1

β

∑
iεm

Tr

{
�J (k)

∂G(k)

∂iεm
�ξ (k)G(k)

− �ξ (k)
∂G(k)

∂iεm
�J (k)G(k)

}
, (45)

where the vertices �J ,ξ are related to the derivatives of G via
the Ward identities,

�J (k) = −∂G−1(k)

∂k
= −∂G−1

0 (k)

∂k
+ ∂�(k)

∂k
, (46)

�ξ (k) = −∂G−1(k)

∂ξ
= −∂G−1

0 (k)

∂ξ
+ ∂�(k)

∂ξ
, (47)

where �(k) is the part diagonal in k of the self-energy �.
We take only the diagonal part of the self-energy as we are
interested in the current density integrated over space (which
is nothing but its zero-momentum component) [41].

For the lowest-order polarization correction [δP = δP0 +
δPcav + O(1/N2)], Eqs. (45)–(47) reduce to (see Appendix G)

∂Pcav

∂ξ
= i

e

2N

∂

∂ξ

1

β

∑
iεm

Tr{[G0(k), ∂kG0(k)]�(k)}, (48)

where

[G0(k), ∂kG0(k)] = G0(k)(∂kG0(k)) − (∂kG0(k))G0(k).

For the considered Rice-Mele model, we can choose  as
an adiabatic parameter ξ . Then the correction to the polariza-
tion can be expressed as

δPcav = i
e

2N

1

β

∑
iεm

Tr{[G0(k), ∂kG0(k)]�(k)}(ξ = )

− i
e

2N

1

β

∑
iεm

Tr{[G0(k), ∂kG0(k)]�(k)}(ξ = 0).

(49)

Performing the calculation in the length gauge with the
lowest-order self-energy

�(iεm) = (−1) · g2
0

Nβ

∑
iωn

D(iωn)XG0(iεm + iωn)X , (50)

for a dielectric with two symmetric bands embedded in a
cavity in the continuous limit, we obtain the following polar-
ization correction:

δPcav = − i
eg2

0

2N

1

β

∑
iωn

∫ π
a

− π
a

dk

2π
D(iωn)

ω2
n + 12ε2

k(
ω2

n + 4ε2
k

)2

× {〈u+,k|∂ku−,k〉
〈
u−,k

∣∣∂2
k u+,k

〉
− 〈u−,k|∂ku+,k〉

〈
u+,k

∣∣∂2
k u−,k

〉 + 2|〈u−,k|∂ku+,k〉|2

× (〈u+,k|∂ku+,k〉 − 〈u−,k|∂ku−,k〉)
}
. (51)

Details of the calculation can be found in Appendix H.
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(a)

(b)

FIG. 7. The dependence of the cavity-induced polarization cor-
rection δPcav given by Eq. (51) and the polarization δP0 given by
Eq. (52) for the Rice-Mele model embedded in a cavity: (a) on 

where 2 is the difference between the energy levels of the two
types of sites and (b) on the hopping amplitude t2. Parameters: t1 = 1,
g0 = 0.8, d1 = d2 = 0.5, (a) t2 = 0.8, and (b)  = 0.5.

Figures 7(a) and 7(b) show the dependence of the correc-
tion to the polarization for the Rice-Mele model embedded
in a cavity on  where 2 is the difference between the
on-site energies of the two types of sites and on the hopping
amplitude t2 while the hopping amplitude t1 is fixed. We
multiply the polarization correction by the coefficient (−4) to
satisfy the continuity equation in the limit of separate dimers
(t2 = 0). Its derivation for the present definitions of the charge
imbalance and the current can be found in Appendix I. The
sign of the polarization correction for the fixed  is deter-
mined by the direction of the current, which in turn is set by
the ratio between the hopping amplitudes and changes when
t1 = t2. In the limits,  = 0 or t1 = t2, the considered system
has inversion symmetry, which is consistent with the absence
of polarization correction.

In the absence of a cavity Eqs. (41)–(44) reduce to the
Berry phase formula [41,64,66]

δP0 = ie

N

∑
k,n

〈
u(ξ )

n,k

∣∣∂ku(ξ )
n,k

〉
nF

(
ε

(ξ )
n,k

)
(ξ = )

− ie

N

∑
k,n

〈
u(ξ )

n,k

∣∣∂ku(ξ )
n,k

〉
nF

(
ε

(ξ )
n,k

)
(ξ = 0), (52)

where for the Rice-Mele model as an adiabatic parameter ξ

we can choose half of the difference between energy levels
of the two types of sites and as initial and final states. We
remind the reader that δP0 is a change in polarization during

the adiabatic process of varying , as the polarization itself is
not unambiguous.

