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A recent work by Zhao et al. [Nature (London) 616, 61 (2023)] reported the realization of a synthetic Kondo
lattice in a gate-tunable Moiré transition metal dichalcogenide bilayer system. The observation of a Kondo
lattice is supported by a plateau (or dip, depending on filling) in the temperature dependence of the resistivity
ρ(T ) around T ∗ ∼ 40 K, which is interpreted as the Kondo temperature scale, and an apparent enhancement of
carrier mass extracted from the low-temperature resistivity data, indicating the emergence of “heavy fermions.”
The latter observation is crucially based on the assumption that the primary resistive scattering mechanism
is electron-electron scattering in the underlying Fermi liquid. In this work, we analyze the experimental data
under the assumption that the primary resistive scattering mechanism is not electron-electron scattering, but
Coulomb scattering by random quenched charged impurities and phonon scattering. We show that a combination
of impurity and phonon scattering is a plausible alternative explanation for the observed resistivity that can
describe the key features of the experimental data, even if no Kondo lattice has formed, indicating that further
theoretical and experimental work is needed to conclusively verify the formation of a Kondo lattice in the work
by Zhao et al.
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I. INTRODUCTION

The possibility of realizing a synthetic Kondo lattice and
heavy fermions in multilayer Moiré materials has attracted
significant interest over the past few years [1–11]. Follow-
ing recent theoretical proposals, an important experimental
work [1] reported the observation of a Kondo lattice in a
hole-doped MoTe2/WSe2 Moiré transition metal dichalco-
genide (TMD) heterobilayer system. Here, the MoTe2 layer
is brought into a Mott-insulating state hosting localized mag-
netic moments, while the WSe2 layer provides essentially
free itinerant holes that couple to the localized spins via the
Kondo exchange coupling. Based on an assumed interplay of
these ingredients, Ref. [1] inferred the realization of a Kondo
lattice when the Fermi level is tuned inside the Mott gap
of the MoTe2 layer. The experimental characteristic features
of the purported Kondo lattice were probed indirectly by
temperature-dependent resistivity measurements in Ref. [1]:
First, under the assumption that electron-electron scattering
of the underlying Fermi liquid is the main resistive scattering
mechanism, the effective quasiparticle mass is extracted by
fitting a quadratic function to the low-temperature resistivity-
vs-temperature data [12]. This yields a large value of
m � 5 − 10me (here, me is the bare electron mass) in the
region of the phase diagram where the Kondo lattice is ex-
pected. Indeed, such a mass would be consistent with a Kondo
lattice, where the strong Kondo exchange coupling leads to
the emergence of quasiparticles with a large effective mass
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(“heavy fermions”) [13,14]. Second, beyond a certain charac-
teristic temperature T ∗ ∼ 40 K, the resistivity-vs-temperature
curve starts to flatten out or even decrease with temperature.
In Ref. [1], this characteristic temperature was interpreted as
the Kondo temperature.

The Kondo physics interpretation in Ref. [1] is based en-
tirely on the low-temperature resistivity measurement being
interpreted as arising from electron-electron scattering, with
other resistive scattering mechanisms assumed to be negligi-
ble. Previous studies, however, showed that even non-Kondo
two-dimensional (2D) electron gases may, under suitable
conditions, manifest a rich and nonmonotonic temperature
dependence of the resistivity due to an interplay of different
competing scattering mechanisms that become operational in
different temperature regimes. In 2D semiconductors, includ-
ing possibly 2D Moiré TMDs, screened disorder scattering
[15–21] typically leads to a resistivity that increases lin-
early with temperature for T � TF , where TF is the Fermi
temperature. At higher temperatures, the system undergoes
a quantum-to-classical crossover from the strongly screened
quantum regime at T � TF to the classical regime at T > TF ,
where the resistivity now decreases as 1/T . At the same
time, at high temperatures T > TBG, where TBG is the Bloch-
Grüneisen temperature, an additional linear-in-T contribution
to the resistivity due to electron-phonon scattering becomes
relevant [22,23]. Depending on the relative magnitudes of
TBG and TF , different dependences of the resistivity on tem-
perature are possible, arising simply from the interplay of
impurity scattering and phonon scattering. In particular, when
TBG > TF , a flattening or even a local minimum of the re-
sistivity may arise in the intermediate-temperature regime
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(T ∼ T ∗), with the behavior being a linear-in-T increase
(from impurity scattering) below TF and a linear-in-T in-
crease (from phonon scattering) for T > TBG. This can give
rise to resistivity-vs-temperature behavior manifesting the
same qualitative features observed in the resistivity data of
Ref. [1]. Therefore, we believe that an analysis based on just
the temperature-dependent resistivity data is not sufficient to
conclusively identify the onset of a Kondo lattice phase since
the possibility that the resistivity is controlled by impurity
and phonon scattering rather than electron-electron scattering
cannot be ruled out.