V. CONCLUSION

We developed a length-gauge formalism for the analy-
sis of light-matter interaction in cavity-embedded electronic
periodic systems. Despite being particularly useful for the
diagrammatic analysis of light-matter correlations, the length-
gauge formalism was hardly used in application to lattice
models, which is mostly due to the long-standing problem
of the ambiguities arising in the definition of a position op-
erator in periodic systems. We have developed a method to
eliminate this ambiguity which allows us to perform standard
perturbative expansions for the calculation of observables.
The crucial observation made in the present work is that it
is important to keep the artificially introduced nonuniformity
of the mode profile throughout the calculation, taking the
limit in which the photon mode becomes uniform only at the
very end of the calculation. We have applied the developed
formalism to the problem of cavity-induced charge transfer
and electric polarization in one-dimensional periodic systems.
The formulation of the problem in the length gauge enables
the use of conventional quantum field-theoretic methods to
study the physics of ultrastrong coupling between light and
matter in lattice models. We note that while in the thermody-
namic limit, the leading contribution comes from RPA-type
diagrams, for the mesoscopic systems, more complicated di-
agrams and associated processes will become essential. The
proposed formalism allows one for performing an analysis
of these processes using standard techniques. Our research
enables new theoretical approaches to the description of ul-
trastrong light-matter coupling in crystals.
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APPENDIX A: ELIMINATING A CONSTANT VECTOR
POTENTIAL FROM THE ELECTRONIC PART

OF THE HAMILTONIAN

The constant vector potential can be eliminated from the
electronic part of the Hamiltonian given by Eq. (1) by the
following unitary transformation introduced in Eq. (2):

e−iX̂ ÂĤele
iX̂ Â =

∑
k

ψ̂
†
k h(k)ψ̂k, (A1)

where X̂ is the polarization (dipole moment) operator,

X̂ = i
∑

k

ψ̂
†
k ∂kψ̂k = −i

∑
k

(∂kψ̂
†
k )ψ̂k

= i

2

∑
k

[ψ̂†
k ∂kψ̂k − (∂kψ̂

†
k )ψ̂k]. (A2)
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To prove Eq. (A1), we use the Hausdorff expansion,

e−iX̂ ÂÔeiX̂ Â = Ô − Â[iX̂ , Ô] + Â2

2!
[iX̂ , [iX̂ , Ô]]

− Â3

3!
[iX̂ , [iX̂ , [iX̂ , Ô]]] + · · · (A3)

and apply it to the bilinear form Ô = ĉ†
n,k ĉm,k . First we evalu-

ate the commutator with ĉ operator,

[iX̂ , ĉn,k] = −
∑
p,m

[ĉ†
m,p∂pĉm,p, ĉn,k]

=
∑
p,m

δm,nδp,k∂pĉm,p = ∂k ĉn,k (A4)

and its Hermitian conjugate,

[iX̂ , ĉ†
n,k] = ∂k ĉ†

n,k . (A5)

By combining these results, we find

[iX̂ , ĉ†
n,k ĉm,k] = ĉ†

n,k[iX̂ , ĉm,k] + [iX̂ , ĉ†
n,k]ĉm,k

= ∂k (ĉ†
n,k ĉm,k ) (A6)

and finally,

e−iX̂ Âĉ†
n,k ĉm,keiX̂ Â

= ĉ†
n,k ĉm,k − Â[iX̂ , ĉ†

n,k ĉm,k] + Â2

2!
[iX̂ , [iX̂ , ĉ†

n,k ĉm,k]] + · · ·

= ĉ†
n,k ĉm,k − Â∂k (ĉ†

n,k ĉm,k ) + Â2∂2
k

2!
(ĉ†

n,k ĉm,k ) + · · ·

= e−Â∂k ĉ†
n,k ĉm,k . (A7)

Thus the introduced operator X̂ indeed acts on the one-
particle density-matrix operator as a generator of a shift in
the momentum space. Using this property, we can perform
the transformation of the electronic Hamiltonian,

e−iX̂ ÂĤele
iX̂ Â =

∑
n,m,k

hn,m(k − Â)e−Â∂k ĉ†
n,k ĉm,k

=
∑

k

ψ̂
†
k [eÂ∂k h(k − Â)]ψ̂k =

∑
k

ψ̂
†
k h(k)ψ̂k,

(A8)

which proves the result announced in Eq. (A1) and, therefore,
gives the electronic part of the electron-photon Hamiltoian in
the length gauge [see Eq. (5)].