To show that an explanation based on disorder and phonon
scattering is compatible with the resistivity data reported
in Ref. [1], we first present empirical fits to the exper-
imental data, taking into account the different scattering
mechanisms discussed above. We show that the transport
signatures reported in Ref. [1] can be qualitatively explained
by a combination of screened disorder scattering (governing
the low- to intermediate-temperature regime) and electron-
phonon scattering (dominant in the high-temperature regime).
While we also provide the physical parameters extracted from
our fits, these should be viewed as crude qualitative estimates
at best, rather than quantitatively exact numbers, since the
uncertainties associated with the experimental data are con-
siderable, particularly with regard to the true carrier density,
the disorder configuration, and the residual T = 0 resistivity
at various electric fields; in fact, the resistivity data at low
temperatures have substantial unexplained variations, making
a precise quantitative extraction of the underlying parameters
impossible [25]. Based on our analysis, we conclude that a
combination of disorder and phonon scattering provides a rea-
sonable explanation for the reported temperature-dependent
resistivity data and that additional experimental signatures are
required to conclusively verify the observation of a Kondo
lattice. Our work shows that impurity and phonon scatter-
ing together can explain the temperature-dependent resistivity
of Ref. [1] without resorting to electron-electron scattering
effects at all.

II. MODEL AND SCATTERING MECHANISMS

Reference [1] discusses a MoTe2/WSe2 Moiré TMD sys-
tem with hole doping, where the MoTe2 layer is an insulator
while the holes in the WSe2 layer are itinerant. To analyze
the resistivity of the Moiré system, we consider transport by
2D carriers modeled by a parabolic dispersion εk = h̄2k2/2m.
Here, k is the 2D wave vector, and m is the effective mass
of the itinerant holes. Since the WSe2 layer does not feel the
Moiré potential, the corresponding band can be approximated
by a parabolic dispersion [1,25]. The effective parameters of
this parabolic dispersion (the mass m and Fermi temperature
TF ) can, however, be renormalized by interactions between
the carriers of the WSe2 layer and the localized states of the
MoTe2 layer. Throughout this work, we take the effective
mass m and the Fermi temperature TF as free parameters
which we fit to the experimental data (see below). The sys-
tem is further characterized by the 2D carrier density n, the
background lattice dielectric constant κ (which we take to be
κ = 10), and the total (spin) degeneracy g = 2. The resistivity

is given by the Drude formula

ρ(T ) = m

ne2τ (T )
, (1)

where τ (T ) is the finite-temperature transport scattering time.
In our work, we consider three possible contributions to
the finite-temperature scattering: (1) Coulomb scattering me-
diated by charged disorder arising from random quenched
impurities, (2) electron-electron scattering, and (3) electron-
phonon scattering.

We start by discussing disorder scattering, which is present
even at T = 0, producing a substantial residual resistivity
in the data of Ref. [1]. Assuming that the carriers scatter
only within the 2D plane of the Moiré system [26], the
2D Coulomb interaction is given by Vq = 2πe2

κq , which corre-
sponds to the 2D Fourier transform of the three-dimensional
(3D) Coulomb potential. The bare Coulomb potential of the
charged disorder is screened by the carriers themselves, re-
sulting in the screened potential

uq = Vq

ε(q, T )
= 2πe2

ε(q, T )κq
, (2)

where, within the random-phase approximation (RPA) screen-
ing theory, ε(q, T ) is the finite-temperature static RPA
screening function in two dimensions, given by

ε(q, T ) = 1 + 2πe2

κq
�(q, T ). (3)

Here, �(q, T ) is the 2D finite-temperature static polarizability
function. At T = 0, the polarizability function is given by [27]