APPENDIX B: POSITION OPERATOR
IN BLOCH REPRESENTATION

The position operator for a periodic system with a single-
mode vector potential is written as [see Eq. (18) in the main
text]

X̂q =
√

2
∫

dx
sin(qx)

q
ψ̂†(x)ψ̂ (x). (B1)

In the Bloch representation, we get

X̂q =
∑

n,n′,k,k′
X k,k′

n,n′ ĉ†
n,k ĉn′,k′ , (B2)

FIG. 8. Schematics of SSH model placed in a single-mode cav-
ity. Black lines denote the cavity boundaries. The distances from the
site b to the nearest cite c on the right (left) is equal to d1 (d2). The
corresponding hopping amplitudes are t1 (blue) and t2 (green). In
contrast to the Rice-Mele model shown in Fig. 4, there is no energy
difference between the two types of sites.

where

X k,k′
n,n′ =

√
2

∫
dx

sin(qx)

q
ψ∗

n,k (x)ψn′,k′ (x)

=
√

2

N

∫
dx

sin(qx)

q
ei(k′−k)xu∗

n,k (x)un′,k′ (x)

= i

2q

√
2

N

∑
R

∫
unit
cell

dx[ei(k′−k−q)(R+x) − ei(k′−k+q)(R+x)]

× u∗
n,k (x)un′,k′ (x)

= i√
2q

[δk′,k+q − δk′,k−q]〈un,k|un′,k′ 〉. (B3)

So, in the Bloch wave basis, we obtain the following expres-
sion for the position operator:

X̂q =
∑
n,n′
k,k′

i√
2q

[δk′,k+q − δk′,k−q]〈un,k|un′,k′ 〉ĉ†
n,k ĉn′,k′ , (B4)

with q = 2π/L, as it was announced in Eq. (21).

APPENDIX C: SPECTRAL FUNCTION FOR SSH MODEL
IN A CAVITY AS AN EXAMPLE OF APPLYING THE

LENGTH-GAUGE FORMALISM

The photon spectral function is found as

A(ω) = − 1

π
Im[D(ω)]. (C1)

At zero temperature, the photon propagator is written as

D(ω) = D(R)(ω)θ (ω) + D(A)(ω)θ (−ω), (C2)

where the retarded photon Green function D(R)(ω) and the ad-
vanced photon Green function D(A)(ω) can be obtained from
the Matsubara Green function D(iωn) using the conventional
substitution

D(R)(ω) = D(iωn → ω + iδ),

D(A)(ω) = D(iωn → ω − iδ) (C3)

with δ > 0.
As an example of applying our theory, we calculated the

photon spectral density function for the SSH model [61] em-
bedded in a cavity which is schematically shown in Fig. 8. The
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(a) (b) (c)

(d) (e) (f)

FIG. 9. Photon spectral density A(ω) for the SSH model embedded in a cavity (see Fig. 8) as a function the coupling constant g0 and
frequency ω [(a)–(c)] and its profile for the fixed coupling constant g0 = 4 as a function of ω [(d)–(f)]. One of the hopping amplitudes is kept
the same for all plots (t1 = 1), while the second one differs ([(a) and (d)] t2 = −0.5; [(b) and (e)] t2 = −1; [(c) and (f)] t2 = −1.5). Other
parameters are chosen as d1 = 1, d2 = 0, and δ = 0.01.

Hamiltonian of the SSH model reads as

Ĥel =
∑

k

ψ̂
†
k h(k)ψ̂k,

h(k) =
(

0 t1eikd1 + t2e−ikd2

t1e−ikd1 + t2eikd2 0

)
, (C4)

where k belongs to the Brillouin zone, ψ̂
†
k = (b̂†

k, ĉ†
k ), d1 and

d2 are the distances between sites inside the two-site unit
cell, t1 and t2 are the corresponding hopping amplitudes. The
SSH Hamiltonian represents a limiting case of the Rice-Mele
Hamiltonian considered in the main text [see Eq.(34)] when
there is no energy difference between the two types of sites.

The result of the calculation is presented in Fig. 9, where
we used Eqs. (C1)–(C3) and the length-gauge formalism in
the RPA developed in the main text [see Eqs. (23) and (28)].
We chose the parameters for Fig. 9 in a similar way as in

Ref. [54], where the same system was studied using mean-
field theory with the addition of Gaussian fluctuations in the
velocity gauge. The obtained result is in agreement with Fig. 5
in Ref. [54].

APPENDIX D: AVERAGING OF A ONE-PARTICLE
OPERATOR

Let us find the average value of a one-particle operator

V̂ =
∑
n,n′

∑
k,k′

Vk,k′
n,n′ ψ̂

†
n,kψ̂n′,k′ . (D1)

The Fourier component of an annihilation operator is
written as

ψ̂n,k = 1√
L

∫
dr ψ̂n(x)e−ikx. (D2)

Then using the Eq. (D2), one can calculate the average value
of a one-particle operator V̂ in the following way:

〈GS|V̂ |GS〉 =
∑
n,n′

∑
k,k′

〈GS|Vk,k′
n,n′ ψ̂

†
n,kψ̂n′,k′ |GS〉 = 1

L

∑
n,n′

∑
k,k′

Vk,k′
n,n′

∫∫
drdr′〈GS|ψ̂†

n (x)ψ̂n′ (x′)|GS〉eikxe−ik′x′

= 1

L

∑
n,n′

∑
k,k′

Vk,k′
n,n′

∫∫
dxdx′〈GS|ψ̂†

n (x, δ)ψ̂n′ (x′, 0)|GS〉eikxe−ik′x′ |δ→+0

= − i

iL

∑
n,n′

∑
k,k′

Vk,k′
n,n′

∫∫
dxdx′〈GS|T{ψ̂n′ (x′, 0)ψ̂†

n (x, δ)}|GS〉eikxe−ik′x′ |δ→+0

= − i

L

∑
n,n′

∑
k,k′

Vk,k′
n,n′

∫∫
dxdx′ Gn′,n(x′ − x,−δ)eikxe−ik′x′ |δ→+0
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= − i

L

∑
n,n′

∑
k,k′

Vk,k′
n,n′

∫∫
d (x′ − x)dx′ Gn′,n(x′ − x,−δ)e−ik(x′−x)ei(k−k′ )x′ |δ→+0

= −i
∑
n,n′

∑
k,k′

Vk,k′
n,n′ δk,k′

∫
d (x′ − x) Gn′,n(x′ − x,−δ)e−ik(x′−x)|δ→+0 = −i

∑
n,n′

∑
k,k′

Vk,k′
n,n′ δk,k′Gn′,n(k,−δ)|δ→+0

= −i
∑
n,n′

∑
k,k′

∫
dε

2π
Vk,k′

n,n′ δk,k′Gn′,n(k, ε)e−iε(−δ)|δ→+0 = −i
∫

dε

2π
Tr[VG(ε)] =

∫
dεm

2π
Tr[VG(iεm)], (D3)

where εm is a fermionic Matsubara frequency.

APPENDIX E: CORRECTION TO THE AVERAGE VALUE OF AN ARBITRARY OPERATOR DIAGONAL
IN k SPACE FOR A DIELECTRIC EMBEDDED IN A CAVITY

In this section, we calculate the cavity-induced correction to the average value of an arbitrary operator V̂ given by Eq. (31)
for the case when the operator V̂ is diagonal in k space. Using the spectral representation for the electron Green function in the
Bloch wave basis and matrix elements of the one-particle coordinate operator, we rewrite Eq. (31) for an arbitrary operator V̂
diagonal in k space as

δV = g2
0

Naβ2

∑
iεm,iωn

∑
n1,n2,n3

∑
k1,k2

D(iωn)

2q2

1

iεm − εn1,k1

[
δk2,k1+q − δk2,k1−q

]〈
un1,k1

∣∣un2,k2

〉

× 1

i(εm + ωn) − εn2,k2

[
δk1,k2+q − δk1,k2−q

]〈
un2,k2

∣∣un3,k1

〉 1

iεm − εn3,k1

Vn3,n1 (k1). (E1)

Taking into account that at this moment q is finite, we obtain only two nonzero terms in Eq. (E1). And after the summation
over one of the wave vectors, we get the following expression:

δV = − g2
0

Naβ2

∑
iεm,iωn

∑
n1,n2,n3

∑
k

D(iωn)

2q2

1

iεm − εn1,k

1

i(εm + ωn) − εn2,k+q

× 1

iεm − εn3,k

〈
un1,k

∣∣un2,k+q
〉〈

un2,k+q

∣∣un3,k
〉
Vn3,n1 (k) + (q → −q). (E2)

After that, we perform the summation over the electron Matsubara frequency iεm, consider the continuous limit of the dielectric
system and make the Taylor expansion up to the second order in q (higher orders of the expansion will automatically go to zero
if we take the limit q → 0). As a result, we obtain the following expression:

δV = δVdiag + δVnondiag, (E3)

δVdiag = g2
0

β

∑
iωn

∫ π
a

− π
a

dk

2π

∑
n1:εn1 ,k>0,

n2:εn2 ,k<0

D(iωn)
∣∣〈un1,k

∣∣∂kun2,k
〉∣∣2[Vn1,n1 (k) − Vn2,n2 (k)

] ω2
n − (

εn1,k − εn2,k
)2

[
ω2

n + (
εn1,k − εn2,k

)2]2 , (E4)

δVnondiag = g2
0

β

∑
iωn

D(iωn)
∫ π

a

− π
a

dk

2π

∑
n1:εn1 ,k>0,

n2:εn2 ,k<0

2
(
εn1,k − εn2,k

)
ω2

n + (
εn1,k − εn2,k

)2

{ ∑
n3,n3 �=n1

1

εn1,k − εn3,k

× Re
[
Vn1,n3 (k)

〈
un3,k

∣∣∂kun2,k
〉〈
∂kun2,k

∣∣un1,k
〉] +

∑
n3,n3 �=n2

1

εn2,k − εn3,k
Re

[
Vn3,n2 (k)