�(q, T = 0) = NF [1 −
√

1 − (2kF /q)2�(q − 2kF )], (4)

where NF = gm/2π h̄2 is the 2D density of states, with g = 2
being the total degeneracy (spin); kF is the Fermi momentum;
and �(x) is the Heaviside step function. At T = 0, the dis-
order scattering occurs on the Fermi surface. As a result, the
maximum value of q is given by 0 � q � 2kF , with 2kF scat-
tering being the dominant resistive scattering process. Within
this regime, the polarizability function is constant, and the
screening function is s-wave. The finite-temperature polar-
izability function can be calculated using the corresponding
T = 0 function via [18,28,29]

�(q, T ) = β

4

∫ ∞

0
dμ′ �(q, T = 0)|εF =μ′

cosh2 β

2 (μ − μ′)
, (5)

where β = 1/kBT , εF is the Fermi energy, and μ is the finite-
temperature chemical potential, given by

μ(T ) = kBT ln

[
exp

(
TF

T

)
− 1

]
. (6)

The primary effect of finite temperature is to smoothen the
kink of the polarizability function at q = 2kF . This thermal
smoothening of the 2kF kink has a nonanalytic form in two
dimensions, leading to a strong suppression of screening and
hence to strong temperature dependence of the resistivity
arising from impurity scattering in two dimensions which
does not happen in 3D systems. This 2D Fermi surface
anomaly leads to linear-in-T Fermi liquid corrections to vari-
ous properties, including the resistivity, rather than the generic
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FIG. 1. Schematic dependence of resistivity on temperature as
expected from scattering by random charged Coulomb disorder. We
point out the existence of a resistivity maximum, which can resemble
the resistivity peak in a Kondo lattice [24].

O(T 2) leading order corrections expected from the Sommer-
feld expansion. One can think of the anomalous resistive
scattering as arising from the strongly temperature depen-
dent 2D Friedel oscillations associated with the impurity
screening [30].

The transport scattering time from charged disorder at en-
ergy εk = h̄2k2/2m is given by [31]

1

τ (εk)
= 2πni

h̄

∫
k′

d2k′

(2π )2
|uk−k′ |2(1 − cos θk′k)δ(εk′ − εk),

(7)

where ni is the charged impurity density, θk′k is the angle
between k and k′, and uq is the screened Coulomb interaction
[see Eq. (2)]. At finite temperatures, the scattering time is
calculated in the Boltzmann transport theory by averaging
over all energies via

τ (T ) =
∫

dεετ (ε)
(− ∂ f

∂ε

)
∫

dεε
(− ∂ f

∂ε

) , (8)

where f (ε) = 1/[exp( ε−μ

kBT ) + 1] is the Fermi distribution
function. Using this expression for τ (T ), we can asymp-
totically expand ρ(T ) in the two opposite limits of low
temperatures (T � TF ) and high temperatures (T � TF ),
which gives [17–19]

ρ(T � TF ) = ρ0

(
1 + 2qs

qs + 1

T

TF

)
, (9)

ρ(T � TF ) = ρ1
TF

T
, (10)

where qs = qTF/2kF , with qTF = gme2

κ h̄2 being the 2D Thomas-
Fermi screening wave vector; ρ0 is the residual resistivity at
T = 0; and ρ1 = (h/e2)(ni/n)(πq2

s /2). We note that at low T ,
the resistivity rises linearly in T from the T = 0 residual re-
sistivity value, and at high T , the impurity induced resistivity
decreases as 1/T , implying an impurity scattering induced re-
sistivity maximum around T ∼ TF . This is illustrated in Fig. 1,
which schematically shows ρ(T ) resulting from scattering by
random charged impurities. Between the two limiting regimes
T � TF and T � TF , there is a crossover regime featuring

a resistivity maximum, which can mimic the characteristic
resistivity maximum that arises in a Kondo lattice at T ∼ TK .

At very low temperatures, the temperature dependence
of the resistivity is additionally suppressed due to the im-
purity scattering induced broadening of the Fermi surface.
The resulting temperature dependence approximately follows
[19,32]

ρ(T ) � ρ0[1 + aT exp(−TD/T )], (11)

where a = 2qs

qs+1 and TD is the Dingle temperature defined by
TD = h̄/2kBτq, where τq is the single-particle relaxation time.
The single-particle relaxation time is simply the imaginary
part of the self-energy of the electron, which is

1

τq
= 2πni

h̄

∫
k′

d2k′

(2π )2

∣∣ukF −k′
∣∣2

δ(εk′ − εF ). (12)

The above expression differs from the transport scattering
time [Eq. (7)] by the (1 − cos θ ) vertex correction factor
that prefers backscattering (θ ∼ π ) over forward scattering
(θ ∼ 0).

Next, we discuss electron-electron scattering. This mani-
festly temperature-dependent scattering mechanism is domi-
nant in a clean Fermi liquid, in which the electrons scatter
among themselves through the interelectron Coulomb inter-
action. This leads to a finite lifetime of the electrons, the exact
form of which depends on the details of the material and the
microscopic model used. We will assume a scattering rate
of the form arising in the standard 2D Fermi liquid theory
[33–36]

1

τ (T )
� πεF

4h̄

(
kBT

εF

)2

, (13)

which is valid in the limit T � TF . This leads to, assuming
electron-electron scattering, a temperature-dependent resistiv-
ity of the form

ρ(T � TF ) = ρ0 + π2

2

h̄

e2

(
T

TF

)2

, (14)

where ρ0 is the T = 0 residual resistivity caused by disorder
scattering. Note that the electron-electron scattering by itself
cannot produce a T = 0 residual resistivity, which is clearly
observed in Ref. [1], indicating the presence of considerable
disorder scattering. Writing Eq. (14) as ρ(T ) = ρ0 + AT 2,
Ref. [1] uses the quadratic coefficient A to estimate the ef-
fective band mass since

√
A ∼ 1/TF ∼ m, assuming a known

carrier density.
Finally, we discuss the contribution of phonon scattering

to the resistivity, which also operates only at finite tem-
peratures and is negligible for T � TBG, where TBG is the
Bloch-Grüneisen temperature. (We mention that in normal
metals, TBG is much larger than the Debye temperature TDebye,
and hence, TDebye is the lower cutoff temperature scale for
phonon scattering, but in doped semiconductors, such as
TMDs, TBG � TDebye, and hence, TBG is the lower cutoff scale
for phonon scattering.) For the Moiré systems under con-
sideration, the Bloch-Grüneisen temperature follows TBG ∼
20

√
n/1012 cm−2 K, where n is in units of cm−2 [37]. At tem-

peratures above TBG, the phonon contribution to the resistivity
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is linear in T and is given by [22,23]

ρph(T � TBG) = ρ0 + AphT, (15)

where the slope Aph is related to the dimensionless parameter
λ that characterizes the electron-phonon coupling strength
[23]:

Aph = m

ne2
(2πλ)

kB

h̄
, (16)

where λ ∼ 0.05 for TMD materials [37,38]. We are using
an approximate estimated value of the electron-phonon cou-
pling for TMDs combining both the deformation potential and
piezoelectric interactions. Below TBG, the phonon contribu-
tion to ρ(T ) is heavily suppressed and goes as ∼T 4:

ρph(T � TBG) = ρ0 + Bph

(
T

TBG

)4

. (17)

In our analysis, we will assume the functional form of the
phonon resistivity contribution is

ρph(T ) = Aph(T − TBG)�(T − TBG), (18)

neglecting the phonon contribution below TBG, assuming that
the corresponding O((T/TBG)4) contribution to ρph(T ) is neg-
ligible (which is true).

III. LOW-TEMPERATURE BEHAVIOR: T VERSUS T 2

In Ref. [1], experimental data for ρ(T ) was presented at
different filling factors ν = 1 + x and ν = 2 + x written in
terms of the independent filling factors of the two layers
ν = νMo + νW. Based on the scattering models introduced
above, we now provide qualitative fits to the experimental data
and discuss the relative importance of the different scatter-
ing mechanisms in different temperature regimes. Throughout
this paper, we mainly focus on the case ν = 1 + x and only
briefly comment on the case of ν = 2 + x at the end. This is
consistent with the emphasis in Ref. [1].