〈
un1,k

∣∣∂kun3,k
〉〈
∂kun2,k

∣∣un1,k
〉]}

+ g2
0

β

∑
iωn

D(iωn)
∫ π

a

− π
a

dk

2π

∑
n1:εn1 ,k>0,

n2:εn2 ,k<0,

n1 �=n2

1

ω2
n + (

εn1,k − εn2,k
)2

2

εn1,k − εn2,k
Re

[
Vn1,n2 (k)

〈
un2,k

∣∣∂kun1,k
〉](∂εn2,k

∂k
− ∂εn1,k

∂k

)

+ g2
0

β

∑
iωn

D(iωn)
∫ π

a

− π
a

dk

2π

∑
n1:εn1 ,k>0,

n2:εn2 ,k<0,

n1 �=n2

2

ω2
n + (

εn1,k − εn2,k
)2 Re

[
∂Vn1,n2 (k)

∂k

〈
un2,k

∣∣∂kun1,k
〉]

, (E5)

where Vn,n′ (k) are matrix element of the operator V (k) in the Bloch wave basis.
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For a system with two symmetric bands (ε+,k = −ε−,k ≡ εk), the equation above reduces to

δV = g2
0

∫ π
a

− π
a

dk

2π
(V+,+(k) − V−,−(k))|〈u+,k|∂ku−,k〉|2 1

β

∑
iωn

D(iωn)

(
ω2

n − 4ε2
k

)
(
ω2

n + 4ε2
k

)2

+ 2g2
0

∫ π
a

− π
a

dk

2π
Re[V+,−(k)(〈u+,k|∂ku+,k〉 − 〈u−,k|∂ku−,k〉)〈u−,k|∂ku+,k〉] 1

β

∑
iωn

D(iωn)
1

ω2
n + 4ε2

k

+ 2g2
0

∫ π
a

− π
a

dk

2π
Re

[
εk

∂

∂k

(V+,−(k)

εk

)
〈u−,k|∂ku+,k〉

]
1

β

∑
iωn

D(iωn)
1

ω2
n + 4ε2

k

. (E6)

We use Eq. (E6) for the calculation of the cavity-induced charge imbalance correction [see Eq. (39)].

APPENDIX F: CHARGE IMBALANCE CORRECTION

The single-particle operator of the charge imbalance operator given by Eq. (38) reads

�(k) = e

N
(|1〉〈1| − |2〉〈2|), (F1)

where we relabeled basis vectors for convenience.
To calculate the cavity-induced charge imbalance correction [see Eq. (39)], using Eq. (E6), we need to rewrite the one-particle

charge imbalance operator �(k) in the Bloch wave basis. For a system with two symmetric bands, the basis vectors |1〉, |2〉 and
the one-particle charge imbalance operator �(k) are written as

|1〉 = 〈u+,k|1〉|u+,k〉 + 〈u−,k|1〉|u−,k〉,
|2〉 = 〈u+,k|2〉|u+,k〉 + 〈u−,k|2〉|u−,k〉, (F2)

�(k) = (|〈u+,k|1〉|2 − |〈u+,k|2〉|2)|u+,k〉〈u+,k| + (|〈u−,k|1〉|2 − |〈u−,k|2〉|2)|u−,k〉〈u−,k|
+ (〈u−,k|1〉〈1|u+,k〉 − 〈u−|2〉〈2|u+,k〉)|u−,k〉〈u+,k| + (〈u+,k|1〉〈1|u−,k〉 − 〈u+,k|2〉〈2|u−,k〉)|u+,k〉〈u−,k|, (F3)

and thus

�+,+(k) = |〈u+,k|1〉|2 − |〈u+,k|2〉|2,

�−,−(k) = |〈u−,k|1〉|2 − |〈u−,k|2〉|2,
�+,−(k) = 〈u+,k|1〉〈1|u−,k〉 − 〈u+,k|2〉〈2|u−,k〉,
�−,+(k) = 〈u−,k|1〉〈1|u+,k〉 − 〈u−,k|2〉〈2|u+,k〉. (F4)

To obtain the cavity-induced charge imbalance correction [see Eq. (39), we substitute expressions for the matrix elements of
charge imbalance given by Eq. (F4) in Eq. (E6).

APPENDIX G: POLARIZATION CORRECTION (GENERAL FORMULA)

The dressed Green function is approximated as

G ≈ G0 + G1, (G1)

where G1 = G0�G0. The polarization correction can then be transformed in the following way:

∂Pcav

∂ξ
= i

e

2N

1

β

∑
iεm

Tr

{
∂G−1

0 (k)

∂k

∂G1(k)

∂iεm

∂G−1
0 (k)

∂ξ
G0(k) + ∂G−1

0 (k)

∂k

∂G0(k)

∂iεm

∂G−1
0 (k)

∂ξ
G1(k)

− ∂�(k)

∂k

∂G0(k)

∂iεm

∂G−1
0 (k)

∂ξ
G0(k) − ∂G−1

0 (k)

∂k

∂G0(k)

∂iεm

∂�(k)