The first question we consider is whether the mechanism
responsible for the low-temperature variation of resistivity
is primarily electron-electron scattering or Coulomb disor-
der scattering. Note that, by definition, disorder scattering is
important at the lowest temperatures since it contributes to
the residual resistivity ρ0, with a leading order linear-in-T
correction, and the electron-electron scattering vanishes at the
lowest temperatures and is quadratic in temperature. The dis-
tinguishing factor is clear: For T � TF , the electron-electron
scattering contribution to the resistivity depends quadratically
on temperature, ρ = ρ0 + AT 2, with the coefficient A > 0,
while the disorder scattering contribution follows a linear
dependence, ρ = ρ0(1 + BT ), with the coefficient B > 0. In
Fig. 2, we directly compare a linear fit [Fig. 2(a)] with a
quadratic fit [Fig. 2(b)] with respect to the experimentally
measured ρ(T ) in Ref. [1] at filling ν = 1 + x. We find that
the linear fit is generally better than the quadratic one, signify-
ing that disorder scattering by itself is a plausible explanation
for the observed low-temperature resistivity. Of course, in
reality, both scattering mechanisms may be present simulta-
neously. However, we do not fit a combination of a linear
function and a quadratic function since we are interested in
studying only the dominant scattering mechanism and want to

FIG. 2. Fits (solid lines) to the low-temperature experimental
resistivity data ρ(T ) taken from Ref. [1] (dots) at filling ν = 1 + x.
(a) Linear fit (disorder scattering) and (b) quadratic fit (electron-
electron scattering). We find that the linear fit is in better agreement
with the experimental data than the quadratic fit, signifying the
importance of disorder scattering at low temperatures.

keep the number of fitting parameters to a minimum. (Also,
the data in Fig. 2 are simply not accurate enough for theoreti-
cal fits to multiple combined power laws in temperature.) We
note that, even though Eq. (9) is, strictly speaking, valid for
only T � TF , we perform the fit up to T ∼ 10 K since the
experimentally measured resistivity follows the linear trend
very well in this regime. Moreover, at very low tempera-
tures, it is difficult to meaningfully distinguish the linear and
quadratic fits due to the small number of experimental data
points.

Next, we extract the relevant physical parameters from the
best fits shown in Fig. 2. In the case of disorder scattering, we

use Eq. (9) together with the relations qs(TF , m) = ge2

2κ h̄

√
m

2kBTF

and m(TF ) = 2πnh̄2

gkBTF
to relate the linear coefficient B to the

Fermi temperature TF while keeping the density n fixed. We
consider two scenarios, n = xnM and n = (1 + x)nM , where
nM � 5 × 1012 cm−2 is the Moiré density reported in Ref. [1].
The former scenario is what is expected for a doped Mott insu-
lator, while the latter scenario is the carrier density determined
from experimental Hall measurements [1]. The resulting val-
ues for TF and m are shown in Table I. We find that the Fermi
temperatures extracted from the fit are consistent with exper-
imental estimates [39], while the band mass is larger than
the mass m = 0.5me expected for itinerant holes in WSe2,
which we attribute to the uncertainties in the experimental car-
rier density and residual T = 0 resistivity [39]. Due to these
significant uncertainties, we also find that the mass extracted

085405-4



APPARENT KONDO EFFECT IN MOIRÉ TRANSITION … PHYSICAL REVIEW B 108, 085405 (2023)

TABLE I. Fermi temperature TF and effective mass m as ex-
tracted from the linear fit (disorder scattering) to the experimental
resistivity data of Ref. [1] at filling ν = 1 + x. Values with subscript
1 (subscript 2) are obtained using n = xnM [n = (1 + x)nM ].

x TF |1 (K) m/me|1 TF |2 (K) m/me|2
0.35 10.7 4.5 10.9 17.5
0.30 12.4 3.4 12.7 14.6
0.25 16.0 2.2 16.5 10.9
0.20 21.5 1.3 22.7 7.8
0.15 12.6 1.6 13.1 12.7

from the fits varies between different fillings, while it should
remain constant in an ideal scenario. We note that the band
mass is enhanced in the case of n = (1 + x)nM by about a
factor of 5–10 with respect to the n = xnM case since the
carrier density increases by a factor of 5–10. In order to keep
TF the same (which is a function of n/m), the band mass needs
to scale with the carrier density.