∂ξ
G0(k) − ∂G−1

0 (k)

∂ξ

∂G1(k)

∂iεm

∂G−1
0 (k)

∂k
G0(k)

− ∂G−1
0 (k)

∂ξ

∂G0(k)

∂iεm

∂G−1
0 (k)

∂k
G1(k) + ∂�(k)

∂ξ

∂G0(k)

∂iεm

∂G−1
0 (k)

∂k
G0(k) + ∂G−1

0 (k)

∂ξ

∂G0(k)

∂iεm

∂�(k)

∂k
G0(k)

}
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= i
e

2N

1

β

∑
iεm

Tr

{
∂G0(k)

∂k
�(k)

∂G0(k)

∂ξ
− ∂G0(k)

∂k

∂G0(k)

∂ξ
�(k) − ∂�(k)

∂k
G0(k)

∂G0(k)

∂ξ
− ∂G0(k)

∂k
G0(k)

∂�(k)

∂ξ

− ∂G0(k)

∂ξ
�(k)

∂G0(k)

∂k
+ ∂G0(k)

∂ξ

∂G0(k)

∂k
�(k) + ∂�(k)

∂ξ
G0(k)

∂G0(k)

∂k
+ ∂G0(k)

∂ξ
G0(k)

∂�(k)

∂k

}

= i
e

2N

1

β

∑
iεm

Tr

{
− ∂2G0(k)

∂ξ∂k
G0(k)�(k) − ∂G0(k)

∂k

∂G0(k)

∂ξ
�(k) − ∂G0(k)

∂k
G0(k)

∂�(k)

∂ξ
+ G0(k)

∂2G0(k)

∂ξ∂k
�(k)

+ ∂G0(k)

∂ξ

∂G0(k)

∂k
�(k) + G0(k)

∂G0(k)

∂k

∂�(k)

∂ξ

}

= i
e

2N

∂

∂ξ

1

β

∑
iεm

Tr

{(
G0(k)

∂G0(k)

∂k
− ∂G0(k)

∂k
G0(k)

)
�(k)

}
, (G2)

where �(k) is the diagonal in k part of the self-energy �.
In Eq. (G2) on the first step, we (i) moved in the first and fifth terms the derivative with respect to iε from G1 to G0, and

(ii) used the identities ∂iεm G0 = −G0G0 and G0(∂G−1
0 )G0 = −∂G0, where ∂ is a partial derivative with respect to any variable.

In the second step, we performed a partial k integration in the first and fifth terms and then used the cyclic invariance of the
trace to move � to the same position in all terms. As a result, Eq. (G2) reduces to a total derivative with respect to the adiabatic
parameter

∂Pcav

∂ξ
= i

e

2N

∂

∂ξ

1

β

∑
iεm

Tr

{(
G0(k)

∂G0(k)

∂k
− ∂G0(k)

∂k
G0(k)

)
�(k)

}

= i
e

2N

∂

∂ξ

1

β

∑
iεm

Tr

{[
G0(k),

∂G0(k)

∂k

]
�(k)

}
, (G3)

as it was announced in Eq. (48).

APPENDIX H: POLARIZATION CORRECTION FOR A DIELECTRIC WITH TWO SYMMETRIC
BANDS EMBEDDED IN A CAVITY

Cavity-induced polarization correction is written as

δPcav = i
e

2N

1

β

∑
iεm

Tr

{[
G0(k),

∂G0(k)

∂k

]
�(k)

}
(ξ = ) − i

e

2N

1

β

∑
iεm

Tr

{[
G0(k),

∂G0(k)

∂k

]
�(k)

}
(ξ = 0), (H1)

where �(k) is the diagonal in k part of the lowest-order self-energy � given by

�(iεm) = (−1) · g2
0

Nβ

∑
iωn

D(iωn)XG0(iεm + iωn)X . (H2)

The diagrammatic representation of the equation above is shown in Fig. 10.
Taking into account that the bare electron Green function can be represented as

G0(k) =
∑

n

|un,k〉〈un,k|
iεm − εn,k

, (H3)

parts of the Eq. (H1) can be rewritten in the following way (we use the fact that ∂k〈un,k|un′,k〉 = 0):

G0(k)
∂G0(k)

∂k
− ∂G0(k)

∂k
G0(k)

=
∑
n1,n2

∣∣un1k
〉〈

un1,k

∣∣∂kun2,k
〉〈

un2,k

∣∣( 2(
iεm − εn1,k

)(
iεm − εn2,k

) − 1(
iεm − εn1,k

)2 − 1(
iεm − εn2,k

)2

)
, (H4)

� = g2
0

N

∑
n1,n3

∑
k1,k3

∣∣un1,k1

〉〈
un3,k3

∣∣ ∑
n2

∑
k2

1

β

∑
iωn

D(iωn)

2q2

[
δk2,k1+q − δk2,k1−q

]