We also extract the physical parameters from the quadratic
fit assuming that electron-electron scattering is the primary
scattering mechanism. Using Eq. (14), we relate the fitting
coefficient A to the Fermi temperature TF . The band mass
is then found as a function of TF and n, which we again
assume to be fixed to either n = xnM or n = (1 + x)nM . Our
results are summarized in Table II. Again, we find that the
Fermi temperatures extracted from the fit are consistent with
experimental estimates [39], while the band masses, in the
case of n = (1 + x)nM , are about a factor of 10–20 larger than
the mass m = 0.5me expected for itinerant holes in WSe2.

In a typical Kondo lattice, we expect the T = 0 resistiv-
ity to remain approximately constant as we vary the carrier
density [24], which is not observed in the experimental
data of Ref. [1], where the T = 0 resistivity increases dras-
tically as the carrier density is decreased. Moreover, the
resistivity peaks in the experimental data are not very pro-
nounced and correspond more to a flattening of the resistivity
curves. These observations point to the existence of a classic
metal-insulator transition (MIT) driven by charged Coulomb
disorder, which has, indeed, been observed at around x ∼ 0.05
in the same sample [39]. In this spirit, we calculate the Ander-
son localization critical density (for x < 0.35) defined by the

TABLE II. Fermi temperature TF and effective mass m as ex-
tracted from the quadratic fit (electron-electron scattering) to the
experimental resistivity data of Ref. [1] at filling ν = 1 + x. Values
with subscript 1 (subscript 2) are obtained using n = xnM [n =
(1 + x)nM ]. Note that in this model, TF is independent of n.

x TF (K) m/me|1 m/me|2
0.35 29.4 1.7 6.3
0.30 26.1 1.6 6.9
0.25 22.3 1.6 7.8
0.20 22.3 1.2 7.4
0.15 11.2 1.9 14.3

Ioffe-Regel-Mott criterion [40],

εF τ = 1, (19)

assuming an impurity density of ni ∼ 109 cm−2 (as extracted
from the T = 0 resistivity at ν = 1 + 0.35). We find that the
localization critical density is about x ∼ 0.01–0.02, which is
consistent with the MIT observed in unpublished data [39]
associated with Ref. [1]. In fact, very recent unpublished data
[25] from the Cornell group taken on a new sample, which
is dirtier, explicitly showed a doping-driven metal-insulator
transition at ν = 1 + 0.05 by going to millikelvin temper-
atures, which is again consistent with our theory since we
can estimate the impurity content of this new sample (from
the low-T resistivity itself) to be ni ∼ 2 × 109 cm−2. The
observation of the doping induced metal-insulator transition
is completely inconsistent with a Kondo lattice interpretation
of the experimental transport data and is completely con-
sistent with our interpretation based on disorder scattering
being the dominant T = 0 scattering mechanism. Note that it
was already emphasized in Ref. [21] that doped homobilayer
TMDs undergo a low-doping Anderson-type metal-insulator
localization transition induced by Coulomb disorder, and our
current work shows the same to be true for the heterobilayer
TMDs of Ref. [1]—both arise from the presence of strong
Coulomb disorder in TMD samples with the low-T mobility
being only around a few thousand square centimeters per volt
second, indicating the presence of substantial (∼1011 cm−2)
charged impurities in the environment, as reflected in the
rather large residual resistivity.

IV. HIGH-TEMPERATURE BEHAVIOR

We now proceed to study the high-T behavior of ρ(T ) us-
ing a combination of qualitative fits and exact theory. Figure 3
shows a fit to the full experimental resistivity data at filling
ν = 1 + 0.35. Here, we proceed in three steps: First, we per-
form a linear fit ρ(T ) = ρ0(1 + BT ) to the low-temperature
data for ρ0 and B, taking disorder scattering to be the domi-
nant scattering mechanism in this regime [Fig. 3(a)]. This is
the same fit as the one shown in Fig. 2(a). Second, at high
temperatures, the linear ρ(T ) ∼ T dependence from disorder
scattering undergoes a smooth crossover to ρ(T ) ∼ 1/T [see
Eq. (10)]. To capture this crossover, we perform an additional
fit to the high-temperature resistivity data using a fitting func-
tion of the form