× 〈
un1,k1

∣∣un2,k2

〉 1

i(εm + ωn) − εn2,k2

[
δk3,k2+q − δk3,k2−q

]〈
un2,k2

∣∣un3,k3

〉
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=
∑
n1,n3

∑
k1,k2

∣∣un1,k1

〉〈
un3,k2

∣∣∑
n2

1

β

∑
iωn

D(iωn)

2q2

×
{

1

i(εm + ωn) − εn2,k1+q

〈
un1,k1

∣∣un2,k1+q
〉〈

un2,k1+q

∣∣un3,k2

〉(
δk2,k1+2q − δk2,k1

) + (q → −q)

}
. (H5)

We choose only diagonal in k terms [as we need only them for Eq. (H1)], taking into account that q is finite, and, as a result,
we obtain

�(k) = − g2
0

N

∑
n1,n3

∑
k

∣∣un1,k
〉〈

un3,k

∣∣ ∑
n2

1

β

∑
iωn

D(iωn)

2q2

{
1

i(εm + ωn) − εn2,k+q

〈
un1,k

∣∣un2,k+q
〉〈

un2,k+q

∣∣un3,k
〉 + (q → −q)

}
.

(H6)

After the summation over the Matsubara frequency iεm, taking the limit q → 0 for the dielectric with two symmetric bands
embedded in a cavity in the case of the zero temperature, we obtain the following expression:

δPcav = −i
e

2N
g2

0
1

β

∑
iωn

∫ π
a

− π
a

dk

2π
D(iωn)

ω2
n + 12ε2

k(
ω2

n + 4ε2
k

)2

{〈u+,k|∂ku−,k〉
〈
u−,k

∣∣∂2
k u+,k

〉 − 〈u−,k|∂ku+,k〉
〈
u+,k

∣∣∂2
k u−,k

〉
+ 2|〈u−,k|∂ku+,k〉|2(〈u+,k|∂ku+,k〉 − 〈u−,k|∂ku−,k〉)

}
, (H7)

which we use for the calculation of the cavity-induced polarization correction for the Rice-Mele model embedded in a cavity in
Sec. IV B.

APPENDIX I: RELATION BETWEEN CHARGE
IMBALANCE AND CURRENT

The time derivative of the charge imbalance operator given
by Eq. (38) is written as

d ρ̂

dt
= e

N

∑
k

{
db̂†

k

dt
b̂k + b̂†

k

db̂k

dt
−

(
dĉ†

k

dt
ĉk + ĉ†

k

dĉk

dt

)}
.

(I1)

The evolution of annihilation operators b̂k and ĉk is found
from the Heisenberg equation of motion,

db̂k

dt
= i[Ĥ, b̂k],

dĉk

dt
= i[Ĥ, ĉk]. (I2)

For the Rice-Mele model with the Hamiltonian given by
Eq. (34), the evolution of annihilation operators b̂k and ĉk is
described by the following equations:

db̂k

dt
= i{−b̂k − ĉk (t1eikd1 + t2e−ikd2 )},

dĉk

dt
= i{ĉk − b̂k (t1e−ikd1 + t2eikd2 )}, (I3)

X X
FIG. 10. Diagrammatic representation of the lowest-order self-

energy �. The analytical expression for the diagram is given in
Eq. (H2). Here, X is the one-particle position operator given
by Eq. (22). Solid lines denote bare electron Green functions,
see Eq. (H3). The double wavy line is a dressed photon propagator
in the RPA given by Eq. (23).

and, therefore, the time derivative of the charge imbalance is
given by

d ρ̂

dt
= 2ie

N

∑
k

{ĉ†
k b̂k (t1e−ikd1 + t2eikd2 )

− b̂†
k ĉk (t1eikd1 + t2e−ikd2 )}. (I4)

And in the limit of the separate dimers (t2 = 0), the equa-
tion above reduces to

d ρ̂

dt
= 2ie

N

∑
k

{ĉ†
k b̂kt1e−ikd1 − b̂†

k ĉkt1eikd1}. (I5)

On the other hand, the current operator, by definition, is

Ĵ = e

L

∑
k

ψ̂
†
k

∂h(k)

∂k
ψ̂k . (I6)

Thus, for the Rice-Mele model in the case of separate dimers,
the current is given by

Ĵ = −ied1

∑
k

{ĉ†
k b̂kt1e−ikd1 − b̂†

k ĉkt1eikd1}. (I7)

Comparing Eqs. (I5)–(I7) in the case of equally spaced sites
(d1 = d2 = a/2), we obtain the continuity equation

dρ̂

dt
= −4Ĵ, (I8)

as expected.

085410-16



CAVITY-INDUCED CHARGE TRANSFER IN PERIODIC … PHYSICAL REVIEW B 108, 085410 (2023)

[1] F. Schlawin, D. M. Kennes, and M. A. Sentef, Cavity quantum
materials, Appl. Phys. Rev. 9, 011312 (2022).