ρ(T ) = ρ0[1 + BT exp(−T/T0)] + C

T
, (20)

where T0 and C are the fitting parameters and ρ0 and B
are fixed to the values obtained from the low-temperature
fit discussed above. Here, the factor of exp(−T/T0) is
a phenomenological way of suppressing the linear-in-T
behavior (valid for T � TF ) and capturing the smooth
quantum-classical crossover to ρ(T ) ∼ 1/T (for T � TF ).
The resulting curve is shown in Fig. 3(b). Third, this is not a
very good fit since we need another ingredient: the linear-in-T
phonon scattering that sets in at high temperatures T > TBG.
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FIG. 3. Fits to the experimentally measured resistivity ρ(T ) at filling ν = 1 + 0.35, taken from Ref. [1], assuming screened disorder
scattering and electron-phonon scattering as the primary scattering mechanisms. (a) Linear fit in the low-temperature regime, including only
disorder scattering [same as in Fig. 2(a)]. (b) Combined fit capturing the crossover of the disorder contribution from ρ(T ) ∼ T at T � TF to
ρ(T ) ∼ 1/T at T � TF [see Eq. (20)]. (c) Fit including the contribution of disorder scattering to the resistivity [as in (b)] with an additional
linear-in-T contribution from phonon scattering [see Eq. (21)], which reproduces the experimental data reasonably well.

Therefore, assuming that Matthiessen’s rule is valid within
the temperature regime we consider, we add a term given by
AphT , with λ = 0.05. We recalculate the fit for C and T0 using
the functional form

ρ(T ) = ρ0[1 + BT exp(−T/T0)] + C

T
+ AphT (21)

to obtain the curve in Fig. 3(c), which is now in good agree-
ment with the experimental data. Thus, disorder scattering
(including quantum-classical crossover and Friedel oscillation
effects) plus phonon scattering provides an acceptable expla-
nation for the temperature-dependent resistivity in Ref. [1]
without the necessity for invoking any electron-electron
scattering.

For completeness, we now directly calculate ρ(T ) by treat-
ing the disorder scattering exactly at all temperatures by
numerically evaluating Eq. (8) and adding the phonon contri-
bution later by hand [see Eq. (18)]. The minimal parameters
needed to perform this calculation are the impurity density ni,
the Fermi temperature TF , the Bloch-Grüneisen temperature
TBG, and the electron-phonon coupling λ. Based on qualitative
estimates, we choose ni = 6 × 1010 cm−2, TF = 11 K, TBG =
35 K, and λ = 0.05. We emphasize that these parameters are
not obtained by fitting but are estimated based on our analysis
of the experimental low-T data (including fitting ρ0) in the
previous section. The resulting numerical ρ(T ) is shown in
Fig. 4(a) using a logarithmic temperature scale, emphasiz-
ing the comparison with the experimental data at low T , as
Ref. [1] presented the results on a logarithmic scale. We see
that the numerically calculated ρ(T ) is consistent with the
experimental data. Figure 4(b) shows the same curve in a
linear temperature scale, emphasizing the comparison with
the experimental data at high T . Here, the numerically cal-
culated ρ(T ) is in very good agreement with the experimental
data. We emphasize again that our analysis is based on qual-
itative estimates of the relevant system parameters, and no
quantitative predictions can be made at this point because of
large uncertainties in the experimental data of Refs. [1,25].
Nevertheless, our result clearly shows that the combination

of disorder and phonon scattering is a plausible explanation
for the temperature dependence of the resistivity measured in
Ref. [1].

FIG. 4. Contribution to ρ(T ) from disorder scattering calculated
numerically using Eq. (8) (dashed blue line), empirical phonon
resistivity as given in Eq. (18) (dashed orange line), and total resis-
tivity including both disorder scattering and phonon scattering (green
line), compared with the experimental resistivity data taken from
Ref. [1] at filling ν = 1 + 0.35 (blue dots). The parameters used are
ni = 6 × 1010 cm−2, TF = 11 K, TBG = 35 K, and λ = 0.05. (a) and
(b) show the same results, but on a logarithmic temperature scale and
a linear temperature scale, respectively.
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FIG. 5. Fits (solid lines) to the low-temperature experimental
resistivity data ρ(T ) taken from Ref. [1] (dots) at filling ν =
2 + x. (a) Linear fit (disorder scattering) and (b) quadratic fit
(electron-electron scattering). Both fits agree reasonably well with
the experimental data.