[2] T. Oka and S. Kitamura, Floquet engineering of quantum mate-
rials, Annu. Rev. Condens. Matter Phys. 10, 387 (2019).

[3] J. Bloch, A. Cavalleri, V. Galitski, M. Hafezi, and A. Rubio,
Strongly correlated electron–photon systems, Nature (London)
606, 41 (2022).

[4] O. V. Kibis, Metal-insulator transition in graphene induced by
circularly polarized photons, Phys. Rev. B 81, 165433 (2010).

[5] T. Oka and H. Aoki, Photovoltaic Hall effect in graphene, Phys.
Rev. B 79, 081406(R) (2009).

[6] N. H. Lindner, G. Refael, and V. Galitski, Floquet topological
insulator in semiconductor quantum wells, Nat. Phys. 7, 490
(2011).

[7] H. Dehghani, T. Oka, and A. Mitra, Out-of-equilibrium elec-
trons and the Hall conductance of a Floquet topological
insulator, Phys. Rev. B 91, 155422 (2015).

[8] M. Thakurathi, D. Loss, and J. Klinovaja, Floquet majorana
fermions and parafermions in driven rashba nanowires, Phys.
Rev. B 95, 155407 (2017).

[9] J. Klinovaja, P. Stano, and D. Loss, Topological Floquet Phases
in Driven Coupled Rashba Nanowires, Phys. Rev. Lett. 116,
176401 (2016).

[10] M. Thakurathi, A. A. Patel, D. Sen, and A. Dutta, Floquet
generation of majorana end modes and topological invariants,
Phys. Rev. B 88, 155133 (2013).

[11] A. Kundu and B. Seradjeh, Transport Signatures of Floquet Ma-
jorana Fermions in Driven Topological Superconductors, Phys.
Rev. Lett. 111, 136402 (2013).

[12] Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, and N. Gedik, Ob-
servation of floquet-bloch states on the surface of a topological
insulator, Science 342, 453 (2013).

[13] J. W. McIver, B. Schulte, F.-U. Stein, T. Matsuyama, G. Jotzu,
G. Meier, and A. Cavalleri, Light-induced anomalous Hall ef-
fect in graphene, Nat. Phys. 16, 38 (2020).

[14] V. K. Kozin, I. V. Iorsh, O. V. Kibis, and I. A. Shelykh, Periodic
array of quantum rings strongly coupled to circularly polarized
light as a topological insulator, Phys. Rev. B 97, 035416 (2018).

[15] N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological
bands for ultracold atoms, Rev. Mod. Phys. 91, 015005 (2019).

[16] K. Roux, H. Konishi, V. Helson, and J.-P. Brantut, Strongly
correlated fermions strongly coupled to light, Nat. Commun.
11, 2974 (2020).

[17] F. Mivehvar, H. Ritsch, and F. Piazza, Superradiant Topological
Peierls Insulator inside an Optical Cavity, Phys. Rev. Lett. 118,
073602 (2017).

[18] A. F. Kockum, A. Miranowicz, S. D. Liberato, S. Savasta, and F.
Nori, Ultrastrong coupling between light and matter, Nat. Rev.
Phys. 1, 19 (2019).

[19] C. Maissen, G. Scalari, F. Valmorra, M. Beck, J. Faist,
S. Cibella, R. Leoni, C. Reichl, C. Charpentier, and W.
Wegscheider, Ultrastrong coupling in the near field of comple-
mentary split-ring resonators, Phys. Rev. B 90, 205309 (2014).

[20] T. Karzig, C.-E. Bardyn, N. H. Lindner, and G. Refael, Topo-
logical Polaritons, Phys. Rev. X 5, 031001 (2015).

[21] C. Ohm and F. Hassler, Microwave readout of majorana qubits,
Phys. Rev. B 91, 085406 (2015).

[22] M. Trif and Y. Tserkovnyak, Resonantly Tunable Majorana
Polariton in a Microwave Cavity, Phys. Rev. Lett. 109, 257002
(2012).

[23] F. P. M. Méndez-Córdoba, J. J. Mendoza-Arenas, F. J. Gómez-
Ruiz, F. J. Rodríguez, C. Tejedor, and L. Quiroga, Rényi
entropy singularities as signatures of topological criticality in
coupled photon-fermion systems, Phys. Rev. Res. 2, 043264
(2020).

[24] H. Hübener, U. De Giovannini, C. Schäfer, J. Andberger, M.
Ruggenthaler, J. Faist, and A. Rubio, Engineering quantum ma-
terials with chiral optical cavities, Nat. Mater. 20, 438 (2021).

[25] V. Rokaj, M. Penz, M. A. Sentef, M. Ruggenthaler, and A.
Rubio, Polaritonic Hofstadter butterfly and cavity control of
the quantized Hall conductance, Phys. Rev. B 105, 205424
(2022).
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