V. FILLING FACTOR ν = 2 + x

For completeness, we also comment on the low-T behavior
of ρ(T ) at fillings ν = 2 + x. Again, we perform both a linear
and a quadratic fit for ρ(T ) at low temperatures in order to
compare the importance of electron-electron scattering and
disorder scattering. One of the key differences between the
resistivity-vs-temperature curves for ν = 1 + x and ν = 2 + x
is that the latter exhibit an extended low-temperature region
where the resistivity is only very weakly temperature de-
pendent. This necessitates the inclusion of a nonzero Dingle
temperature in the linear temperature dependence resulting
from disorder scattering [see Eq. (11)]. In Fig. 5, we compare
a linear fit including a finite Dingle temperature [Fig. 5(a)] and
a quadratic fit [Fig. 5(b)] to the experimental resistivity data.
Unlike for ν = 1 + x, the quadratic and linear fits perform
similarly and are, in fact, hard to distinguish by eye. However,
extracting physical quantities from the fit parameters reveals
stark differences between the two cases. The linear fit (see
Table III) results in values of TF and m that are of the same or-
der of magnitude as those found for ν = 1 + x. The quadratic
fit (electron-electron scattering), on the other hand, gives a
significantly larger value of TF ∼ 200 K (see Table IV).

VI. CONCLUSIONS

We critically analyzed the temperature dependence of the
resistivity presented in Ref. [1], which claims the realiza-
tion of a Kondo lattice in a Moiré TMD bilayer system.

TABLE III. Fermi temperature TF , effective mass m, and Dingle
temperature TD as extracted from the linear fit (disorder scattering) to
the experimentally reported resistivity of Ref. [1] at filling ν = 2 + x,
using n = xnM .

x TF (K) m/me TD (K)

0.35 30.5 1.6 36.0
0.30 32.0 1.3 38.1
0.25 35.0 1.0 37.8
0.20 41.9 0.7 36.4
0.15 49.5 0.4 43.8

While Ref. [1] inferred the emergence of heavy fermions from
the low-temperature resistivity data assuming that electron-
electron Fermi liquid scattering is the dominant scattering
mechanism, our unbiased comparison of theoretical fits to the
experimental data shows that disorder scattering is certainly
a viable (if not better) explanation for the resistivity data at
low temperatures. Furthermore, at higher temperatures, in-
cluding a contribution from phonon scattering along with the
disorder scattering allowed us to reproduce the experimentally
observed resistivity plateau.

For completeness, we mention that there are additional as-
pects of the experiment that are not explained by our transport
calculations, e.g., the reconstruction of the Fermi surface in
the presence of a magnetic field. The corresponding exper-
imental Hall conductivity data remain intriguing and would
require a high-field generalization of our work. Such a gener-
alization would require understanding the interactions of the
local moments in the presence of a magnetic field (including
a more realistic band structure) and the corresponding phase
transitions that might occur, which is beyond the scope of
the current work focusing on explaining the resistivity data at
zero magnetic field. While the reported Fermi surface recon-
struction is compatible with the Kondo scenario, additional
theoretical work would be necessary to conclusively rule out
alternative explanations.

In summary, our work shows that a combination of disor-
der and phonon scattering provides a reasonable alternative
explanation for the resistivity data reported in Ref. [1] and
that additional experimental signatures are needed to reach a
decisive conclusion about whether a Kondo lattice has been
observed or not. Given that Ref. [1] reported substantial levels
of residual resistivity, impurity scattering is manifestly im-

TABLE IV. Fermi temperature TF and effective mass m as ex-
tracted from the quadratic fit (electron-electron scattering) to the
experimentally reported resistivity data of Ref. [1] at filling ν =
2 + x, using n = xnM .

x TF (K) m/me

0.35 229.1 0.21
0.30 220.2 0.19
0.25 212.6 0.16
0.20 209.3 0.13
0.15 220.5 0.09
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portant, and 2D Fermi surface anomalies automatically lead
to a strong temperature dependence in the resistivity arising
from the scattering by the Friedel oscillations associated with
the quenched charged impurities in the system producing the
residual resistivity. Our work is agnostic about the existence of
a Kondo lattice in the system studied in Ref. [1] but provides a
possible explanation for the temperature-dependent resistivity
in terms of disorder and phonon scattering, implying that
any Kondo physics, even if it is present, may not affect the

transport properties of the 2D Moiré TMD layers studied in
Ref. [1].
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